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�. LINEARMATRIX INEQUALITIES AND SPECTRAHEDRA

�.�. INTRODUCTION

Given real polynomials g�, . . . , gr ∈ R[x] in n variables x = (x�, . . . , xn), let
S = S(g�, . . . , gr) = �u ∈ Rn � g�(u) � �, . . . , gr(u) � ��

be the basic closed (semialgebraic) set in Rn de�ned by g�, . . . , gr. �e convex hull

conv(S) = � n�
i=� λiui � � � λi � �, n�

i=� λi = �, ui ∈ B�
of S is again semialgebraic and can be thought of as a linearisation of S. How can we
describe it in terms of inequalities? What is its boundary? Can we �nd a description that
re�ects the convexity and is well suited for computations? �ese are some of the questions
that we will attempt to answer through the study of linear matrix inequalities.

Even though the motivation comes from computational problems and in particular
from optimisation, our focus will be on geometry and theoretical foundations. �e basic
building blocks will be the a�ne-linear slices of the cone of positive semide�nite matrices.
�ese convex sets are called spectrahedra, and our goal will be the realisation of other
convex sets as spectrahedra or as projections of spectrahedra. To get started, we will �rst
need to study the spectrahedra themselves in some detail.
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� �. LINEAR MATRIX INEQUALITIES AND SPECTRAHEDRA

�.�. SPECTRAHEDRA

A polyhedron is a subset ofRn described by a �nite number of linear inequalities. �e
compact polyhedra are exactly the polytopes, i.e. the convex hulls of �nitely many points.
�ese are the simplest (and the most extensively studied) convex sets.

Spectrahedra, our basic objects, are generalisations of polyhedra that comprise many
more sets but still share some of the good properties of polyhedra. First, we need to recall
a bit of linear algebra. We use the notations

Matk×l(R) = space of all matrices of size k × l with entries in R,
Matk(R) = space of all square matrices of size k with entries in R,
GLk(R) = group of invertible square matrices of size k with entries in R,
Symk(R) = space of all symmetric matrices of size k with entries in R,

where R is any �eld (or ring). �e dimension of Symk(R) over R (or rank as a free R-
module) is �

�(k + �)k. �roughout, matrices will always be assumed real, unless speci�ed
otherwise. So we write Matk, Symk, etc. to denote Matk(R), Symk(R), etc.

Recall that a real symmetric matrix A ∈ Symk is called positive semide�nite if

vTAv � �
for all v ∈ Rk. It is called positive de�nite if the inequality is strict for all v ≠ �. We write

Sym+k = cone of positive semide�nite matrices of size k
Sym++k = cone of positive de�nite matrices of size k.

Note that Sym+k is the closure of Sym++k and Sym++k is the interior of Sym+k .
Amatrix A ∈Matk de�nes both the linear mapRk → Rk, v � Av, and the bilinear form

Rk × Rk → R, (v ,w) � vTAw. But a�er a change of basis, given by U ∈ GLk, the linear
map in the new coordinates is given by U−�AU , while the bilinear form is given by UTAU .
�e most basic fact about real symmetric matrices is that all eigenvalues are real. �is is
easy to prove: If λ ∈ C is a complex eigenvalue of a real symmetric matrix A and v ∈ Ck is
a non-zero eigenvector, then

λ�v�� = λvTv = (Av)Tv = vTATv = vTAv = λvTv = λ�v��
and since �v� ≠ � for v ≠ �, we conclude λ = λ.

�us if a symmetric matrix A is viewed as a linear map and U−�AU is diagonal, the
diagonal entries are the eigenvalues, all of which are real. On the other hand, if A is viewed
as a bilinear form, we can make UTAU diagonal and normalise the entries to be ±� or �.
�e di�erence between the number of positive and negative signs is the signature. Rank
and signature are the only invariants, by Sylvester’s theorem. In particular, we see that a
symmetric matrix is positive semide�nite if and only if its signature equals its rank.

