§4

Secant varieties

Secant varieties

We defined the join $J(X, Y)$ of two disjoint projective varieties $X, Y \in \mathbb{P}^{n}$ as the union of all lines $\overline{p q}, p \in X, y \in Y$.

Secant varieties

We defined the join $J(X, Y)$ of two disjoint projective varieties $X, Y \in \mathbb{P}^{n}$ as the union of all lines $\overline{p q}, p \in X, y \in Y$.

If X and Y are not disjoint, we can still look at the set of lines in $\mathbb{G}(1, n)$ joining two points $x \in X$ and $y \in Y$ with $x \neq y$. Let $\mathcal{J}(X, Y)$ be the Zariski closure of that set and, as before, let

$$
J(X, Y)=\bigcup_{\ell \in \mathcal{J}(X, Y)^{\ell}}
$$

a closed subvariety of \mathbb{P}^{n}.

Secant varieties

We defined the join $J(X, Y)$ of two disjoint projective varieties $X, Y \in \mathbb{P}^{n}$ as the union of all lines $\overline{p q}, p \in X, y \in Y$.
If X and Y are not disjoint, we can still look at the set of lines in $\mathbb{G}(1, n)$ joining two points $x \in X$ and $y \in Y$ with $x \neq y$. Let $\mathcal{J}(X, Y)$ be the Zariski closure of that set and, as before, let

$$
J(X, Y)=\bigcup_{\ell \in \mathcal{J}(X, Y)} \ell,
$$

a closed subvariety of \mathbb{P}^{n}.
In particular, it makes sense to define $\mathcal{S}_{1}(X)=\mathcal{J}(X, X) \subset \mathbb{G}(1, n)$, the variety of secant lines, and $S_{1}(X)=J(X, X) \subset \mathbb{P}^{n}$, the secant variety of X.

Secant varieties

We defined the join $J(X, Y)$ of two disjoint projective varieties $X, Y \in \mathbb{P}^{n}$ as the union of all lines $\overline{p q}, p \in X, y \in Y$.

If X and Y are not disjoint, we can still look at the set of lines in $\mathbb{G}(1, n)$ joining two points $x \in X$ and $y \in Y$ with $x \neq y$. Let $\mathcal{J}(X, Y)$ be the Zariski closure of that set and, as before, let

$$
J(X, Y)=\bigcup_{\ell \in \mathcal{J}(X, Y)} \ell,
$$

a closed subvariety of \mathbb{P}^{n}.
In particular, it makes sense to define $\mathcal{S}_{1}(X)=\mathcal{J}(X, X) \subset \mathbb{G}(1, n)$, the variety of secant lines, and $S_{1}(X)=J(X, X) \subset \mathbb{P}^{n}$, the secant variety of X.
More generally, let $\mathcal{S}_{\ell}(X)$ be the closure of the set of ℓ-subspaces in $\mathbb{G}(\ell, n)$ spanned by $\ell+1$ independent points on X. This is the variety of secant ℓ-subspaces, and $S_{\ell}(X)=\cup_{\Lambda \in \mathcal{S}_{\ell}(X)} \Lambda$, is the ℓ th secant variety of X

Secant varieties

We defined the join $J(X, Y)$ of two disjoint projective varieties $X, Y \in \mathbb{P}^{n}$ as the union of all lines $\overline{p q}, p \in X, y \in Y$.
If X and Y are not disjoint, we can still look at the set of lines in $\mathbb{G}(1, n)$ joining two points $x \in X$ and $y \in Y$ with $x \neq y$. Let $\mathcal{J}(X, Y)$ be the Zariski closure of that set and, as before, let

$$
J(X, Y)=\bigcup_{\ell \in \mathcal{J}(X, Y)}^{\ell}
$$

a closed subvariety of \mathbb{P}^{n}.
In particular, it makes sense to define $\mathcal{S}_{1}(X)=\mathcal{J}(X, X) \subset \mathbb{G}(1, n)$, the variety of secant lines, and $S_{1}(X)=J(X, X) \subset \mathbb{P}^{n}$, the secant variety of X.
More generally, let $\mathcal{S}_{\ell}(X)$ be the closure of the set of ℓ-subspaces in $\mathbb{G}(\ell, n)$ spanned by $\ell+1$ independent points on X. This is the variety of secant ℓ-subspaces, and $S_{\ell}(X)=\cup_{\Lambda \in \mathcal{S}_{\ell}(X)} \Lambda$, is the ℓ th secant variety of X

In general, it can be quite hard to say anything substantial about the secant variety of a given projective variety. For example, what can be said about its dimension? Let $X \subset \mathbb{P}^{n}$ be irreducible of dimension k. It is not hard to show that

$$
\operatorname{dim}\left(\mathcal{S}_{1}(X)\right)=2 k,
$$

unless X is itself a linear subspace. Since lines are one-dimensional and $S_{1}(X)$ is a union of lines parametrized by $\mathcal{S}_{1}(X)$ we would therefore guess that the dimension of $S_{1}(X)$ is equal to $2 k+1$.

