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Grassmannians



The Grassmannian

Projective space, by definition, parametrizes one-dimensional subspaces in affine space.

The Grassmann varieties or Grassmannians parametrize higher-dimensional subspaces.

Let V be a finite-dimensional vector space. As a set, we define

G(k,V) = �U ⊂ V ∶ U is a k-dimensional subspace of V�
G(k, n) = �U ⊂ Kn ∶ U is a k-dimensional subspace of Kn�.

By definition,

G(�, n) = Pn−�.
Since a k-dimensional subspace of Kn can be identified with a k − �-dimensional subspace of
Pn−�, we will also use the notation

G(k, n) = G(k + �, n + �)
when dealing with subspaces of Pn.

The first goal is to show that the Grassmannians can be realized as projective varieties.

Grassmannians are named after Hermann Graßmann (����-����), the father of linear algebra.
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The Grassmannian

To turn the Grassmannian into a variety, we need a coordinate system for subspaces.

For projective space, a homogeneous coordinate-tuple [Z�, . . . , Zn] represents an equivalence
class of points inAn+�, namely all points on the same line through the origin.
This equivalence can be seen as coming from a group action. Themultiplicative group K∗ acts
on An+� � {�} by scalar multiplication and each point of Pn corresponds to an orbit of this
action, in other words, Pn is the quotient space (An+� � {�})�K∗.
We can try the same for the Grassmannian: A k-dimensional subspace of Kn is spanned by k
vectors. So we look at the space of all k-tuples of linearly independent vectors, which we think
of as the space of rows of k × n-matrices.
The groupGLk(K) acts on this space by multiplication from the left:

���
λ�,� � λ�,k⋮ � ⋮
λk,� � λk,k

��� ⋅
���
a�,� a�,� � a�,n⋮ ⋮ � ⋮
ak,� ak,� � ak,n

���
and two k-tuples of vectors span the same subspace if and only if they are in the same orbit
under this group action. So we can identifyG(k, n)with the quotient space

Mat(k)k×n(K)�GLk(K).
whereMat(k) is the set of matrices of rank k.
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ak,� ak,� � ak,n

���
and two k × n-matrices have the same row span if and only if they are in the same orbit under
this group action. So we can identifyG(k, n)with the quotient space

Mat(k)k×n(K)�GLk(K).
whereMat(k) is the set of matrices of rank k.



The Grassmannian

Looking further at the group action

���
λ�,� � λ�,k⋮ � ⋮
λk,� � λk,k

��� ⋅
���
a�,� a�,� � a�,n⋮ ⋮ � ⋮
ak,� ak,� � ak,n

��� ,
we see that if the first k × k-minor of the matrix on the right is non-zero, the orbit contains a
unique element of the form

������

� � � � b�,� b�,� � b�,n−k
� � � � b�,� b�,� � b�,n−k⋮ ⋮ ⋮ ⋮
� � � � bk,� bk,� � bk,n−k

������
.

Conversely, we obtain amatrix of rank k for any k×(n−k)-matrix B on the right. In other words,
the row spans of matrices of this form are in bijection with an affine spaceAk(n−k).
But this involved a choice coming from the assumption that the first k × k-minor is non-zero. In
general, we have to permute columns first. Sowe see in this way that theGrassmannianG(n, k)
is covered by �nk� copies of affine spaceAk(n−k). (Note the analogy with projective space!)

In particular, whatever the Grassmannian is as a variety, it must be of dimension k(n − k).
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The Grassmann algebra

While the abovedescriptionof theGrassmannian in termsofmatricesworks fine for understand-
ing it as a set, it is not very convenient for the goal of finding an embeddingof theGrassmannian
into projective space. Instead, it is better to employ somemultilinear algebra.

The Grassmann algebra or exterior algebra is the algebra of antisymmetric tensors.

Let V be a vector space of finite dimension n. The tensor algebra is the non-commutative
algebra T(V) = �k��V⊕k, where V⊕k is the k-th tensor power of V , spanned by all tensors
v�⊗�⊗ vk with v�, . . . , vk ∈ V . The product in T(V) is given by the tensor product, i.e. it is the
bilinear extension of V⊕k ×V⊕ℓ → V⊕k+ℓ, (σ , τ)� σ ⊗ τ.

The exterior algebra �V is the residue class ring of T(V)modulo the ideal generated by all
tensors of the form v ⊗ v for v ∈ V . The residue class of a basis tensor v� ⊗ . . . vk is denoted

v� ∧�∧ vk .
We call the elements of �V multivectors. The exterior algebra inherits the grading from the
tensor algebra, i.e. it has a decomposition �V = ��k V , where �k V is spanned by all multi-
vectors of the form v� ∧�∧ vk for v�, . . . , vk ∈ V . In particular,��V = V and��V = K .
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The Plücker embedding

We now use the Grassmann algebra to realize the Grassmannian as a projective variety.

Let W be a k-dimensional subspace of V with basis v�, . . . , vk. The multivector v� ∧ � ∧ vk ∈�k V is determined by W up to a scalar, by what we just saw: If we pick a different basis, the
correspondingmultivector in�k V is obtained bymultiplyingwith the determinant of the base
change. So we have a well-defined map

ψ∶G(k,V)→ P(�k V).
The image of ψ is the set of totally decomposable multivectors of�k V . (While general mul-
tivectors in�k V are sums of totally decomposable ones.)

The map ψ is injective. To see this, let

Lω = {v ∈ V ∶ ω ∧ v = �}
for any ω ∈ �k V . This is a linear subspace of V . For ω = v� ∧� ∧ vk as above, we find Lω =W
(see also the lemma on the next slide). So ω � Lω is the inverse of ψ (on its image).

In conclusion, we identified the Grassmannian G(k,V) with the set of totally decomposable
multivectors in P(�k V). This is called the Plücker embedding ofG(k,V).
It remains to show that the totally decomposablemultivectors form a closed subset ofP(�k V)
and to find the equations that describe it.
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The Plücker embedding

Lemma �.�. Let ω ∈ �k V , ω ≠ �. The space Lω = {v ∈ V ∶ ω ∧ v = �} has dimension at most k,
with equality occuring if and only if ω is totally decomposable.

Proof. Pick a basis v�, . . . , vs of Lω and extend to a basis v�, . . . , vn ofV . We expressω in this basis:
For any choice of indices I = {i�, . . . , ik} with � � i� < � < ik � n let ωI = vi� ∧� ∧ vik . Then ω
can be written as

ω = �
I⊂{�,...,n},�I�=k cIωI

for some scalars cI ∈ K . For j ∈ {�, . . . , n}, we find
ω ∧ v j =� cIωI ∧ v j =�

j∉I cIωI ∧ v j.
Now for j � s, the equation ω ∧ v j = � shows cI = � for all I with j ∉ I. In other words, all I with
cI ≠ �must contain {�, . . . , s}. If s > k, there is no such I of length k, contradicting the fact that
ω ≠ �. If s = k, then there is exactly one such I, namely I = {�, . . . , k}, hence ω is a multiple of
v� ∧�∧ vk. Conversely, if ω is totally decomposable, say ω = w� ∧�∧wk, thenw�, . . . ,wk ∈ Lω,
hence dim Lω � k. �
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The map�k V → Hom(V ,�k+�V) given by ω � φ(ω) is linear. If we fix coordinates by fixing
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which we saw earlier, shows what the Plücker embedding does in these coordinates: It maps
the matrix A to the tuple of all k × k-minors of A (of which there are �nk� = dim(�k V ).

The Plücker embedding ofG(k, n) as a space of matrices is given by the k × k-minors.
The relations between these minors corresponding to the equations ofG(k, n) in P(�k V) are
the Plücker relations.
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Affine cover of the Grassmannian

We have seen how the GrassmannianG(k, n) is covered by �nk� copies ofAk(n−k).
Let us see what that corresponds to under the Plücker embedding.

