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1. LINEAR MATRIX INEQUALITIES AND SPECTRAHEDRA

1.1. INTRODUCTION

Given real polynomials g, ..., g, € R[x] in n variables x = (xy,...,x,), let

S=8(g....g) ={ueR" [ g@(u)>0,...,g(u) >0}

be the basic closed (semialgebraic) set in R” defined by g, ..., g.. The convex hull

conv(S) = {Z/liui |0<A; < I,Z)L,- =1u; € B}
i=0 i=0

of S is again semialgebraic and can be thought of as a linearisation of S. How can we
describe it in terms of inequalities? What is its boundary? Can we find a description that
reflects the convexity and is well suited for computations? These are some of the questions
that we will attempt to answer through the study of linear matrix inequalities.

Even though the motivation comes from computational problems and in particular
from optimisation, our focus will be on geometry and theoretical foundations. The basic
building blocks will be the affine-linear slices of the cone of positive semidefinite matrices.
These convex sets are called spectrahedra, and our goal will be the realisation of other
convex sets as spectrahedra or as projections of spectrahedra. To get started, we will first
need to study the spectrahedra themselves in some detail.
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[Forst-Hoffmann] W. Forst and D. Hoffmann. Optimization—theory and practice. Springer Undergraduate
Texts in Mathematics and Technology. Springer, New York, 2010.
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[Prestel-Delzell] A. Prestel and C. N. Delzell. Positive polynomials. Springer Monographs in Mathematics.
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sity Press, Princeton, NJ, 1970.
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1.2. SPECTRAHEDRA

A polyhedron is a subset of R” described by a finite number of linear inequalities. The
compact polyhedra are exactly the polytopes, i.e. the convex hulls of finitely many points.
These are the simplest (and the most extensively studied) convex sets.

Spectrahedra, our basic objects, are generalisations of polyhedra that comprise many
more sets but still share some of the good properties of polyhedra. First, we need to recall
a bit of linear algebra. We use the notations

Maty;(R) = space of all matrices of size k x [ with entries in R,
Mat, (R) = space of all square matrices of size k with entries in R,
GLi(R) = group of invertible square matrices of size k with entries in R,

Sym, (R) = space of all symmetric matrices of size k with entries in R,

where R is any field (or ring). The dimension of Sym, (R) over R (or rank as a free R-
module) is 1 (k +1)k. Throughout, matrices will always be assumed real, unless specified
otherwise. So we write Maty, Sym,, etc. to denote Mat, (R ), Sym, (R), etc.

Recall that a real symmetric matrix A € Sym, is called positive semidefinite if

vIAv >0
for all v € R¥. It is called positive definite if the inequality is strict for all v + 0. We write

Sym, = cone of positive semidefinite matrices of size k

Sym, " = cone of positive definite matrices of size k.

Note that Sym, is the closure of Sym, " and Sym, " is the interior of Sym,.

A matrix A € Mat; defines both the linear map R¥ — R*, v > Av, and the bilinear form
RF x RF > R, (v,w) — vTAw. But after a change of basis, given by U € GLy, the linear
map in the new coordinates is given by UL AU, while the bilinear form is given by UT AU.
The most basic fact about real symmetric matrices is that all eigenvalues are real. This is
easy to prove: If 1 € C is a complex eigenvalue of a real symmetric matrix A and v € C* is
a non-zero eigenvector, then

My =0T = (A) v =vTATY = vTAy = Ty = ||

and since ||v| # 0 for v # 0, we conclude A = A.

Thus if a symmetric matrix A is viewed as a linear map and U~'AU is diagonal, the
diagonal entries are the eigenvalues, all of which are real. On the other hand, if A is viewed
as a bilinear form, we can make UT AU diagonal and normalise the entries to be +1 or 0.
The difference between the number of positive and negative signs is the signature. Rank
and signature are the only invariants, by Sylvester’s theorem. In particular, we see that a
symmetric matrix is positive semidefinite if and only if its signature equals its rank.

From this it is not a priori clear that the signature is in any way related to the eigenval-
ues. But the principal axes theorem says that any symmetric matrix possesses an orthonor-
mal basis of eigenvectors. This means that, given A € Sym,, there exists U € GL; with
UT = U'such that UTAU is diagonal. In this case, the diagonal entries of UTAU = U~'AU
are the eigenvalues of A and the signs of the eigenvalues also determine the signature.
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We sum up these well-known facts in

Theorem 1.1. A real symmetric matrix has only real eigenvalues, and it is positive definite
(resp. semidefinite) if and only if all its eigenvalues are positive (resp. positive or zero).

Exercise 1.1. Let A be a real symmetric matrix of size k and rank r.

(a) Show that the following are equivalent:
(1) The matrix A is positive semidefinite.
(2) There exists a k x r-matrix B with A = BBT.
(3) There exists a positive semidefinite k x k-matrix P with A = P2,
(b) If BBT = CCT with B and C of the same size k x r, there exists an orthogonal r x r-matrix U
such that B = CU.
(c) For A € Symy, the matrix P in (a) is uniquely determined (and commonly denoted VA).

Exercise 1.2. Let A € Sym; and v € R”. Show that v7 Ay = 0 implies Av = 0.

For a symmetric matrix A, we will write A > 0 if it is positive semidefinite and A > 0 if it
is positive definite. We extend this to a partial order on Sym, by writing A > Bif A-B > 0.

Now we are ready to define spectrahedra.

Definition 1.2. A spectrahedron in R” is the inverse image of Sym, under an affine-linear
map R” — Sym,, for some k.

Spectrahedra are clearly convex, since the inverse image of any convex set under an
affine linear map is again convex. Occasionally, we may find it convenient not to fix co-
ordinates and consider a spectrahedron in a finite dimensional real vector space V given
as the inverse image of Sym(W)* under an affine linear map ®: V — Sym(W), for some
finite-dimensional real vector space W.

When working with matrices, we can write things out explicitly: An affine-linear map
®:R" — Sym, is given by an n + 1-tuple of symmetric matrices A, A;, ..., A, € Sym, via
®(u) = Ag + X7, u;A; and the corresponding spectrahedron is the set

O7(Sym;) = {u e R"| (Ao + Ay + - +u,A,) >0} c R".

We can view the expression Ay + 1A, + -+ + u, A, as a polynomial of degree 1 with matrix
coefficients, evaluated in the point u. Alternatively, we can think of it as a matrix with
polynomial entries

Ou(x) - lu(x)
A(x)=Ap+ 1A 1+ + x,A, = : :
€1k(x) Ekk(x)
with €y, ..., €k € R[x] of degree at most 1, and call this a linear matrix polynomial. (If not
specified otherwise, linear matrix polynomials will always be real and symmetric.) Thus

A(x) is an element of Sym, (R[x]) (which is isomorphic as an R-Algebra to the polynomial
ring Sym, [x]). If A(x) is any linear matrix polynomial in 7 variables, we write

S(A) ={ueR"|A(u) > 0}

for the spectrahedron defined by A, just as for ordinary polynomials. Spectrahedra are
therefore the sets of solutions to linear matrix inequalities.
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Examples 1.3.

(1) Any polyhedron is also a spectrahedron. For if P = S(¢,,..., ) is a polyhedron
defined by polynomials ¢, ..., € € R[x] of degree 1, then P = S(A) for the di-
agonal matrix polynomial A = Diag(#, ..., €x). While any real symmetric matrix
can be diagonalised, the same is not true for matrix polynomials, because finitely
many matrices need not be simultaneously diagonalisable (see also Exercise 1.5).
Therefore, not every spectrahedron is a polyhedron.

(2) For example, the linear matrix polynomial

|1 0 -10 0O I [l-x 'y
A‘[o 1]”[0 1]”[1 0]’[ y 1+xl

in two variables x and y defines the closed unit disc in R2.
(3) More generally, the closed unit ball in R” is a spectrahedron, defined by the linear
matrix polynomial

1 0 - 0 x
0O 1 -« 0 x
A= - :
o 0 - 1 x,
X1 X3 0 x, 1]

(4) For a more interesting example, let R[x], be the vector space of polynomials of
degree at most d in x = (xy,...,x,), and let m = (f1,..., fy)T be a k-tuple of
polynomials spanning R[x],; (e.g. the monomial basis, with k = ( "*d)). The map

v . Symk - R[x]Zd
" A - mTAm ’

is linear and surjective. Given f € R[x],4, any element of the fibre ¥,;'( f) is called
a Gram matrix of f and G,,(f) = ¥,,}(f) n Sym, the Gram spectrahedron of f
(with respect to m). The Gram spectrahedron is non-empty if and only if f is a
sum of squares of elements in V;. For given A € G,,(f), we can write A = BTB
with B of size rk(A) x k (Exercise 1.1). Then f = mTAm = (Bm)TBm is a sum
of rk(A) squares. Conversely, if f = Y7, g7, we can write (gi,...,g,)" = Bm for
some B € Mat,.. Then f = (Bm)TBm = mT(BTB)m, so that BTB € G,,(f)
and rk(BTB) = r. In particular, the shortest sums-of-squares-representations of f
correspond to the Gram matrices of minimal rank.

Moreover, G,,(f) classifies the representations of f as a sum of squares up
to orthogonal equivalence: For if A € G,,(f) is split as A = BTB = CTC with B
and C both of size r x k, where r = rk(A), then B = UC for some orthogonal
matrix U of size r x r (Exercise 1.1). Conversely, given such U and a representation
f=Yi1ghthen (hy,....h,)T =U(g,...,g )T gives another representation f =
>.i_1 h? belonging to the same Gram matrix.

Exercise 1.3. Verify examples (2) and (3) above.

Exercise 1.4. It clearly makes sense to generalise spectrahedra from the real symmetric to the com-
plex hermitian case. Let A(x) be a complex hermitian linear matrix polynomial of size k. Show
that there exists a real symmetric linear matrix polynomial B(x) of size 2k such that S(A) = S(B).
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Exercise 1.5.

(a) True or false? The spectrahedron S(A) is a polyhedron if and only if the matrices Ao, ..., A,
are pairwise commuting.

(b) Ingeneral,if A = Ag+x;A;+--+x,A, is alinear matrix polynomial of size k in which A, ..., A,
are simultaneously equivalent to diagonal matrices (meaning there exists U € GL such that all
UTA;U are diagonal), then S(A) is a polyhedron. To what extent does the converse hold?

(c) For more on this topic, see [BRS11].

Exercise 1.6. Let A(x) = Ag + X1, x;A; be a linear matrix polynomial and put A’(x) = Y7, x;A;.
Show that S(A) is a cone if and only if S(A) = S(A”).

While the definition of spectrahedron is simple enough, there are two different ways
to think about it, corresponding to somewhat different geometric pictures.

o We may think of a spectrahedron as a subset of R” defined by a linear matrix
inequality. This we can rewrite as an infinite system of ordinary linear inequalities:
If A(x) is a linear matrix polynomial, then ¢,(x) = vTA(x)v is a polynomial of
degree at most 1 in the variables x, for any v € R¥, and

S(A)={ueR"|¢,(u) > 0forallv e R}

We may think of RF as a parameter space for the linear inequalities describing
the convex set S(A). Note that any closed convex set is described by an infinite
family of linear inequalities: Given a closed convex subset C of R”, let £ = {E €
R[x] | deg(£) < L€lc > 0}, then C = {u e R" | Ve € L: £(u) > 0}, by the
separation theorem for closed convex sets. What makes spectrahedra special is
the simple parametrisation of £ in terms of a linear matrix polynomial.

o We may also think of a spectrahedron as a set of matrices. If A(x) = Ay + x;A; +
-+ + x,A, is a linear matrix polynomial and ®4:R"” — S the affine-linear map
U Ag+ A+ -+ u,A,, consider the set of matrices im(®,) N Sym;. If O, is
injective, we can identify this with S(A). The geometric picture here is that of a
cone (namely Symy) sliced by a linear subspace. The subspace we are slicing with
isthespanof Ay, ..., A, shifted by A,. For instance, this is the way we would think
about the Gram spectrahedra in Example 1.3(4).

If @, is not injective, then A(x) is basically a cylinder over im(®,4) N Sym,,
given in terms of the kernel of @, (see Exercise 1.7 below), so we do not loose too
much by passing to the image.

It is instructive to make the analogy with polyhedra again: Let P = {u €
R” [ &(u) > 0,...,8(u) > 0} and consider the affine-linear map ®:R” — R¥,
uv (6(u),...,€(u)). Then P is the inverse image of the positive orthant (R*),
under ®. Thus, again up to injectivity of @, any polyhedron is a slice of a standard
cone (R¥), for some k, just as in the case of spectrahedra.

Exercise 1.7. Let A = Ag + Y., x;A; be a linear matrix polynomial. Let By, ..., B,, be a basis of
span(Ay,...,Ay,) and put B = Ag + Y1, x;B;. Show that there exists a bijective linear transforma-
tion y:R" — R™ x R" such that y(S(A)) = S(B) x R" ™ and ®4 = (O x0) o V.
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1.3. FIRST PROPERTIES OF SPECTRAHEDRA
Proposition 1.4. Spectrahedra are convex and basic closed.

Proof. Let S = S(A) for some linear matrix polynomial A. Convexity is clear from the
definition. We must show that there exist polynomials gi,...,¢, € R[x] such that § =
S(g..->g). To say that A(u) is positive semidefinite for u € R” is saying that all its
eigenvalues are positive or zero. The eigenvalues are the roots of the characteristic poly-
nomial yac)(t) = det(tIy — A(u)). Thus u is a point in S if and only if y4(,)(-t) has
no positive roots. By the subsequent lemma, this is the case if and only if all coefficients
of (=1)¥xa(u)(—t) are greater than or equal to zero. Thus we can take gi,..., g to be the
coefficients of (~1)¥ ya(x)(~t) as a polynomial in . O

Lemma 1.5. Let f € R[¢t] be a monic polynomial in one variable and assume that all roots of
f arereal. Then f has no positive roots if and only if all its coefficients are non-negative.

Proof. Clearly, ifall coefficients of f are greater than or equal to zero, it cannot have positive
roots. Conversely, if the roots of f are —a;, ..., —a with a; > 0, then all coefficients of
f=(x+a)(x + ar) are positive or zero. O

While the positive definite matrices are the interior of the cone of positive semidefinite
matrices, it may still happen that a linear matrix polynomial A is nowhere positive definite
even if S(A) has non-empty interior. For a trivial example, we could always artificially

S(A):s(‘(‘)‘ 8)

This degenerate case we would often like to exclude.

enlarge A by adding zeros, since

Definition 1.6. A linear matrix polynomial A of size k is called monic if A(0) = I, the
identity matrix.

Lemma 1.7. Let A be a linear matrix polynomial of size k.
(1) If A is monic, the interior of S(A) is the set
{ueR"|A(u) >0}
(2) If 0 is an interior point of S(A), then there exists a monic linear matrix polynomial

B of size tk(A(0)) with S(A) = S(B).

Proof. (1) Use that Sym; " = int(Sym; ). (Giving an exact argument is Exercise 1.8).
(2) Let A= Ag+ x4, + -+ x1A,,. Since 0 € S(A), we must have Ay > 0. Hence there exists

U € GLj such that
I, 0
T _ r
U AyU = [O O] ,
where r = rk(A,). Write

CT B
where B and B’ are linear matrix polynomials of size r resp. k—r, and C is a non-symmetric
linear matrix polynomial of size r x (k — r). We claim that C = 0 and B’ = 0. By the choice

UTAU:lB C],
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of U, the constant term of B’ is zero, say B’ = x,B] + --- + x,,B), with B} € Sym, . Since 0 is
an interior point of S(A) c S(B’), there is ¢ > 0 such that +e¢B! > 0 for i = 1,...,n. That

is impossible, unless B! = 0 for i = 1,..., n. Now if W is an open neighbourhood of 0 with
B(u) > 0forallu e W, then B'(u) = 0 implies C(u) = 0 for all u € W (see exercise below).
This implies C = 0, and the lemma is proved. O

Exercise 1.8. Prove part (1) of the lemma.

A A
A=
[A§ 0]

be a real block-matrix with A; symmetric. Show that if A is positive semidefinite, then A, = 0.

Exercise 1.9. Let

Remark 1.8. This lemma essentially says that it is enough to consider spectrahedra defined
by monic linear matrix polynomials. For if S = S(A) is any spectrahedron, let V be its
affine hull. Then S has non-empty relative interior in V' and after a translation we may
assume that 0 is in the relative interior of S. We may then change coordinates, replace R”
by V, and assume that § is given by a monic linear matrix polynomial.

While this argument works fine as a first reduction step in a proof, actually computing
a monic representation in large examples can be a difficult and computationally expensive
task, which is usually avoided whenever possible.

Corollary 1.9. A spectrahedron S has non-empty interior if and only if there exists a linear
matrix polynomial A such that S = S(A) and A is positive definite in some point of S. In this
case, int(S) = {u eR"|A(u) > O}.

Proof. If A(u) > 0 for some u € S, we may translate and assume u = 0. Then C = A(0)™!
is positive definite and A’(x) = \/CA(x)\/C is a monic linear matrix polynomial with
S(A) = S(A’). With this observation, the claim follows from the lemma. O

Remark 1.10. If A is a monic linear matrix polynomial of size k, the interior of S(A) is the
basic open set defined by the principal minors of A(x), which are the determinants of A(x)
with the last k rows and columns deleted, for k = 0, ..., k — 1. These are k polynomials of
ascending degree 1,. .., k. But in general, it is not true that the closure of a basic open set
U(g>...>8) ={uecR"|g(u) >0} is the basic closed set S(gi, . . . , &), and it is indeed not
true that a matrix is positive semidefinite if all its principal minors are non-negative. (Just
take the diagonal matrix Diag(0, —1), all of whose principal minors are 0). What is true,
however, is that a matrix is positive semidefinite if and only if all its diagonal minors are
non-negative (which are the determinants of the submatrices of A(x) obtained by deleting
all rows and columns with indices in some subset of {1, ..., k}). This gives another proof
of Prop. 1.4. However, this description uses 2* inequalities rather than k.

So what makes spectrahedra special among convex semialgebraic sets? First, spectra-
hedra are basic closed, as we have seen. There are indeed closed semialgebraic sets that are
not basic, so these cannot be spectrahedra.

Exercise 1.10. Let u; = (=1,0) and u, = (1,0) in R? and let S = B;(u;) U By(u3), i.e. the union of
two discs of radius 1 about u; and u,. Show that S is basic closed, but the convex hull of S is not.
(Getting the idea is more important than a rigorous prootf.) This set is called the football stadium.
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Exercise 1.11. Let C = {(b, c) e R?|Forall x € R:x* — bx? + (1/4)c > O}. Show that C is closed and
convex, but not basic closed.

Another property of spectrahedra is that all their faces are exposed. We will discuss
this in the proper context later.

Finally, there is a very restrictive necessary condition, called hyperbolicity (or real-
zero property). This comes from the fact that symmetric matrices have real eigenvalues.
If A =1+ Y, x;A; is a monic linear matrix polynomial of size k, the determinant f =
det(A) is a polynomial (of degree at most k) in R[x] which vanishes on the boundary of
the spectrahedron S(A). Since all the matrices " u;A; for u € R" are real symmetric, their
characteristic polynomials det(#I;— Y u;A;) have only real roots. Since det(tIy - u;A;) =
tkdet(A(t'u)) = t*f(+'u), this means that the polynomial f has only real roots when
restricted to any line span(u) = {t'u |t € R*} u {0} through 0. This can be seen for a
polynomial of degree 4 in two variables in the picture below.

An important paper in which such polynomials were studied in connection with spec-
trahedra is [HVo7]. Some of the results there will be discussed in detail later on. For now,
the basic point we wish to make is simply that spectrahedra are very special convex sets.

A hyperbolic plane curve of degree 4

Example 1.11. The set {(u,v) € R? | u* + v* < 1} is known as the TV screen. It is basic
closed and convex but not a spectrahedron. The reason is that x* + y* — 1 does not satisfy
the hyperbolicity condition above.

Exercise 1.12. Prove that the TV screen is indeed not a spectrahedron.

REFERENCES
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[HVo7] J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Comm. Pure Appl.
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2. PROJECTED SPECTRAHEDRA AND DUALITY

2.1. OVERVIEW

A projected spectrahedron is the image of a spectrahedron under an affine-linear map.
Such an image is again convex and semialgebraic (by quantifier elimination) but need not
be a spectrahedron. One reason is that a projected spectrahedron is not necessarily closed,
since linear maps are not closed. For example, the projection of the spectrahedron

b))

onto the first factor is the open interval (0, o). But there is much more to it.

{(u,v) e R?

Example 2.1.
(1) The TV-screen C = {(u, v) € R? | u? +v* < 1} is not a spectrahedron (Example
1.11). But the spectrahedron

[1+a b
b 1-a

S=1(u,v,a,b) e R* ! >0

1 v
L v b_
in R* maps onto the TV-screen under the projection (u,v,a,b) ~ (u,v). For
(u,v,a,b) € S satisfies a® + b> < 1and u? < a, v* < b, hence u* + vt < a? + b2 < 1.
Conversely, any point (u, v) € C lifts to the point (u, v, u?,v?) € S.
(2) Let R[x]4 be the vector space of polynomials in x of degree at most d and let

S ={fi++ fH foo s freR[x]s, reN}

be the cone of sums of squares (sos-cone). The sos-cone is not a spectrahedron. In
fact, it is closed and convex, but it is not basic closed if d > 1. (In Exercise 1.11 we
identified an affine-linear slice that is not basic closed).