Secant varieties

We defined the join $J(X, Y)$ of two disjoint projective varieties $X, Y \in \mathbb{P}^{n}$ as the union of all lines $\overline{p q}, p \in X, y \in Y$.
If X and Y are not disjoint, we can still look at the set of lines in $\mathbb{G}(1, n)$ joining two points $x \in X$ and $y \in Y$ with $x \neq y$. Let $\mathcal{J}(X, Y)$ be the Zariski closure of that set and, as before, let

$$
J(X, Y)=\bigcup_{\ell \in \mathcal{J}(X, Y)} \ell,
$$

a closed subvariety of \mathbb{P}^{n}.
In particular, it makes sense to define $\mathcal{S}_{1}(X)=\mathcal{J}(X, X) \subset \mathbb{G}(1, n)$, the variety of secant lines, and $S_{1}(X)=J(X, X) \subset \mathbb{P}^{n}$, the secant variety of X.
More generally, let $\mathcal{S}_{\ell}(X)$ be the closure of the set of ℓ-subspaces in $\mathbb{G}(\ell, n)$ spanned by $\ell+1$ independent points on X. This is the variety of secant ℓ-subspaces, and $S_{\ell}(X)=\cup_{\Lambda \in \mathcal{S}_{\ell}(X)} \Lambda$, is the ℓ th secant variety of X

In general, it can be quite hard to say anything substantial about the secant variety of a given projective variety. For example, what can be said about its dimension? Let $X \subset \mathbb{P}^{n}$ be irreducible of dimension k. It is not hard to show that

$$
\operatorname{dim}\left(\mathcal{S}_{1}(X)\right)=2 k,
$$

unless X is itself a linear subspace. Since lines are one-dimensional and $S_{1}(X)$ is a union of lines parametrized by $\mathcal{S}_{1}(X)$ we would therefore guess that the dimension of $S_{1}(X)$ is equal to $2 k+1$.
By the same argument, we would expect the dimension of $S_{\ell}(X)$ to be $k \ell+k+\ell$.

With a bit of dimension theory, one can establish the following, which confirms intuition.
Proposition 4.1. If X is irreducible of dimension k, its secant variety $S_{1}(X)$ is of dimension at most $2 k+1$, with equality if and only if there exists a point on $S_{1}(X)$ lying on only a finite number of secant lines to X. (In fact, if this is true for a single point, it is true for a dense set of points.)

With a bit of dimension theory, one can establish the following, which confirms intuition.
Proposition 4.1. If X is irreducible of dimension k, its secant variety $S_{1}(X)$ is of dimension at most $2 k+1$, with equality if and only if there exists a point on $S_{1}(X)$ lying on only a finite number of secant lines to X. (In fact, if this is true for a single point, it is true for a dense set of points.)

The analogous statement holds for the higher secant varieties $S_{\ell}(X)$.
The condition in the proposition can be hard to check. Only the case of curves is easy.
Proposition 4.2. If $X \subset \mathbb{P}^{n}$ is an irreducible curve, then the secant variety $S_{1}(X)$ is three-dimensional, unless X is contained in a plane.

With a bit of dimension theory, one can establish the following, which confirms intuition.
Proposition 4.1. If X is irreducible of dimension k, its secant variety $S_{1}(X)$ is of dimension at most $2 k+1$, with equality if and only if there exists a point on $S_{1}(X)$ lying on only a finite number of secant lines to X. (In fact, if this is true for a single point, it is true for a dense set of points.)

The analogous statement holds for the higher secant varieties $S_{\ell}(X)$.
The condition in the proposition can be hard to check. Only the case of curves is easy.
Proposition 4.2. If $X \subset \mathbb{P}^{n}$ is an irreducible curve, then the secant variety $S_{1}(X)$ is three-dimensional, unless X is contained in a plane.

The case of the twisted cubic is treated in the exercises.
For surfaces, things already become more complicated.
Example 4.3. The secant variety to the Veronese surface $X=v_{2}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{5}$ (the image of the map v_{2} sending $[Z] \in \mathbb{P}^{2}$ to all quadratic monomials in Z) is only four-dimensional.

The secant variety of the rational normal curve

Proposition 4.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve. The secant variety $S_{\ell}(C)$ has dimension $\min (2 \ell+1, n)$, for any ℓ between 1 and n.

The secant variety of the rational normal curve

Proposition 4.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve. The secant variety $S_{\ell}(C)$ has dimension $\min (2 \ell+1, n)$, for any ℓ between 1 and n.

Sketch of proof for the case $2 \ell+1 \leqslant n$. Let $U \subset \mathcal{S}_{\ell}(C)$ be an open subset consisting of secant ℓ subspaces spanned by $\ell+1$ distinct points of C. Let $\Lambda \in U$, spanned by $p_{1}, \ldots, p_{\ell+1} \in C$. Since any $n+1 \geqslant 2(\ell+1)$ points on C are linearly independent, the intersection of Λ with any other secant ℓ-subspace $\Lambda^{\prime} \in U$ is contained in a subspace of Λ spanned by some subset of the points $p_{1}, \ldots, p_{\ell+1}$. It follows that if $p \in \Lambda$ is a point not in any such subspace, then p is contained in no other secant ℓ-subspace of C in U. By Prop. 4.1, this implies that $S_{1}(C)$ has the expected dimension.

The secant variety of the rational normal curve

Proposition 4.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve. The secant variety $S_{\ell}(C)$ has dimension $\min (2 \ell+1, n)$, for any ℓ between 1 and n.

This has a neat application to sums of nth powers of linear forms.

The secant variety of the rational normal curve

Proposition 4.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve. The secant variety $S_{\ell}(C)$ has dimension $\min (2 \ell+1, n)$, for any ℓ between 1 and n.

This has a neat application to sums of nth powers of linear forms.
Corollary 4.5. Let K be an algebraically closed field of characteristic 0 . For any $n \geqslant 1$ and d with $2 d-1 \geqslant n$, there is a Zariski open subset U of the space $K[X, Y]_{n}$ such that every $F \in U$ admits a representation

$$
F=L_{1}^{n}+\cdots+L_{d}^{n}
$$

with $L_{1}, \ldots, L_{d} \in K[X, Y]_{1}$.

The secant variety of the rational normal curve

Proposition 4.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve. The secant variety $S_{\ell}(C)$ has dimension $\min (2 \ell+1, n)$, for any ℓ between 1 and n.