From this it is not a priori clear that the signature is in any way related to the eigenval-
ues. But the principal axes theorem says that any symmetricmatrix possesses an orthonor-
mal basis of eigenvectors. �is means that, given A ∈ Symk, there exists U ∈ GLk with
UT = U−� such thatUTAU is diagonal. In this case, the diagonal entries ofUTAU = U−�AU
are the eigenvalues of A and the signs of the eigenvalues also determine the signature.
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We sum up these well-known facts in

�eorem �.�. A real symmetric matrix has only real eigenvalues, and it is positive de�nite
(resp. semide�nite) if and only if all its eigenvalues are positive (resp. positive or zero).

Exercise �.�. Let A be a real symmetric matrix of size k and rank r.
(a) Show that the following are equivalent:

(�) �e matrix A is positive semide�nite.
(�) �ere exists a k × r-matrix B with A = BBT .
(�) �ere exists a positive semide�nite k × k-matrix P with A = P�.

(b) If BBT = CCT with B and C of the same size k × r, there exists an orthogonal r × r-matrix U
such that B = CU .

(c) For A ∈ Sym+k , the matrix P in (a) is uniquely determined (and commonly denoted
√
A).

Exercise �.�. Let A ∈ Sym+k and v ∈ Rn. Show that vTAv = � implies Av = �.
For a symmetric matrix A, we will write A � � if it is positive semide�nite and A > � if it

is positive de�nite. We extend this to a partial order on Symk by writing A � B if A−B � �.
Now we are ready to de�ne spectrahedra.

De�nition �.�. A spectrahedron inRn is the inverse image of Sym+k under an a�ne-linear
map Rn → Symk, for some k.

Spectrahedra are clearly convex, since the inverse image of any convex set under an
a�ne linear map is again convex. Occasionally, we may �nd it convenient not to �x co-
ordinates and consider a spectrahedron in a �nite dimensional real vector space V given
as the inverse image of Sym(W)+ under an a�ne linear map Φ∶V → Sym(W), for some
�nite-dimensional real vector spaceW .

When working with matrices, we can write things out explicitly: An a�ne-linear map
Φ∶Rn → Symk is given by an n + �-tuple of symmetric matrices A�,A�, . . . ,An ∈ Symk via
Φ(u) = A� +∑n

i=� uiAi and the corresponding spectrahedron is the set

Φ−�(Sym+k) = �u ∈ Rn � (A� + u�A� +� + unAn) � �� ⊂ Rn .

We can view the expression A� + u�A� +�+ unAn as a polynomial of degree � with matrix
coe�cients, evaluated in the point u. Alternatively, we can think of it as a matrix with
polynomial entries

A(x) = A� + x�A� +� + xnAn = �������
ℓ��(x) � ℓ�k(x)⋮ � ⋮
ℓ�k(x) � ℓkk(x)

�������
with ℓ��, . . . , ℓkk ∈ R[x] of degree atmost �, and call this a linearmatrix polynomial. (If not
speci�ed otherwise, linear matrix polynomials will always be real and symmetric.) �us
A(x) is an element of Symk(R[x]) (which is isomorphic as anR-Algebra to the polynomial
ring Symk[x]). If A(x) is any linear matrix polynomial in n variables, we writeS(A) = �u ∈ Rn � A(u) � ��
for the spectrahedron de�ned by A, just as for ordinary polynomials. Spectrahedra are
therefore the sets of solutions to linear matrix inequalities.
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Examples �.�.
(�) Any polyhedron is also a spectrahedron. For if P = S(ℓ�, . . . , ℓk) is a polyhedron

de�ned by polynomials ℓ�, . . . , ℓk ∈ R[x] of degree �, then P = S(A) for the di-
agonal matrix polynomial A = Diag(ℓ�, . . . , ℓk). While any real symmetric matrix
can be diagonalised, the same is not true for matrix polynomials, because �nitely
many matrices need not be simultaneously diagonalisable (see also Exercise �.�).
�erefore, not every spectrahedron is a polyhedron.