It is however a projected spectrahedron, namely it is the image of Sym; under
the Gram map Sym, — R[x],4, A = m” Am, where m is a vector of polynomials
spanning R[x ], (see Example 1.3(4)).

Exercise 2.1. Represent the football stadium as a projected spectrahedron.

13
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Note first that we speak of projected spectrahedra, because every affine-linear map can
be factored into an injective one followed by a projection. This simple fact translates into
the following statement.

Lemma 2.2. Let P c R" be a projected spectrahedron. Then there exists a linear matrix
polynomial A(x, y) in variables x = (x1,...,%,) and y = (y1,..., yp), for some p, with

P={ueR"|IveRP:A(u,v) > 0}.

Proof. Let P = ¢(S) where S = S(B) is a spectrahedron in R™ and ¢:R™ — R” an affine
linear map. Let I:R™ — R” x R™, v  (¢(v), v) be the Graph map. Since T is injective,
['(S) is a spectrahedron. Namely, T'(S) = S(A) for

B(y) 0 0
A(x,y)=| 0 o(y)-x 0 |,
0 0 o(y)+x

where the entries ¢(y) — x and ¢(y) + x are diagonal blocks in the entries of x. Thus P has
the desired representation. O

A representation of P as in the lemma is also called a lifted linear matrix inequality rep-
resentation, an extended formulation or simply a semidefinite representation. If A(x, y)
is a linear matrix polynomial as above, we will often denote the projection R"*? — R" onto
the first coordinates by 7. Thus the lifted representation will be denoted by

P=mnS(A(x,y))
orjust P = m1,S(A).

While spectrahedra are very special convex sets, it is not known whether projected
spectrahedra have any distinguishing features at all (beyond the obvious).

Helton-Nie Conjecture. Every convex semialgebraic set is a projected spectrahedron.

The conjecture is open in general, but is well motivated by what is known. Helton and
Nie proved a series of results which can be summed up as saying that any convex semi-
algebraic set with sufficiently regular boundary is a projectred spectrahedron. Recently,
Scheiderer has given a proof of the full conjecture for subsets of the plane. Understanding
and proving some of these results will be one of our main goals.

We will start in this lecture by establishing some basic properties of projected spec-
trahedra. In particular, we will show that all the usual operations preserving convexity,
including convex duality, also preserve the property of being a projected spectrahedron.

2.2. CONES AND DUALITY

We will need some basics from convexity concerning cones and duality. Let V be a
finite-dimensional real vector space. By a cone in V, we will always mean a convex cone,
i.e. a non-empty subset K c V such that u + v € K and av € K hold for all #,v € K and
a € R with & > 0. In particular, a cone always contains 0. A cone K is called pointed if
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K n (-K) = {0}. For example, Sym; is a pointed cone in Sym,, while any non-zero linear
subspace of V' is an example of a non-pointed cone. Given a subset S of V, we write

k
cone(S) = {Z aiu;j|ujeS,a;20,ke N}
i-1

for the conic hull of S in V, the smallest cone in V' containing S.

Proposition 2.3. A cone K c V is closed and pointed if and only if there exists a compact
convex subset C of V with 0 ¢ C and K = cone(C).

Proof. See [Barvinok, I1.8]. O

We write V* = Hom(V,R) = {L: V — R linear} for the dual space of V, whose ele-
ments are the linear functionals on V. If ¢: V' — W is a linear map between vector spaces,
the map ¢*: W* — V* given by L ~ L o ¢ is again linear. By definition, it has the property

L(gp(v))=¢*L(v) forallveV.
Exactness of the duality or direct computation also show im(¢*) = {L € V* | Llxer() = 0}.

If C c V is convex, we denote by
C*={LeV*|ForallveC: L(v) > -1}
the convex dual of C. If K c V is a cone, then
K*={LeV*|ForallveC: L(v)>0}.

For given L € K* and u € K, we must have L(au) = aL(u) > -1forall « > 0, so L(u) > 0.
This fact makes the duality theory for cones run somewhat more smoothly than for general
convex sets. Note also that if U ¢ V isalinear subspace, then U* = U* = {L € V*|L|y = 0}.
(Since U* also denotes the dual space of U, the notation U* is preferred.)

The fundamental fact is biduality, a consequence of the separation theorem for closed
convex sets (see [Barvinok] or [Convexity-LN]).

Theorem 2.4 (Biduality). For any convex subset C of V, we have
(C*)* = clos(conv(Cu {0})).

In particular,
(1) if C c V is a closed convex subset containing 0, then (C*)* = C.
(2) if K c V is a closed cone, then (K*)* = K. O

If V is a finite-dimensional euclidean space with scalar product (-, —), we can identify
the dual space V* with V using the map V — V*, u — (u, ). In this setting, the dual of a
cone Kc Vis K* ={ue V|ForallveK: (u,v) >0}, and K is called selfdual if K* = K.
On the space V of matrices, the standard scalar product is given by the trace via
(A, B) = tr(AB")
for A, B € Mat;.
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The following will be essential.

Proposition 2.5. The cone of real positive semidefinite matrices is selfduall.

Proof. Let A,B € Sym; and write A = PPT, B = QQT (see Exercise 1.1). Then (A, B) =
(PPT,QQT) =tr(PPTQQT) = tr(QTPPTQ) = tr(QTP(QTP)T) > 0. (Here, we used that
the trace is invariant under cyclic permutations.) Conversely, let A € Sym, with (A, B) > 0
for all B € Sym,. Then vTAv = tr(vTAv) = tr(AvvT) = (A, vvT) > 0, for all v € RF. O

Exercise 2.2. Let V; and V; be finite-dimensional euclidean spaces with scalar products (-, —); and
(=, —)2- Given a linear map ¢: V] - V5, show that there is a unique linear map ¢*: V, — V; with

{(9(v),wh2 = (v, 9" (w)h
for all v € Vi, w € V5. Verify that this corresponds to the dual map of ¢ under the identification
Vi = V", V2 = V' via the scalar product.

Before returning to projected spectrahedra, we need a few more technical lemmas.

Lemma 2.6. Let K; and K, be conesin V.
(1) (K +Ky)* =K nK;
(2) If K, and K, are closed, then (K; n K;)* = clos(K; + K;).

Proof. (1) is immediate. For (2), we use biduality and (1) to conclude clos(K; + Kj) =
(K; +K;)** = (K" nK3*)* = (K n Ky)* O

Exercise 2.3. Find an example of two closed cones Kj and K; in R3 such that K; + K; is not closed.

Lemma 2.7. Let ] ¢ V and K ¢ W be cones and ¢: V — W a linear map. Then

@) ¢(J)* = (¢*)'(J*);
(2) 97(K)* = ¢*((Knim(9))*).

Proof. (1) This follows directly from the equality ¢*(L(v)) = L(¢(v)) forallv e V.

(2) If L € (Knim(g))* ¢ W*, then ¢*L(v) = L(¢(v)) > 0 for all v € ¢71(K), hence
¢*L € ¢71(K)*. Conversely, since ker(¢) c ¢71(K), any L € ¢~}(K)* must vanish on
ker(¢) and is therefore in the image of ¢*. Thenif L = ¢*L’, we have L'(¢(v)) = L(v) > 0
whenever ¢(v) € K, hence L' € (K nim(¢))*. O

Lemma 2.8. Let K be a closed cone in V and U a linear subspace of V.
(1) Ifint(K) n U # @, then K* 0 U{0}.
(2) If K is pointed and K n U = {0}, then K + U is closed.

Proof. (1) Let m: V — V /U be the canonical projection. If x € int(K) n U, then 0 = 7(x) is
an interior point of 7(K) in V//U. Thus n(K) = V/U and K + U = n7}(%(K)) = V. Thus
K nU'=(K+U)*=V*={0}.

(2) Since the cone K is closed and pointed, there is a compact convex subset S of V
not containing 0 with K = cone(S), by Prop. 2.3. By hypothesis, S nker(7) = @, with 7 as
before, so that 77(S) is again compact and convex with 0 ¢ 77(S). Hence 7(K) = cone(7(S))
is closed, again by Prop. 2.3, and so is K + U = n7}(7(K)). O
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2.3. OPERATIONS ON PROJECTED SPECTRAHEDRA
We are now ready for the main result of this chapter.

Theorem 2.9. Let P,Q c R™, R c R" be projected spectrahedra, and let ¢:R™ — R" be an
affine-linear map. Then the following sets are again projected spectrahedra.

(1) Intersection: Pn Q

(2) Cartesian product: P x R
(3) Minkowski sum: P + Q

(4) Conic hull: cone(P)

(5) Convex hull: conv(P U Q)
(6) Linear image: ¢(P)

(7) Inverse image: 9~'(R)

(8) Convex dual: P* c (R™)*
(9) Closure: clos(P)
(10) Relative interior: relint(P)

Proof. Let P = n,5(A), Q = n,S(B) for linear matrix polynomials A(x, y), B(x, y') in

variables x = (X1,...» Xm), ¥ = (V1o 5 ¥p)s ¥ = (V1o -5 V)
(1) We have Pn Q = n,5(C(x, y, y')) where

N |AGey) 0
C(ﬁ%}@)’)‘l 0 B(x,y’) .
(2) Clearly, P x R" = {(u,u’) €e R™*" | Jv € RP: A(u,v) > 0} is a projected spechtrahe-
dron, and so is R™ x R. Therefore Px R = (PxRR")n(R™ x R) is a projected spectrahedron.
(3) Let 0: R™ x R™ — R™ be the linear map (u,u’) » u +u/,then P+ Q = 6(P x Q).
(4) Since P is already convex, the conic hull is simply given by

cone(P) ={ueR™|IA>0|A'ue P} u{0}.
Write A(x, y) = Ag+A’(x, y) with A’(0,0) = 0. Now A~'u € P for u € R™ and A > 0 means
A(Au, A7) = Ag+A71A (u,v) > 0 for some v € R? which is equivalentto AAg+A’(u,v) >
0. Thus the first guess is to look at {u € R™ | I1 > 03v € RP:AA, + A’(u,v) > 0}. That
almost works, but we run into trouble for A = 0. To fix this, we define

Ci(-xsyass t) = [S. xi])

x; t
so that S(C;) = {(u, v, A, u) | A,y > 0, Ap > u?}. With this we can write
cone(P) = {u eR™|Iv, A, u|AAog+ A'(u,v) 2 0and C;(u, A, u) >0fori=1,..., m}.

To see this, let u € cone(P). If u # 0, this means A~'u € P for some A > 0. Then there exists
p such that Ay > u? forall i, and v such that AAg+A’(u, v) > 0. Conversely, if u is contained
in the right hand side, we have A-'u € P for some A > 0. If A > 0, then u € cone(P), as
desired. If A = 0, then C;(u,v,A, y) > 0 implies u; =0 forall i =1,...,n, so that u = 0.

(5) Let K = cone(Px{1})+cone(Qx{1}) c R™*1. Now K is a projected spectrahedron,
hence so is conv(P U Q) = {u € R™ | (u,1) € K}. (The equality can be checked directly.)

(6) By definition.

(7) The set {(u,v) e R™ x R| ¢(u) = v} is a projected spectrahedron, and ¢~'(R) is the
projection onto the first factor.
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(8) Let ®:R™*? — Sym, be the map (u,v) = A(u,v). Assume first that A(0,0) = 0,
so that @ is linear and S(A) = ®!(Sym, ) is a cone. By Cor. 1.9, we may assume im(®) n
int(Sym}) # @. Using the preceding lemmas and the fact that Sym; is selfdual, we see
that S(A)* = ®7!(Sym;)* = ®*((Sym, nim(®P))*) = ®*(Sym, +im(P)*) is a projected
spectrahedron. Hence so is P* = (7,S(A))* = (n;)'S(A)*. This proves the conic case.

In general, we know that the conic hull P’ = cone(P x {1}) c R™*! is a projected
spectrahedron by (4). Hence so are (P')* = {L’ € (R™*)* | L|p» > 0} and the intersection
Q = (P')*n{L e (R™1)*|L'(0,1) = 1}. Let y: (R™1)* — (R™)* be the restriction
map given by (wL’)(u) = L'(u,0) for L’ € (R™*1)* and u € R™. We claim that P* = yQ.
For given L’ € Q and u € P, we have (yL')(u) = L'(u,0) = L'(u,1) - L'(0,1) > -1,
since (u,1) € P'. Conversely, given L € (R™)* with L|p > -1, put L'(v,a) = L(v) + « for
(v,a) e Rm*. Then L'(Au,A) = A(L(u) +1) >0 forallu € Pand A > 0, so that L’ € Q and
yL' = L, proving the claim.

(9) Follows from (8), since we may assume 0 € P and thus clos(P) = (P*)* by biduality.

(10) Since 7, (relint(S(A))) = relint(7,(S(A))) = relint(P) (see Exercise 2.5 below),
it suffices to show that relint(S) for S = S(A) is a projected spectrahedron. For any fixed
point u € relint(S) and u € R™*?, we have u € relint(S) if and only if there exists ¢ > 0
such that u + e(u —u,) €S, i.e. A(u+e(u—ug)) > 0 (Exercise 2.4). Now we just write out
A(x) = Ay + A’(x) with A’(0) = 0, put § = -, compute

1te
SA(u+e(u—uy))=0A0+A (u)—deA'(uy)
and conclude that
relint(S) = {u e R™*? |38 € (0,1): §Ag+A’(u) + (8 —1)A (o) > 0}.

Combining this with a representation of the open unit interval

A1 A1
(0,1):{8€R‘3/\. [1 6]20and[1 1—6]20}’

we obtain a representation of relint(S) as a projected spectrahedron. O

Exercise 2.4. Let C be a convex subset of a real vector space V and let U be the affine hull of C.
Recall that the relative interior of C is the set

relint(C) = {u € C|3e > 0: B;(u)nU c C}.
(a) For any fixed point u € relint(C), show
relint(C) = {u € V |3e> 0: u+e(u—ug) € C}.
(b) Show that relint(C) is convex.
Exercise 2.5. Let C c R™ be a convex set and ¢: R™ — R" a linear map. Show that
¢(relint(C)) = relint(¢(C)).

Exercise 2.6. To what extent do the results in Thm. 2.9 also hold for spectrahedra? Ie. if P,Q, R
are spectrahedra, which of (1)-(10) are again spectrahedra?

Note that the proof of Theorem 2.9 is completely constructive, so given concrete rep-
resentations of P, Q, R as projected spectrahedra, the steps in the proof can be turned into
concrete representations of the resulting convex sets.



2.4. SEMIDEFINITE PROGRAMMING 19

We have already seen that the cone X,; of sums of squares of polynomials of degree
at most d in R[x],4 is a projected spectrahedron. By Thm. 2.9(8), its dual %3, is also a
projected spectrahedron. But in fact, more is true.

Proposition 2.10. The dual cone X, is a spectrahedron.
Proof. By definition, we have

250 ={L e R[x];; | Forall f e R[x]s:L(f?) > 0}.
Any linear functional L € R[x],; defines a symmetric bilinear form

b { Rlx]axR[x]s - R
- (&h) = L(gh)

and from this we obtain a linear map

o {R[ﬁz]éd ” Sym(gi[x]d) .

Now X, is the spectrahedron ®~!(Sym™ R[x]4). O

Using Thm. 2.9(8), this also shows again that X, is a projected spectrahedron.

2.4. SEMIDEFINITE PROGRAMMING

A semidefinite programme is a convex optimisation problem of a particular kind. In
the optimisation literature, such a programme is usually written in the following form:

Find inf(B, X)
(P) subjectto (A;,X)=c;fori=1,...,n { inthe variable X € Sym,,
X220
where Ay,...,A,,B € Sym, and ¢ € R" are given. Thus the problem is to compute the

minimum (or infimum) of the linear function X ~ (B, X) on the space of symmetric
matrices under the constraint that X should be contained in the spectrahedron defined by
the linear equations (A;, X) = ¢;.

Starting in the 1990s, efficient algorithms for solving semidefinite programmes have
been developed, based on so-called interior-point methods. This is the main reason for
the current interest in spectrahedra, but is completely outside the scope of this course. (An
overview is given in [Convexity-LN], more details for example in [Forst-Hoffmann]).

However, we want to make a few observations that also help to motivate later geometric
results. First, duality plays an extremely important role. To the semidefinite programme
(P) above (often called the primal programme), there is a corresponding dual programme

(D)

The relation between (P) and (D) is a little mystifying at first. In particular, it is not clear
how it translates into the cone duality we were looking at above (see Exercise 2.7).

Find sup(c, y)

in th iabl R”.
subjectto S, yid; > B } in the variable y ¢

Second, suppose we are given a general convex programming problem of the form

Find inf L(u)

in th iabl R,
subjectto € C } in the variable u €
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where C is some convex subset of R” and L a linear functional. If we wish to apply semi-
definite programming methods, it makes little difference whether we can represent C as
a spectrahedron C = S(A) or only as a projected spectrahedron C = 7,S(A(x,y)). In
either case, we just solve the programme for the spectrahedron S(A). What matters much
more is how and whether we can actually find the representing linear matrix polynomial A
and whether the size of the matrices and the number of extra variables y are not too large.
So we should always keep the following in mind:

For optimisation, lifted representations are no worse than non-lifted representations, even
though the geometry is very different.

Finally, we want to comment that the usefulness of duality in solving semidefinite pro-

grammes stems from optimality results like the following.

Theorem 2.11. Consider the semidefinite programmes (P) and (D) above. Assume that the
matrices Ay, . .., A, arelinearly independent and that both (P) and (D) possess strictly feasible
points. Then X' is an optimal solution of (P) and y' an optimal solution of (D) if and only if

(X B-Y yiA;) =0
i=1
and there is no duality gap, which means that
inf(B, X') = sup(c, y').
Proof. See [Barvinok, IV.7, Thm. 7.2 and Problem 2], or [Convexity-LN, $11,12]. O

Here, a strictly feasible point of (P) is a positive definite matrix X satisfying the con-
straints in (P) and similarly for (D). This theorem provides only one example of various
assumptions one can make on the dual pair (P), (D) implying that there is no duality gap.
The condition here is usually called the interior point or Karush-Kuhn-Tucker condition.

Exercise 2.7. Let K; c V; and K, c V, be cones in finite-dimensional euclidean spaces V; and V,
with scalar products (-, —); and (-, —),. A linear map ¢: V; - V; and elements b € V; and ¢ € V;
define the following dual pair of optimisation problems

Find inf(b, x); Find sup(c, ¥)2
subjectto ¢(x)-ceK, pinxeV and subjectto ¢*(y)-beK] ;inye V.
x ek yeKj

Verify that the duality of semidefinite programming is a special case of this general setup.
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3. POSITIVE POLYNOMIALS AND THE LASSERRE RELAXATION

The Lasserre relaxation in an approximation of the convex hull of a (compact) basic
closed semialgebraic set through a sequence of projected spectrahedra. In this chapter, we
review some background results on positive polynomials and describe the general setup.

3.1. POSITIVE POLYNOMIALS AND QUADRATIC MODULES

Let S c R” be a semialgebraic set and let
P(S) = {f eR[x]|Forallue$: f(u)>0}

be the set of non-negative polynomials on S. Understanding the structure of P(S) is a
central goal of real algebraic geometry, for which we introduce some standard notions.
A quadratic module in R[x] (or indeed in any commutative ring with 1) is a subset
M c R[x] such that
(1) 1e M,
(2) M+Mc M,
(3) f2M c M forall f € R[x].
A quadratic module is called a preordering if
(4) M-Mc M.

It is clear that P(S) above is a preordering. The sos-cone X is the smallest preordering,
contained in all quadratic modules in R[x]. More generally, for a finite set of polynomials

g: {gl)"-)gr} c R[X], the set
M(g) = {50+51g1+-"+5rg,|50,...,sr € Z,}

is clearly the smallest quadratic module containing g, called the quadratic module gener-
ated by g. The preordering generated by g can be written out as

o= 5 sat-atnes)
ie{0,1}"

Notation 3.1. We will always implicitly define g, = 1, so that an element of M(g) can be
written in the form Y}, s;g; with s; € X.

Now if § is the basic closed set S(g), then it is clear from the definition that M(g) and
P(g) are contained in P(S). Much research in real algebraic geometry revolves around the
question of how close these inclusions are to equality.

21
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Example 3.2.
(1) Every non-negative polynomial in one variable is a sum of (two) squares, so for
S =R, wehave P(S) = . This becomes false in higher dimensions, i.e. © ¢ P(R")
for n > 2, by a classical result of Hilbert.
(2) Every f e R[x] with f|ro) > 0is contained in P(x(1-x)), i.e. has a representation

f=s+t-x(1-x)
for s, t € X. (For general subsets of the line, see [Marshall, §2.7].)
Exercise 3.1. Show that P(R) = X and P([0,1]) = M(x(1- x)) as claimed above.

An important general result, which triggered a lot of further research on positive poly-
nomials and sums of squares, is the following, often called Schmiidgen’s Positivstellensatz.

Theorem 3.3 (Schmiidgen 1991). If S(g) is compact, the preordering P(g) contains all poly-
nomials f € R[x] with f(u) >0 for all u € S(g).