This has a neat application to sums of nth powers of linear forms.
Corollary 4.5. Let K be an algebraically closed field of characteristic 0 . For any $n \geqslant 1$ and d with $2 d-1 \geqslant n$, there is a Zariski open subset U of the space $K[X, Y]_{n}$ such that every $F \in U$ admits a representation

$$
F=L_{1}^{n}+\cdots+L_{d}^{n}
$$

with $L_{1}, \ldots, L_{d} \in K[X, Y]_{1}$.
Proof. Let $V=K[X, Y]_{1}$ and $W=K[X, Y]_{n}$. If we take the monomial basis X, Y on V and $X^{n}, X^{n-1} Y, \ldots, Y^{n}$ on W, the Veronese map $v_{n}: \mathbb{P} V=\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}=\mathbb{P} W$ takes a point $[u, v]$ corresponding to a linear form $u X+v Y$ to the point $\left[u^{n}, u^{n-1} v, \ldots, v^{n}\right]$. Since $\operatorname{char}(K)=0$, the rational normal curve $v_{d}(\mathbb{P} V)$ is projectively equivalent to the curve

$$
[u, v] \mapsto\left[u^{n}, n u^{n-1} v, \ldots,\binom{n}{k} u^{n-k} v^{k}, \ldots, v^{n}\right]
$$

which sends $u X+v Y$ to $(u X+v Y)^{n}$.

The secant variety of the rational normal curve

Proposition 4.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve. The secant variety $S_{\ell}(C)$ has dimension $\min (2 \ell+1, n)$, for any ℓ between 1 and n.

This has a neat application to sums of nth powers of linear forms.
Corollary 4.5. Let K be an algebraically closed field of characteristic 0 . For any $n \geqslant 1$ and d with $2 d-1 \geqslant n$, there is a Zariski open subset U of the space $K[X, Y]_{n}$ such that every $F \in U$ admits a representation

$$
F=L_{1}^{n}+\cdots+L_{d}^{n}
$$

with $L_{1}, \ldots, L_{d} \in K[X, Y]_{1}$.
Proof. Let $V=K[X, Y]_{1}$ and $W=K[X, Y]_{n}$. If we take the monomial basis X, Y on V and $X^{n}, X^{n-1} Y, \ldots, Y^{n}$ on W, the Veronese map $v_{n}: \mathbb{P} V=\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}=\mathbb{P} W$ takes a point $[u, v]$ corresponding to a linear form $u X+v Y$ to the point $\left[u^{n}, u^{n-1} v, \ldots, v^{n}\right]$. Since char $(K)=0$, the rational normal curve $v_{d}(\mathbb{P} V)$ is projectively equivalent to the curve

$$
[u, v] \mapsto\left[u^{n}, n u^{n-1} v, \ldots,\binom{n}{k} u^{n-k} v^{k}, \ldots, v^{n}\right]
$$

which sends $u X+v Y$ to $(u X+v Y)^{n}$.
Hence the set of nth powers of linear forms is a rational normal curve in $\mathbb{P} W$. By the above proposition, its $(d-1)$ th secant variety is all of $\mathbb{P} W$. By definition, an open dense subset of that secant variety consists of sums of $d n$th powers.

The secant variety of the rational normal curve

Proposition 4.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve. The secant variety $S_{\ell}(C)$ has dimension $\min (2 \ell+1, n)$, for any ℓ between 1 and n.

This has a neat application to sums of nth powers of linear forms.
Corollary 4.5. Let K be an algebraically closed field of characteristic 0 . For any $n \geqslant 1$ and d with $2 d-1 \geqslant n$, there is a Zariski open subset U of the space $K[X, Y]_{n}$ such that every $F \in U$ admits a representation

$$
F=L_{1}^{n}+\cdots+L_{d}^{n}
$$

with $L_{1}, \ldots, L_{d} \in K[X, Y]_{1}$.
To obtain analogous statements for polynomials in more variables, one has to understand the secant varieties of higher-dimensional Veronese varieties. As the example of the Veronese surface in \mathbb{P}^{5} shows, the answer becomes more complicated.

Determinantal Varieties

Let M be the projective space $\mathbb{P}\left(\operatorname{Mat}_{m \times n}(K)\right) \cong \mathbb{P}^{m n-1}$ of matrices. The general determinantal variety of rank k is the variety $M_{k} \subset M$ of matrices of rank at most k. It is closed since it is defined by the vanishing of all $(k+1) \times(k+1)$-minors.

Determinantal Varieties

Let M be the projective space $\mathbb{P}\left(\operatorname{Mat}_{m \times n}(K)\right) \cong \mathbb{P}^{m n-1}$ of matrices. The general determinantal variety of rank k is the variety $M_{k} \subset M$ of matrices of rank at most k. It is closed since it is defined by the vanishing of all $(k+1) \times(k+1)$-minors.

Again, it is not clear that the $(k+1) \times(k+1)$-minors generate the radical ideal $\mathcal{I}\left(M_{k}\right)$. This is true, but we do not prove it.

Determinantal Varieties

Let M be the projective space $\mathbb{P}\left(\operatorname{Mat}_{m \times n}(K)\right) \cong \mathbb{P}^{m n-1}$ of matrices. The general determinantal variety of rank k is the variety $M_{k} \subset M$ of matrices of rank at most k. It is closed since it is defined by the vanishing of all $(k+1) \times(k+1)$-minors.
Again, it is not clear that the $(k+1) \times(k+1)$-minors generate the radical ideal $\mathcal{I}\left(M_{k}\right)$. This is true, but we do not prove it.

Example 4.6. The Segre variety $\Sigma_{m, n} \subset \mathbb{P}^{m n-1} \cong \mathbb{P}^{m-1} \times \mathbb{P}^{n-1}$ is exactly M_{1}. To see this, note that a matrix $Z \in \operatorname{Mat}_{m \times n}(K)$ has rank 1 if and only if it can be written as $Z=U V^{T}$ for $U \in \mathbb{K}^{m} \backslash\{0\}$, $V \in \mathbb{K}^{n} \backslash\{0\}$, i.e. if and only if it lies in the image of the Segre embedding.

Determinantal Varieties

Let M be the projective space $\mathbb{P}\left(\operatorname{Mat}_{m \times n}(K)\right) \cong \mathbb{P}^{m n-1}$ of matrices. The general determinantal variety of rank k is the variety $M_{k} \subset M$ of matrices of rank at most k. It is closed since it is defined by the vanishing of all $(k+1) \times(k+1)$-minors.
Again, it is not clear that the $(k+1) \times(k+1)$-minors generate the radical ideal $\mathcal{I}\left(M_{k}\right)$. This is true, but we do not prove it.

Example 4.6. The Segre variety $\Sigma_{m, n} \subset \mathbb{P}^{m n-1} \cong \mathbb{P}^{m-1} \times \mathbb{P}^{n-1}$ is exactly M_{1}. To see this, note that a matrix $Z \in \operatorname{Mat}_{m \times n}(K)$ has rank 1 if and only if it can be written as $Z=U V^{T}$ for $U \in \mathbb{K}^{m} \backslash\{0\}$, $V \in \mathbb{K}^{n} \backslash\{0\}$, i.e. if and only if it lies in the image of the Segre embedding.

The general determinantal variety M_{k} is the k th secant variety to M_{1}. This is because a matrix has rank at most k if and only if it is the sum of k matrices of rank 1 .

Determinantal Varieties

Let M be the projective space $\mathbb{P}\left(\operatorname{Mat}_{m \times n}(K)\right) \cong \mathbb{P}^{m n-1}$ of matrices. The general determinantal variety of rank k is the variety $M_{k} \subset M$ of matrices of rank at most k. It is closed since it is defined by the vanishing of all $(k+1) \times(k+1)$-minors.
Again, it is not clear that the $(k+1) \times(k+1)$-minors generate the radical ideal $\mathcal{I}\left(M_{k}\right)$. This is true, but we do not prove it.

Example 4.6. The Segre variety $\Sigma_{m, n} \subset \mathbb{P}^{m n-1} \cong \mathbb{P}^{m-1} \times \mathbb{P}^{n-1}$ is exactly M_{1}. To see this, note that a matrix $Z \in \operatorname{Mat}_{m \times n}(K)$ has rank 1 if and only if it can be written as $Z=U V^{T}$ for $U \in \mathbb{K}^{m} \backslash\{0\}$, $V \in \mathbb{K}^{n} \backslash\{0\}$, i.e. if and only if it lies in the image of the Segre embedding.

The general determinantal variety M_{k} is the k th secant variety to M_{1}. This is because a matrix has rank at most k if and only if it is the sum of k matrices of rank 1 .
One can try to use this simple characterisation of secants for the general determinantal variety to study the secant varieties of other varieties defined by the vanishing of minors. We will carry this out for the rational normal curve.

Linear Determinantal Varieties

Let $\Omega=\left(L_{i j}\right)_{i, j}$ be an $m \times n$-matrix with entries in $K\left[Z_{0}, \ldots, Z_{\ell}\right]_{1}$. The variety

$$
\Sigma_{k}(\Omega)=\left\{\left[Z_{0}, \ldots, Z_{\ell}\right]: \operatorname{rank}(\Omega(Z)) \leqslant k\right\} \subset \mathbb{P}^{\ell}
$$

is called the linear determinantal variety determined by Ω. It is the pullback of M_{k} under the linear map $\mathbb{P}^{\ell} \rightarrow M$ given by the linear forms $L_{i j}$. (In case that map is injective, $\Sigma_{k}(\Omega)$ can be identified with the intersection of M_{k} with the image of the linear map.)

Linear Determinantal Varieties

Let $\Omega=\left(L_{i j}\right)_{i, j}$ be an $m \times n$-matrix with entries in $K\left[Z_{0}, \ldots, Z_{\ell}\right]_{1}$. The variety

$$
\Sigma_{k}(\Omega)=\left\{\left[Z_{0}, \ldots, Z_{\ell}\right]: \operatorname{rank}(\Omega(Z)) \leqslant k\right\} \subset \mathbb{P}^{\ell}
$$

is called the linear determinantal variety determined by Ω. It is the pullback of M_{k} under the linear map $\mathbb{P}^{\ell} \rightarrow M$ given by the linear forms $L_{i j}$. (In case that map is injective, $\Sigma_{k}(\Omega)$ can be identified with the intersection of M_{k} with the image of the linear map.)

Remember from the exercises that the rational normal curve C in \mathbb{P}^{d} is the rank-1 determinantal variety associated with the matrix

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

for any k between 1 and $d-1$.

Linear Determinantal Varieties

Let $\Omega=\left(L_{i j}\right)_{i, j}$ be an $m \times n$-matrix with entries in $K\left[Z_{0}, \ldots, Z_{\ell}\right]_{1}$. The variety

$$
\Sigma_{k}(\Omega)=\left\{\left[Z_{0}, \ldots, Z_{\ell}\right]: \operatorname{rank}(\Omega(Z)) \leqslant k\right\} \subset \mathbb{P}^{\ell}
$$

is called the linear determinantal variety determined by Ω. It is the pullback of M_{k} under the linear map $\mathbb{P}^{\ell} \rightarrow M$ given by the linear forms $L_{i j}$. (In case that map is injective, $\Sigma_{k}(\Omega)$ can be identified with the intersection of M_{k} with the image of the linear map.)

Remember from the exercises that the rational normal curve C in \mathbb{P}^{d} is the rank-1 determinantal variety associated with the matrix

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

for any k between 1 and $d-1$.
Our goal for the rest of this lecture is
Theorem 4.7. The secant variety $S_{1}(C)$ to the rational normal curve $C \subset \mathbb{P}^{d}$ is the rank-2 determinantal variety associated with Ω_{k}, for k between 2 and $d-2$.

Linear Determinantal Varieties

Let $\Omega=\left(L_{i j}\right)_{i, j}$ be an $m \times n$-matrix with entries in $K\left[Z_{0}, \ldots, Z_{\ell}\right]_{1}$. The variety

$$
\Sigma_{k}(\Omega)=\left\{\left[Z_{0}, \ldots, Z_{\ell}\right]: \operatorname{rank}(\Omega(Z)) \leqslant k\right\} \subset \mathbb{P}^{\ell}
$$

is called the linear determinantal variety determined by Ω. It is the pullback of M_{k} under the linear map $\mathbb{P}^{\ell} \rightarrow M$ given by the linear forms $L_{i j}$. (In case that map is injective, $\Sigma_{k}(\Omega)$ can be identified with the intersection of M_{k} with the image of the linear map.)

Remember from the exercises that the rational normal curve C in \mathbb{P}^{d} is the rank-1 determinantal variety associated with the matrix

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

for any k between 1 and $d-1$.
Our goal for the rest of this lecture is
Theorem 4.7. The secant variety $S_{1}(C)$ to the rational normal curve $C \subset \mathbb{P}^{d}$ is the rank-2 determinantal variety associated with Ω_{k}, for k between 2 and $d-2$.

The analogous statement is true for the higher secant varieties of C.

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Proof. For any point $p \in \mathbb{P}^{1}$ and any $U \subset S_{d}$, let $\operatorname{Ord}_{p}(U) \subset \mathbb{Z}_{\geqslant 0}$ denote the set of all vanishing orders of elements in U at the point p.

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Proof. For any point $p \in \mathbb{P}^{1}$ and any $U \subset S_{d}$, let $\operatorname{Ord}_{p}(U) \subset \mathbb{Z}_{\geqslant 0}$ denote the set of all vanishing orders of elements in U at the point p.
Note first that if U is a subspace of dimension k, then $\left|\operatorname{Ord}_{p}(U)\right|=k$. (Exercise).

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Proof. For any point $p \in \mathbb{P}^{1}$ and any $U \subset S_{d}$, let $\operatorname{Ord}_{p}(U) \subset \mathbb{Z}_{\geqslant 0}$ denote the set of all vanishing orders of elements in U at the point p.
Note first that if U is a subspace of dimension k, then $\left|\operatorname{Ord}_{p}(U)\right|=k$. (Exercise).
Now suppose $\operatorname{dim}(V)=k$ and $\operatorname{dim}(W)<k+2$, then

$$
\operatorname{Ord}_{p}(W) \supset \operatorname{Ord}_{p}(V) \cup\left(\operatorname{Ord}_{p}(V)+1\right)
$$

together with the fact that the polynomials in V have no common zeros, implies
(i) $\operatorname{Ord}_{p}(V)=\{0,1, \ldots, k-1\}$ and (ii) $\operatorname{Ord}_{p}(W)=\{0,1,2, \ldots, k\}$.

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Proof. For any point $p \in \mathbb{P}^{1}$ and any $U \subset S_{d}$, let $\operatorname{Ord}_{p}(U) \subset \mathbb{Z}_{\geqslant 0}$ denote the set of all vanishing orders of elements in U at the point p.
Note first that if U is a subspace of dimension k, then $\left|\operatorname{Ord}_{p}(U)\right|=k$. (Exercise).
Now suppose $\operatorname{dim}(V)=k$ and $\operatorname{dim}(W)<k+2$, then

$$
\operatorname{Ord}_{p}(W) \supset \operatorname{Ord}_{p}(V) \cup\left(\operatorname{Ord}_{p}(V)+1\right)
$$

together with the fact that the polynomials in V have no common zeros, implies
(i) $\operatorname{Ord}_{p}(V)=\{0,1, \ldots, k-1\}$ and (ii) $\operatorname{Ord}_{p}(W)=\{0,1,2, \ldots, k\}$.

By (i), we can find a basis $\left\{F_{1}, \ldots, F_{k}\right\}$ of V with $\operatorname{ord}_{p}\left(F_{i}\right)=k-i$ for all $i=1, \ldots, k$, where we take $p=[0,1]$, the zero of X.

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Proof. For any point $p \in \mathbb{P}^{1}$ and any $U \subset S_{d}$, let $\operatorname{Ord}_{p}(U) \subset \mathbb{Z}_{\geqslant 0}$ denote the set of all vanishing orders of elements in U at the point p.
Note first that if U is a subspace of dimension k, then $\left|\operatorname{Ord}_{p}(U)\right|=k$. (Exercise).
Now suppose $\operatorname{dim}(V)=k$ and $\operatorname{dim}(W)<k+2$, then

$$
\operatorname{Ord}_{p}(W) \supset \operatorname{Ord}_{p}(V) \cup\left(\operatorname{Ord}_{p}(V)+1\right)
$$

together with the fact that the polynomials in V have no common zeros, implies

$$
\text { (i) } \operatorname{Ord}_{p}(V)=\{0,1, \ldots, k-1\} \quad \text { and } \quad \text { (ii) } \operatorname{Ord}_{p}(W)=\{0,1,2, \ldots, k\} .
$$

By (i), we can find a basis $\left\{F_{1}, \ldots, F_{k}\right\}$ of V with $\operatorname{ord}_{p}\left(F_{i}\right)=k-i$ for all $i=1, \ldots, k$, where we take $p=[0,1]$, the zero of X.
Now the three polynomials $X F_{1}, Y F_{1}, X F_{2} \in W$ all vanish to order at least $k-1$ at p, so by (ii), there must be a non-trivial linear relation between them. On the other hand, $X F_{1}$ and $Y F_{1}$ are linearly independent, hence there are $a, b \in K$ such that

$$
X F_{2}=a X F_{1}+b Y F_{1}=(a X+b Y) F_{1},
$$

so F_{1} and F_{2} have a common divisor of degree $d-1$.

