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Secant varieties



Secant varieties

Wedefined the join J(X ,Y)of twodisjoint projective varieties X ,Y ∈ Pn as the union of all lines
pq, p ∈ X, y ∈ Y .
If X and Y are not disjoint, we can still look at the set of lines inG(�, n) joining two points x ∈ X
and y ∈ Y with x ≠ y. Let J (X ,Y) be the Zariski closure of that set and, as before, let

J(X ,Y) =�ℓ∈J (X ,Y) ℓ,
a closed subvariety of Pn.
In particular, it makes sense to define S�(X) = J (X , X) ⊂ G(�, n), the variety of secant lines,
and S�(X) = J(X , X) ⊂ Pn, the secant variety of X.

More generally, let Sℓ(X) be the closure of the set of k-subspaces inG(ℓ, n) spanned by ℓ + �
independent points on X. This is the variety of ℓ-secant-subspaces, and Sℓ(X) = �Λ∈Sℓ(X)Λ,
is the ℓth secant variety of X

In general, it can be quite hard to say anything substantial about the secant variety of a given
projective variety. For example, what canbe said about its dimension? Let X ⊂ Pn be irreducible
of dimension k. It is not hard to show that

dim(S�(X)) = �k.
Since lines are one-dimensional and S�(X) is a union of lines parametrized by S�(X)we would
therefore guess that the dimension of S�(X) is equal to �k + �.
By the same argument, we would expect the dimension of Sℓ(X) to be kℓ + k + ℓ.
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With a bit of dimension theory, one can establish the following, which confirms intuition.

Proposition �.�. If X is irreducible of dimension k, its secant variety S�(X) is of dimension atmost
�k+�, with equality if andonly if there exists a point on S�(X) lying ononly a finite number of secant
lines to X. (In fact, if this is true for a single point, it is true for a dense set of points.) �
The analogous statement holds for the higher secant varieties Sℓ(X).
The condition in the proposition can be hard to check. Only the case of curves is easy.

Proposition�.�. IfX ⊂ Pn isan irreduciblecurve, then thesecantvarietyS�(X) is three-dimensional,
unless X is contained in a plane. �
The case of the twisted cubic is treated in the exercises.

For surfaces, things already becomemore complicated.

Example �.�. The secant variety to the Veronese surface X = v�(P�) ⊂ P� (the image of the
map v� sending [Z] ∈ P� to all quadratic monomials in Z) is only four-dimensional.
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The secant variety of the rational normal curve

Proposition �.�. Let C ⊂ Pn be a rational normal curve. The secant variety Sℓ(C) has dimension
min(�ℓ + �, n), for any ℓ between � and n.
Sketch of proof for the case �l + � � n. Let U ⊂ S�(C) be an open subset of consisting of secant
ℓ-subspaces spanned by ℓ + � distinct points of C. Let Λ ∈ U , spanned by p�, . . . , pℓ+� ∈ C.
Since any n + � � �(ℓ + �) points on C are linearly independent, the intersection of Λ with
any other secant ℓ-subspace Λ′ ∈ U is contained in a subspace of Λ spanned by some subset
of the points p�, . . . , pℓ+�. It follows that if p ∈ Λ is a point not in any such subspace, then p
is contained in no other secant ℓ-subspace of C. By Prop. �.�, this implies that S�(C) has the
expected dimension. �
Application. This has a neat application to sums of nth powers of linear forms.
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Corollary �.�. Let K be an algebraically closed field of characteristic �. For any n � � and d with
�d − � � n, there is a Zariski open subsetU of the space K[X ,Y]n such that every F ∈ U admits a
representation

F = Ln� +� + Lnd
with L�, . . . , Ld ∈ K[X ,Y]�.
Proof. Let V = K[X ,Y]� and W = K[X ,Y]n. If we take the monomial basis X ,Y on V and
Xd , Xn−�Y , . . . ,Yd onW , the Veronesemap vd ∶= P� → Pn = takes a point [u, v] corresponding
to a linear form uX+vY to the point [un, un−�v , . . . , vn]. Since char(K) = �, the rational normal
curve vd() is projectively equivalent to the curve

[u, v]� �un, nun−�v , . . . , �n
k
�un−kvk , . . . , vn�

which sends uX + vY to (uX + vY)n. Hence the set of nth powers of linear forms is a rational
normal curve in . By the above proposition, its d − �th secant variety is all of . By definition, an
open dense subset of that secant variety consists of sums of d points of nth powers. �
To obtain analogous statements for polynomials in more variables, one has to understand the
secant varieties of higher-dimensional Veronese varieties. As the example of the Veronese sur-
face in P� shows, the answer becomes more complicated.
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Determinantal Varieties

LetM be theprojective spaceP(Matm×n(K)) ≅ Pmn−� ofmatrices. Thegeneraldeterminantal
variety of rank k is the variety Mk ⊂ M of matrices of rank at most k. It is closed since it is
defined by the vanishing of all (k + �) × (k + �)-minors.