Proof. See [Marshall, Cor. 6.1.2]. O

Definition 3.4. A quadratic module M in R[x] is called archimedean, if it contains a poly-
nomial 4 such that S(h) is compact. If M( g) is archimedean, we also say that g provides
an archimedean description of the compact set S(g).

Theorem 3.5 (Putinar 1993). If the quadratic module M ( g) is archimedean, then it contains
all polynomials f € R[x] with f(u) > 0 for all u € 5(g).

Proof. See [Marshall, Thm. 5.6.1 and Thm. 7.1.1]. O

Corollary 3.6. A finitely generated quadratic module M(g) in R[x] is archimedean if and
only if there exists a positive integer N such that N — Y."_, x? is contained in M. O

Remark 3.7. Given Putinar’s theorem, Schmiidgen’s theorem can be rephrased as saying
that P(g) is archimedean whenever S(g) is compact. One can find examples of such g for
which M(g) is not archimedean, which shows that Schmiidgen’s theorem does not extend
to quadratic modules without additional assumptions.

For practical purposes, if S is compact, the assumption that M should be archimedean
is often considered quite mild, since one can just add the polynomial N — }>7_; x? to the
description of S if S ¢ By(0). Since the representation of a positive polynomial in the
quadratic module is simpler than in the preordering (r + 1 summands instead of 27), the
use of quadratic modules is often preferred.

On the other hand, we have the following negative result.

Theorem 3.8 (Scheiderer). If S is a semialgebraic set of dimension at least 3, then P(S) is
not a finitely generated quadratic module. In other words, if S = S(g) has dimension at least
3, there exists f € P(S) with f ¢ M(g).

Proof. See [Marshall, Prop. 2.6.2]. O

Of course, if S is compact, then any f € P(S) \ P(g) must necessarily have a zero
somewhere in S, by Schmiigen’s theorem.

Note that the cone P(S) lives in the infinite-dimensional vector space R[x]. What if
instead we consider the finite-dimensional slices P(S); = P(S) nR[x]4?
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Proposition 3.9. The cone P(S), is closed and semialgebraic in R[x],.

Proof. For each point u € R", let L, € R[x]} be the linear functional f + f(u). Then we
can write
P(S)a =L, ([0,0)).
ues
Since the functionals L, are continuous, this expresses P(S), as an intersection of closed
sets, hence it is closed. Furthermore the projection onto the first factor of the set

{(fru, f(w)) | f eR[x]g,u e R"} n (R[x]a x S x (-00,0)) c R[x]y x R" xR
is semialgebraic and is the complement of P(S),. Hence P(S), is semialgebraic. O

While P(S), is convex, closed and semialgebraic, it is usually not a spectrahedron,
since (like 2,,) it is not basic closed. So how about finitely-generated quadratic modules
instead? Let M = M(g, ..., g ) and write

M;=Mn R[X]d.

Here, there is a crucial difference to the sos-cone. Namely, compare M, with the cone

M,[d] = {Zsig,- | deg(s;g;) <dforalli=0,... ,r},

i=0
in R[x],, which we call the truncation of degree d of M (with respect to g). In the case of
the sos-cone, there is no difference between 2,4 and £[2d], because leading terms in a sum
of squares cannot cancel. But for general quadratic modules, it is not true that My[d] = M,
or even that M, is contained in M,[e] for some e > d. -

Exercise 3.2. Verify that £,; = £[2d] for all d.

Example 3.10. Let g = (x(1-x))3>and M = M(g) c R[x] in the polynomial ring in one
variable, describing the closed interval S(M) = [0,1]. It is not hard to check that x ¢ M.
For suppose we had x = s + tg with s, t € ¥, then since x3|g, we could conclude x|s. Since s
is a sum of squares, this really implies x2|s (why?). So the right hand side would be divisible
by x2, a contradiction.

On the other hand, M is a preordering (since there is only one generator) and S(M) =
[0,1] is compact, so M contains all strictly positive polynomials by Schmiidgen’s theorem.
In particular, x + € € M holds for all ¢ > 0. Now if we had x + ¢ € M(e) for all ¢ > 0 and
fixed e > 0, we could write

x+te=s.+1t:.g

with deg(s.),deg(t.) +3 < e. We could then (carefully!) take limits as ¢ -~ 0 and conclude
x € M, a contradiction. That last argument is made precise in the following proposition.

Proposition 3.11. If M(g)n(-M(g)) = {0}, the cone My[d] is closed in R[x]4, for all d > 0.
Proof. See [Marshall, Lemma 4.1.4]. O

Definition 3.12. Let M = M(g) be a finitely generated quadratic module. For each integer
d, we say that M is d-stable with respect to g if there exists an integer e > 0 such that
M, c Mg[e]. We say that M is stable if it is d-stable for all degrees d > 0.
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Note that if My c M[e], then My = My[e] nR[x]4. It is also not hard to show that
whether M is stable does not depend on the choice of generators g. However, the notion
of d-stability for fixed d does depend on the choice of generators.

Exercise 3.3. Show that stability is independent of the choice of generators.

By definition, a quadratic module M ( g) is stable if it admits degree bounds for repre-
sentations of f € P(g) in M that depend only on the degree of f. In compact situations,
stability is only possible in exceptional situations of small dimension:

Exercise 3.4. Use Thm. 3.3, Thm. 3.8 and Prop. 3.11 to show: If S(g) is compact of dimension at
least 3, then P(g) is not stable. (Neither is M(g), if the description is archimedean.) This is also
true in dimension 2, by a (much deeper) result of Scheiderer.

3.2. THE LASSERRE RELAXATION

The basic building blocks for the Lasserre relaxation will be the dual cones M,[d]*,
which are spectrahedra by the following direct generalisation of Prop. 2.10. -

Proposition 3.13. Let M = M(g) be a finitely generated quadratic module in R[x]. For all
d > 0, the dual cone My[d]* is a spectrahedron. Hence M[d] is a projected spectrahedron.

Proof. Let d > 0 and consider the finite-dimensional vector space

V ={(po>....pr) e R[x]"" | 2deg(p;) + deg(gi) < d}.

Just as in the proof of 2.10, we associate with L € R[x]% the bilinear form

b‘{ VxV ~ R
1 (o or ) (Pls - D)) = i L(pipigi)

and obtain a linear map

| R[]y - Sym(V)
@.{ S YbL

with M, [d]* = @!(Sym™(V')). To see this, let L € M,[d]*, then by (p, p) = Xio pigi > 0.
Conversely, if by is positive semidefinite and p € R[x] with 2deg(p) + deg(g;) < d, then
L(p%gi) = br((0,...,p,...,0),(0,...,p,...,0)) > 0, hence L € Mg[d]*. O

Proposition 3.14. Let S = S( g) be a basic closed subset of R" and write
M,[d] = {LeMg[d]"|L(1) =1}.
Consider the projection
- R[x]5 - R”
L (L(xl),...,L(xn)).
Then conv(S) c n(M,[d]").
Proof. Foru € S, let
L { Rlx]la - R
LS e S

Then u = n(L,), and since the polynomials in M,[d] are non-negative on S, we have

L, € My[d]* and L(1) = 1. This implies S ¢ 7(M,[d]’), so also conv(S) c m(M,[d]"). T
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Definition 3.15. With notations as above, we define:

(1) For d > 0, the projected spectrahedron
Lg[d] = ”(Mg[d]l)

in R is called the Lasserre relaxation of degree d of conv(S) with respect to g.
(2) The Lasserre relaxation is exact in degree d if

Lg[d] = conv(S),

or exact up to closure if these two sets have the same closure.
(3) The sequence of Lasserre relaxations (L,[d]) e converges to a subset C c R if

clos(C) = clos( N Eg[d]).

Note that the chain M,[1] c M,[2] c --- is ascending by definition, therefore the chains
M,[1]" > Mg[2])' 5 -+ and L,[1] 5 £,[2] 5 -~ are descending.

Our first goal is to characterise exactness in terms of stablity. We need the following
version of the separation theorem for closed convex sets.

Proposition 3.16. Let C c R" be closed and convex. Given a point u € R", u ¢ C, there exists
a polynomial € € R[ x| with deg(€) = 1 such that

tlc>0 and 2(u) <0.

Proof. See [Barvinok, Thm. III.1.3] or [Convexity-LN, Satz 5.4]. O
Exercise 3.5. Give a direct proof of Prop. 3.16.
Proposition 3.17. Let g c R[x] be finite and let S = S(g). For d > 0, consider the statements:

(1) The Lasserre ;elaxation is exact up to closure ;1 degree d, i.e.

conv($) c Ly[d] c clos(conv(S)).

(2) Every € € R[x] with deg(€) =1and £|s > 0 is contained in M,[d].

Then (2) implies (1). The converse also holds if S has non-empty interior.

Proof. (1) = (2). Let £ € R[x] be as in (2), say € = 3.1, a;x; + b. Since S has non-empty
interior, we must have M(g) n (-M(g)) = {0}. By Prop. 3.11, this implies that M,[d] is
closed and hence My[d] = (Mg[d]*)* by biduality (Thm. 2.4). So if £ is not contained in
M,[d], there exists L € M,[d]* with L(£) < 0. We claim that there also exists such L with
L(1) =L If L(1) # 0, then L(1) > 0 since 1 € M,[d], so we can just rescale. If L(1) = 0, take
any L, € M,[d]* with L,(1) =1 (e.g. a point evaluation) and let L’ = aL + L,. Then L’ has
the desired property when « is sufficiently large.

It follows that u = (L(xl), ey L(xn)) isa pointin L,[d] c clos(S). On the other hand,

o(u) = (L), L(x)) = éaiL(xi) ‘b= éaiL(x,-) +L(b)
=L(¢) <0,

a contradiction. (Note that we needed L(1) =1 to have L(b) = b).
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(2) = (1). Let C = clos(conv(S)). Suppose that (1) does not hold, then, since
conv(S) c Lg[d] by Prop. 3.14, there must exist u € L,[d] \ C. Hence, by Prop. 3.16,
there is a polynomial £ € R[x], with €|s > 0 and €(u) < 0. Since u € L,[d], there exists
L e M[d] such that u = (L(x1),...,L(x,)). Now since deg(¢) = 1and L(1) = 1, we have

L(€) = €(L(x1),...,L(x,)) = L(u) <0,
which implies € ¢ M,[d]. O

Corollary 3.18. Let S = S(g) be an archimedean description of a compact set S with non-
empty interior. The Lasserre relaxation of conv(S) with respect to g becomes exact if and
only if the quadratic module M(g) is 1-stable.

Proof. Let M = M(g). By Putinar’s theorem, M, contains all £ € R[x]; that are strictly
positive on S. Since M(g) is 1-stable, M; = M,[d] nR[x], for some d. Hence M, is closed
by Prop. 3.1, since S has non-empty interior. So M,[d] contains all £ € R[x]; that are
non-negative on S and conv(S) = £,[d] by Prop. 3.17. (Note that conv(S) is closed.) [

Theorem 3.19. Let S = S(g) be an archimedean description of a compact set S. Then the
Lasserre relaxations of S with respect to g converge to conv(S).

Proof. We will show that conv(S) = Nys9 Lg[d]. The inclusion from left to right is clear by
Prop. 3.14. Conversely, if u ¢ conv(S), then there exists £ € R[x]; with €|s > 0 and £(u) < 0
by Prop. 3.16. By Putinar’s theorem 3.5, we have £ € M and hence ¢ € M,[d] for some d > 0.
This implies u ¢ L,[d], by the same argument as before. - O

Example 3.20. To illustrate the Lasserre relaxation method, we discuss an example in de-
tail. Let g1 = y-x3, &, =%, g3 =1-x, g4 = ¥, g5 = 1 — y in variables x, y. Put M = M(g)
and § = §(g). Clearly, S is already convex, and we claim that S = £,[3]. We use Prop. 3.17
and show that M,[3] contains all £ € R[x]; with £|s > 0. -

Let £ € R[x]; be such a polynomial. If £(u) > 0
¥ for all u € S, then € will assume its mininum ¢
/ in some point of S, since S is compact. Since
e € M,[3], it suffices to show m — & € M,[3].

Also, if € is already non-negative on the box

[0,1] x [0,1], we can use Farkass lemma (a
standard convexity result; see for example
[Rockafellar, Cor. 22.3.1] or [Convexity-LN,
Exercise 10.3]) and conclude that ¢ is contained
in cone(x,1-x,y,1-y) c M,[3].

Thus we are left with the case that ¢ describes a tangent to the cubic curve y = x3

for x € (0,1). The tangent at a point (a, a®) with a € (0,1) is given by the polynomial
€,(x,y) = y—3ax + 2a3. Direct computation now shows

0,=y-3a’x+2a’=x>-3a’x+2a’ + (y - x°)
=(x- a)zx +2a(x - a)2 + ()’—x3)
2
= Za(x - a) +g+(x- a)2g2 € Mg[3]'

Exercise 3.6. Compute the first and second Lasserre relaxation in the above example.
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3.3. MODEL-THEORETIC CHARACTERISATION OF STABILTY

In this section, we will describe some abstract tools that can be used to prove the exis-
tence of degree bounds for sums of squares and quadratic modules. We will assume some
familiarity with the theory of real-closed fields, in particular the Tarski principle, which
says that a first-order formula in the language of ordered fields (or rings) holds in one real-
closed field, say R, if and only if it holds in every real-closed field. In fact, we are only
interested in extension fields of R and the corresponding extensions of semialgebraic sets:
If S is a semialgebraic subset of R” and R is any real-closed extension field of R, we write
S(R) for the base extension of S to R, which is just the subset of R" described by the same
formula' as S. Now an important consequence of the Tarski principle is that S(R) is non-
empty if and only if S is non-empty. So unlike the complex numbers or the algebraic field
extensions of Q studied in number theory, the purpose of real closed extension fields of R is
not to add solutions to polynomial systems. The point is rather that solvability remains the
same, even though the underlying field may be radically different from R in other respects.

To understand this, recall that in a first-order formula we cannot quantify over the nat-
ural numbers or over subsets. This has two important consequences: (1) The archimedean
axiom Va € R3n € N:|a| < n is not a first order formula, and indeed the interesting real
closed extension fields of R are non-archimedean, in other words, they contain infinitesi-
mal elements. (2) A statement of the form “There exists a polynomial such that...” cannot
be encoded in a first-order formula, but a statement of the form “There exists a polynomial
of degree d such that...”, for some fixed d, can be encoded. This provides the connection
to the degree bounds in quadratic modules that we want to study.

Now, in precise technical terms, here is the statement we will need.

Theorem 3.21 (X;-Saturation). There exists a real-closed extension field R* of R with the
following property: Every countable semialgebraic cover of a semialgebraic subset of (R*)"
has a finite subcover. More precisely, any ultrapower R* = RN/ F, where F is a non-principal
ultrafilter on N, has this property.

Proof. See [Prestel-Delzell, Thm. 2.2.11]. O

Corollary 3.22. There exists a real-closed extension field R* of R such that the following
holds. Any countable ascending chain

SICSZCS:),C"‘

of semialgebraic subsets of R" either becomes stationary or else the union Uy Si(R*) c
(R*)" is not semialgebraic over R*. O

The ultrapower R* can be written down more or less explicitly assuming that a non-
principal ultrafilter 7 on N is given. (But it lies in the nature of non-principal ultrafilters
that they exist only by virtue of the axiom of choice, so one cannot actually write one down.)
To relieve the somewhat ethereal nature of the argument and to help understand what is
going on here, we look at a more concrete example.

'A general semialgebraic set S in R" is of the form S = U} {u € R" | g;;j(u) > 0,h;;(u) = 0 forall j =
1,...,1} for some finite family of polynomials g;;, h;; € R[x]. Then the base extension is simply the semi-
algebraic set S(R) = UY_,{u € R" | g;;(u) > 0,h;;(u) = 0forall j=1,...,1}. Since R is real closed, this is
independent of the description by the Tarski principle.
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Example 3.23. Let S; = [-i,i] c R and consider the ascending chain of closed intervals
S1 ¢ S, c -~ in R. Of course, this chain is not stationary, yet Uy S; = R is semialgebraic.
However, order the rational function field R(t) by making ¢ infinitely large, i.e. larger than
any constant in R. (It is not hard to show that R(¢) has a unique such order.) Then

USi(R(2)) = {f eR(¢) | In e N: |f| < n}
is the convex hull of Z in R(t). This is not a semialgebraic subset of R(t).
The non-archimedean field R(¢) is tiny compared to the ultrapower R*, but this ex-
ample captures the nature of the compactness of R* in the above theorem.

Exercise 3.7. Why is conv(Z) c R(t) not semialgebraic?

We now present an application to our problem of stability of quadratic modules. Given
a finitely generated quadratic module M = M(g) in R[x] and a real-closed extension field
R of R, consider the quadratic module Mg(g) generated by g in R[x]. It turns out that M
is stable if and only if My(g) is the base extension of M to R for all R/R.

Proposition 3.24. Let M = M(g) in R[x] be a finitely-generated quadratic module. The
following are equivalent:

(1) M is stable with respect to g.

(2) For all real-closed extension fields R of R, (Mg(g))a is semialgebraic for all d > 0.

(3) The cone My is semialgebraic for all d > 0, and for all real-closed extension fields R
of R, Mr(g)a coincides with the base extension M4(R) of My to R.

Proof. (1) == (3) Clearly, M,[d] is semialgebraic for every d > 0 (it is even a projected
spectrahedron). Then if M is stable, we have My ¢ M ¢[e] for some e > 0, so that M, =
M,[e] n R[x], is semialgebraic. Now consider the base-extension M,(R) and the set
M(R) = Ugey M4(R). Since addition (resp. multiplication) in R[x] is given by semial-
gebraic maps R[x]; x R[x]; — R[x]4 (resp. R[x]s x R[x]; — R[x],4) and the corre-
sponding maps in R[x] are obtained by base extension, M(R) is a quadratic module in
R[x] containing g, hence Mr(g) ¢ M(R). On the other hand, since M is stable we have
M(R)a = Ma(R) = (Mg[e] nR[x]4)(R) = Mr(g)[e] N R[x]a ¢ Mr(g)a- (Details are left
as an exercise.)

(3) = (2) is clear.

(2) = (1) Ford,e > 0,let S, = My[e] nR[x]4. For every real-closed extension field
R/R, the base extension S,(R) is equal to Mg(g)[e] n R[x]s and U,so Se(R) = Mg(g)a>
which is semialgebraic by hypothesis. Hence Thm. 3.21 implies that the ascending chain
Sy ¢ S, c -+ in R[x]; must become stationary, i.e. there is some e’ with S(e) = S(e’) for all
e > e’ hence My = U, Se = Ser = My[e’] nR[x]4. So M is stable. O

Exercise 3.8. Fill in the details in the proof of (1) == (3) above.
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4. POSITIVE MATRIX POLYNOMIALS

4.1. OVERVIEW

In the previous chapter, we showed that proving the exactness of the Lasserre relaxation
for the convex hull of a compact basic closed semialgebraic set is equivalent to establish-
ing stability in degree 1 for the corresponding quadratic module. In other words, we need
uniform degree bounds for representations of supporting hyperplanes obtained from Puti-
nar’s (or Schmiidgen’s) theorem. On the other hand, we have already seen, in Example 3.10
and much more generally in Exercise 3.4, that such degree bounds cannot exist in great
generality, i.e. for polynomials of arbitrary degree in arbitrary dimensions.

However, there do in fact exist non-uniform degree bounds, i.e. depending on other
data than just the degree of the represented polynomial.

Theorem 4.1 (Putinar’s theorem with degree bounds [NSo7]).
Let S = S(g) be an archimedean description of a compact set. Given § > 0, every polynomial
f € R[x] satisfying f(u) > 8 for all u € S admits a representation

f=so+s18+ -+ &S

in the quadratic module M(g) where sy, ..., s, € T have degrees bounded by

deg(s;) < D(g,deg(f), | f],9)
fori=0,...,r (where gy =1). O

Here, | f| = max{f(u) | u € S} is the maximum norm of f on the compact set S, and
the notation in the theorem means that the degree bound is provided by a fixed function
D of the given arguments, i.e. a function D: (X x NxR, xR,) — N, where X is the set of
finite subsets of R[x]. Nie and Schweighofer have also determined the complexity of the
function D (c.f. Remark 4.3 below).

This result by itself will not help us much: To prove exactness of the Lasserre relaxation,
we would need to show that the degree bound in the theorem can be chosen independently
of § and | f| if f has degree 1. The insight of Helton and Nie was that this could be proved
under suitable regularity assumptions with the use of Lagrange functions. Their approach,
to be discussed in the next chapter, requires a version of Putinar’s theorem for (non-linear)
matrix polynomials and with degree bounds.

By a sum of squares in the non-commutative ring Sym, R[x | we mean a matrix poly-
nomial of the form GT G where G is a matrix polynomial of size r x k for some r > 1. Clearly,
if a matrix polynomial is a sum of squares, it is positive semidefinite in every point of R¥.
Some exercises to warm up with the notion.

29
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Exercise 4.1. Show that F € Sym, R[x] is a sum of squares if and only if there exist k x k-matrices
Py,..., P e Mat, R[x] such that F = P'P, + --- + PIP,.

Exercise 4.2. Let F € Sym; R[x] be a matrix polynomial. Show that F is a sum of squares in
Sym, R[x] if and only if the polynomial y’ Fy in variables (x,y) = (X1,...,%u Y1,-.., yx) is a
sum of squares in R[x, y].