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Proof (continued).
(i) $\operatorname{Ord}_{p}(V)=\{0,1, \ldots, k-1\}$ and (ii) $\operatorname{Ord}_{p}(W)=\{0,1,2, \ldots, k\}$.

By (i), we can find a basis $\left\{F_{1}, \ldots, F_{k}\right\}$ of V with $\operatorname{ord}_{p}\left(F_{i}\right)=k-i$ for all $i=1, \ldots, k$, where we take $p=[0,1]$, the zero of X.

Lemma 4.8. Let S_{d} be the space of homogeneous polynomials of degree d in two variables X and Y and let $V \nsubseteq S_{d}$ be a proper linear subspace without common zeros (i.e. $\mathcal{V}(V)=\varnothing$ in \mathbb{P}^{1}). Let $W=S_{1} \cdot V$ be the subspace of S_{d+1} generated by all products of elements of V with linear forms. Then

$$
\operatorname{dim}(W) \geqslant \operatorname{dim}(V)+2
$$

Proof (continued).

$$
\text { (i) } \operatorname{Ord}_{p}(V)=\{0,1, \ldots, k-1\} \quad \text { and } \quad \text { (ii) } \operatorname{Ord}_{p}(W)=\{0,1,2, \ldots, k\} .
$$

By (i), we can find a basis $\left\{F_{1}, \ldots, F_{k}\right\}$ of V with ord $_{p}\left(F_{i}\right)=k-i$ for all $i=1, \ldots, k$, where we take $p=[0,1]$, the zero of X.
We proceed to show by induction that F_{1}, \ldots, F_{j} have a common factor of degree at least $d-j+1$, for $j \in\{2, \ldots, k\}$. Let $j \geqslant 3$ and assume that G is a common factor of degree $d-j+2$ of F_{1}, \ldots, F_{j-1}, say $F_{i}=G F_{i}^{\prime}$. The $2 j-1$ polynomials

$$
X F_{1}, \ldots, X F_{j-1}, Y F_{1}, \ldots, Y F_{j-1}, X F_{j}
$$

vanish to order order at least $k-j+1$ at p. By (ii), they span a space of dimension at most j. On the other hand, $X F_{1}, \ldots, X F_{j-1}, Y F_{1}, \ldots, Y F_{j-1}$ span a space of dimension at least j, so there is an expression

$$
X F_{j}=\sum_{i=1}^{j-1} a_{i} X F_{i}+\sum_{i=1}^{j-1} b_{i} Y F_{i}=\sum_{i=1}^{j-1}\left(a_{i} X+b_{i} Y\right) F_{i}=G \cdot \sum_{i=1}^{j-1}\left(a_{i} X+b_{i} Y\right) F_{i}^{\prime},
$$

which shows what we want. In conclusion, f_{1}, \ldots, f_{j} have at least $d-j+1$ zeros in common. Since V has no common zeros, we conclude $d-k+1 \leqslant 0$, hence $k=d+1$ and $V=S_{d}$.

Proof of Thm. 4.7. First note that any point $\left(Z_{0}, \ldots, Z_{d}\right) \in K^{d+1}$ can be viewed as a linear functional φ_{Z} on the space S_{d} of polynomials of degree d in X and Y, via the rule $\varphi_{Z}\left(X^{d-i} Y^{i}\right)=Z_{i}$. Thus we have an identification $\mathbb{P}^{d} \cong \mathbb{P}\left(S_{d}^{*}\right)$.

Proof of Thm. 4.7. First note that any point $\left(Z_{0}, \ldots, Z_{d}\right) \in K^{d+1}$ can be viewed as a linear functional φ_{Z} on the space S_{d} of polynomials of degree d in X and Y, via the rule $\varphi_{Z}\left(X^{d-i} Y^{i}\right)=Z_{i}$. Thus we have an identification $\mathbb{P}^{d} \cong \mathbb{P}\left(S_{d}^{*}\right)$.
Let C be the rational normal curve. If $[Z]=\left[X^{d}, X^{d-1} Y, \ldots, Y^{d}\right] \in C$, then φ_{Z} is just evaluation of polynomials at the point $[X, Y] \in \mathbb{P}^{1}$. Conversely, if all polynomials in $\operatorname{ker}\left(\varphi_{Z}\right)$ have a common zero $[X, Y] \in \mathbb{P}^{1}$, it follows that φ_{Z} is equal to evaluation at $[X, Y]$ and $[Z]=v_{d}[X, Y] \in C$.

Proof of Thm. 4.7. First note that any point $\left(Z_{0}, \ldots, Z_{d}\right) \in K^{d+1}$ can be viewed as a linear functional φ_{Z} on the space S_{d} of polynomials of degree d in X and Y, via the rule $\varphi_{Z}\left(X^{d-i} Y^{i}\right)=Z_{i}$. Thus we have an identification $\mathbb{P}^{d} \cong \mathbb{P}\left(S_{d}^{*}\right)$.
Let C be the rational normal curve. If $[Z]=\left[X^{d}, X^{d-1} Y, \ldots, Y^{d}\right] \in C$, then φ_{Z} is just evaluation of polynomials at the point $[X, Y] \in \mathbb{P}^{1}$. Conversely, if all polynomials in $\operatorname{ker}\left(\varphi_{Z}\right)$ have a common zero $[X, Y] \in \mathbb{P}^{1}$, it follows that φ_{Z} is equal to evaluation at $[X, Y]$ and $[Z]=v_{d}[X, Y] \in C$.
Now we consider the matrix

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right) .
$$

Proof of Thm. 4.7. First note that any point $\left(Z_{0}, \ldots, Z_{d}\right) \in K^{d+1}$ can be viewed as a linear functional φ_{Z} on the space S_{d} of polynomials of degree d in X and Y, via the rule $\varphi_{Z}\left(X^{d-i} Y^{i}\right)=Z_{i}$. Thus we have an identification $\mathbb{P}^{d} \cong \mathbb{P}\left(S_{d}^{*}\right)$.
Let C be the rational normal curve. If $[Z]=\left[X^{d}, X^{d-1} Y, \ldots, Y^{d}\right] \in C$, then φ_{Z} is just evaluation of polynomials at the point $[X, Y] \in \mathbb{P}^{1}$. Conversely, if all polynomials in $\operatorname{ker}\left(\varphi_{Z}\right)$ have a common zero $[X, Y] \in \mathbb{P}^{1}$, it follows that φ_{Z} is equal to evaluation at $[X, Y]$ and $[Z]=v_{d}[X, Y] \in C$.
Now we consider the matrix

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right) .
$$

It follows from the case of the secant variety of the general determinantal variety M_{1} that the rank-2 determinantal variety associated with Ω_{k} contains $S_{1}(C)$. We have to show the converse.

Proof of Thm. 4.7. First note that any point $\left(Z_{0}, \ldots, Z_{d}\right) \in K^{d+1}$ can be viewed as a linear functional φ_{Z} on the space S_{d} of polynomials of degree d in X and Y, via the rule $\varphi_{Z}\left(X^{d-i} Y^{i}\right)=Z_{i}$. Thus we have an identification $\mathbb{P}^{d} \cong \mathbb{P}\left(S_{d}^{*}\right)$.
Let C be the rational normal curve. If $[Z]=\left[X^{d}, X^{d-1} Y, \ldots, Y^{d}\right] \in C$, then φ_{Z} is just evaluation of polynomials at the point $[X, Y] \in \mathbb{P}^{1}$. Conversely, if all polynomials in $\operatorname{ker}\left(\varphi_{Z}\right)$ have a common zero $[X, Y] \in \mathbb{P}^{1}$, it follows that φ_{Z} is equal to evaluation at $[X, Y]$ and $[Z]=v_{d}[X, Y] \in C$.
Now we consider the matrix

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

It follows from the case of the secant variety of the general determinantal variety M_{1} that the rank-2 determinantal variety associated with Ω_{k} contains $S_{1}(C)$. We have to show the converse.
So suppose that $\left[Z_{0}, \ldots, Z_{d}\right] \in \mathbb{P}^{d}$ is a point where $\Omega_{k}(Z)$ has rank at most 2 . The matrix $\Omega_{k}(Z)$ represents the bilinear map

$$
S_{k} \times S_{d-k} \xrightarrow{m} S_{d} \xrightarrow{\varphi_{Z}} K,\left(X^{k-i} Y^{i}, X^{d-k-j} Y^{j}\right) \mapsto X^{d-i-j} Y^{i+j} \mapsto Z_{i+j}
$$

where m is the multiplication map.

Proof of Thm. 4.7. First note that any point $\left(Z_{0}, \ldots, Z_{d}\right) \in K^{d+1}$ can be viewed as a linear functional φ_{Z} on the space S_{d} of polynomials of degree d in X and Y, via the rule $\varphi_{Z}\left(X^{d-i} Y^{i}\right)=Z_{i}$. Thus we have an identification $\mathbb{P}^{d} \cong \mathbb{P}\left(S_{d}^{*}\right)$.
Let C be the rational normal curve. If $[Z]=\left[X^{d}, X^{d-1} Y, \ldots, Y^{d}\right] \in C$, then φ_{Z} is just evaluation of polynomials at the point $[X, Y] \in \mathbb{P}^{1}$. Conversely, if all polynomials in $\operatorname{ker}\left(\varphi_{Z}\right)$ have a common zero $[X, Y] \in \mathbb{P}^{1}$, it follows that φ_{Z} is equal to evaluation at $[X, Y]$ and $[Z]=v_{d}[X, Y] \in C$.
Now we consider the matrix

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

It follows from the case of the secant variety of the general determinantal variety M_{1} that the rank-2 determinantal variety associated with Ω_{k} contains $S_{1}(C)$. We have to show the converse.
So suppose that $\left[Z_{0}, \ldots, Z_{d}\right] \in \mathbb{P}^{d}$ is a point where $\Omega_{k}(Z)$ has rank at most 2 . The matrix $\Omega_{k}(Z)$ represents the bilinear map

$$
S_{k} \times S_{d-k} \xrightarrow{m} S_{d} \xrightarrow{\varphi_{Z}} K,\left(X^{k-i} Y^{i}, X^{d-k-j} Y^{j}\right) \mapsto X^{d-i-j} Y^{i+j} \mapsto Z_{i+j}
$$

where m is the multiplication map.
That $\Omega_{k}(Z)$ has rank at most 2 means that there exist subspaces $V_{1} \subset S_{k}$ and $V_{2} \subset S_{d-k}$ of codimension 2 such that $W_{1}=V_{1} \cdot S_{d-k}$ and $W_{2}=S_{k} \cdot V_{2}$ are contained in $V=\operatorname{ker}(\varphi) \subset S_{d}$. By our lemma above, both V_{1} and V_{2} must have a common zero, since otherwise we would have $W_{1}=W_{2}=S_{d}$. Hence if $W_{1}=V$ or $W_{2}=V$, then V has a common zero, hence $[Z] \in C$.

Proof (continued).

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

That $\Omega_{k}(Z)$ has rank at most 2 means that there exist subspaces $V_{1} \subset S_{k}$ and $V_{2} \subset S_{d-k}$ of codimension 2 such that $W_{1}=V_{1} \cdot S_{d-k}$ and $W_{2}=S_{k} \cdot V_{2}$ are contained in $V=\operatorname{ker}(\varphi) \subset S_{d}$. By our lemma above, both V_{1} and V_{2} must have a common zero, since otherwise we would have $W_{1}=W_{2}=S_{d}$. Hence if $W_{1}=V$ or $W_{2}=V$, then V has a common zero, hence $[Z] \in C$.

