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Review:

Morphisms & Rational Maps,
Products & Projections



Morphisms: Affine vs. projective

If V ⊂ Am andW ⊂ An are affine varieties, amorphism V → W is just given by an n-tuple of
polynomials f�, . . . , fn ∈ K[x�, . . . , xm] such that

� f�(x�, . . . , xm), . . . , fn(x�, . . . , xm)� ∈W
for all (x�, . . . , xm) ∈ V .

If X ⊂ Pm and Y ⊂ Pn are projective varieties, the following seems the most natural: We should
take polynomials F�, . . . , Fn ∈ K[Z�, . . . , Zm] such that

[F�(Z�, . . . , Zm), . . . , Fn(Z�, . . . , Zm)] ∈ Y
for all [Z�, . . . , Zm] ∈ X. For this to be well-defined, we must have

deg(F�) = � = deg(Fn) and V(F�, . . . , Fn) ∩ X = �.
This is straightforward, but it turns out not to be quite the ’correct’notion ofmorphismbetween
projective varieties.
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An instructive example

Let C = V(X� + Y� − Z�) ⊂ P� and consider

φ∶� C → P�[X ,Y , Z] � [X ,Y − Z]
This is undefined if X = � andY = Z, i.e. at the point
p = [�, �, �]. It is the stereographicprojection from
the point p, sending r ∈ C, r ≠ p to the intersection
point of the lines pr and {Y = �}.
Consider the open subsetU� = {[S , T] ∈ P� ∶ S ≠ �}. For [X ,Y , Z] ∈ φ−�(U�), we can write

φ[X ,Y , Z] = [X ,Y − Z] = ��, Y − Z
X
�,

which of course still appears to be undefined at the point p = [�, �, �]. But note that
Y − Z
X
= Y� − Z�

X(Y + Z) = −X�

X(Y + Z) = −XY + Z
so the restriction of φ to φ−�(U�) is given by

φ[X ,Y , Z] = ��, −X
Y + Z� = [Y + Z ,−X]

which is defined in the point [�, �, �], but not in the point [�, �,−�].
So we can put φ(p) = [�, �] and φ is well-defined everywhere on C.
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Maps on varieties in projective space

A subsetW ofPn is a quasi-projective variety if it is locally closed in the Zariski topology, i.e. if
it is the intersection of an open and a closed subset of Pn.

SinceAn can be identified with the open subsetU� of Pn, any affine variety can be regarded as
a quasiprojective variety.

LetV ⊂ Pm andW ⊂ Pn be quasi-projective varieties. Amap φ∶V →W is called amorphism or
a regular map if the following condition holds: For every point p ∈ V , there is an open subset
U of Pm containing p and homogeneous polynomials F�, . . . , Fn ∈ K[Z�, . . . , Zm] of the same
degree such that V(F�, . . . , Fn) ∩U = � and

φ[Z�, . . . , Zm] = [F�(Z�, . . . , Zm), . . . , Fn(Z�, . . . , Zm)]
holds for all points [Z�, . . . , Zm] ∈W ∩U .

A morphism V → A� is called a regular function on V .

Any morphism V� → W , where V� is a non-empty open subset of V , is called a rational map,
denoted

V �→W .

(More precisely, a rational map is an equivalence class of such maps V�, where two maps are
equivalent if they agree on the intersection of their domains.)
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Summary

If V ⊂ Am and W ⊂ An are affine varieties, a morphism V → W is given by an n-tuple of
polynomials f�, . . . , fn ∈ K[x�, . . . , xm] such that

� f�(x�, . . . , xm), . . . , fn(x�, . . . , xm)� ∈W
for all (x�, . . . , xm) ∈ V .

If X ⊂ Pm and Y ⊂ Pn are projective varieties, a morphism V → W may be given by homoge-
neous polynomials F�, . . . , Fn ∈ K[Z�, . . . , Zm] of the same degree such that

[F�(Z�, . . . , Zm), . . . , Fn(Z�, . . . , Zm)] ∈ Y
for all [Z�, . . . , Zm] ∈ X � V(F�, . . . , Fn) (which should be non-empty).

But it may not be immediately clear whether such a tuple of polynomials really induces a mor-
phism defined on all of X or just a rational map defined on some proper subset of X. To decide
this, it is necessary to examine the points where F�, . . . , Fn vanish on X.

Theorem. IfX is an irreducibleprojective varietyof positivedimensionandW anaffinevariety, any
morphism X →W is constant. In particular, X does not admit any non-constant regular function.



Projections

The linear projection

π∶Pn → Pn−�, [Z�, . . . , Zn]� [Z�, . . . , Zn]
is not a morphism, because It is undefined at the point p� = [�, �, . . . , �].
Thus π is only a rational map.

Moregenerally, ifφ∶V →W is a linearmapbetweenfinite-dimensional vector spaces, it induces
a rational map PV �→ PW , defined on PV � P(kerφ).
We should also think of projections in projective
space differently than in affine space: The point
p� is called the center of the projection. Geo-
metrically, π maps a point q ∈ Pn � {p�} to the
intersection of the line p�qwith the hyperplane
H� = {[Z] ∈ Pn ∶ Z� = �}.
For any hyperplane H ⊂ Pn and any point p ∈
Pn � H, we may define the projection from p
ontoH, which is just π after the unique change
of coordinates taking H to H� and p to p�.
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Resultants

Lemma. Twomonic polynomials f , g ∈ k[t] (over any field k) have a common factor if and only if
R( f , g) = �, where R( f , g) is the resultant of f and g.
Explicitly, if f has roots λ�, . . . , λd ∈ K = k and g has roots µ�, . . . , µe , thenR( f , g) =∏i , j(λi−µ j)
The point is that R( f , g) can also be expressed in the coefficients of f and g, rather than the
roots. Namely, if f = ∑d

i=� aizi , g = ∑e
i=� bizi , then

R( f , g) = det

����������������������

ad ad−� ⋅ ⋅ a� � � ⋅ ⋅ ⋅ �
� ad ad−� � ⋅ a� � ⋅ ⋅ ⋅ �⋅⋅
� � ⋅ ⋅ ad ad−� ⋅ ⋅ ⋅ ⋅ a�
be be−� ⋅ ⋅ b� � � ⋅ ⋅ ⋅ �
� be be−� � ⋅ b� � ⋅ ⋅ ⋅ �⋅⋅
� � ⋅ ⋅ be be−� ⋅ ⋅ ⋅ ⋅ b�

����������������������
(This is a (d + e) × (d + e)-matrix, called the Sylvester matrix of f and g.)
Since f , g are assumed monic, we actually have ad = be = �. If ad = � or be = �, the statement
about the Sylvester matrix becomes wrong. However, this is an “affine” problem, which goes
away in the projective picture (Exercise):
Lemma �.�. Two homogeneous polynomials F = ∑d

i=� aiXd
�X

d−i
� andG = ∑e

i=� biXi
�X

e−i
� have a

common zero onP� if and only if R(F ,G) = �, where R(F ,G) is the Sylvester determinant above.
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Elimination theory

Theorem �.� (Fundamental theorem of elimination theory).

Let X ⊂ Pn be a projective variety, p ∈ Pn a point not on X andH ⊂ Pn a hyperplane not containing
p. Then πp(X) is closed and therefore again a projective variety.
Sketch of proof. Let I(X) be the ideal of X in K[Z�, . . . , Zn] and assume again p = [�, �, . . . , �]
and H = {[Z] ∈ Pn ∶ Z� = �}. For homogeneous polynomials F ,G ∈ K[Z�, . . . , Zn], we let
R(F ,G)denote the resultantwith respect to Z�. Thismeans thatwe regard F ,G as polynomials
in Z� with coefficients in K[Z�, . . . , Zn] and define R(F ,G) via the Sylvester matrix.

For q ∈ H, we claim that the following are equivalent:
(�) The line ℓ = pqmeets X, i.e. q ∈ π(X).
(�) Every pair of polynomials F ,G ∈ I(X) has a common zero on ℓ.
(�) The resultant R(F ,G) vanishes at q for all F ,G ∈ I(X).