Exercise 4.3. Show that if F € Sym; R[x] is a sum of squares, then det(F) and hence all diagonal
minors of F are sums of squares in R[x]. What about the converse?

Exercise 4.4. Show that every globally positive semidefinite matrix polynomial in one variable is a
sum of squares. (When you get stuck, go and find [CLR80o, Thm. 7.1].)

Putinar’s theorem generalises to matrix polynomials as follows.

Theorem 4.2 (Putinar’s theorem for matrix polynomials with degree bounds [HN10]).
Let S = S(g) be an archimedean description of a compact set. Given § > 0, every matrix
polynomial F € Sym, R[x] satisfying F(u) > 8 for all u € S admits a representation

F=So+gaS ++gSn
where Sy, ..., S, € Sym, R[x] are sums of squares with degrees bounded by
deg(S;) < D(g. k. deg(F), |F|,6)
fori=0,...,r.
Remark 4.3. More precisely, the degree bound can be chosen to be of the form

D(g, k, deg(F), |l 6) - c(kz deg<F>2@) ,

where ¢ > 0 depends only g = (g, ..., &)

The next question is how we should prove such a thing. There are at least two different
approaches, but none is entirely simple or untechnical. Since the result is central to the
approach of Helton and Nie, we want to give at least an idea. Below, we will first give a rel-
atively quick proof of the matrix version of Putinar’s theorem without degree bounds, fol-
lowed by a rough sketch of a general technique for proving the existence of degree bounds.

The recent diploma theses of Randolf Thrig [Th11] and Roxana Hef8 [He13] give very
good accounts of these results, including all the details we will have to omit.

4.2. POSITIVITY IN AFFINE ALGEBRAS

We briefly recall the correspondence between affine R-varieties, (real) radical ideals
and affine R-algebras: For any ideal I in R[x], the set V' = V¢ (I) of common complex
zeros of elements in I is the affine R-variety defined by I. We denote by V(R) = Vg(I) its
real points. Conversely, for any subset S c R”, we write Z(S) for the vanishing ideal of S
in R[x]. The Nullstellensatz says that Z(Vc(I)) = VI = {f e R[x]| 3k > 0: f* € I} is the
radical of I. The coordinate ring of the affine variety V = V(1) is the residue class ring
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The real analogue is the real Nullstellensatz, which says that Z(Vg(I)) = VT is the real
radical, defined by /T = {f € R[x]| 3k > 0,5 € Z: f2 + 5 € I}. It is easy to see that a
vanishing ideal Z(S) for S c R” is real radical, i.e. {/Z(S) = Z(S). A standard result in
real algebraic geometry says that the radical ideal \/T is real radical if and only if V(R) is
Zariski-dense in V.

The algebra R[ V] is a reduced, finitely generated R-algebra. Conversely, given any such
algebra A4, fix finitely many generators y, ..., y, of A and consider the surjective ring ho-
momorphism ¢:R[x] - A, ¢(x;) = y;. Since A is reduced, I = ker(¢) is a radical ideal
in R[x] and A is isomorphic to the coordinate ring of the affine R-variety Vc(I). Further-
more, this can be made independent of the choice of generators y;, ..., y, by indentifying
points in V¢ (I) with R-algebra homomorphisms A — C. In this way, the set Homg (A, C)
can be regarded as the abstract variety corresponding to .4, with real points Homg (A, R).

Given an affine R-variety V and elements g, ..., g, € R[ V], we have a corresponding
semialgebraic subset Sy (g,...,¢) = {u e V(R) | @(u) >0,...,¢(u) > 0}. Just as in
the polynomial ring, we call a quadratic module M c R[V ] archimedean if it contains an
element g such that Sy (g) is compact. We need the following generalisation of Putinar’s
theorem (Thm. 3.5) to this setup. (Incidentally, the proof involves Schmiidgen’s theorem).

Corollary 4.4 (Putinar’s Theorem for affine algebras). Let V be an affine R-variety with co-
ordinate ringR[ V'] and let M c R[ V'] be a finitely generated archimedean quadratic module.
Then M contains all elements f € R[ V] such that f(u) > 0 for all u € Sy (M).

Proof. We can fix an embedding of V into affine space and just interpret Putinar’s theorem
modulo the vanishing ideal: Let yi, ..., y, be generators of R[ V'] and let I c R[x] be the
kernel of ¢: x; — y;, so that V(R) is identified with the algebraic subset Vg (I) of R". Let
g---> & € R[x] be such that ¢(g1),...,9(g,) generate M in R[V] and let hy, ..., h, €
R[x] be generators of the ideal I. Let My = ¢! (M) = M + I, then

Mo :M(gl)---sgﬁhl’---)hsa_hla--->_hs)-

This follows from the observation that any element of the form ph; € I, for p € R[x], can

be rewritten as ph; = (pTH)2 h; + (pT_l)2 (=h;).
We need to show that M is archimedean. Since M is archimedean, there is g € R[x]

such that Sy (¢(g)) c V(R) is compact. By Schmiidgen’s theorem 3.3, the preordering
P:P(g,hl,...,hs,—hl,...,hs)

contains all polynomials that are strictly positive on the compact set S(g) n Vr(I). Hence
there is ¢’ € P such that S(g’) c R” is compact. On the other hand, we have P(¢(g)) =
M(¢(g)) c M and thus P = ¢71(P(¢(g))) c ¢7'(M) = My, so M, is archimedean.

Now if f € R[x] satisfies (f)(u) > 0 for all u € Sy (M), this implies f(u) > 0 for all
u € S(M,) and therefore f € My, by Putinar’s theorem 3.5. Hence ¢(f) € (M) =M. O

4.3. PUTINAR'S THEOREM FOR MATRIX POLYNOMIALS

To prove Putinar’s theorem for matrix polynomials, we will use an idea of Klep and
Schweighofer, as presented in [Th11] and [He13]. Let F € Sym, R[x] be a matrix polynomial
and let Ar be the commutative R[x]-subalgebra of Sym, R[x ] generated by F. Explicitly,
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Apr consists of all expressions of the form p(x, F) where p € R[x, t] is a polynomial in x
and one additional variable .

Lemma 4.5. Let F € Sym, R[x] be a matrix polynomial and let

.{]R[x,t] — Ap
1 p(xt) » p(xF) -

(1) The minimal polynomial ug of F in the polynomial ring R(x)[t] in one variable is
contained in R x, t] and generates the ideal ker(¢).

(2) Thevariety Vg(ker ¢) corresponding to Ay is the hypersurface consisting of all points
(u, 1) € R* x R such that A is an eigenvalue of F(u).

Proof. (1) Recall that up is the unique monic polynomial in R(x)[¢] of minimal degree in
t such that ur(F) = 0. By the Cayley-Hamilton theorem, it is a factor of the characteristic
polynomial yr(t) = det(tIy—F(x,t)),say xr = pr-+ with r € R(x)[¢] monic. Let ¢ € R[x]
be the least common multiple of the denominators of the (maximally reduced) coefficients
of ur with respect to t, so that cur € R[x][¢] is primitive. By Gauss’s lemma (in the form
of 4.6 below), we have 17 € R[x][¢]. Since r is monic, this implies 1 € R[x], hence ¢ € R*
and pr € R[x][t]. It now follows from Lemma 4.6 that yr divides any element of ker(¢)
in R[x, t] and is therefore a generator. (2) follows from (1), since Ve (4r) = Vr(xr). O

Lemma 4.6. Let R be a factorial ring with field of fractions K and let p, q € R[t] be polyno-
mials with q primitive. If p = qr for some r € K[t], then r € R[t].

Proof. This is a consequence of Gauss’s lemma from algebra (see [Lang, Cor. IV.2.2]). [

Theorem 4.7 (Putinar’s theorem for matrix polynomials). Let S = S(g) be an archimedean
description of a compact set. Every matrix polynomial F € Sym, R[x] such that F(u) is
positive definite for all u € S admits a representation

F = SO +g151 + .- +g,Sr
where Sy, ..., S, € Sym, are sums of squares of matrix polynomials in Ap c Sym, R[x].

Proof. Let Ap be the subalgebra of Sym, R[x] generated by F and let ¢:R[x,t] - A
be as above with corresponding R-variety V = V(ker ¢). To apply Putinar’s theorem for
affine algebras, we first need to check that the quadratic module generated by g in A is
archimedean. Since M(g) is archimedean, it contains i € R[x] such that S(h) c R" is
compact. Now Sy (¢(h)) = {(u, A) e R" xR | h(u) >0, A an eigenvalue ofF(u)} c V(R)
isalso compact, because the spectral radius of F(u) (largest absolute value of an eigenvalue)
is bounded on the compact set S(g). Thus M 4,(g) is also archimedean. (See [He13, Satz
5.2.1] for a more careful version of this argument.)_

Now F € Ap regarded as a function on Vg (ker(¢)) c R"*! is just the polynomial ¢,
ie. it is the function V' 5 (u,1) — A where A is an eigenvalue of F(u) (Lemma 4.5(2)).
Since F is positive definite, this is a strictly positive function on Sy (g) and we can apply
Putinar’s theorem in the form of Cor. 4.4 to conclude that F is contained in the quadratic
module generated by g in Ap. O
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To prove the existence of degree bounds, there are esssentially two approaches: First,
via a more constructive proof of Putinar’s theorem which allows for an analysis of the re-
quired degrees on the way. This was the original method in [NSo7] and [HN10]. Alterna-
tively, if one is only interested in the existence of bounds (and not in the precise asymptotic
behaviour as in Remark 4.3), one can use model-theoretic ideas similar to those in §3.3.

Note first that if we could prove Putinar’s theorem over any real closed field, this would
give us uniform degree bounds, using a similar argument as in the proof of Prop. 3.24.
However, we know that such bounds cannot exist and, consequently, Putinar’s theorem
does not hold over general real closed fields. So we need a more subtle idea.

Suppose we are given an archimedean description g of a compact set S = S(g) and
a matrix polynomial F of size k that is positive definite on S. The key point is the use of
the archimedean property of the reals: Since F is positive definite and S is compact, there
exists N € N such that F(u) > (1/N)Ij for all u € S. It turns out that this is the condition
we should generalise to real closed fields. Given a real closed extension R/R, the convex
hull O = conv(Z) c R is a subring of R (called the canonical valuation ring). The proper
generalisation of Putinar’s theorem to arbitrary real closed fields is the following:

Theorem 4.8 (Putinar’s theorem for matrix polynomials over real closed fields).

Let S = S(g1, ..., &) be an archimedean description of a compact set and let R/R be real
closed with canonical valuation ring O. Suppose that F € Sym, O[x] is a matrix polynomial
such that there exists N € N with F(u) > (1/N)Ii for all u € S. Then F has a representation

F = SO +g181 + .- +grSr
where Sy, ..., S, € Sym, O[x] are sums of squares of matrix polynomials. O
We do not give a proof here. First, one has to generalise Putinar’s theorem for polyno-
mials to the above setting. The necessary tools were developed by Jacobi and Prestel and
can be found in [Prestel-Delzell, §8.3]. Thm. 4.8 can then be derived in a similar way as

we have done above in Thm. 4.7 above (see [He13]). But we can now use this generalised
version of Putinar’s theorem to deduce the existence of the degree bounds we want.

Proof of Thm. 4.2. For fixed k,d and N, D € N, consider the set

|(Ai),o < Nforalll<r,s<k,li|<d
VueS:F(u) 2 (1/N)I,

38, ...,S, sums of squares in Sym, R[x]
with deg(S;) <Dand F = ¥}, g:S;

By Putinar’s theorem for matrix polynomials (Thm. 4.7), the union Py = U Py,p is semi-

PN,D =:{F= Z A,‘xi € Symk R[X]

lil<d

algebraic, namely it consists of all F € Sym, R[x] with the absolute values of coefficients
bounded by N and F > (1/N)I; on S. Now Thm. 4.8 exactly says that the same remains
true for the base extensions Py p(R) for any real closed extension R/R. Thus we can apply
Cor. 3.22 and conclude that the ascending chain Py, c Py, C --- becomes stationary. This
is what we wanted to show. (Note that, compared to the precise bound given in Remark
4.3, we now have a dependence on the size of the coefficients of F rather than the maxi-
mum norm, but since all norms on a finite-dimensional space are equivalent, this makes
no difference for the existence of a bound.) O



34 4. POSITIVE MATRIX POLYNOMIALS

REFERENCES

[CLR80] M.D. Choi, T.Y. Lam, B. Reznick. Real zeros of positive semidefinite forms I.
Math. Z. 171(1), p. 1-26, 1980.

[He13] R. Hef. Die Sitze von Putinar und Schmiidgen fiir Matrixpolynome mit Gradschranken.
Diplomarbeit, Universitit Konstanz, 2013.

[Th11] R.TIhrig. Positivstellensitze fiir den Ring der Polynommatrizen.
Diplomarbeit, Universitat Konstanz, 2012.

[Lang] S.Lang. Algebra. Revised Third Edition, GTM 211, Springer, New York, 2002.

[NSo7] J. Nie and M. Schweighofer. One the complexity of Putinar’s Positivstellensatz.
J. Complexity 23(1), p. 135-150, 2007. http://arxiv.org/abs/0812.2657

[HN1o] J. W. Helton and J. Nie. Semidefinite representation of convex sets.
Math. Program. 122(1), p. 21-64, 2010. http://arxiv.org/abs/0705.4068



GEOMETRY OF LINEAR MATRIX INEQUALITIES Daniel Plaumann

Universitiat Konstanz
Summer 2013

5. GENERAL EXACTNESS RESULTS

The goal of this section is to present the results of Helton and Nie in [HN1o0], which pro-
vide sufficient conditions for the exactness of the Lasserre relaxation. The theses of Rainer
Sinn [Si1o] and Tom Kriel [Kr12] both give very good accounts, with many improvements
in proofs and exposition, and the presentation here borrows from both.

5.1. LAGRANGE MULTIPLIERS AND CONVEX OPTIMISATION

The basic idea of Helton and Nie is that in order to represent a linear polynomial defin-
ing a supporting hyperplane of a convex basic closed set in the corresponding quadratic
module, it is helpful to study representations of its (non-linear) Lagrange function. To ex-
plain this, we need a bit of background and terminology from optimisation. The following
is a special case of the Karush-Kuhn-Tucker theorem.

Theorems.1. Let S = S(gi,. .., g) be a basic closed set. Let f € R[x] and assume that u € S
is a point in which f attains its minimum on S. Assume further that there is v € R" with

{(Vgi(u),vbo if deg(g:) > 2
(Vgi(u),v) >0 if deg(gi) <1

whenever g;(u) = 0. Then there exist Ay, ..., A, > 0 such that

Vf(u) =) Aivgi(u)
i=1
Aigi(u) =0 foralli=1,...,r.
(The same holds if f, g, ..., g are just continuously differentiable functions.)

The constants A,, ..., A, are called Lagrange multipliers for f at the minimiser u; the
second statement, which says that the Lagrange multipliers for inactive inequalities are
zero, is called complementary slackness. There are a number of conditions, called constraint
qualifications, implying the existence of Lagrange multipliers in a minimiser. The one stated
here is the Mangasarian-Fromowitz constraint qualification.

Proof. We prove only the special case where the objective function f is linear, following
[Si10, Cor. A21]. This will be all we need. See [Forst-Hoffmann, Thm. 2.2.5 et seq.] for a
full proof. Solet f = £ e R[x]; and let u € S be a minimiser of £ on S. It is not restrictive to
assume that u = 0 and £(u) = 0. Furthermore, we may assume that g (0) =--- = g,(0) = 0
and g;.1(0), ..., g-(0) > 0 for some q > 1, i.e. exactly the first g inequalities are active at 0.

35
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We show that thereare Ay, ..., A, > 0with V€(0) = 7,1,V ¢;(0) (and put Ay = -~ = A, =
0). Suppose not, then we may apply Farkas’s lemma as spelt out below and conclude that
there exists w € R” such that (Vg;(0),w) > 0fori =1,...,q but (V€(0),w) < 0. On the
other hand, we may pick v € R" as in the hypothesis. Choose ¢ > 0 with (V£(0), w+ev) < 0.
Now if 1< i < g and deg(g;) > 2, then (Vg;(0),w + ev) > 0 for all € > 0, which implies

gi(d(w+ev)) >0

for all sufficiently small § > 0, since g;(0) = 0. The same holds if deg(g;) = 1, since in this
case we have g;(8(w + ev)) = §(Vgi(0), w + ev) > 0. Finally, we may also assume that the

same holds for the inactive inequalities (i = g +1, ..., r), by making § smaller if necessary.
But this implies that §(w+ev) is a point in S for which £(§(w+ev)) = §(V£€(0), w+ev) <0,
contradicting the fact that 0 = £(0) is the minimum of £ on S. O

The following basic lemma was used in the proof (and in fact earlier in Example 3.20).

Lemma 5.2 (Farkas’s lemma). Let cj,...,c,, € R" and let
pP= {ueR"Hci,u) ZOforallizl,...,m}.

Then P* = cone(cy, ..., Cp). In other words, for ¢ € R" there either exists u € P such that
(c,u) <0 orthereexist Ay,..., Ay 20 withc =Y, Aic;.

Proof. We have cone(cy, ..., c,)* = P, so that P* = cone(cy, ..., cp)** = cone(cy,...,Cm)
by biduality (Thm. 2.4). O

Recall that a function f:R” — R is concave on a convex subset C c R” if

FAu+(1-A)v) 2 Af(u)+(1-1)f(v)

holds for all u,v € C and A € [0, 1]. If the inequality is strict at all points, f is called strictly
concave. It is called (strictly) convex if the opposite inequality holds, i.e. if —f is (strictly)
concave. Some essential facts are contained in the following exercises.

Exercise 5.1. Let C c R" be a convex set and let f:R" — R.

(a) If f is continuously differentiable, then f is concave on C c R" if and only if

fO) < f(w) +(Vf(u),v-u)

holds for all u,v € C.

(b) If f is twice continuously differentiable, then f is concave on C if and only if its Hessian
(D?f)(u) is negative semidefinite for all u € C. Furthermore, if (D*f)(u) is negative defi-
nite on C, then f is strictly concave. Give an example showing that the converse is false.

Exercise5.2. Let C=S(g,...,gr) beabasic closed set and suppose that gi, .. ., g, are concave on
C. Show that C is convex.

Exercise 5.3. If C c R" is compact and convex and f:R" — R is concave on C, then there is an
extreme point of C in which f attains its minimum on C.

Exercise 5.4.
(a) The set of extreme points of a compact convex subset of R? is compact.
(b) Give an example of a compact convex subset of R® whose set of extreme points is not closed.
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Corollary 5.3. Let C = S(gi, ..., gr) be compact and convex with non-empty interior and
suppose that g, . .., g, are concave on C. Then Lagrange multipliers exist for any linear poly-
nomial at any minimiser on C.

Proof. Let € € R[x];andletu € C be a minimiser of £ on C. Since C has non-empty interior,
there exists a point ug € C with g;(up) >0fori=1,...,7. Nowif g;(u) = 0, then

0 < gi(uo) < gi(u) +(Vgi(u), uo — u) = (Vgi(u), uo - u),
since g; is concave on C. Hence the hypotheses of Thm. 5.1 are satisfied for v = ug —u. [

Note that in the proof of the corollary we did not need that € has degree one. But in
this way, it relies only on the special case of Thm. 5.1 which we have proved.

5.2. THE HELTON-NIE THEOREMS
We now come to the main results of this chapter, starting with the simplest version.

Theorem 5.4. Let C = S(gi, ..., gr) be an archimedean description of a compact convex set
with non-empty interior. Suppose that the following condition is satisfied:
[SOS-Concavity]  The matrices —D?g; € Sym  R[x] are sums of squares fori =1,...,r.

Then C possesses an exact Lasserre relaxation with respect to g1, . .., g.
Here is the principal lemma needed for the proof.

Lemma 5.5. Let F € Sym, R[x] be a matrix polynomial which is a sum of squares, and fix
u € R". Then the matrix polynomial

Gu(x):ffF(u+s(x—u))dsdt,

(where the integration is carried out entry-wise) is again a sum of squares.

Proof. By Exercise 4.2, a matrix polynomial G € Sym, R[x] is a sum of squares if and only if
the polynomial y"Gy € R[x, y], which is homogeneous of degree 2in y = (y;, ..., yx)7, is
asum of squares. Thus, by hypothesis, the polynomial f = yTF(u+s(x-u))y € R[x, y,s]is
a sum of squares and therefore possesses a positive semidefinite Gram matrix (c.f. Example
1.3(d)). This means f = (Bm)TBm where m is a column vector of monomials in x, y, s
and B a suitable real rectangular matrix. Now write m = U(s) - m where m is a vector
of monomials in x, y and U is a matrix polynomial in s of appropriate size'. So putting

A(s) = (BU(S))TBU(S), we find that f = " A(s)m and hence

yTGuyzjjf(x,y,s)dsdtzWT(flft A(s)dsdt)ﬁ,

showing that G, is a sum of squares, as claimed. (For a slicker proof, using integration of
Banach space-valued functions, see [Kr12, Lemma 3.4.9].) O

"To see that this is possible, let  contain all monomials in x, y up to degree d. Let U(s) be the rectan-
gular matrix [Iy,s- Iy, s? - In]" € Mat(g,1)nxn R[s], where N = length (7). Then U(s) - 7 contains all
monomials of degree d in x, y, s.
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Proof of Thm. 5.4. Let £ € R[x], with €|¢c > 0 and let u € C be a minimiser. Since the matrix
polynomials —D?g; are sums of squares, the polynomials g; are concave (Exercise 5.1). Then
Cor. 5.3 guarantees the existence of Lagrange multipliers for € in u, so that we have

Ve(u) = Z)Lng,'(u)
i=1
Aigi(u) =0 foralli=1,...,r.
for certain Ay,..., A, > 0. It follows that the function f, = € — €(u) — X}, A;g; and its
gradient both vanish at u, so the fundamental theorem of calculus implies

(5.6) fo= %fg(”'f’ t(x —u))dt = ff aa—;fg(u+s(x—u))dsdt=

00

Z)L,- (- u)T(Ofloft _DPg;(u + 5(x - u))dsdt)(x ).

o

=A% (x)

By Lemma 5.5, the matrix polynomials ALY are sums of squares, and therefore

2=2¢(u)+ Z/\,-g,- + Z)L,-(x - u)TAEf)(x —-u)
i1

i=1

is a represention of £ in M(g) in which the degrees are bounded by max{deg(g:)}. [

A polynomial g whose Hessian is a sum of squares is called sos-convex. By Exercise
5.1, any such polynomial is convex. But as usual, the converse does not hold in general.

Exercise 5.5. Let f € R[x] be a homogeneous polynomial.

(a) Show thatif f is convex, then f is non-negative on R".

(b) Show that if f is sos-convex, then f is a sum of squares.

(c) Givean example of a convex polynomial fy € R[x] such that the homogenisation xg s/ f(x/x0) €
R[xo, X1, . . ., X, ] is not convex.

For an example of a convex sum of squares that is not sos-convex, see Ahmadi and Parillo [APog].

There also exist convex homogeneous polynomials that are not sums of squares, even though not a

single explicit example of such a polynomial is known (see Blekherman [Blog]).

Example 5.7. Consider the TV-screen C = S(g), where g =1-x* - y*. The Hessian of g is

-12x* 0
D’g = ,
& [ 0 -I2 yzl
so g is sos-concave. Thus Thm. 5.4 implies that the Lasserre relaxation of C with respect to
g becomes exact. (Note that M(g) is a preordering and therefore archimedean.)

Exercise 5.6. Work out the construction in the proof of Thm. 5.4 for the TV-screen. In which degree
does the Lasserre relaxation become exact?

Next, we present a more sophisticated version of Thm. 5.4 in which the defining poly-
nomials are not required to be sos-concave. Instead, we will asssume that the concavity is
strict, at least along the extreme part of the boundary, with a uniform lower bound on the
curvature. The proof makes use of Putinar’s theorem for matrix polynomials.
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Theorem 5.8. Let C = S(g,. .., g,) be an archimedean description of a compact convex set
with non-empty interior. Suppose that the following condition is satisfied:
[Concavity]  The function g; is concave on C and if u € C is in the closure of the set of
extreme points of C with g;(u) = 0, then D*g;(u) is negative definite.
Then C possesses an exact Lasserre relaxation with respect to gy, . .., g.

Proof. For any 1< i < r,let Z; be the closure of the set of extreme points of C at which g;
vanishes. For u € R” write

1t
Agj)(x)sz -D?gi(u+s(x —u))dsdt € Sym R[x].
00

Since —D?g;(u) > 0 for all u € Z; and —D?g;(v) > 0 for v € C by hypotheses, it follows
from linearity of integration that AP (v) >0forallv e Cand u € Z;. Thus by compactness
of C and Z;, there exists § > 0 with Aff)(v) > 01, for all u € Z;, v € C. We may therefore
apply Putinar’s theorem for matrix polynomials (Thm. 4.2) and obtain representations

() = 3 gD
Au (x) - Zg]S],u
j=0
where each Sj('u) e Sym, R[x] is a sum of squares of degree bounded by
deg(s;,)) < D(g, deg(4,”), 4. 0).

Now we again use compactness of Z; to make the bound independent of u. By taking
|AD | = max{|A| | u e Z;} and noting that deg(ASf)) < deg g;, we have

deg(S") < D(g, max{deg(g:)}, A7, ).

Now, as in the proof of Thm. 5.4, let £ € R[x]; with £|c > 0 and let u € C be a minimiser,
which we may assume to be an extreme point of C (see Exercise 5.3). Again fix Lagrange
multipliers Ay, ..., A, > 0 for € at u (Cor. 5.3), so that

veé(u) = Zr: Aivgi(u)

i=1

Aigi(u) =0 foralli=1,...,r.

Then using identity (5.6), we obtain a representation

r

e=e(u)+ Zi;)t,-g,- £y :io()ti(x —u)TS) (x - u))g

- i
in which the degrees are independent of u and hence of ¢. O

Since not every strictly concave polynomial is sos-concave, it is clear that Thm. 5.8 can
be applied to examples in which Thm. 5.4 fails. In fact, one can even show that most concave
polynomials (in a suitable sense) are not sos-concave (see Blekherman [Blog]). But explicit
examples of such polynomials (as in [APog]) are not easy to come by.

On the other hand, the assumption that the defining polynomials g be strictly concave
on S(g) is still quite restrictive. We can further weaken the hypotheses if we make use of
our freedom in choosing the defining polynomials g of the basic closed set S(g).
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Definition 5.9. A twice continuously differentiable function f:R” — R is called strictly
quasi-concave at a point u € R" if the Hessian D? f () is negative definite on the algebraic
tangent space {v e R" | (Vf(u),v) = 0}, i.e. if

Forallv e R"~ {0}: (Vf(u),v)=0 = vI(D*f)(u)v<0.

The definition is simple enough but not very intuitive. A more natural definition of
(non-strict) quasi-concavity is contained in the following exercise.

Exercise 5.7. Let C c R” be convex. A C?-function f:R" — R is called quasi-concave on C if all
its sublevel sets C, = {u € C| f(u) > a}, for a € R, are convex. Show that a strictly quasi-concave
function, as defined above, is quasi-concave.

Example 5.10. The polynomial f = xy is strictly quasi-concave on the open quadrant
(0,00) x (0, 00). Indeed, we compute V f = (y,x)T and

S LU
Dy - [1 .
Then given (u,v) € R?, we have ((Vf)(u, v))l = span(-u,v) and the restriction of D?f

to that line is —2uv, which is negative for u, v > 0. On the other hand, D*f is constant and
indefinite, so that f is not concave anywhere.

Lemma s5.11. A twice continuously differentiable function f:R" — R is strictly quasi-concave
at a point u € R" if and only if there exists M > 0 such that

D*f(u) - M-V f(u)Vf(u)" <0.

Proof. Put vy = Vf(u) and A = D?f(u) and suppose there exists M as above. Then given
v € R" with vl'v = 0, we have vT Av = vT Ay — MyTvypvlv < 0. Conversely, suppose that f is
strictly quasi-concave at u. If vy = 0, quasi-concavity implies A < 0 and there is nothing to
show, so assume v, # 0. Since A is negative definite and hence non-degenerate as a bilinear
form on the subspace V = span(v,)*, it admits an orthogonal complement, i.e. there exists
w € R such that R" = V @ span(w) and vTAw = wTAv = 0 for all v € V. Then for any
vector v + Aw e R", with v € V and A € R, and for any M € R, we compute

(v +Aw)T(A - MvgvD) (v + Aw) = vT Av + A2 (wT Aw — M(w, vo)?).
So we choose M > 0 such that M(w, v()? > wT Aw. (Note that (w,vy) # 0, sincew ¢ V.) O

Lemma 5.12 ([Kr12], Lemma 4.2.3). For any M > 0, there exists a polynomial h in one
variable that is a sum of squares and satisfies the following for all t € [-1,1]:

(1) h(t)>0
(2) h(t)+h'(t)t>0
20" (t)+h" (1)t
) T <M B
Exercise 5.8. Give a proof of Lemma 5.12. Suggestion: Show first that
1- e*(M+1)t
t)y=—
o (M +1)t

is a C2-function with the desired properties.
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Proposition 5.13. Let S = S(g, . .., &) be an archimedean description of a compact set and
assume that the polynomials g; are strictly quasi-concave on S. Then there exist hy, ..., h, €
M(gi,...,gr) which are strictly concave on S such that S = S(hy, ..., h,).

Proof. Choose R > 0 with S ¢ Br(0). After rescaling, we may assume g;(Bz(0)) c [-1,1]
fori=1,...,r. Nowlet M > 0, let h € R[¢] be as in Lemma 5.12 above and put

hOZRZ—Z?leiz and h,-=g,--h(g,-)f0ri=1,...,r.

Then S ¢ S(h) is clear. Conversely, let u € R" N S. If u ¢ Bg(0), then ho(u) < 0, hence
u ¢ S(h). If u € BR(0) \ S, then -1 < g;(u) < 0 for some i and hence (h(g;))(u) =
h(gi(u)) > 0, which implies h;(u) < 0. Thus we have shown S = S(h). Also, since h is a
sum of squares, so is h(g;), which implies hy, ..., h, € M(g). Since M(g) is archimedean,
we also have hy € M(g). B B

Now we need to make sure that A, . . . , h, are strictly concave on S. The polynomial h,
is everywhere strictly concave, since D?h, = —I,,. For the others, we compute

D*h; = (h(gi) + h’(gi)g,')ngi + (Zh’(g,-) +h"(g1)g)Vgi- (Vg)"

2h'(gi) + h"(gi)g:
= h( ,')+h,( i) i (D2 i+
() W\ P8+ Sy ige
<(h(g) +h'(g:)g:) (D¢~ M- Vg (Vg)").
Thus using property (2) of h and applying Lemma 5.11 to g;, we can make D?h; negative
definite at all points of S for i = 1,...,r, by choosing M sufficiently large. O

Vgi~(Vg,-)T)

We sum up the results of this chapter in the following corollary, combining the various
conditions in a single statement.

Corollary 5.14. Let C = S(g15. .., g) be an archimedean description of a compact convex
set with non-empty interior and suppose that for each i = 1,...,r one of the following two
conditions is satisfied:

[SOS-Concavity] The matrices —D*g; € Sym R[x] are sums of squares fori=1,...,r.
[Quasi-Concavity] The function g; is strictly quasi-concave on C.

Then C possesses an exact Lasserre relaxation with respect to gy, ..., gr.

Proof. Suppose that g, ..., g, are sos-concave and gy, ..., g are strictly quasi-concave,
for some 1 < g < r. Since M(g) is archimedean, we have R — Y7, x7 € M(g) for some
R > 0. By Prop. 5.3, we can replace R — Y, X}, gg+1s - - - » & Y strictly concave polyno-
mials in M(g) defining the same set and obtain a new description C = S(hy, ..., h,) with
hy,. .., hs € M(g) such that each h; for i = 1,.. ., s is either sos-concave or strictly concave
on C. Now the arguments in the proof of 5.4 and 5.8 can be combined by a simple case dis-
tinction between the sos-concave and strictly concave defining polynomials to show that
C has an exact Lasserre relaxation with respect to s and therefore with respectto g.  [J

Examples.15. Let gy =xy—-1,2 =2-x—-yand g5 = x+y. Since g is strictly quasi-concave
on (0, 00) x(0, 00) and g,, g; are linear and therefore sos-concave, the basic closed set S(g)
possesses an exact Lasserre relaxation with respect to g. (It is in fact a spectrahedron).
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Example 5.16. The statement in Cor. 5.14 is still not the best possible. Let g; = y—x3, ¢, = x,
g3=1-x, g4 =y, g5 = 1 -y invariables x, y. We saw in Example 3.20 that the third Lasserre
relaxation of § = S(g) with respect to g is exact. But the polynomial g; = y— x> has Hessian

-6x 0
D%g =
and is therefore not strictly quasi-concave at the origin. Therefore, the exactness of the
Lasserre relaxation does not follow from Cor. 5.14. We will revisit this example later.
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6. NECESSARY CONDITIONS FOR EXACTNESS

So far we have only seen sufficient conditions for the exactness of the Lasserre relax-
ation but not a single example in which it demonstrably fails to become exact. In this
chapter, we will fill this gap. The principal obstruction against exactness that we are going
to use is contained in the following result by Gouveia and Netzer in [GN11, Prop. 4.1].

Proposition 6.1. Let S = S(g1,...,4,) ¢ R" and let Z c R" be a line such that S n Z has
non-empty interior in Z. Assume that there exists a point u, € S in the relative boundary of
conv(S) N Z such that the gradients V g;(uo) are orthogonal to Z whenever g;(uy) = 0. Then
all Lasserre relaxations L[ d] for d > 1 strictly contain conv(S).

Proof. Let Z and u, be as in the hypothesis. After a change of coordinates, we may assume
up=0and Z = {u e R*|up = --- = u,, = 0}. We may further assume that u; > 0 holds for
all u € conv(S) N Z. Let h; = gilz = gi(x1,0,...,0) € R[x;] for i = 1,...,r and consider
the Lasserre relaxation £,[d] c Z for some d > 1. We have L,[d] c L [d]n Z. (To see
this, let u € £;,[d], i.e. u = (L(x,),0,...,0) for some L € My[d]’ c R[x;]*. Then L extends
to Ly € R[x]* via Lo(f) = L(f(x1,0,...,0)) for f € R[x]. We have L, € M[g]" since

f(x1,0,...,0) € M[d] for any f € Mg[d]. Thus u = (Lo(x1), ..., Lo(xn)) € Lg[d].)

Now let ¢ € R, U {oo} with conv(S) nZ = [0,c] and put h,,; = ¢ — x; if ¢ € R and
h,.1 = 1 otherwise. Then S(hy, ..., hy41) = [0,c] and Ly p,,,[d] € L,[d]. By Prop. 3.17, we
have Ly p,,, = [0, c] if and only if My, j,.,,[d] contains all £ € R[x;]; such that £} > 0. In
particular, £y, ..., = [0, c] would imply x; € My, j,,.,[d], so we would have a representation

X1 = ZE: Silli + ZE: Silli

iel i¢l

where hy = 1 and we have split indices by putting I = {i € {0,...,7} | h;(0) > O}, so that
h;(0) = 0 for i ¢ I. Evaluating at 0, we see that s;(0) = 0 for i € I. So the s, for i € I have no
constant term and, since they are sums of squares, they have no linear term either. Now
by hypothesis, the gradient Vg;(0) is orthogonal to Z for all i € {1,...,r + 1} \ I, which
implies that h; for i ¢ I also has no constant and no linear term. This is a contradiction,
since x; is linear, so we conclude that no such representation of x; exists. It follows that
L, [d] strictly contains [0, c], hence £,[d] strictly contains conv(S). O

r+1

Corollary 6.2. Let S = S(g) be basic closed with non-empty interior and suppose there
exists uy € (dconv(S)) N S such that Vgi(uo) = 0 whenever g;(uo) = 0. Then all Lasserre

relaxations Ly[d] for d > 1 strictly contain conv(S).

Proof. Apply Prop. 6.1 to any line L through u, and int(S). O

43
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Example 6.3.
Let ¢ = x3(1-x) — y?* and put S = S(g). The origin is y
a singular point of V(g), i.e. Vg(0) = 0. So no Lasserre
relaxation of conv(S) with respect to g is exact.

But a quick computation shows that

conv(S) =5(g,2x-1)uS(2y + x,x - 2y,1-2x) =

which is not basic closed. The second set in the union is
just a triangle while the other possesses an exact Lasserre
relaxation by Cor. 5.14 (see Exercise 6.1 below).

Exercise 6.1. Show that conv(S) in the above example is a projected spectrahedron.

The necessary condition for exactness in Corollary 6.2 depends on the description of
the basic closed set S. But there is also a more intrinsic geometric condition.

Let C c R" be closed and convex. A face of C is a convex subset F c C with the property
that 3 (u +v) € F implies u, v € F whenever u,v € C. A face F is called proper if F + @, C.
It is called exposed if it is cut out by a supporting hyperplane, i.e. if there exists £ € R[x];
with €|c > 0and F = {u € C| €(u) = 0}. Otherwise, F is called non-exposed.’

Exercise 6.2. Check that if £ € R[x]; with €|c > 0, then {u € C | €(u) = 0} is indeed a face of C.

Example 6.4. The faces of a polyhedron S(#, ..., £,) are exactly the vertices, edges, etc.,
defined by the vanishing of a subset of ¢}, .. ., £, and are always exposed.

Example 6.5.

The convex set in the picture is the basic closed set

C=8(y-x1+x,y,1-y).
The origin is a non-exposed face of C, since the only linear
polynomial € € R[x]; with £|c > 0 and £(0,0) =0is € = y,
which exposes the larger face {(u,0) e R?| —1<u <0} of —F
C rather than just the origin.

Exercise 6.3. Show that no proper face of a closed convex set C contains a point of relint(C).

Exercise 6.4. Let C be closed and convex. Show that a convex subset F of C is a face if and only if
C \ F is convex and any convex subset of C containing F has strictly greater dimension than F.

Proposition 6.6. Let C c R" be closed and convex and let F be a face of C.

(1) Every face of F is also a face of C.

(2) F is closed.

(3) If u € relint(F) and € € R[x]; with £c > 0 and €(u) = 0, then €| = 0.

(4) Any point in the relative boundary of C is contained in a proper exposed face of C.

(5) Forany point u € C there exists a unique face of C containing u in its relative interior.
This is precisely the smallest face of C containing u.

(6) F is exposed if and only if for every face F' strictly containing F there is € € R[x]
with €|c > 0 such that €|p = 0 but €| # 0.

"Unfortunately, the terminology here is not uniform in the literature. It is equally common to call face
what we call exposed face and use another term (e.g. facelet or extremal convex subset) for what we call face.
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Proof. (1)-(3) Exercise.

(4) Let u € C ~ relint(C). By the general separation theorem, there exists £ € R[x];
with £(u) = 0 and € > 0 on relint(C). Thus {u € C|£€(u) = 0} is the face we want. (See also
[Barvinok, Thm. 2.7] or [Convexity-LN, Satz 5.1].)

(5) Let F be the intersection of all faces containing u. Then F is a face of C, and therefore
obviously the smallest face containing u. If u were not contained in the relative interior of F,
it would be contained in a proper face of F, which would also be a face of C, a contradiction.
If F’ is another face containing u, then F c F’ by definition of F. So if F ¢ F’, then u cannot
be contained in the relative interior of F'.

(6) If F is exposed, there exists such € by definition. Conversely, let F be a face of C with
this property and consider N = {€ € R[x]; | £|c > 0 and £|r = 0}. We choose a sequence
(Uk)s1 of open subsets in R” such that F = (", Uy and R" \ Uy is compact for every k > L.
(Explicitly, we may take Uy = Uyer B1 (u) U (R" \ Bi(0)).) Given a point u € C\ F , we
can pick ¢, € N with €,(u) > 0. For if we take just any ¢ € N, then either £(u) > 0 or u
is contained in the relative interior of some face containing F and there exists €, € A" with
¢,(u) > 0 by hypothesis. Now since C \ Uy is compact, we can find v, ..., u, € C\ Uy
such that ¢, = Y>7", €, is strictly positive on C \ F. Then the convergent series

0o gk
=S ——k_
% Fed

(where | - | is some norm on R[x];) determines an element of A/ that exposes F. O

Exercise 6.5. Show that any maximal proper face of a closed convex set is exposed.

Theorem 6.7. All faces of a spectrahedron are exposed.

Proof. Consider first the psd cone Sym; itself. If A € Sym; is any psd matrix, it is not hard
to show that the unique face of Sym; containing A in its relative interior is

F = {B e Sym; | ker A c ker B}.

(See [Barvinok, SII.12] or [Convexity-LN, Satz 6.4].) To see that such F is an exposed face,
let C be a psd matrix with im C = ker A. (To prove the existence of such C, let r = rk A
and choose an orthogonal matrix U € GLy such that UT AU is the diagonal matrix with the
first r diagonal entries the non-zero eigenvalues of A and the remaining equal to 0. Let J
be the diagonal matrix with the first r entries equal to 0 and the remaining equal to 1 and
put C = UJUT. Then AC = 0 and ker A nker C = {0}, hence im C = ker A, as desired.)
Now given B € Sym; with (B,C) = 0, we have BC = 0 (since C is also psd) and hence
ker A = im C c ker B. This shows F = {B € Sym; |(B, C) = 0}, so that F is exposed. (In the
above notation, € = (X, C) with X = (Xj;);; is the polynomial in R[X]; exposing F.)
Now if U c Sym, is an affine-linear subspace and F a face of the spectrahedron U n
Sym,, let A € relint(F) and let F’ be the unique face of Sym, with A € relint(F’). Then
F’ n U contains A in its relative interior, hence F' n U = F. By what we have just seen,
F' = {BeSym; |(B,C) = 0} for some C € Sym;, so that F = {B € Un Sym, |(B,C) = 0}.
In general, if 9: R” — Sym, is an affine linear map, the faces of ¢~!(Sym, ) are in bijec-
tion with the faces of S = im ¢ n Sym;, and if H is a hyperplane in Sym, exposing a face
HnS, the corresponding face 9 '(HNS) = ¢ 1 (H) n¢p7!(S) of p71(S) is also exposed. [

Exercise 6.6. Fill in the details in the above proof.
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This statement does not extend to projected spectrahedra since projections of exposed
faces need not be exposed (see Example 6.9 below). However, an exact Lasserre relaxation
of a convex basic closed set with respect to its describing inequalities cannot have any non-
exposed faces. This was first shown in [NPS10]. It can also be easily deduced from Prop. 6.1.

Exercise 6.7. Find an example of a speactrahedron in R®> whose projection onto the first two coor-
dinates has a non-exposed face.

Theorem 6.8. Let C = S(g) be convex with non-empty interior. If C has a non-exposed face,
then no Lasserre relaxation of C with respect to g is exact.

Proof. Let F c C be a non-exposed face. By Prop. 6.6(6), there exists some face F’ of C
containing F such that €| = 0 for all £ € R[x]; with €|z = 0 and ¢|c > 0. Let u € relint(F)
and u € relint(F; ), and let Z be the line through uy and ;. Then C n Z has non-empty
interior in Z and u is a point in the relative boundary of C n Z. So we can apply Prop. 6.1
once we have verified the condition on the gradients. Suppose that g;(u#) = 0 for some
i. Since C is convex and g;|c > 0, we must have (Vg;(up),u — 1) > 0 forall u € C. In
other words, the polynomial ¢ = (Vg;(u),x — up) € R[x]; is non-negative on C. Since
ug € relint(F) and €(u,) = 0, we must have £|r = 0 and hence also |z = 0. So £ vanishes
in 4y and u; and thus on all of Z, which means that Vg;(u,) is orthogonal to Z. O

Example 6.9.
Returning to the convex set

C=8(y-x1+x,y,1-y).

from Example 6.5, we conclude from Thm. 6.8 that C can-

not have an exact Lasserre relaxation with respect to the
defining polynomials y — x3,1+ x, y,1- y, since the origin
is a non-exposed face. However, C is the convex hull of the
face {-1} x[0,1] and CnS(x), both of which are projected
spectrahedra. This is clear for the first, while for the second

we gave an explicit proof in Example 3.20.

Remarks 6.10.

(1) Note that Thm. 6.8 only applies when S(g) is already convex. It may in fact happen
that conv(S(g)) has an exact Lasserre relaxation with respect to g even when
conv($) has a non-exposed face. For example, Gouveia and Netzer show for the
football stadium conv(S(g)) defined by g = —((x +1)2+ > -1)((x —=1)>+ y> 1)
(cf. Exercise 1.10) that conv(S(g)) = £,[6] (see [GNu11, Prop. 4.12]).

(2) Furthermore, Thm. 6.8 only applies when the Lasserre relaxation is indeed exact.
An inexact Lasserre relaxation of a convex basic closed set may well have non-
exposed faces. For example, the set in Example 6.9 has a Lasserre relaxation with
a non-exposed face [GN11, Cor. 4.11].
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7. HYPERBOLIC POLYNOMIALS

In this chapter, we return to the study of spectrahedra, rather than projected spectrahe-
dra, and their connection with hyperbolic and determinantal polynomials. The main goal
is the celebrated Helton-Vinnikov theorem, which provides a complete characterisation of
the two-dimensional convex semialgebraic sets that can be represented by linear matrix
inequalities, i.e. a characterisation of the plane spectrahedra.

It turns out to be technically more convenient to deal with cones rather than general
convex sets. However, everything we show about convex cones and spectrahedral cones
has an analogue for convex sets and spectrahedra that can be obtained by taking slices.

7.1. HYPERBOLICITY

Definition 7.1. A homogeneous polynomial f € R[x] is called hyperbolic with respect to
a point e € R" if f(e) # 0 and if the univariate polynomial f(u + te) € R[¢] has only real
roots, for every u € R”. It is called strictly hyperbolic if it is hyperbolic and the roots of
f(u + te) are all distinct, for everyu e R", u ¢ R - e.

Examples 7.2.

(1) The polynomial f = x2+ y2 - z? € R[x, y, z] is (strictly) hyperbolic with respect to
e =(0,0,1), since f(u + te) = uf + u3 — (u3 + t)? has discriminant 4(u? + u3) > 0
and therefore two distinct real roots in t, for all u = (uy, up, u3) e R3\ R -e.

(2) The polynomial f = x* + y* — z* € R[x, y,z] is not hyperbolic with respect to
any point in R3. (This is the homogenized version of the polynomial defining the
TV screen; see Example 1.11). In particular, for e = (0,0,1), one can check that
f(u + te) has two real but also a pair of non-real complex-conjugate roots.

(3) The determinant det(X) of a general symmetric d x d-matrix X = (Xj;)i<i<j<d>
regarded as a polynomial on Sym , and thus an element of R[X;; | 1< i < j < d], is
hyperbolic with respect to the point e = I;. This is because for any A € Sym, the
roots of det(A — tI;) are exactly the eigenvalues of A. In particular,

Sym;, = {A € Sym,, | det(A - tI;) has only non-negative roots}.
(4) Let A = Y., x;A; be a homogeneous linear matrix polynomial of size d x d and
suppose there exists e € R" with A(e) = I;. Then f = det(A) € R[x] is homo-
geneous of degree d and hyperbolic with respect to e. Again, this is because f =

(u—te) = det(A(u)—tI;) is the characteristic polynomial of the symmetric matrix
A(u) and therefore has only real roots. More generally, the same remains true if

47
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A(e) is just any positive definite matrix, by considering « /A(e)_1 - A(x)A /A(e)_l.
Note that the spectrahedral cone S(A) can also be expressed in terms of f as

S(A)={ueR"|A(u) >0}
= {u e R" | f(u - te) has only non-negative roots}.
In view of these examples, we make the following definition.
Definition 7.3. Let f € R[x] be hyperbolic with respect to e. The set
Ce(f) ={u € R"| f(u - te) has only non-negative roots}
is called the (closed) hyperbolicity cone of f with respect to e.

In this sense, one can think of hyperbolic polynomials as generalised characteristic
polynomials and the hyperbolicity cones as generalised psd cones. But in spite of the name,
it is not apparent from the definition that C,(f) is indeed a convex cone. Also, the name
suggests that f should be hyperbolic with respect to any point in the (interior of the) hy-
perbolicity cone. These statements can be proved directly (see for example [Convexity-LN,
§13]). Instead, we will deduce them later from the Helton-Vinnikov theorem.

In example 7.2(4), we have already seen the following.

Proposition 7.4. If A is a homogeneous linear matrix polynomial with A(e) > 0 for some
e € R™, the spectrahedral cone S(A) coincides with the hyperbolicity cone C,(det(A)). O

The hyperbolicity condition is therefore necessary for a cone to be spectrahedral. Thus
the following statement is not surprising, though a little additional work is needed for the
proof, which we will omit here (see [HVo7, §2]).

Theorem 7.5. Let C c R" be a closed semialgebraic convex cone with non-empty interior and
let f € R[x]~ {0} be the unique polynomial of minimal degree vanishing on the boundary
of C. Then C is a hyperbolicity cone if and only if f is hyperbolic with respect to some point
e € int(C) and, in this case, C = C,(f). O

For example, this shows that the cone {u € R*| u} + u3 < u3} (the cone over the TV
screen) is not spectrahedral, since the polynomial x* + y* — z* is not hyperbolic (c.f. 7.2(2)).

Given a homogeneous polynomial f € R[x] and a symmetric linear matrix polynomial
A such that f = det(A), we say that A is a symmetric (linear) determinantal representa-
tion of f. If, in addition, f is hyperbolic with respect to e and A(e) > 0, we say that the
determinantal representation is definite.

Exercise 7.1. Show that every hyperbolic polynomial in two variables possesses a definite symmetric
determinantal representation.

But it is in fact not hard to see that not every hyperbolic polynomial possesses a sym-
metric determinantal representation.

Proposition 7.6. If n > 4 and d > 7, there exist hyperbolic polynomials in n variables of
degree d that do not possess a symmetric determinantal representation.
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Proof. The set of hyperbolic polynomials of degree d has non-empty interior in R[x] 4, the
space of homogeneous polynomials of degree d. Indeed, every strictly hyperbolic polyno-
mial is an interior point of that set, since the roots of a univariate polynomial depend con-
tinuously on the coeflicients (see Exercise 7.2). The dimension of the vector space ]R[x](d)
is ("+j_1). On the other hand, if f € R[x],4) has a symmetric determinantal representation
f = det(A), then A must be of size d x d and the space of homogeneous linear matrix
polynomials of size d in n variables has dimension n(d; 1). The map taking A to det(A) is
polynomial, so the dimension of the image cannot increase. It follows that if every hyper-
bolic polynomial is to possess a symmetric determinantal representation, we must have

n(d;—l) _ n(d;l)d S (Z!an__lg! _ (n +;l—1).

This is equivalent to n!(d + 1)!d > 2(n + d — 1)!. Now one can check directly that this
inequality fails to hold for n > 4and d > 7. O

Exercise 7.2. Fix e € R” and denote by H, c R[x](4) the set of hyperbolic polynomials of degree
d with respect to e.

(a) Show that every strictly hyperbolic polynomial of degree d is an interior point of ..
(b) Show that the strictly hyperbolic polynomials are dense in H.,.
Hint: If f € R[¢] has only real roots, examine the roots of f + af’ for a € R.

More is true: H, is connected, simply connected and conincides with the closure of its interior,
which is the set of strictly hyperbolic polynomials. (See Nuij [Nu68]).

Exercise 7.3. Examine the inequality in the proof of Prop. 7.6 for d = 2,3,4,5, 6.

However, if we do the count of parameters in the above proof for n = 3, we find that the
resulting inequality holds for all d. In 1957, it was conjectured by Peter Lax, in connection
with the study of hyperbolic PDEs in [Lasy], that every hyperbolic polynomial in three
variables possesses a definite determinantal representation. This became known as the Lax
conjecture. It was proved in [HVo7] through the work of Vinnikov and Helton-Vinnikov.

Theorem 7.7 (Helton-Vinnikov). Every hyperbolic polynomial in three variables possesses a
definite symmetric determinantal representation.

Corollary 7.8. Every three-dimensional hyperbolicity cone is spectrahedral.

We will not give a full proof of the Helton-Vinnikov theorem. However, we will prove
a weaker version in section 7.3 below that will still imply the above corollary.

Since it is clear from the count in Prop. 7.6 that the Helton-Vinnikov theorem cannot
extend to the case n > 4, the search began for a suitable higher dimensional analogue.
Various weaker versions have been proposed in recent years some of which have been dis-
proved. Perhaps the most natural generalisation is simply the statement of Cor. 7.8.

Generalised Lax Conjecture. Every hyperbolicity cone is spectrahedral.

A few special cases of the conjecture are known, but in general it remains elusive.
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7.2. DEFINITE DETERMINANTAL REPRESENTATIONS AND INTERLACING

To prove the Helton-Vinnikov theorem, it is helpful to understand it as a statement
in two parts. The first part amounts to the construction of determinantal representations
over R or C, the second to a characterisation of those determinantal representations that
are definite and therefore reflect the hyperbolicity. The following notion will be used to
address the second part.

Definition 7.9. Let f, g € R[¢] be univariate polynomials with deg(f) = d and deg(g) =
d — 1 and suppose that f and g have only real roots. Denote the roots of f by a; < - < ay
and the roots of g by f8; < - < B4-;. We say that g interlaces f if o; < f8; < a4 for all
i=1,...,d - 1. We say that g strictly interlaces f, if all these inequalities are strict.

If f € R[x](4) is hyperbolic with respect to e € R", we say that g € R[x] 41y (strictly)
interlaces f with respect to e if g(u + te) (strictly) interlaces f(u + te) in R[#] for every
ueR", u ¢ R-e. Note that this implies that g is hyperbolic with respect to e, as well.

Example 7.10. The simplest and most important example is the following: If f € R[¢]
is a univariate polynomial with only real roots, then its derivative f’ interlaces f. More
generally, if f € R[x] is hyperbolic with respect to e € R", the directional derivative
0 "0
D.(f) == t = inT
=g/t t0)| = Dz s

interlaces f, since f'(u+te) € R[t] interlaces f(u+te) € R[¢] for all u € R". If f is strictly
hyperbolic, then D, f strictly interlaces f.

Lemma 7.11. Suppose that f € R[x] ) is irreducible and hyperbolic with respect to e. Fix
& h in R[x]41) where g interlaces f with respect to e. Then h interlaces f with respect to e
if and only if g - h is non-negative or non-positive on Vg (f).

Proof. 1t suffices to prove this statement for the restriction of gh to a line {u + te | t € R}
for generic u € R". Thus we may assume that the roots of f(u + te) are distinct from each
other and from the roots of g(u + te) - h(u + te).

Suppose that g- h is non-negative on Vg (f). By the genericity assumption, the product
g(u + te)h(u + te) is positive on all the roots of f(u + te). Between consecutive roots of
f(u+te), the polynomial g(u+te) has a single root and thus changes sign. For the product
gh to be positive on these roots, h(u + te) must also change sign and have a root between
each pair of consecutive roots of f(u + te). Hence h interlaces f with respect to e.

Conversely, suppose that g and h both interlace f. Between any two consecutive roots
of f(u + te), both g(u + te) and h(u + te) each have exactly one root, and their product
has exactly two. It follows that g(u + te)h(u + te) has the same sign on all the roots of
f(u + te). Taking t - oo shows this sign to be the sign of g(e)h(e), independent of the
choice of u. Hence gh has the same sign at every point of Vg (f). O

The version of the Helton-Vinnikov theorem that we are going to prove in the next sec-
tion yields Hermitian determinantal representations, rather than symmetric ones. One can
make a theory of spectrahedra defined by Hermitian matrices, which may be the natural
point of view for certain questions. However, in terms of the class of sets that one obtains,
this does not add anything new, essentially due to the following simple observation.
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Lemma 7.12. Let M be a homogeneous Hermitian linear matrix polynomial of size d x d.
Then there exists a real symmetric linear matrix polynomial N of size 2d x 2d such that

{ueR”]M(u) 20}: {ueR”]N(u) 20}
and det(N) = det(M)2.
Proof. Write M = A+ iB, where A is real symmetric and B is real skew-symmetric, and put

N = [ A B] . To see that N has the desired property, apply the change of coordinates

-B A
o _ o, g
UTNU=[A OZB AO.B] where U=[{.5 I"' V2 Id].
+1 % Y % Y
In particular, det(N) = det(M) det(M) = det(M)2. O

Recall that the adjugate matrix of a d xd-matrix A (also called adjoint matrix or Cramer
matrix) is the d x d-matrix A*Y whose (j, k)-entry is (-1)/* times the (d —1) x (d —1)-
minor of A obtained by deleting the jth row and kth column and taking the determinant.
The fundamental fact is Cramer’s rule, which says that A- A9 = det(A)-I,. This is a general
indentity holding for matrices with entries in any commutative ring.

If M is a (symmetric or hermitian) homogeneous linear matrix polynomial d x d, its
adjugate M9 is, by definition, a homogeneous matrix polynomial of size d x d and degree
d — 1. The relation between M and M4 will play a crucial role in the next section.

Definition 7.13. Let M be a Hermitian linear matrix polynomial of size d x d. Then
C(M) = {ATM™1 | AeC?\{0}},
is a subset of R[x]4-1), which we call the system of hypersurfaces associated with M.

Here is a useful identity that goes back to the work of Hesse in 1855 [He1855b].

Proposition 7.14. Let M be a Hermitian matrix of linear forms. Then the polynomial
(7.15) (ATMIN) (u" M E) — (AT M) (" M0

is contained in the ideal generated by det(M), for any A, u € C4. In particular, the polynomial
(ATM2IL) (uT M*9m) is non-negative on Vg (det(M)).

Proof. Consider a general d x d-matrix of variables X = (X;;). At a generic point in
Ve(det(X)), the matrix X has rank d — 1. The identity X - X% = det(X) - I; implies that
X249 then has rank one at such a point. It follows that the 2 x 2-matrix
V T xadj) ATXadjﬁ]
#TXade [/ITXadjﬁ

also has rank at most one on V¢ (det(X)). Since the polynomial det(X) is irreducible, the
determinant of this 2 x 2 matrix thus lies in the ideal generated by det(X). Restricting to
X = M gives the desired identity.

For the claim of non-negativity, note that (uT M) = (AT M2dz). So the polynomial
(ATM%))(uT M*9i) is equal to a polynomial times its conjugate modulo det(M) and is
therefore non-negative on Vg (det(M)). O

We can use this identity to determine whether a determinantal representation is definite.
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Theorem 7.16. Let f € R[x] 4 be irreducible and hyperbolic with respect to e, and let f =
det(M) be a Hermitian determinantal representation of f. If some polynomial in C(M)
interlaces f with respect to e, every polynomial in C( M) does and the matrix M(e) is (positive
or negative) definite.

Proof. First, suppose that g = AT M4} interlaces f and let & be another element of C(M),
say h = uT" Mg where y € C?. From Proposition 7.14, we see that the product g - h is
non-negative on Vg(f). Then, by Lemma 7.11, h interlaces f.

To show that M(e) is definite, we first show that any two elements g, i of C(M) have
the same sign at the point e. Since f is irreducible, the polynomial g - h cannot vanish on
Vr(f). By Proposition 7.14, the product g - h is non-negative on Vg(f) and thus strictly
positive on a dense subset of Vg(f). Furthermore, since both g and h interlace f, they
cannot have any zeros between e and Vg ( f) when restricted to any line {u + te |t € R}, for
u € R"~ {0}. So the product g- h must be positive at e. Now since AT M2di(e)A € R has the
same sign for all A € C%, the Hermitian matrix M?%(e) is definite. Hence so is the matrix

M(e) = f(e)(M%i(e))™". O
Remark 7.17. The converse of Thm. 7.16 also holds. (See [PV13, Thm. 3.3]).

We conclude this section with a useful lemma showing that the map taking a matrix
with linear entries to the determinant is closed when restricted to definite representations,
which it need not be in general.

Lemma 7.18. Let e € R". The set of all homogeneous polynomials f € R[x]; with f(e) =1
that possess a Hermitian determinantal representation f = det(M) such that M (e) is positive
definite is a closed subset of R[x],.

Proof. First we observe that if f(e) =1and f = det(M) with M(e) > 0, then f has such a
representation M’ for which M’(e) is the identity matrix. To find it, we can decompose the
matrix M(e)™' as UUT for some complex d x d-matrix U. Then M’ = UTMU is a definite
determinantal representation of f with M'(e) = I,.

Now let fi € R[x]; be a sequence of polynomials converging to f such that f; =
det(M®) with M® (x) = xeM® + - + x, M and M® (e) = I,. For each j, let e
denote the jth unit vector. Since fi(te — e;) is the characteristic polynomial of M;k), the
eigenvalues of each M](.k) converge to the zeros of f(te — e;). It follows that each sequence
(M}k) )i is bounded. We may therefore assume that the sequence M%) is convergent (af-

ter successively passing to a convergent subsequence of M](.k) for each j = 0,...,n) and
conclude that f = det(limy_,., M(¥)). O

7.3. HYPERBOLIC CURVES AND THE HELTON-VINNIKOV THEOREM

The goal of this section is to show that every hyperbolic plane curve possesses a Her-
mitian determinantal representation. This is a weaker statement than the Helton-Vinnikov
theorem (Thm. 7.7), which says that there even exists a symmetric determinantal represen-
tation, but it still suffices to characterise the plane spectrahedra. The proof follows [PV13].

First of all, we now speak of curves and convex subsets of the plane rather than of three-
dimensional cones. This is because we consider projective varieties instead of affine cones,
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which gives a better geometrie picture. Thus a homogeneous polynomial f € R[x, y, z] of
degree d defines the projective plane curve

Ze(f) = {peP*(C)| f(p) = 0}
Zr(f) = {p e P*(R)| f(p) = 0}

where P2(C) is the complex projective plane. We use the letter Z to distinguish the plane
projective curve from the affine cone V() c C3.

Recall how points in the projective plane are denoted in homogeneous coordinates: A
point in P?(C) is an equivalence class of points in C* \ {0} defining the same line through
the origin. The point in P?(C) corresponding to (a, b, c) € C3~\{0} isdenoted by (a: b : ¢)
and we have (a:b:c) = (Aa:Ab: Ac) forall A € C*. In particular, (a: b : ¢) is real if and
onlyif Aa, Ab, Ac are all real for some A € C*. (Thus (i : i : i) is a real point, while (1:1: 7)
is not.) Complex conjugation acts on P2(C) via the rule (a:b:c) = (a: b : ¢), so that
P2(R) is exactly the set of fixed points of this action.

Let f € R[x, y,z] be homogeneous and irreducible of degree d. We wish to find a
determinantal representation f = det(M) where M is a Hermitian matrix of linear forms.
We will describe a general method for constructing such a representation. The idea goes
back to the work of Hesse in 1855 [He1855a] and was extended by Dixon in 1902 [Di1902].

Construction 7.19. Let f, g € R[x, y,z] be homogeneous with f irreducible, deg(f) = d
and deg(g) = d — 1. Assume that Zr(f) N Zr(g) = @.

(1) Put S = Zc(f) N Zc(g) andlet T c Sbesuchthat S=TuTand TN T = @.
(2) Consider the complex vector space

V =Zc(T)nClx, y, 2] (a-1) = {h € Clx, y,z](a-n) | hlr = O},

which is of dimension at least @ - @ = d (the dimension of C[x, y, z](4_1)

minus the number of conditions imposed by the vanishing at the points in T).
Note that S may contain fewer than d(d — 1) points, in which case we have to take
multiplicities into account in the definition of V' to make things work, but we will
ignore this point here. Put a;; = g and extend to a linearly independent family

au,...,aldeV

(3) Fix j, k with 2 < j < k < d. The polynomial aj,a;x vanishes on the intersection
points S of Z¢(f) and Z¢(g). If S consists of d(d — 1) distinct points, the ho-
mogeneous vanishing ideal of S is generated by f and g = ay. Thus we obtain
polynomials p, g € C[x, y, z] such that

ayjay = pf +qan.

Since ajjai, f and ay are all homogeneous, we can assume that p and g are also
homogeneous, and we find deg(q) =d — 1.

Again, if S contains fewer than d(d — 1) points, we have to take multiplicities
into account, but the statement remains true (using Max Noether’s theorem).

Put aj; = q. If j = k, then ay; and ajja,; are both real and we take a;; to be real
as well. Finally put a;; = aj; for j > k.
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(4) We denote by A, the d x d-matrix with entries a . By construction, we have
anaji — awdji € (f).
for all j < k. Note that A, depends not only on f and g, but also on the choice of

splitting S = T'u T and the choice of basis of V. We will ignore this and denote by
A, any matrix arising in this way.

Now we are ready for the main result of this section.

Theorem 7.20. Let f,g € R[x, y,z]| be homogeneous with f irreducible, deg(f) = d and
deg(g) = d — 1. Assume that Zr(f) n Zr(g) = & and let A, be as in Construction 7.19.

(1) Every entry of the adjugate matrix (A,)* is divisible by f4-% and the matrix
_ adj
M, = (l/fd Z)Ag)
has linear entries. Furthermore, there exists y € R such that

det(M,) = yf.

(2) Assume that f is strictly hyperbolic with respect to a point e and that g strictly inter-
laces f. Then y # 0 and the matrix M (e) is (positive or negative) definite.

The proof will make use of the following simple lemma.

Lemma 7.21. Let A be a d x d-matrix with entries in a factorial ring R. If f € R is irreducible
and divides all 2 x 2-minors of A, then for every 1 < k < d, the element f*! divides all
k x k-minors of A.

Proof. By hypothesis, the claim holds for k < 2. So assume k > 2 and suppose that f¥-2
divides all (k — 1) x (k — 1)-minors of A. Let B be a submatrix of size k x k of A. From
B*4iB = det(B) - I} we conclude det(B¥) = det(B)*.

Suppose det(B) = f™g where f does not divide g. Then det(B)*! = fm(k-1) gk-1 By
assumption f*-2 divides all entries of B*¥, hence f*(k-2) divides its determinant det(B)*.
Since f is irreducible, f does not divide g&-1, so f¥(k-2) must divide f”(k-1), Then k(k-2) <
m(k — 1) which implies that k — 1 < m, as claimed. O

Proof of Thm. 7.20. (1) By construction, the 2 x 2 minors of A, of the form ayaj — ana;,
are divisible by f. Therefore, if u € Z¢(f) is a point with ay(u) # 0, we can conclude
that every row of A,(u) is a multiple of the first, so that A,(u) has rank 1. Since ay is not
divisible by f, it follows that aj;(u) # 0 holds on a Zariski-dense subset of Z¢(f). So all
the 2 x 2 minors of A, are divisible by f. Since f is irreducible in C[x, y, z], this implies
that all (d — 1) x (d —1)-minors of A, are divisible by -2, by Lemma 7.21.

The entries of A% have degree (d —1)? and f has degree d, so that M, = (1/f4-2) - A}
has entries of degree (d —1)? — d(d - 2) = 1. Furthermore, by Lemma 7.21, det(A,) is
divisible by f9-1. So det(A,) = cf*"! for some ¢ € R[x, y, z] and we obtain

det(M,) = det(f>9A%Y) = 90D det(ALY) = 1D det(A,)*!
_ fd(z—d) Cd—lf(d—1)2 _ Cd_lf.

Since det(M,) has degree d, we see that c is a constant and we take y = ¢?-1.
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(2) To show that det(M,) is not the zero-polynomial, we begin by showing that
ATAL
is not the zero-polynomial, for any A € C9. As argued in the proof of (1), the matrix A, has
rank one at all points of V¢ (f) and for every A € C?, we have

(7.22) an- (ATA L) - (ATAge))(ATAger) € (f).

If AT A ) is identically zero, we conclude that AT A ze, vanishes on Ve (f). Since f has degree
dand ATAge, has degree d—1, AT A je; must then vanish identically as well. This contradicts
the linear independence of the polynomials ayj, . . ., a4.

Now suppose that the claim is false and that det(M,) is identically zero. From the proof
of (1), it is clear that det(A,) is then zero, as well. In particular, the determinant of Az(e)
is zero, so there is some nonzero vector A € C" in its kernel, and AT A g(e)x is also zero. But
we have just shown that the polynomial (ATA gX) is nonzero, and Eq. (7.22) shows that the
product ay, - (ATA L) is non-negative on Vi (f). By Lemma 7.1, (AT A1) therefore inter-
laces f. Thus this polynomial cannot vanish at the point e and the determinant det(M,)
is not identically zero.

Now all we need to show is that M, (e) is definite. To do this, we show that A, is the
adjugate matrix of M,. By construction, M, = f24 - Azdj . Taking adjugates, we see that

Madj _ 1 . ( Aadj)adj

d- _ -
¢ 7 fap@mn Ve ~det(Ag)"Ag = A

1
"~ fl@@n

where det(A;) = cf9! as in the proof of (1) above. Thus ay; is a constant multiple of
el Mz,d’ e; and belongs to C(M,). Since ay interlaces f with respect to e, Theorem 7.16
implies that the matrix M, (e) is definite. O

Corollary 7.23. Every hyperbolic polynomial in three variables possesses a definite Hermitian
determinantal representation.

Proof. Suppose f € R[x, y, z] is irreducible and strictly hyperbolic with respect to e. Then
the directional derivative D, f strictly interlaces f and can be used an input in Construction
7.19. By Thm. 7.20(2), this will result in a definite Hermitian determinantal representation
of f. If f is strictly hyperbolic but not irreducible, then each irreducible factor of f is
strictly hyperbolic and we can build a Hermitian determinantal representation of f as a
block matrix form the representations of all factors.

In general, if f € R[x, y,z]4) is (not necessarily strictly) hyperbolic with respect to e
with f(e) = 1, there exists a sequence of strictly hyperbolic polynomials ( fx) ¢ R[x, y, z](a)
(with respect to e) and fi(e) =1 converging to f. Now each f; has a Hermitian determi-
nantal representation, hence so does f by Lemma 7.18. O

Corollary 7.24. Every three-dimensional hyperbolicity cone is spectrahedral.
Proof. This follows at once in view of Lemma. 7.12. O
Corollary 7.25. Every hyperbolicity cone is a convex cone.

Proof. Let f € R[x](a) be hyperbolic with respect to e. For u € C.(f) and a > 0, the roots
of f(au + te) are those of f(u + a~'te), so it is clear that au € C,(f). Given two points
u,v € C.(f), let V be the three-dimensional subspace spanned by e, u,v. Then C,(f) NV
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is the hyperbolicity cone of f|y and is therefore spectrahedral by the preceding corollary.
In particular, it is convex and therefore contains u + v. O]

Corollary 7.26. If f is hyperbolic with respect to e, then it is hyperbolic with respect to any
interior point of C,(f).

Proof. This is easy to see if f has a Hermitian determinantal representation and therefore
holds for three-dimensional hyperbolicity cones. The general case can be reduced to the
three-dimensional one as in the proof of the corollary above. O

Finally, let us see an example. Carrying out Construction 7.19 in practise is not an easy
matter. The following example is taken directly from [PV13, Example 4.11].

Example 7.27. We apply Construction 7.19 to the quartic
(7.28) flx,y,2) = x*—4dx*y* + y* —4x?2? - 2y°2% + 24,

which is hyperbolic with respect to the point e = (1 : 0 : 0). This curve has two nodes,
(0:1:1) and (0: -1:1), so that f is not strictly hyperbolic. But the construction will still
work, and this happens to simplify the explicit computations considerably. Figure 1 shows

the real curve in the plane {x =1}.
\/ \//
. @

Figure 1. The hyperbolic quartic (7.28) and interlacing cubics.

We define a;; to be the directional derivative iDe f =x3-2xy*-2xz2. The curves V¢ (f)
and Vc(ay) intersect in the eight points (2 : +v/3 : +i), (2: i : +1/3) and the two nodes,
(0 : £1:1), each with multiplicity 2, for a total of 4-3 = 12 intersection points, counted with
multiplicities. We divide these points into two conjugate sets (making an arbitrary choice)
and decompose S = Ve (f) nVe(ay) into S = T U T where

T:{(0:1:1),(0:—1:1),(2:\/5:i),(2:—\/§:i),(2:i:\/§),(2:i:—\/g)}.

The vector space of cubics in C[x, y, z] vanishing on these six points is four dimensional
and we extend ay; to a basis ay, ar,, ai3, ai4 for this space, where

ap = ix® +4ixy? — 4x*z - 4y*z + 42°,
ai = =3ix> + 4x*y + dixy? - 4y° + 4y72%,
ay = —x° - 2ix*y - 2ix’z + 4xyz.
Then, to find a,, for example, we write aj, - a, as an element of the ideal (f, ay),

ap-ap = (13x° —14xy* - 22x2%) - ay + (162* - 12x7) - f,
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and set ay = 13x% — 14xy? — 22xz>. We proceed similarly for the remaining entries and
eventually obtain the output of Construction 7.19, the Hermitian matrix of cubics

ap dp a3 a4
dp a4z a4z 04z
ai3 43 a3 Az

Al Qz4 0434 Q44

By taking the adjugate of A and dividing by f2, we find the desired Hermitian determinantal
representation,

14x 2z 2ix-2y 2(y-z)
M - i.Aadj _ 95 2z X 0 —ix+2y
S - -2ix =2y 0 X ix -2z

2i(y-z) ix+2y -—ix-2z 4x

The determinant of M is 224- f. As promised by Theorems 7.16 and 7.20, the cubics in C(M)
interlace f (see Figure 1) and the matrix M is positive definite at the point (1,0, 0).

7.4. HYPERBOLICITY CONES AS PROJECTED SPECTRAHEDRA

Following Netzer and Sanyal in [NS12], we can also use the exactness results of Helton
and Nie to study representations of hyperbolicity cones as projected spectrahedra. For
a hyperbolic polynomial f with smooth hyperbolicity cone, this boils down to verifying
quasi-concavity of f on the boundary. But this requires some care, since the concavity
cannot be strict along lines through the origin, on which f is constant. Thus we have to
take suitable affine slices. First, we will need the following basic lemma.

Lemma 7.29. Let f € R[x] be hyperbolic with respect to e. If u € R" is a point with f(u) =0
and V f (u) # 0, then 2 f (u + te)|io # 0.

Proof. If Vf(u) # 0, then 2 f(u + sv)|s-o # O for generic v € R". Fix such v € C.(f) =
int(C.(f)) and consider the hyperbolic polynomial f(ru+sv +te) in three variables , s, .
By Thm. 7.23, this polynomial has a Hermitian determinantal representation

f(ru+sv+te)=det(rA+sB+tC)

where B and C are positive definite, hence factor as B = UT andC=VV .Nows=0isa
simple root of f(u+sv) = det(A+sB), which means that U'!A(UT)~! has one-dimensional
kernel. But then so does V-1A(VT)~1, hence t = 0 is also a simple root of f(u + te) =
det(A + tC). (For a direct proof of this lemma, see also [PV13, Lemma 2.4]). [l

Lemma 7.30. Let f € R[x] be hyperbolic with respect to e with f(e) > 0 and suppose that
C.(f) is pointed. Let H be any affine hyperplane with e € H, 0 ¢ H. Then f|y is strictly
quasi-concave at any point u € Co(f) n H with f(u) # 0 or with f(u) = 0 and V f(u) # 0.

Proof. Let H' = H — e, a linear hyperplane in R”. Note that showing strict quasi-concavity
of f|i at u amounts to the following: If v € H' \ {0} is such that 2 f(u + tv)|,-o = 0, then
g—;f(u + 1v)]s=0 < 0 (see Exercise 7.4 below).

(1) Let u € C.(f) n H with f(u) # 0, then f(u) > 0, so we may rescale and assume
f(u) = 1. By Cor. 7.26, f is then hyperbolic with respect to u. Thus for any v € H’' \ {0},
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the univariate polynomial f (v + tu) has only real roots. Since f is homogeneous, the same
is true for f(u +tv) = t4f(t"'u +v), where d = deg(f). Since f(u) # 0, all these roots are
different from 0, hence we may write

flu+tv)=(1+Mt)(1+ Agt)

where k = deg,(f(u +tv)) <dand —(1/Ay), ..., —(1/Ax) are the roots of f(u + tv). Since
C.(f) is pointed, it does not contain any lines, so f(u + tv) cannot be constant for any
v € H' x {0}. So in this case, we must have k > 0. In particular, the coefficient of ¢ in
f(u+tv)isa = Y, A; and the coefficient of 2 is a, = 1(a? - Y5, 12). So if @, = 0, then
a, < 0, showing that f|y is strictly quasi-concave at u.

(2) Let u € C,(f) with f(u) = 0and Vf(u) # 0. For any v € H' \ {0}, the polynomial
f(re+s(u—e)+tv) e R[r,s, t] is the restriction of f to the subspace spanned by e, u, v,
a hyperbolic polynomial of degree d = deg( f) in three variables r, s, t. Applying Thm. 7.23
and assuming f(e) = 1, we can find Hermitian matrices A, B of size d x d such that

f(re+s(u—e)+tv)=det(rl; +sA+tB).

Evaluating at r = s = 1, t = 0 gives f(u) = det(I; + A), and since Vf(u) # 0, we must
have rk(I; + A) = d — 1 by Lemma 7.29. After a change of coordinates, we may assume
I; + A = Diag(1,...,1,0). Write B = (bji);k<a and expand f(u + tv) = ait + - + agtk.
Comparing coefficients on both sides of f(u + tv) = det(I; + A + tB), we find

d-1

a) = bdd and a; = Z bjjbdd - bjdb_jd-
=
Soif a; = 0, we cannot have a, > 0 unless bj; = 0 for j =1,...,d - 1. But that would imply

f(u+tv) = 0forall t, which is impossible under the assumption that C,( f) is pointed. [J

Exercise 7.4. Let f:R” — R be a twice continuously differentiable function. Show that f is strictly
quasi-concave at a point u € R" if and only if %f(u + tv)]s=0 = 0 implies aa—;f(u + 1v)]4=0 < O for
allv e R" ~ {0}.

To be able to apply Lemma 7.30, we need a preliminary reduction step to make sure
that the hypotheses are satisfied. To do this, we need to get rid of any affine-linear subspace
contained in the hyperbolicity cone. In general, if C c R” is non-empty, closed and convex,
there is a unique linear subspace V' c R”, called the lineality space of C, with the property
C = (CnV*) + V and such that C n V* does not contain any affine linear subspace. The
proof is contained in the following exercise.

Exercise 7.5. Let C c R” be non-emtpy, closed and convex. Prove the following:

(a) If V c R" is a linear subspace with u + V c C for some u € C,thenu + V c C forall u € C.
(b) If V is a subspace with the property in (a), then C= (Cn V') + V.

(c) There is a unique maximal subspace with the property in (a), called the lineality space of C.
(d) If V is the lineality space, then C n V* does not contain any affine-linear subspace.

Theorem 7.31. Every hyperbolicity cone with smooth boundary is a projected spectrahedron.

Proof. Let f € R[x] be hyperbolic with respect to e and assume f(e) > 0. That the hyper-
bolicity cone C,(f) has smooth boundary means vV f(u) # 0 for all u € C,(f) ~ {0} with
f(u) = 0. Let V c R” be the lineality space of C.(f). Then C,(f) = (C.(f) n V1) + V by
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Exercise 7.5(b). If C,(f)n V'* is a projected spectrahedron, then so is C, ( f) by Thm. 2.9(3).
Thus, with a suitable choice of coordinates and using Exercise 7.5(d), we may assume that
C.(f) contains no affine-linear subspace. In particular, the hyperbolicity cone C,(f) is
then pointed, which implies that there exists an affine hyperplane H c R” withe € H,0 ¢ H
such that C,(f) = cone(C.(f) n H) and such that C,(f) n H is compact (c.f. Prop. 2.3).
Now Lemma 7.30 says that f|y is strictly quasi-concave at all points of C.(f) n H.
Furthermore, given u € C.(f) ~ {0} with f(u) = 0, there exists a radius ¢ such that
B.(u) nS(f) = B nC.(f), because t = 0 is a simple root of f(u + te) by Lemma 7.29.
In other words, f locally describes the hyperbolicity cone. Since the defining polynomial
€231 (x;—u;)? of the closed ball B, (1) is everywhere strictly quasi-concave, we may ap-
ply Cor. 5.14 and conclude that B,nC,( f) n H possesses an exact Lasserre relaxation. Using
the compactness of the boundary of C,(f) n H in H, we can write C,( f) n H as the convex
hull of finitely many projected spectrahedra. Applying Thm. 2.9(5), we see that C,(f) n H
is a projected spectrahedron. Hence so is C( f) = cone(C.(f) n H), by Thm. 2.9(4). [
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8. TWO-DIMENSIONAL CONVEX SETS

In this chapter, we discuss Scheiderer’s recent solution in [Sc12] of the Helton-Nie con-
jecture in dimension two: Every convex semialgebraic subset of the plane is a projected
spectrahedron. This is obtained as a consequence of a stronger result, namely the stabil-
ity of quadratic modules defining 1-dimensional compact sets. Here, we will first deduce
the two-dimensional Helton-Nie conjecture from this result and then sketch a proof of the
stability theorem for curves.

8.1. CONVEX HULLS OF CURVES AND SCHEIDERER’S THEOREM

Some basic notation and results on affine varieties have already been discussed in Sec-
tion 4.2. We recall the most important points: To an affine variety V = V¢(I) c C" defined
over R by an ideal I ¢ R[x] in the real polynomial ring, corresponds the coordinate ring
R[V] = R[x]/Z(V) (where Z(V) = /T is the vanishing ideal), a finitely-generated re-
duced R-algebra. The variety V is treated as an abstract object encoded in R[ V'], indepen-
dent of the choice of coordinates, i.e. the choice of the surjection R[x] — R[V]. Recall also
that a morphism ¢: V' — W between two affine varieties V and W over R is simply a real
polynomial map from V to W (with respect to some embedding of V and W into affine
space). Such a morphism induces a homomorphism ¢*:R[W] — R[V] of R-algebras,
given by f — f o ¢.

If M is a finitely generated quadratic module in R[ V'], we want to make sense of the no-
tion of stability for M, as defined in Section 3.1. The problem is that we have no well-defined
notion of degree for elements in R[V]. There are two solutions: Fixing coordinates and
choosing g1,..., g € R[x] with M = M(gj, ..., g,) and generators Z(V) = (hy, ..., hs) of
the vanishing ideal, we can consider the quadratic module M, = M(gi, ..., g, +hy, ..., £h;)
in R[x], which is just the preimage of M in R[x | under the residue map R[x] — R[x]/Z(V)
(c.t. proof of Cor. 4.4). Then we say that M is stable if and only if M, is. We would have to
show that this does not depend on the choice of coordinates.

More elegantly, we can just eliminate the notion of degree from the definition of sta-
bility: Let A be any R-algebra and M = M(g) a finitely generated quadratic module in A.
Given a linear subspace W of A, we write

Mg[W] = {Zsig,-|si = thj with t;; € W for i = 1,...,r}
i=0 F
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and say that M is stable if for every finite-dimensional subspace U of A there exists a finite-
dimensional subspace W of A such that M, n U ¢ M [ W]. This definition agrees with the
previous one for the polynomial ring and is independent of the choice of generators.

Exercise 8.1. Show that the notion of stability of a quadratic module M(g) in an R-algebra 4, as
defined above, does not depend on the choice of generators g c M ( g)

Now let V be an affine R-variety. We write V(R) for the set of real points of V. Given
a subset S of V(R), the preordering P(S) = {f € R[V]| f|s > 0} is called the satu-
rated preordering of S. A finitely generated quadratic module M = M(g), with g =
{g1,..., &} c R[V],iscalled saturated if M = P(S(g)), where S(g) = {u € V(R)|g1(u) >
0,...,g(u) > 0} is the basic-closed set defined by g. As explained in Section 3.1, the sat-
urated preordering P(S) of a semialgebraic set S is never finitely generated if dim(S) > 3.
On the other hand, it is finitely generated for any subset of the line (c.f. Example 3.2(2)). It
turns out that this is also true for compact subsets of smooth algebraic curves. Recall that a
variety is called smooth if it does not possess any singular points, neither real nor complex.
For an affine hypersurface Vc(f), f € R[x] irreducible, this just means V f(u) # 0 for all
u € Vc(f). The affine variety V is called an affine curve if all of its irreducible components
are one-dimensional.