Proof (continued).

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right) .
$$

That $\Omega_{k}(Z)$ has rank at most 2 means that there exist subspaces $V_{1} \subset S_{k}$ and $V_{2} \subset S_{d-k}$ of codimension 2 such that $W_{1}=V_{1} \cdot S_{d-k}$ and $W_{2}=S_{k} \cdot V_{2}$ are contained in $V=\operatorname{ker}(\varphi) \subset S_{d}$. By our lemma above, both V_{1} and V_{2} must have a common zero, since otherwise we would have $W_{1}=W_{2}=S_{d}$. Hence if $W_{1}=V$ or $W_{2}=V$, then V has a common zero, hence $[Z] \in C$.
Otherwise, both W_{1} and W_{2} have codimension 2 in S_{d}. It follows from the lemma that each must have a common divisor P_{i} of degree 2 (check!) and thus

$$
W_{1}=P_{1} S_{d-2} \quad \text { and } \quad W_{2}=P_{2} S_{d-2}
$$

Proof (continued).

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

That $\Omega_{k}(Z)$ has rank at most 2 means that there exist subspaces $V_{1} \subset S_{k}$ and $V_{2} \subset S_{d-k}$ of codimension 2 such that $W_{1}=V_{1} \cdot S_{d-k}$ and $W_{2}=S_{k} \cdot V_{2}$ are contained in $V=\operatorname{ker}(\varphi) \subset S_{d}$. By our lemma above, both V_{1} and V_{2} must have a common zero, since otherwise we would have $W_{1}=W_{2}=S_{d}$. Hence if $W_{1}=V$ or $W_{2}=V$, then V has a common zero, hence $[Z] \in C$.
Otherwise, both W_{1} and W_{2} have codimension 2 in S_{d}. It follows from the lemma that each must have a common divisor P_{i} of degree 2 (check!) and thus

$$
W_{1}=P_{1} S_{d-2} \quad \text { and } \quad W_{2}=P_{2} S_{d-2}
$$

Now there are two cases to consider:

Proof (continued).

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

That $\Omega_{k}(Z)$ has rank at most 2 means that there exist subspaces $V_{1} \subset S_{k}$ and $V_{2} \subset S_{d-k}$ of codimension 2 such that $W_{1}=V_{1} \cdot S_{d-k}$ and $W_{2}=S_{k} \cdot V_{2}$ are contained in $V=\operatorname{ker}(\varphi) \subset S_{d}$. By our lemma above, both V_{1} and V_{2} must have a common zero, since otherwise we would have $W_{1}=W_{2}=S_{d}$. Hence if $W_{1}=V$ or $W_{2}=V$, then V has a common zero, hence $[Z] \in C$.
Otherwise, both W_{1} and W_{2} have codimension 2 in S_{d}. It follows from the lemma that each must have a common divisor P_{i} of degree 2 (check!) and thus

$$
W_{1}=P_{1} S_{d-2} \quad \text { and } \quad W_{2}=P_{2} S_{d-2}
$$

Now there are two cases to consider:
(1) If $W_{1} \neq W_{2}$, then $W_{1}+W_{2}=V$ and $W_{1} \cap W_{2}$ has codimension 2 in V and thus codimension 3 in S_{d}. It follows that P_{1} and P_{2} must have a common zero which is then a common zero of V. So we again conclude $\lceil Z\rceil \in C$.

Proof (continued).

$$
\Omega_{k}=\left(\begin{array}{ccccc}
Z_{0} & Z_{1} & Z_{2} & \cdots & Z_{d-k} \\
Z_{1} & Z_{2} & Z_{3} & \cdots & Z_{d-k+1} \\
\vdots & & & & \\
Z_{k} & Z_{k+1} & \cdots & \cdots & Z_{d}
\end{array}\right)
$$

That $\Omega_{k}(Z)$ has rank at most 2 means that there exist subspaces $V_{1} \subset S_{k}$ and $V_{2} \subset S_{d-k}$ of codimension 2 such that $W_{1}=V_{1} \cdot S_{d-k}$ and $W_{2}=S_{k} \cdot V_{2}$ are contained in $V=\operatorname{ker}(\varphi) \subset S_{d}$. By our lemma above, both V_{1} and V_{2} must have a common zero, since otherwise we would have $W_{1}=W_{2}=S_{d}$. Hence if $W_{1}=V$ or $W_{2}=V$, then V has a common zero, hence $[Z] \in C$.
Otherwise, both W_{1} and W_{2} have codimension 2 in S_{d}. It follows from the lemma that each must have a common divisor P_{i} of degree 2 (check!) and thus

$$
W_{1}=P_{1} S_{d-2} \quad \text { and } \quad W_{2}=P_{2} S_{d-2}
$$

Now there are two cases to consider:
(2) If $W_{1}=W_{2}$, then $P_{1}=P_{2}$ and we denote this polynomial by P. The linear functional φ_{Z} vanishes on $P S_{d-2}$. If P has distinct roots q and r in \mathbb{P}^{1}, then the point evaluations $F \mapsto F(q)$, $F \mapsto F(r)$ are distinct and thus span the two-dimensional space of functions vanishing on $P S_{d-2}$. Hence there exist $a, b \in K$ such that $\varphi_{Z}(F)=a F(q)+b F(r)$ and therefore

$$
[Z]=a v_{d}(q)+b v_{d}(r)
$$

is on the secant variety of C. If P has a double root q, then φ_{Z} lies in the closure of the set of linear combinations $a F(q)+b F(r)$ for $r \in \mathbb{P}^{1}$.