Again, it is not clear that the (k + �) × (k + �) generate the radical ideal I(Mk). This is true, but
we do not prove it.

Example�.�. The Segre variety Σm,n ⊂ Pmn−� ≅ Pm−�×Pn−� is exactlyM�. To see this, note that
amatrix Z ∈Matm×n(K) has rank � if and only if it can bewritten as Z = UVT forU ∈ Km�{�},
V ∈ Kn � {�}, i.e. if and only if it lies in the image of the Segre embedding.

The general determinantal variety Mk is the kth secant variety to M�. This is because a matrix
has rank at most k if and only if it is the sum of k matrices of rank �.
One can try to use this simple characterisation of secants for the general determinantal variety
to study the secant varieties of other varieties defined by the vanishing of minors. We will carry
this out for the rational normal curve.
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Linear Determinantal Varieties

LetΩ = (Li j)i , j be anm × n-matrix with entries in K[Z�, . . . , Zℓ]�. The variety
Σk(Ω) = �[Z�, . . . , Zℓ] ∶ rank(Ω(Z)) � k� ⊂ Pℓ

is called the linear determinantal variety determined byΩ. It is the pullback ofMk under the
linear map Pℓ → M given by the linear forms Li j. (In case that map is injective, Σk(Ω) can be
identified with the intersection ofMk with the image of the linear map.)

Remember from the exercises that the rational normal curveC inPd is the rank-� determinantal
variety associated with the matrix

Ωk =
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Z� Z� Z� � Zd−k
Z� Z� Z� � Zd−k+�⋮
Zk Zk+� � � Zd
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,

for any k between � and d − �.
Theorem �.�. The secant variety S�(C) to the rational normal curveC ⊂ Pd is the rank-� determi-
nantal variety associated withΩk, for k between � and d − �.
The analogous statement is true for the higher secant varieties of C.
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For the proof, we will need the following

Lemma �.�. Let Sd be the space of homogeneous polynomials of degree d in two variables X and
Y and let V � Sd be a proper linear subspace without common zeros (i.e. V(V) = � in P�). Let
W = S� ⋅ V be the subspace of Sd+� generated by all products of elements of V with linear forms.
Then

dim(W) � dim(V) + �



Proof. For any point p ∈ P� and any U ⊂ Sd , let Ordp(U) ⊂ Z�� denote the set of all vanishing
orders of elements inU at the point p.
Note first that ifU is a subspace of dimension k, then �Ordp(U)� = k. (Exercise).
Now suppose dim(V) = k and dim(W) < k + �, then

Ordp(W) ⊃ Ordp(V) ∪ (Ordp(V) + �),
together with the fact that the polynomials in V have no common zeros, implies

(i)Ordp(V) = {�, �, . . . , k − �} and (ii)Ordp(W) = {�, �, �, . . . , k}.
By (i), we can find a basis {F�, . . . , Fk} of V with ordp(Fi) = k − i for all i = �, . . . , k, where we
take p = [�, �], the zero of X.

Now the three polynomials XF�,YF�, XF� ∈ W all vanish to order at least k − � at p, so by (ii),
there must be a non-trivial linear relation between them. On the other hand, XF� and YF� are
linearly independent, hence there are a, b ∈ K such that

XF� = aXF� + bYF� = (aX + bY)F�,
hence F� and F� have a common divisor of degree d − �.
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together with the fact that the polynomials in V have no common zeros, implies

(i)Ordp(V) = {�, �, . . . , k − �} and (ii)Ordp(W) = {�, �, �, . . . , k}.
By (i), we can find a basis {F�, . . . , Fk} of V with ordp(Fi) = k − i for all i = �, . . . , k, where we
take p = [�, �], the zero of X.

Now the three polynomials XF�,YF�, XF� ∈ W all vanish to order at least k − � at p, so by (ii),
there must be a non-trivial linear relation between them. On the other hand, XF� and YF� are
linearly independent, hence there are a, b ∈ K such that

XF� = aXF� + bYF� = (aX + bY)F�,
hence F� and F� have a common divisor of degree d − �.
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so F� and F� have a common divisor of degree d − �.