Theorem 8.1 (Scheiderer [Sco3]). Let Z be a smooth affine curve over R and S ¢ Z(R) a
compact semialgebraic subset. Then the preordering P(S) c R[Z] is finitely generated. [

Since the saturated preordering P(S) is finitely generated, it makes sense to ask whether
it is stable. To show that it is, we will consider its behaviour under real closed extensions of
IR, just as we did for positive matrix polynomials in Section 4.4. Let R/R be a real closed
field extension and let K = R(+/~1) be the algebraic closure. If V = V¢ (hy, ..., k) c C"
is an affine variety defined over R by hy,..., h; € R[x] with coordinate ring R[V] =
R[x]/v/(hi, ..., hs), then we can regard Vi (hy, ..., hs) ¢ K" as an affine variety defined
over R with coordinate ring R[ V'] = R[x]/\/hy, . . ., hs. One can show that there is a canon-
ical isomorphism R[V] 2 R[ V] ®g R, which is a more intrinsic description of R[V']. The
main technical result of Scheiderer in [Sc12] is the following.

Theorem 8.2. Let Z be a smooth affine curve over R, let S ¢ Z(IR) be a compact semialgebraic
subset and let P = P(S) c R[Z] be the saturated preordering of S. For any real closed field
extension R/R, the preordering P generated by P in R[Z] is again saturated.

Here, the semialgebraic subset S(Pg) of Z(R) is the base extension S(R), hence the
theorem says exactly that Pr = P(S(R)). We will discuss this result and its proof in detail
in the next section. For now, we will just apply it to show stability of P(S).

Corollary 8.3. For Z and S as above, the saturated preordering P(S) in R[Z] is finitely
generated and stable.

Proof. We only need to show stability of P. This comes as an application of Prop. 3.24,
which also holds for stability of quadratic modules in general R-algebras, with the same
proof. That Py is saturated implies that the intersection of Py with any finite-dimensional
subspace of R[Z] = R[Z] ®g R is semialgebraic over R. (The proof is completely analogues
to that of Prop. 3.9). This holds for any real closed R/R, so P is stable by Prop. 3.24. O
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We now apply this result in the context of the Lasserre relaxation. Simply speaking,
we would like to show that the convex hull of a compact 1-dimensional set in R” possesses
an exact Lasserre relaxation. This is easy to deduce from Cor. 8.3, but only for subsets of
smooth curves. To avoid this assumption, we need a few more preparations. Since stability
means that we have degree bounds for all non-negative polynomials, not only linear ones,
we have more flexibility and coordinate-independence, which can be exploited as follows.

Proposition 8.4. Let V be an affine R-variety, let S ¢ V(R) be a semialgebraic set and
¢: V(R) - R" a morphism of varieties. If the saturated preordering P(S) in R[ V'] is finitely
generated and stable, then conv(@(S)) is a projected spectrahedron.

Proof. Let ¢*:R[x] — R[V] be the homomorphism of R-algebras induced by ¢ and fix
generators P(S) = M(g,---,4)> &b>---> & € R[V]. Since P(S) is finitely generated and
stable, there exists a finite-dimensional subspace W of R[ V'] such that (¢*R[x];)nP(S) c
M,[W]. Now, just as in Prop. 3.13, the convex set

M[W] = {L € R[V]*| Llu,pw) > 0and L(1) = 1}

is a spectrahedron. We can define the generalised Lasserre-relaxation £y, ¢ R" as the
image of M,[ W]’ under the map m: L ~ (L(¢*xy), ..., L(¢*x,)). Foru € S, the functional
L, e R[V']* given by evaluation in u is contained in M,[ W', which implies conv(¢(S)) c
L. As in the proof of 3.14(2), suppose we had u € Ly, say u = n(L) for L ¢ M <[ W], but
u ¢ clos(conv(¢(S))). Then we can pick € € R[x]; with £|,s) > 0 and €(u) < 0 by the
separation theorem (Prop. 3.16) and conclude L(¢*¢) = €(u) < 0, hence ¢*€ ¢ M,[W], a

contradiction. Thus conv(¢(S)) = Ly is a projected spectrahedron. O

Remark 8.5. In spite of its apparent generality, the hypotheses of this proposition can only
be satisfied if V has dimension at most 1, by the main result of [Scos].

Now if Z is any affine curve over R, possibly singular, we can get rid of the singularities
by passing to the normalisation of Z. If Z is irreducible, this is the curve corresponding
to the integral closure of the domain R[Z] in its quotient field. This integral closure is
again a finitely-generated R-algebra and therefore corresponds to an affine curve Z over
R. The inclusion R[Z] c R[Z] corresponds to a morphism Z — Z of curves, which is
an isomorphism everywhere except over the singular points of Z. Since R[Z] is integrally
closed, the curve Z is smooth’. The map Z — Z is surjective, but its restriction Z(R) —
Z(R) to real points may be non-surjective. In fact, a point u € Z(R) is outside the image
of Z(R) if and only if it is an isolated singularity of Z, in which case it is the image of
(potentially several) pairs of complex-conjugate points in Z. The map Z(R) - Z(R) is
however proper in the euclidean topology, i.e.it is closed with compact fibres.

If Z has several irreducible components, say Z = Z, U---U Z, we can apply the normal-
isation separately to each component and obtain the normalisation Z = Z; U - U Z; of Z
(where U denotes the disjoint union) with coordinate ring R[Z] = R[Z;] x --- x R[Z].

With all this, we are ready for the first main result.

Theorem 8.6. Every compact convex semialgebraic set C c R™ whose set of extreme points
has dimension at most 1 is a projected spectrahedron.

'In general, the singular locus of an irreducible affine variety V with integrally closed coordinate ring
has codimension at least 2 in V. Thus if V is a curve, it must be smooth.
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Proof. Let S be the closure of the set of extreme points of C, a compact semialgebraic set
of dimension at most 1 by hypothesis. Let Z be the Zariski-closure of S, an affine variety of
dimension at most 1. Let Zy, ..., Zi be the irreducible components of Z, let Z- — Z; be the
normalisation of each, and let Z — Z be the normalisation of Z, given by Z = Z, U --- U Zj.
Now let u;,...,u; € S be the isolated singularities of Z contained in S. As explained
above, uj, . .., u; do not lie in the image of Z(R) - Z(R). Consider the abstract variety

Y=Z|_|p1|_|-~-l_|pl
where each p; is a real point. Its real coordinate ring is the R-algebra

R[Y] = R[Z] X oee X R[Z(] xRx--xR.
I times
The variety Y comes with a natural morphism ¢: Y — Z which is the normalisation on
Z and sends each p; to u;. Let S be the preimage of S in Y(R) under ¢. Then S is
again compact and by Cor. 8.3, applied to each irreducible factor of Y, the saturated pre-
ordering P(S) c R[Y] is finitely generated and stable. By Prop. 8.4, this implies that

C = conv(¢(S)) is a projected spectrahedron. O
Corollary 8.7. Every compact convex semialgebraic subset of R? is a projected spectrahedron.

Proof. By the Krein-Milman theorem, a compact convex set is the convex hull of its set of
extreme points. For a convex semialgebraic set of dimension 2, these form a semialgebraic
set of dimension at most 1, so Thm. 8.6 applies. O

Example 8.8. For example, we see again that the compact convex regions in Examples
6.1 and 6.9 are projected spectrahedra. Moreover, using the construction in the proof of
Thm. 8.6, we can also produce an exact (generalised) Lasserre relaxation of these sets, while
it was not previously clear whether that is possible.

Finally, we show how to deduce the full two-dimensional Helton-Nie conjecture from
the above result. This amounts to dealing with closed, not necessarily compact, semial-
gebraic subsets of the plane, and then performing some surgery on the boundary in the
general case. The latter uses the following result due to Netzer, which we do not prove
here. But one can think of it as a (very much) refined version of the argument showing
that the interior of a projected spectrahedron is a projected spectrahedron (Thm. 2.9(10)).

Theorem 8.9 (Netzer [Ne1o]). Let C, T be projected spectrahedra in R" with T c C. Let Fr
be the set of all faces F of Cwith Fn T #+ & and let

T <P C= | relint(F).

FeFr

Then T <P C is a projected spectrahedron. O

Exercise 8.2. Show the following (directly or using Netzer’s theorem): If C is a projected spectra-
hedron and u an extreme point of C, then C \ {u} is a projected spectrahedron. Hint: Consider
first the case in which u is an exposed face of C.

Now we have all we need.

Theorem 8.10. Every convex semialgebraic subset of R? is a projected spectrahedron.
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Proof. Let C be such a set. Suppose first that C is closed and let C = clos(cone(C x {1})) c
RR3. Since Cx {1} = Cn(R?x{1}), it suffices to show that C is a projected spectrahedron. Let
U be the lineality space of C (c.f. 7.5). Then C = (Cn U*) + U and Cn U* is pointed, so we
may assume that C is pointed. In that case, by Prop. 2.3, there exists an affine hyperplane
H c R3 such that C = cone(C n H) and C n H is compact. Now C n H is a projected
spectrahedron by Thm. 8.6, hence so is C by Thm. 2.9(4).

For the general case, we may assume as usual that int(C) # @. We know that C =
clos(C) is a projected spectrahedron and S = C \ C is a certain one-dimensional semial-
gebraic subset of the boundary of C. Let F be the finite set of one-dimensional faces of C.
We decompose S as follows:

Sy = the relative interior of S N Ex(C) inside S

S,=FnSforFeF

Then S is the union of Sy, Upcr Sk, and finitely-many extreme points uy, . . ., uy of C. For
F € F, let Hr be the open halfplane with int(C) c Hg, F n Hr = &, so that F c dHp. Put
C() = E N SO

CF =Hpu (CIOS(HF) N C)
C, = C~ {u} for u e Ex(C).
By construction, we now have
C=Con () CrnCyn--nCy.
FeF
It therefore suffices to show that each of the finitely many sets appearing in this intersection
is a projected spectrahedron. The sets Cr are the union of an open halfplane and an interval

and are therefore projected spectrahedra (either by a direct argument or using Thm. 2.9).
For C,,, see Exercise 8.2 below. To deal with C, let

T = clos(conv(aa \ So))

Since T is closed, convex and semialgebraic, we know that T is a projected spectrahedron.
Now let Fr be the set of all faces F of C such that FnT # @ andlet T <P C = U, relint(F).
We claim that T <P C = C,, showing that C, is a projected spectrahedron, by Netzer’s
theorem 8.9. To see this let u € Cy. If u is an interior point of C, then clearly u € T <P C
(unless T = @, which is a trivial case). If uy € dC, then it is not in Sy, hence it lies in T
and therefore in T <P C. Conversely, given u in C but not in Cy, then it is a point of S,.
By the definition of S, this means that {u} is the unique face of C containing u. Hence
u ¢ T <P C. This completes the proof. O

Remark 8.11. Using some more convex geometry, one can refine the argument in the first
part of the proof of Thm. 8.10 to show that the closure of the convex hull of any semialge-
braic set of dimension at most 1 is a projected spectrahedron. (see [Sc12, Thm. 6.1]).
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8.2. SUMS OF SQUARES ON COMPACT CURVES AND BASE EXTENSION

The goal of this section is to sketch the proof of Thm. 8.2, which says that the saturated
preordering of a compact subset of a smooth curve over R remains saturated when going
up to a real closed extension field.

Example 8.12. Consider the situation on the real line, where everything is completely ele-
mentary. For the unit interval S = [-1,1], the saturated preordering P = P(S) in R[x] is
generated by the polynomial 1 - x2. This is not hard to show directly. If R/R is a real closed
field extension, the preordering Pz = P(1-x?) in R[x] is still saturated. But that is because
we can just do the same direct proof over R, not because of what we know over R.

If Z is an affine curve over R, the situation is far more complicated. One of the main
results in [Sco3] says that if Z is smooth and P = P(g, ..., g,) is a finitely generated pre-
ordering in R[Z] defining a compact set S = S(g1,...,¢;) € Z(R), then P is saturated
if and only if in each boundary point u of S in Z(R) one of the generators g; vanishes to
order 1 (or two generators with opposing sign changes if u is an isolated point; see [Sco3,
Thm. 5.17]). We can see this in the above example, too: The polynomial 1 — x? has simple
roots 1and -1, whereas (1-x?)? has triple roots and therefore does not generate P([-1,1]),
as we showed in Example 3.10. However, the same statement does not hold for curves over
a non-archimedean real closed field R. The proof of Thm. 8.2 requires completely new
techniques. But it turns out that finding certain elements in Pr with simple zeros on the
boundary of S still plays a role in the proof.

Let A be a commutative ring with 1 € A and let P be a preordering of A. In this gen-
erality, P is called archimedean if for every f € A, there exists n € Z such that n + f € P.
(It is a consequence of Schmiidgen’s theorem that this definition agrees with the one given
earlier for preorderings in the polynomial ring.) If I is a prime ideal in A, we let P; denote
the preordering generated by P in the localisation A;. Explicitly, we have

PI:{%|aeP,seA\I}.
s
We will use the following local-global principle, developed earlier in [Sco6].

Theorem 8.13 (Archimedean local-global principle). Let A be a ring containing 1 and let P
be an archimedean preordering of A. Then an element f € A is contained in P if and only if
it is contained in Py for every maximal ideal M of A.

Proof. See [Sco6, Thm. 2.8] or [Marshall, Thm. 9.6.2]. O

To study the local preorderings P,;, we will need to work in the real spectrum. We
quickly recall the basics and fix notations: The points of the real spectrum Sper A of A
are the pairs (I,<) where I is a prime ideal of A and < an ordering of the residue field
Quot(A/I). If « = (I,<) is a point in Sper A, the prime ideal I is called the support of «,
denoted supp(«). An element f € A is regarded as a function on A, and f(«) > 0 means
that the class of f in Quot(A/ supp(«)) is non-negative with respect to the ordering given
by a. If A;is thelocalisation of A in a prime ideal I, the ideals of A; are in canonical bijection
with the ideals of A contained in I. Accordingly, the real spectrum Sper A; can be consid-
ered as an open subset of Sper A, consisting of those points a € Sper A with supp(«) c I.
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Given a preordering P of A, we write
Xp ={a e Sper(A) | f(a)>0forall f e P}

for the subset of Sper A defined by P.

If V is an affine R variety, the real points V(R) can be identified with a subset of
Sper(R[V]). Namely, each point v € V(IR) corresponds to a maximal ideal M, in R[ V]
and the residue field R[V]/M, = R has a unique order, so that there is a unique point
a, € Sper(R[V]) with supp(«,) = M,. If P is a finitely generated preordering in R[ V],
then clearly S(P) c Xp under this identification.

The following proposition will be very important to reduce the number of maximal
ideals we need to consider when applying the archimedean local global principle.

Proposition 8.14. Let A be a local ring with 1 € A and let P be a preordering in A. Then
every f € Awith f >0 on Xp c Sper A is contained in P.

Proof. See [Sc10, Prop. 2.1.]. O

Let R/R be a real closed field extension. We denote by O the convex hull of Z in R. It
is a subring of R which clearly has the property that a € O or a™! € O holds for every a € R.
It is therefore a valuation ring, i.e. there is a valuation v: R - T'U {o0} into some ordered
group I' such that O = {a € R|v(a) > 0} is the valuation ring of v. The residue field of O
modulo its maximal ideal m = {a € O |v(a) > 0} is just R and we denote the residue class
map O - O/mzRbyar a.

Now let V be an irreducible affine variety over R with coordinate ring R[ V'] and con-
sider the base extension of V to R with coordinate ring R[ V] = R[ V] ®& R. The valuation
v extends to a map w: R[V] - T U {o0} as follows: Given an element f = ¥!_, f; ® a; €
R[V] =R[V] ®g R with f; e R[V], a; € R, we define

w(f)=min{v(a;)|i=1,...,r}.

One can check that w has the same formal properties as v, i.e.

w(f +g) > min{w(f),w(g)} and
w(fg)=w(f)+w(g)

for all f,g € R[V]. (The first is clear from the definition. The second is not difficult to
show but uses the fact that R[ V] is integral.)
We will mostly work in the coordinate ring of V with coefficients in the valuation ring,

which is the ring O[V] = R[V] ®g O. We have O[V] = {f € R[V]|w(f) > 0}. The

residue map of O extends to a homomorphism O[V] - R[V], denoted f ~ f, defined
coefficient wise, i.e. Y1, fi®a; = Y, fi ® @ = Yo, aif; € R[V]. Clearly, f = 0 if and
only if w(f) > 0. Likewise, the residue map also induces a map on points V(O) — V(R),
v > v. (Ifv e V(O) is regarded as an R-algebra homomorphism v:R[V] — O, then v
is just the composition of v with the residue map O — R. If coordinates are fixed and

v=(v,...,v,) is regarded as a tuple in O", thenv = (v,...,v,) € R")

Lemma 8.15. Let A be an R-algebra and P an archimedean preordering in A. Then the
preordering Pp generated by P in A ®g O is again archimedean.
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Proof. Note first that we have P — P = A. For given f € A, choose c e Rwithc+ f € P,
then f = 2(c+ f) - 3(c — f) € P — P. It follows that any f € A ®g O can be written in the
form f = Y7, fi®a; with f; e Pand a; e O fori =1,...,r. Now choose 0 < ¢; € R with
a1 — fi € Pfor all i. Also, by definition of O, there exists ¢, € R with 0 < a; < ¢, for all 4,
hence ¢, — a; is a square in ). Now we can write

r r r r
rclcz—fzchc2®l—Zﬁ@aiJchzﬁ@l—Zfi@cz
i-1 i-1 izl izl
=0

:ng(cl—fi)®l+2fi®(62_ai)

which is an element of Py, showing that Py is archimedean. O
We are now ready for the proof of Thm. 8.2, which we restate.

Theorem. Let Z be a smooth affine curve over R, let S ¢ Z(R) be a compact semialgebraic
subset and let P = P(S) c R[Z] be the saturated preordering of S. For any real closed field
extension R/R, the preordering P generated by P in R[Z] is again saturated.

Proof. Let f € R[Z] with f > 0 on S(R) = S(Pg). First, we can find ¢ € R with w(f) =
v(c?), which implies w(c2f) = 0 and ¢™2f € O[Z]. Since c¢2f € Py clearly implies f € Py,
we may assume f € O[Z] with w(f) = 0. We show f € Py in several steps.

(1) We wish to apply the archimedean local global principle Thm. 8.13 for Pp c O[Z].
Since S is compact, P = P(S) is archimedean and so P, is archimedean by Lemma 8.15. So
we only need to show that f is contained in Py for every maximal ideal M of O[Z].

(2) The next step is to show that since f is non-negative on S(R) c Z(R), it is indeed
non-negative on the corresponding subset Xp, of Sper O[Z]. We will omit the proof of
this fact (see [Sc12, Lemma 3.5]).

(3) Now localising in a maximal ideal M, we know that f is non-negative on the subset

XP,M = XPO n Sper(?[Z]M

of Sper O[Z]. If f > 0 on Xp , then f € Py, by Prop. 8.14. So we need only consider those
maximal ideals M of O[ Z] that contain f and with Xp 5 # @.
We claim that such a maximal ideal M is necessarily of the form

M, = {Zﬁ@a,ﬁ Za_iﬁ(z) :OinR},

the maximal ideal of O[Z] corresponding to a point z € S. To see this, let a € Xp 5y with
supp(a) ¢ M and let p = supp(a) N R[Z], a prime ideal in R[Z]. Since w(f) # 0, we
cannot have supp(a) c R[Z] ® m and so p # (0). Since Z is a curve, this implies that p
is a maximal ideal of R[Z] and therefore corresponds to a point z € Z. Since a € Xp yr,
the point z must be real and contained in S. Now I = p ® O is an ideal of O[Z] with
I csupp(a) c Mand O[Z]/I = O. So O[Z]/M is a field containing R and contained in
O, hence it is archimedean and thus coincides with R. Thus M corresponds to a real point,
which must be the point z.
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(4) Our goal is to find an element h € Py with the property that ¢ = f/h is a unit in
O[Z]y and such that g is positive on Xp ». When that is done, we can apply Lemma 8.14
and conclude g € Py, hence f = gh € Py, completing the proof.

(5) Showing the existence of h as in (4) is the most technical part of the proof and we
will only give an outline. First, let O¢ = O[\/~1] and consider the set of O¢-points

U(z) = {¢e Z(0°) [{ =2}

that map to z under the residue map. We split the real zeros of f in U(z) into two groups

{CeUE@)nZR) [ () =0} ={m-.onr U {Gh. G}

in such a way that #,...,7, € int(S(R)) and (j,...,{; ¢ int(S(R)). Furthermore, let
{wi,...,w;} c U(z) be a subset containing exactly one representative from each pair of
non-real complex-conjugate zeros of f in U(z).

Next, one computes the order of vanishing of 7 at z and finds ([Sco6, Prop. 3.13])

ord. () = Yord () + 3 ord (1) + 2 ord, 7).
j=1 =1 =1

The crucial point is now to show that for every point { € U(z) with f({) = 0, there
exists an element h; € Po with w(h¢) =0, he({) = 0 and

(1 ifCeZ(R), ¢ int(S(R))
ord.(h¢) ‘{ 2 ifCeint(S(R)) or ¢ ¢ Z(R).

This is proved in [Sc12, Lemma 4.10]. Given this, we can define

r 1 s t

h= H(h”j)iordn}-(f) . H(h(k)ord(k(f) . H(hwl)ordwl(f) € PO-
j=1 k=1 1=1

which, by the above computation of ord, ( f), satisfies ord, (k) = ord,(f). This implies that

g= % isa unitin O[C]y. Since h € Py, it is clear that g is non-negative in all points of Xp 5

where h does not vanish. In the zeros of 4, one can argue with continuity in U(z) n Z(R),

except when there are isolated points, which require an additional adjustment of A. U
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