The claim follows, since π(X) is then defined by all polynomials R(F ,G), F ,G ∈ I(X).
Note that if q = [�, Z�, . . . , Zn], then ℓ = {[λ, µZ�, . . . , µZn] ∶ [λ, µ] ∈ P�}.
The implication (�)⇒(�) is clear and (�)⇔(�) follows from the properties of the resultant in one
variable. (One detail: What happens if F orG vanish at p?)
(�)⇒(�): If ℓ∩X = �, thenwe canfirst find F ∈ I(X) that does not vanish identically on ℓ. For each
of the finitely many points r ∈ ℓ ∩ V(F), we can find Gr ∈ I(X) with Gr(r) ≠ �, by hypothesis.
Now the space {∑r∈ℓ∩V(F) αrGr ∶ αr ∈ K} contains someG with ℓ ∩ V(F) ∩ V(G) = �. �
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The Segre embedding

Recall that cartesian products of projective spaces and varieties are more subtle than in the
affine case:
The product Pm × Pn is not Pm+n. For example, if m � n, any two m-subspaces in Pm+n have
non-empty intersection, while

Pm × {p} and Pm × {q}
for p, q ∈ Pn, p ≠ q, are clearly disjoint in Pm × Pn.
Instead, the cartesian product is realized via the Segre embedding

σm,n∶� Pm × Pn → P(m+�)(n+�)−�[X�, . . . , Xm], [Y�, . . . ,Yn] � [X�Y�, X�Y�, X�Y�, . . . , X�Y�, X�Y�, . . . , XmYn] .
The image Σm,n of σm,n is closed and Pm × Pn as a projective variety is defined as Σm,n.

For example, the Segre embedding of P� ×P� is
the quadric surface in P�.

The product of two projective varieties X ⊂ Pm, Y ⊂ Pn is
defined as the image of X × Y in Pm × Pn. Such subvari-
eties of Pm × Pn are defined by bi-homogeneous poly-
nomials, i.e. polynomials F ∈ K[X�, . . . , Xm,Y�, . . . ,Yn]
that are homogeneous of degree d in X and homoge-
neous of degree e in Y , so that F(λX ,Y) = λdF(X ,Y)
and F(X , λY) = λeF(X ,Y).
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More elimination theory

Theorem �.� (Fundamental theorem of elimination theory, second version).

Let Y be any (quasi-projective) variety. Then for any n � �, the projection
Y × Pn → Y , (y, z)� y

is a closedmap, i.e. it takes Zariski-closed subsets of Y × Pn to Zariski-closed subsets of Y .

The proof can again be carried out using resultants and induction on n (see [Ha, Thm. �.��).

Remark. In topology, a Hausdorff-space P has the property that the projection Y × P → Y is
closed for all spaces Y if and only if P is compact. The Zariski-topology is not Hausdorff and
every quasi-projective variety is (quasi-)compact. Also, the Zariski topology on X × Y is not the
product topology. Nevertheless, the property expressed in the fundamental theorem of elimi-
nation theory can be seen as an analogue of compactness in algebraic geometry. Furthermore,
a smooth quasi-projective variety X over C is also a complex manifold, and that manifold is
compact if and only if X is compact in the strong (Euclidean) topology.

Corollary �.�. If X ⊂ Pm is a projective variety and φ∶X → Pn anymorphism, then φ(X) is closed.
Proof. First, one checks that the graphmap X → Pm×Pn, x � (x , φ(x)) is an isomophism from
X onto its image Γφ. Then φ(X) is the image of Γφ under the projection onto the second factor,
so it is closed. �
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Corollary �.�. A connected projective variety does not admit any non-constant regular function.
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Proof. A regular function on a projective variety X is a morphism f ∶X → A�. Composing with
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More elimination theory

Theorem �.� (Fundamental theorem of elimination theory, second version).

Let Y be any (quasi-projective) variety. Then for any n � �, the projection
Y × Pn → Y , (y, z)� y

is a closedmap, i.e. it takes Zariski-closed subsets of Y × Pn to Zariski-closed subsets of Y .

The proof can again be carried out using resultants and induction on n (see [Ha, Thm. �.��).

Remark. In topology, a Hausdorff-space P has the property that the projection Y × P → Y is
closed for all spaces Y if and only if P is compact. The Zariski-topology is not Hausdorff and
every quasi-projective variety is (quasi-)compact. Also, the Zariski topology on X × Y is not the
product topology. Nevertheless, the property expressed in the fundamental theorem of elimi-
nation theory can be seen as an analogue of compactness in algebraic geometry. Furthermore,
a smooth quasi-projective variety X over C is also a complex manifold, and that manifold is
compact if and only if X is compact in the strong (Euclidean) topology.
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