First, there is an abstract description:
Let Γ be any subspace of dimension n − k of V , corresponding to a multivector η ∈ �n−k V .
The set

HΓ = �W ∈ G(k,V) ∶ Γ ∩W ≠ {�}�
is a hyperplane inG(k,V). Namely, ifW = [ω] for ω ∈ �k V , then Γ ∩W ≠ {�} is equivalent to
ω ∧ η = �. Since ω ∧ η is an element of �n V , which is one-dimensional, we can identify �n V
with K and thus interpret η as a linear form on�k V given by ω � ω∧ η. (Indeed, this amounts
to a natural isomorphism�n−k V ≅ �k V∗, up to scaling.)
Thus HΓ is the hyperplane defined by η, so that UΓ = P(�k V) � HΓ is an affine space. The in-
tersectionG(k,V)∩UΓ thus corresponds to all k-dimensional subspaces ofV that are comple-
mentary to Γ. Fix some k-dimensional subspaceW� of V complementary to Γ. Then any other
such subspace W can be viewed as the graph of a linear map W� → Γ, and vice-versa. (Given
W , the corresponding map is w� � γ, where γ ∈ Γ is the unique element with w� + γ ∈ W .
Conversely, given α∶W� → Γ, letW = {w� + α(w�) ∶ w� ∈ W�}.) SinceW� ≅ Kk and Γ ≅ Kn−k,
we find

G(k,V) ∩UΓ ≅ Hom(W�, Γ) ≅Matk×(n−k)(K) = Ak(n−k).
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Affine cover of the Grassmannian

Now let V = Kn and Γ = span(ek+�, . . . , en). Then any subspaceW complementary to Γ has a
unique basis given by the rows of a k × n-matrix of the form

A =
������

� � � � b�,� b�,� � b�,n−k
� � � � b�,� b�,� � b�,n−k⋮ ⋮ ⋮ ⋮
� � � � bk,� bk,� � bk,n−k .

������
This yields a bijection ofG(k, n) ∩UΓ withAk(n−k).
Under the Plücker embedding, we know that A is mapped to the tuple of all its k × k-minors.
But since the left part of A is the identity, the k × k-minors of A are really just the minors of the
matrix B of any size. Hence the Plücker embedding ofG(k, n)∩UΓ is given by all the minors of
the matrix B.

Finally, since the affine parts G(k, n) ∩UΓ are irreducible open subsets of dimension k(n − k)
and have pairwise non-empty intersection, we conclude:

Corollary �.�. The GrassmannianG(k, n) is an irreducible variety of dimension k(n − k). �
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������
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� � � � bk,� bk,� � bk,n−k

������
.
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The GrassmannianG(�, �)
The GrassmannianG = G(�, �) = G(�, �) parametrizes lines in P�.
The Plücker embedding puts G into P(��K�) ≅ P�. Writing zi j = vi ∧ v j, � � i < j � �, the
image is the quadratic hypersurface

V(z��z�� − z��z�� + z��z��)
called the Plücker quadric.

This and the following statements will be shown in the exercises.

Proposition �.�. For any point p ∈ P� and plane H ⊂ P� with p ∈ H, let Σp,H ⊂ G be the set
of lines in P� passing through p and lying in H. Under the Plücker embedding, Σp,H is a line in P�.
Conversely, every line inG ⊂ P� is of the form Σp,H for some choice of p,H.

Proposition �.�. For any point p ∈ P�, let Σp ⊂ G be the set of lines in P� passing through p; for
any planeH ⊂ P�, let ΣH ⊂ G be the locus of lines lying inH. Under the Plücker embedding, both
Σp and ΣH are carried into planes in P�. Conversely, any plane Λ ⊂ G ⊂ P� is either of the form Σp
for some point p or of the form ΣH for some planeH.

Proposition �.�. Let ℓ�, ℓ� ⊂ P� be skew lines (i.e. ℓ�∩ ℓ� = �). The setQ ⊂ G of lines inP�meeting
both is the intersection ofGwith a three-dimensional subspace ofP�.
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Incidence Correspondences

LetG(k, n) be the Grassmannian of k-subspaces in Pn and put

Σ = �(Λ, x) ∈ G(k, n) × Pn ∶ x ∈ Λ�.
So Σ is the subvariety ofG(k, n) × Pn whose fibre over a point Λ ∈ G(k, n) is just Λ itself as a
subset of Pn. To see that Σ is closed, it suffices to note that

Σ = �(v� ∧�∧ vk ,w) ∶ v� ∧�∧ vk ∧w = ��.
Proposition �.�. LetΦ ⊂ G(k, n) be a closed subvariety. Then�Λ∈ΦΛ is closed inPn.