Weproceed to showby induction that F�, . . . , Fj have a common factor of degree at least d− j+�,
for j ∈ {�, . . . , k}. Let j � � and assume that G is a common factor of degree d − j + � of
F�, . . . , Fj−�, say Fi = GF′i . The � j − � polynomials

XF�, . . . , XFj−�,YF�, . . . ,YFj−�, XFj
vanish to order order at least k − j + � at p. By (ii), they span a space of dimension at most j. On
the other hand, XF�, . . . , XFj−�,YF�, . . . ,YFj−� span a space of dimension at least j, so there is
an expression

XFj =� j−�
i=� aiXFi +� j−�

i=� biYFi =� j−�
i=�(aiX + biY)Fi = G ⋅� j−�

i=�(aiX + biY)F′i ,
which shows what we want. In conclusion, f�, . . . , f j have at least d − j + � zeros in common.
Since V has no common zeros, we conclude d − k + � � �, hence k = d + � and V = Sd . �
Proof (continued).
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Proof of Thm. �.�. First note that any point (Z�, . . . , Zd) ∈ Kd+� can be viewed as a linear func-
tional φZ on the space Sd of polynomials of degree d in X and Y , via the rule φZ(Xd−iY i) = Zi .
Thus we have an identification Pd ≅ P(S∗d).
LetC be the rational normal curve. If [Z] = [Xd

� , X
d−�
� X�, . . . , Xd

� ] ∈ C, then φZ is just evaluation
ofpolynomials at thepoint [X ,Y] ∈ P�. Conversely, if all polynomials inker(φZ)havea common
zero [X ,Y] ∈ P�, it follows that φZ is equal to evaluation at [X ,Y] and [Z] = vd[X ,Y] ∈ C.
Now we consider the matrix

Ωk =
������

Z� Z� Z� � Zd−k
Z� Z� Z� � Zd−k+�⋮
Zk Zk+� � � Zd

������
.

It follows from the case of the secant variety of the general determinantal variety M� that the
rank-� determinantal variety associatedwithΩk contains S�(C). We have to show the converse.
So suppose that [Z�, . . . , Zd] ∈ Pd is a pointwhereΩk(Z)has rank atmost �. ThematrixΩk(Z)
represents the bilinear map

Sk × Sd−k m��→ Sd
φZ��→ K , (XiYk−i , X jYd−k− j)� Xi+ jYd−i− j � Zi+ j

wherem is the multiplication map.
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W� =W� = Sd . Hence ifW� = V orW� = V , then V has a common zero, hence [Z] ∈ C.
Otherwise, bothW� andW� have codimension � in Sd . It follows from the lemma that eachmust
have a common divisor Pi of degree � (check!) and thus

W� = P�Sd−� and W� = P�Sd−�.
Now there are two cases to consider:
(�) IfW� ≠W�, thenW�+W� = V andW�∩W� has codimension � inV and thus codimension

� in Sd . It follows that P� and P� must have a common zero which is then a common zero
of V . So we again conclude [Z] ∈ C.

(�) IfW� =W�, then P� = P� andwe denote this polynomial by P. The linear functional φZ van-
ishes on PSd−�. If P has distinct roots q and r inP�, then the point evaluations at F � F(q),
F � F(r) are distinct and thus span the two-dimensional space of functions vanishing on
PSd−�. Hence there exist a, b ∈ K such that φZ(F) = aF(q) + bF(r) and therefore

[Z] = avd(q) + bvd(r)
is on the secant variety of C. If P has a double root q, then φZ lies in the closure of the set
of linear combinations aF(q) + bF(r) for r ∈ P�. �



Weproceed to showby induction that F�, . . . , Fj have a common factor of degree at least d− j+�,
for j ∈ {�, . . . , k}. Let j � � and assume that G is a common factor of degree d − j + � of
F�, . . . , Fj−�, say Fi = GF′i . The � j − � polynomials

XF�, . . . , XFj−�,YF�, . . . ,YFj−�, XFj
vanish to order order at least k − j + � at p. By (ii), they span a space of dimension at most j. On
the other hand, XF�, . . . , XFj−�,YF�, . . . ,YFj−� span a space of dimension at least j, so there is
an expression

XFj =� j−�
i=� aiXFi +� j−�

i=� biYFi =� j−�
i=�(aiX + biY)Fi = G ⋅� j−�

i=�(aiX + biY)F′i ,
which shows what we want. In conclusion, f�, . . . , f j have at least d − j + � zeros in common.
Since V has no common zeros, we conclude d − k + � � �, hence k = d + � and V = Sd . �
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F � F(r) are distinct and thus span the two-dimensional space of functions vanishing on
PSd−�. Hence there exist a, b ∈ K such that φZ(F) = aF(q) + bF(r) and therefore

[Z] = avd(q) + bvd(r)
is on the secant variety of C. If P has a double root q, then φZ lies in the closure of the set
of linear combinations aF(q) + bF(r) for r ∈ P�. �


