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Coordinate rings: affine and projective

LetV ⊂ An be an affine variety with vanishing ideal I(V) ⊂ K[x�, . . . , xn]. The coordinate ring
of V is the residue class ring

A(V) = K[x�, . . . , xn]�I(V).
Its elements are exactly the regular functions on V , i.e. the morphisms V → A�.

Next, if X ⊂ Pn is a projective variety with vanishing ideal I(X) ⊂ K[Z�, . . . , Zn], the ring
S(X) = K[Z�, . . . , Zn]�I(X)

is the homogeneous coordinate ring of X. Unlike the coordinate ring of an affine variety, its
elements are not functions on X.

Since I(X) is a homogeneous ideal, i.e. generated by homogeneous elements, a polynomial
F = ∑k

d=� Fd with homogeneous parts Fd is contained in I(X) if and only if each Fd is contained
in I(X)d . Therefore, the homogeneous coordinate ring S(X) = K[Z�, . . . , Zn]�I(X) inherits
the grading from K[Z�, . . . , Zn]. In other words, an element F ∈ S(X) is homogeneous of
degree d if and only if F is homogeneous of degree d , and this definition is independent of the
choice of representative F of F .
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S(X) =�
d�� S(X)d
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The function field of a variety

An affine variety V ⊂ An is irreducible if and only if its vanishing ideal I(V) is prime if and only
if the coordinate ring A(V) is a domain. In this case, we can form the field of fractions of A(V),
denoted K(V), whose elements are all fractions f �g, f , g ∈ A(V), g ≠ �. This is the function
field of V .

Similarly, X ⊂ Pn is irreducible if and only if its homogeneous vanishing ideal I(X) is prime, and
we define the function field of X, again denoted K(X), to be the field of all fractions

F
G
, where F ,G ∈ S(X) homogenoeus with deg(F) = deg(G).

Unlike the elements of the homogeneous coordinate ring S(X), the elements of K(X) can be
viewed as functions with target A�, but only where the denominator does not vanish. More
precisely, given F�G ∈ K(X), consider the open subsetU = {[Z] ∈ X ∶ G(Z) ≠ �}, then

U → A�, [Z]� F(Z)
G(Z)

is a regular function on U . (Note that the fraction is independent of any scaling of Z and thus
well-defined at [Z] ∈ Pn.)
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Rational Maps

Now if X is an affine or projective variety, we could define a rational map from X toAn to be an
n-tuple (h�, . . . , hn)with hi ∈ K(X). As a map, this is defined in all points in which none of the
denominators of the entries h�, . . . , hn vanish.

However, the issue of a rational function ormap not being defined on all of X should be a taken
more seriously, leading to the following more technically precise definition:
Given two quasi-projetive varieties X and Y , a rational map from X to Y is an equivalence
class of pairs (U , φ), whereU ⊂ X is an open-dense subvariety and φ∶U → Y is a morphism of
varieties. Two pairs (U , φ), (U ′, φ′) are equivalent, if φ and φ′ agree onU ∩U ′. We usually drop
U from the notation and write

φ∶X �→ Y

to denote the rational map defined by φ.

If X ⊂ Pm is irreducible, a rational map φ∶X �→ Pnmay be givenmore concretely by an (n+ �)-
tuple of homogeneous polynomials F�, . . . , Fn ∈ K[Z�, . . . , Zm] of the same degree, not all
identically zero on X, via the rule

φ[Z] = [F�(Z), . . . , Fn(Z)].
By our general definition of morphism, this will define a morphism X � V(F�, . . . , Fn) → Pn

and conversely, any rational map X → Pn has a representative of this form. It is also clear that
the map φ depends only on the class of F�, . . . , Fn in S(X), so rational maps may be given by
n-tuples of homogeneous elements of S(X) of the same degree.
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Rational maps

A simple (but important) example of a rational map is the map

φ∶� A� �→ P�(x , y) � [x , y].
Note that φ is defined onA� � {�, �}.

[Ha], p. 75



Rational Maps

If X ⊂ Pn is projective and irreducible, let us check that the rational maps X �→ A� indeed
correspond to the elements of the function field K(X). It is clear that an element F�G ∈ K(X)
defines a morphism from {[Z] ∈ X ∶ G(Z) ≠ �} toA�.

Conversely, ifV is a non-empty open subset of X andΦ∶V → A� a morphism, this means there
exists a non-empty open subset U of V and homogeneous elements F ,G ∈ S(X) of the same
degree such that

Φ([Z]) = [F(Z),G(Z)] ∈ P�
for all [Z] ∈ U . Since the image of Φ is contained in A� = U�, we must have G(Z) ≠ � for all[Z] ∈ U . Hence

Φ([Z]) = �F(Z)
G(Z), ��

for all [Z] ∈ U , which is the rational function given by F�G.

It does notmatter whether we regard rational functions as rational maps X �→ A� or X �→ P�.
For ifΦ∶U → P� is amorphism, we can restrictΦ toΦ−�(U�) and obtain amorphism toU� ≅ A�.
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Rational maps

We may define the function field of any irreducible quasi-projective variety W ⊂ Pn to be the
field of all rational mapsW �→ A�.

An alternative definition of K(W) that is often more explicit is as follows: Let U ⊂ W be any
non-empty open affine subvariety ofW . Then define K(W) as K(U), which in turn is the field
of fractions of the affine coordinate ring A(U).
Let us see how this plays out for Pn. The function field K(Pn) is given by all fractions F�G with
F ,G ∈ K[Z�, . . . , Zn] of the same degree,G ≠ �. If we dehomogenize with respect to Z�, i.e. we
pass to the open affine subset U� of An, then F�G goes to F(�, Z�, . . . , Zn)�G(�, Z�, . . . , Zn)
and this establishes an isomorphism with the field of fractions of K[Z�, . . . , Zn], which is the
function field ofU�.

A simple (but important) example of a rational map is the map

φ∶� A� �→ P�(x , y) � [x , y].
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Summary

● If X ⊂ Pm and Y ⊂ Pn are quasi-projective varieties, a rational map φ∶X �→ Y is given by
an (n + �)-tuple of homogeneous polynomials in [Z] = [Z�, . . . , Zm] of the same degree
via the rule

φ([Z]) = [F�(Z), . . . , Fn(Z)].
● Two such (n+ �)-tuples give the samemap if they agree on some open-dense subset of X.

●We can also divide by one of the entries and regard

φ([Z]) = ��, F�(Z)
F�(Z), . . . ,

Fn(Z)
F�(Z)�

as a map to An. Working modulo the homogeneous ideal of X (or its closure), we can
interpret the entries Fi�F� as elements of the function field of X.

● If a rational map φ∶X �→ Y is given by F�, . . . , Fn, then it corresponds to a morphism
φ∶X � V(F�, . . . , Fn)→ Y .
That morphism may or may not extend to a morphism defined on a larger subset of X,
bearing in mind our general definition of morphism.
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Graphs of rational maps

Let X be a projective variety and φ∶X �→ Pn a rational map defined on an open subsetU of X.
We have seen in the exercises that the graph of φ�U is a closed subset ofU × Pn. We define the
graph Γφ of φ to be the closure of the graph of φ�U in X × Pn. Note that this is independent of
the choice ofU . In particular, if φ is regular on X, this is just the ordinary graph.

Since the graph Γφ is closed by definition, the projection π�(Γφ) is closed in Pn and we define
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The domain of a rational map

For example, remember our discussion of the stereographic projection in the plane in §�:

Let C = V(X� + Y� − Z�) ⊂ P�, a conic in the projective plane. What we showed is that the
domain of the rational map

φ∶� C �→ P�[X ,Y , Z] � [X ,Y − Z]
is all of C, so that it is really a morphism. This is despite the fact that the projection [X ,Y , Z]�[X ,Y − Z] chosen to represent the map φ is undefined at the point [�, �, �].
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Relation between rational maps and function fields

A morphism φ∶V → W of affine varieties is dominant if and only if the induced ring homo-
morphism φ∗∶A(W) → A(V) given by f � f ○ φ is injective. It follows that any dominant
rational map φ∶X �→ Y between two irreducible quasi-projective varieties induces an injec-
tion φ∗∶K(Y)→ K(X) of their function fields.