Proof. Let π�, π� be the projection maps of Σ ontoG(k, n) and Pn. Then

�
Λ∈ΦΛ = π�(π−�(Φ)). �

Proposition �.�. Let X ⊂ Pn be a projective variety. Then Ck(X) = �Λ ∈ G(k, n) ∶ Λ ∩ X ≠ �� is
closed inG(k, n).
Proof.We have

Ck(X) = π�(π−�� (X)). �
The variety Ck(X) is called the variety of incident subspaces.
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Proposition �.�. Let X ,Y ⊂ Pn be two disjoint projective varieties. Let J(X ,Y) be the union of all
lines pqwith p ∈ X, q ∈ Y , called the join of X and Y . Then J(X ,Y) is closed inPn.

Proof. The setJ (X ,Y) = C�(X)∩C�(Y) is closed in the Grassmannian, hence J(X ,Y) = �ℓ∈J ℓ
is closed in Pn. �
Let X ,Y ⊂ Pn be two disjoint projective varieties. The join of X and Y is the union of all lines
pq with p ∈ X, q ∈ Y . To see that this is also a subvariety of Pn, note that J = C�(X) ∩ C�(Y) is
subvariety of the Grassmannian, hence so is J(X ,Y) = �ℓ∈J ℓ, by what we just proved.
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Fano varieties

Let X ⊂ Pn be a projective variety. Then Fk(X) = �Λ ∈ G(k, n) ∶ Λ ⊂ X� is the variety of
k-subspaces contained in X, called the kth Fano variety of X.

Proposition �.�. The Fano variety Fk(X) is closed inG(k, n).
Proof. Let X = V(H�, . . . ,Hr). We fix an (n−k)-subspace Γ ofKn+� and consider the affine open
subsetUΓ ofG(k, n) = G(k + �, n+ �) of (k + �)-subspaces complementary to Γ. We determine
explicit equations forUΓ ∩ Fk(X). After changing coordinates, wemay assume as before that Γ
is spanned by ek+�, . . . , en. We have seen that any subspace in G(k + �, n + �) ∩UΓ is uniquely
represented as the row span of a matrix

A =
������

� � � � b�,� b�,� � b�,n−k
� � � � b�,� b�,� � b�,n−k⋮ ⋮ ⋮ ⋮
� � � � bk,� bk,� � bk,n−k .

������
.

The entries bi , j are regular functions (even coordinates) on UΓ via the Plücker embedding. For
λ ∈ Kk+�, let a(λ) = ∑k

i=� λiai●, where ai● is the ith row vector ofA. Then the subspace spanned
by the rows of A is contained in X if and only if

Hi(a(λ)�, . . . , a(λ)n) = �
for all λ ∈ Kk+� and i = �, . . . , r. Taking coefficients in λ, this amounts to a set of polynomial
equations in the cordinates bi , j, which defines Fk(X) inUΓ. �
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Example of a Fano variety

Let Q = V(Z�Z� − Z�Z�) be a quadratic surface in P�.
The surface Q contains two families of linear subspaces,
which can be seen in the real affine picture on the right.
This corresponds to the fact that Q is exactly the Segre
embeddingofP�×P�, so the two families of lines are{p}×
P� and P� × {q}, for p, q ∈ P�.
How does this translate into the Fano variety F�(Q)?
Instead of doing the computation by hand, we are lazy and ask Macaulay�.

This shows that the Fano variety F�(Q) is the union of two plane quadrics in the Grassmannian
G(�, �) ⊂ P(��K�).
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P� and P� × {q}, for p, q ∈ P�.
How does this translate into the Fano variety F�(Q)?
Instead of doing the computation by hand, we are lazy and ask Macaulay�.

Conclusion.
F�(Q) is the union of
two plane quadrics in
G(�, �) ⊂ P�, one for
each of to the two fam-
ilies of lines in Q .