Conversely, if ι∶K(Y)→ K(X) is an inclusion of function fields, it yields a rational map Y �→ X
as follows: Suppose Y ⊂ Pn and consider the open affine subvariety W = Y ∩ U�. We may
assume thatW is non-empty and thus dense in Y , so that K(Y) is the field of fractions of the
coordinate ring A(W). The ring A(W) is generated by the residue classes of yi = Zi�Z� (i =
�, . . . , n), which we may therefore regard as elements of K(Y). Put hi = ι(yi) ∈ K(X). Then
� X �→ Y
x � [�, h�(x), . . . , hn(x)]

is the rational map corresponding to ι.
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(This is essentially the same proof that shows how a homomorphism A(W) → A(V) between
coordinate rings induces a morphism V →W of affine varieties.)



Birational isomorphism

A rational map φ∶X �→ Y is called birational or a birational isomorphism if there exists
ψ∶Y �→ X such that ψ ○ φ resp. ψ ○ φ are both defined and equal to the identity on X resp. Y .
In this case, the varieties X and Y themselves are called birational or birationally isomorphic.

Proposition �.�. For two irreducible quasi-projective varieties X and Y , the following statements
are equivalent:
(�) X and Y are birational.
(�) The function fieldsK(X) andK(Y) are isomorphic.
(�) There exist isomorphic non-empty open subvarietiesU ⊂ X andV ⊂ Y .

Proof. (�)⇔(�) follows from our discussion of the correspondence between dominant rational
maps and inclusions of function fields. And (�)⇔(�) is clear by definition. �
An interesting observation is the following: If φ∶X → Y is any rational map with graph Γφ ⊂
X ×Y , then the natural map X → Γφ is birational and the projection Γφ → Y is a morphism. The
conclusion is that a rational map from X to Y is the same as a morphism X′ → Y where X′ is a
variety birational to X.
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The quadric surface

Let Q be the quadric surface in P�, that is Q = V(Z�Z� − Z�Z�). (We say the quadric surface,
because there is only one non-degenerate quadratic form of a given dimension over an alge-
braically closed field, up to a change of coordinates.)

Let p = [�, �, �, �] ∈ Q and consider the projection

πp∶� Q �→ P�[Z�, Z�, Z�, Z�] � [Z�, Z�, Z�]
The rational map πp is birational. The inverse is given by

πp∶� P� �→ Q[Z�, Z�, Z�] � [Z�
�, Z�Z�, Z�Z�, Z�Z�]

In fact, the projection πp is an isomorphism from {[Z] ∈ Q ∶ Z� ≠ �} onto {[Z] ∈ P� ∶ Z� ≠ �}.
Note that we already knew that Q is birational to P�: It is the Segre embedding of P� × P�, and
since P� × P� contains A� as an open subset, the function field of Q must be K(x , y), which is
the function field ofA� and P�.
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Rational varieties

An irreducible variety is called rational if it is birational to Pn (orAn).

For example, the Grassmannians are rational, since we showed that they are irreducible and
contain open subsets isomorphic to affine space.

An irreducible variety X is called unirational if there exists a dominant rational map Pn �→ X
for some n. In other words, a variety is unirational if its function field is a subfield of the rational
function field K(t�, . . . , tn) for some n.

A classical result due to Lüroth says that every unirational curve is rational. The same is true for
surfaces, which was proved by Castelnuovo and Enriques.

Whether all unirational varieties are rationalwas anopenquestionuntil the ����s,whenClemens
and Griffiths showed the existence of unirational cubic threefolds that are not rational.
Independently and around the same time, Iskovskih and Manin showed the same for certain
quartic threefolds.

Questions of rationality can be tricky and somewhat unexpected: Consider for example cubic
hypersurfaces: Smooth cubic curves in P� are not rational (elliptic curves), while cubic surfaces
in P� are rational, as we will see later. Cubic threefolds in P� are in general not rational (see
above). The general case is in fact unknown. On the other hand, all cubic hypersurfaces are
unirational.
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Hypersurfaces

Theorem �.�. Every irreducible variety X is birational to a hypersurface.

Sketch of proof. There are two ways to prove this. If K is of characteristic �, we may simply in-
voke the Theorem of the primitive element: If x�, . . . , xn are a transcendence basis of the field
K(X), then the algebraic extension K(X)�K(x�, . . . , xn) is generated by a single element xn+�
satisfying a polynomial equation

F(xn+�) = adxdn+� +� + a�
with a�, . . . , ad ∈ K(x�, . . . , xn). Clearing denominators, we obtain an irreducible polynomial in
x�, . . . , xn+� and X is birational to the hypersurface inAn+� defined by that polynomial.

A more geometric proof goes as follows: If X ⊂ Pn has codimension at least �, show that there
exists a point p ∈ Pn such that the projection πp∶X → Pn−� is birational onto its image. This
however requires some tools that we will see only later. �
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true in any characteristic, but again much easier to show in characteristic �. �
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The degree of a rational map

Let φ∶X �→ Y be a dominant rational map between irreducible varieties, corresponding to
an inclusion φ∗∶K(Y) → K(X) of function fields. We say that the generic fibre has d points
if there exists a non-empty Zariski open subset U of Y such that the fibre φ−�(y) consists of
exactly d points, for all y ∈ U . In this case, the map φ is called generically finite.

Theorem �.�. The rationalmap φ is generically finite if and only if the field extensionK(X)�K(Y)
givenbyφ∗ is finite. In this case, if the field extensionhasdegreed and char(K) = �, then thegeneric
fibre of φ has d points.

If K(X)�K(Y) is finite, the degree of this field extension is also referred to as the degree of the
rational map φ.

Proof (in thecasechar(K) = �). Since the statement is only about rationalmaps and theexistence
of some non-empty open subset, we may assume that X and Y are affine varieties. Since X is
birational to the graph Γφ, we may further replace φ by the projection of Γφ onto Y . In other
words, we have reduced to the situation where X is closed in some affine space An and φ is a
linear projectionAn → Am. By induction onm−n, wemay further assume thatm = n−�, hence

φ∶� X → Y(z�, . . . , zn) � (z�, . . . , zn−�) .
In this case, the function field K(X) is generated over K(Y) by the element zn. Now there are
two cases to consider:
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Example. Let X = Y = A� and consider the morphism φ defined by

φ(x) = xn.
If the characteristic of K is zero (or at least does not divide n), the fibre φ−�(x) over any point
x ∈ A� � {�} has exactly n points, while φ−�(�) = {�}. The corresponding field extension is just
K(t)�K(tn), which has degree n. We say that the map φ ramifies over the point �.

Note also that φ extends to amorphismP� → P� given by [X ,Y]� [Xn,Yn]. This map ramifies
over the two points [�, �] and [�, �] (corresponding to � and∞ in affine coordinates).
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Proof (continued).

(�) Suppose zn is algebraic over K(Y). Then let

G(z�, . . . , zn) = adzdn + a�zd−�n +� + a�
be the minimal polynomial of zn over K(Y), where ai ∈ K(Y). After clearing denomina-
tors, we may assume that a�, . . . , ad ∈ A(Y) are regular functions on Y given by (residue
classes of ) polynomials in z�, . . . , zn−�. Let ∆(z�, . . . , zn−�) be the discriminant of G as a
polynomial in zn. Since G is irreducible in K(Y)[zn] and char(K) = �, the polynomial G
cannot vanish identically on Y . It follows that {(z�, . . . , zn−� ∈ Y ∶ ad(z�, . . . , zn−�) = �}
and {(z�, . . . , zn−�) ∈ Y ∶ ∆(z�, . . . , zn−�) = �} are proper subvarieties of Y and on the
complement of their union, the fibres of φ consist of exactly d points.

(�) Suppose zn is transcendental over K(Y). Then for any polynomial G(z�, . . . , zn) ∈ I(X),
which we may write in the form

G(z�, . . . , zn) = adzdn + a�zd−�n +� + a�
with ai ∈ K[z�, . . . , zn−�], the coefficient ai must vanish identically on Y . It follows that X
contains the entire fibre of the projection φ over any point p ∈ Y . Hence φ is not generically
finite. �
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Blowing Up

Blowing up is a rather general method for constructing varieties birational to a given variety.
It serves two main purposes:● Removing undeterminacy of rational maps (i.e. turning rational maps into morphisms)● Resolving singularities
While we will not discuss either of these in detail, we will study the construction itself.

The simplest case is the blow-up ofA� in a point, defined as follows: Consider the rational map

φ∶� A� �→ P�(x , y) � [x , y].
that we looked at earlier. The blow-up ofA� in the point(�, �) is the graph of φ, denoted�A�. Explicitly, thismeans

�A� = ��(x , y), [s, t]� ∶ tx = sy� ⊂ A� × P�.
The blow-up comes equipped with a morphism π∶�A� →
A�, which is projection onto the first factor.

If (x , y) ≠ (�, �), there is a unique point in�A�mapping to(x , y), while the fibre of π over (�, �) is {(�, �)}×P�. This
fibre is called exceptional or the exceptional divisor.
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General blow-ups

The blow-up of A� in a point is the simplest case which we can picture geometrically. General
blow-ups are defined in a very similiar way, but are not as intuitive.

First, if φ∶Pn �→ Pn−� is projection from a point p ∈ Pn, we put �Pn = Γφ and again call �Pn

together with the projection map π∶�Pn → Pn the blow-up of Pn at the point p. As before, the
map π is an isomorphism �Pn � π−�(p) ∼�→ Pn � {p}, while the exceptional divisor is the fibre
π−�(p) ≅ Pn−�.
More generally, if X ⊂ Pn is a quasi-projective variety and p ∈ X a point, let X̃ be the graph of
the projection X �→ Pn−� from p. Then X̃ together with the projection π∶ X̃ → X is called in
the blow-up of X at p.

To make this more explicit, it is helpful to realise it as a subvariety of�Pn. Suppose that X ⊂ Pn

is closed. Let p ∈ X and let π∶�Pn → Pn be the blow-up of Pn at p. Let X̃ be the closure of
π−�(X � {p}) in�Pn, called the proper transform (sometimes also called strict transform). This
is isomorphic to the blowup of X at p as defined above.
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Example

Let X = V(y�−x�(x+�)), a nodal curve in the affineplane
A�. We compute the proper transform of X in Ã�.

Thus we have to look at the equations y� = x�(x + �) and
xt = ys in A� × P�. If s ≠ �, we put s = � and obtain the
two equations

y� = x�(x + �)
y = tx

inA�with coordinates x , y, t. Substituting, we find x�t�−
x�(x + �) = �, which factors into x�(t� − x − �) = �. Since
x = � corresponds to the exceptional divisor, the proper
transform C̃ is given by the equation t� = x + � inA�.
Note that C̃ meets the exceptional divisor E = {(�, t) ∈
A�} in the two points (�, �) and (�,−�). Since E is con-
tracted to (�, �) under the projection π∶�A� → A�, both
of these points are mapped to the node. Thus the two
branches of the nodal curve have been separated in the
blow-up.
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Blowing up subvarieties

Varieties can be blown up not only in points but also in subvarieties.

The definition itself is quite straightforward: For the affine case, let X ⊂ An be an affine variety
and Y ⊂ X a closed subvariety with vanishing ideal I(Y) ⊂ A(X). Let f�, . . . , fn ∈ A(X) be
some set of generators of I(Y). Now consider the rational map

φ∶� X �→ Pn

x � [ f�(x), . . . , fn(x)] .
Themap φ is regular on X�Y but is generally not amorphismon all of X. The graph Γφ ⊂ X×Pn,
denoted BlY(X), together with the projection π∶BlY(X)→ X is the blow-up of X along Y .

While the definition is simple enough, it is not so easy to work with this general blow-up or
develop any kind of geometric intuition for it. (If X and Y are smooth, one can think of it in a
differential-geometric kind of way.)

The very first step, which is already quite technical, is to show that the construction is indepen-
dent of the choice of generators f�, . . . , fn, up to isomorphism.
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Example: The quadric surface

We return to the example of the quadric surface in P�:
Let Q = V(Z�Z� − Z�Z�), p = [�, �, �, �] ∈ Q and consider the projection

πp∶� Q �→ P�[Z�, Z�, Z�, Z�] � [Z�, Z�, Z�]
We have seen that πp is birational. Wewill describe its structure in terms of blow-ups as follows.
First, let Q̃ ⊂ Q×P� be the graph of πp, which is exactly the blow-up ofQ at the point p. A direct
computation shows that

Q̃ =
���������
([Z], [W]) ∈ Q × P� ∶ Z�Z� − Z�Z�,

W�Z� =W�Z�,
W�Z� =W�Z�,
W�Z� =W�Z�,

W�Z� − Z�W�

���������
.

The first equation is just the equation of Q , the second corresponds to the equation πp[Z] =[W], while the third comes from the fact that we had to take the closure of the graph of the
restriction of πp to Q � {p}.
The exceptional divisor under the blow-upmap π� is E = π−�� (p) = {(p, [�,W�,W�]) ∈ Q ×P�}.
Now consider the other projection, π�∶ Q̃ → P� takingQ to the image of πp. Note first that while
πp is undefined at p, π� maps the exceptional divisor E to the line {[W] ∈ P� ∶ W� = �}. The
map π� is injective, except over the two points q = [�, �, �] and r = [�, �, �]. The fibre π−�� (q)
is the line ℓ × {q}, where ℓ = V(Z�, Z�) ⊂ Q . Similarly, π−�� (r) is ℓ′ × {r} with ℓ′ = V(Z�, Z�).
(Hence ℓ,ℓ′ are the two lines on Q through the point p).
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Now consider the other projection, π�∶ Q̃ → P� takingQ to the image of πp. Note first that while
πp is undefined at p, π� maps the exceptional divisor E to the line {[W] ∈ P� ∶ W� = �}. The
map π� is injective, except over the two points q = [�, �, �] and r = [�, �, �]. The fibre π−�� (q)
is the line ℓ × {q}, where ℓ = V(Z�, Z�) ⊂ Q . Similarly, π−�� (r) is ℓ′ × {r} with ℓ′ = V(Z�, Z�).
(Hence ℓ,ℓ′ are the two lines on Q through the point p).
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Since the ideal generated byW�
� ,W�W�,W�W�,W�W� is exactly the vanishing ideal of the two

points {q, r}, we conclude that π� is the blowup of P� in the two-point set {q, r}.
Conclusion. The blow-up of Q in a point is isomorphic to the blow-up of P� in two points.

The projection π of Q from a point onto P� becomes a morphism from the blow-up Q̃ to P�.
The inverse π−� becomes a morphism from the blow-up of P� in two points onto Q .
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Factorization of rational maps

Wemention the following general result without proof.

Theorem �.�. Let X be a quasi-projective variety and φ∶X �→
Pn a rational map. Then φ can be resolved via a sequence of
blow-ups, whichmeans the following:
There is a sequence X�, . . . , Xk of varieties, where X� = X, linked
bymorphisms πi∶Xi+� → Xi such that
(�) πi is the blow-up of Xi along a proper closed subvariety Yi;
(�) The rational map φ has a factorization

φ̃ ○ π−�k ○ � ○ π−��
where φ̃∶Xk+� → Pn is amorphism.

In other words, any rational map factors into a morphism and
a sequence of blow-ups.

Obtaining more information about the blow-ups, the morphism φ̃ and the subvarieties Yi is
quite hard, even in very particular cases. For example, the strong factorization conjecture, which
characterizes birational maps between smooth projective (or complete) varieties, remains un-
proven. A weaker version, the weak factorization theorem, was proved in ���� by Abramovich,
Karu, Matsuki and Włodarczyk.
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