(�) For example, the linear matrix polynomial

A = �� �
� �� + x �−� �

� �� + y �� �
� �� = �� − x y

y � + x�
in two variables x and y de�nes the closed unit disc in R�.

(�) More generally, the closed unit ball inRn is a spectrahedron, de�ned by the linear
matrix polynomial

A =
������������

� � � � x�
� � � � x�⋮ ⋮ � ⋮ ⋮
� � � � xn
x� x� � xn �

������������
.

(�) For a more interesting example, let R[x]d be the vector space of polynomials of
degree at most d in x = (x�, . . . , xn), and let m = ( f�, . . . , fk)T be a k-tuple of
polynomials spanning R[x]d (e.g. the monomial basis, with k = �n+dn �). �e map

Ψm∶� Symk → R[x]�d
A � mTAm .

is linear and surjective. Given f ∈ R[x]�d , any element of the �breΨ−�m ( f ) is called
a Gram matrix of f and Gm( f ) = Ψ−�m ( f ) ∩ Sym+k the Gram spectrahedron of f
(with respect to m). �e Gram spectrahedron is non-empty if and only if f is a
sum of squares of elements in Vd . For given A ∈ Gm( f ), we can write A = BTB
with B of size rk(A) × k (Exercise �.�). �en f = mTAm = (Bm)TBm is a sum
of rk(A) squares. Conversely, if f = ∑r

i=� g�i , we can write (g�, . . . , gr)T = Bm for
some B ∈ Matr×k. �en f = (Bm)TBm = mT(BTB)m, so that BTB ∈ Gm( f )
and rk(BTB) = r. In particular, the shortest sums-of-squares-representations of f
correspond to the Gram matrices of minimal rank.

Moreover, Gm( f ) classi�es the representations of f as a sum of squares up
to orthogonal equivalence: For if A ∈ Gm( f ) is split as A = BTB = CTC with B
and C both of size r × k, where r = rk(A), then B = UC for some orthogonal
matrixU of size r× r (Exercise �.�). Conversely, given suchU and a representation
f = ∑r

i=� g�i , then (h�, . . . , hr)T = U(g�, . . . , gr)T gives another representation f =∑r
i=� h�i belonging to the same Gram matrix.

Exercise �.�. Verify examples (�) and (�) above.

Exercise �.�. It clearly makes sense to generalise spectrahedra from the real symmetric to the com-
plex hermitian case. Let A(x) be a complex hermitian linear matrix polynomial of size k. Show
that there exists a real symmetric linear matrix polynomial B(x) of size �k such that S(A) = S(B).
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Exercise �.�.
(a) True or false? �e spectrahedron S(A) is a polyhedron if and only if the matrices A�, . . . ,An

are pairwise commuting.
(b) In general, ifA = A�+x�A�+�+xnAn is a linearmatrix polynomial of size k inwhichA�, . . . ,An

are simultaneously equivalent to diagonal matrices (meaning there existsU ∈ GLk such that all
UTAiU are diagonal), then S(A) is a polyhedron. To what extent does the converse hold?

(c) For more on this topic, see [BRS��].

Exercise �.�. Let A(x) = A� +∑n
i=� xiAi be a linear matrix polynomial and put A′(x) = ∑n

i=� xiAi .
Show that S(A) is a cone if and only if S(A) = S(A′).

While the de�nition of spectrahedron is simple enough, there are two di�erent ways
to think about it, corresponding to somewhat di�erent geometric pictures.○ We may think of a spectrahedron as a subset of Rn de�ned by a linear matrix

inequality.�is we can rewrite as an in�nite system of ordinary linear inequalities:
If A(x) is a linear matrix polynomial, then ℓv(x) = vTA(x)v is a polynomial of
degree at most � in the variables x, for any v ∈ Rk, andS(A) = �u ∈ Rn � ℓv(u) � � for all v ∈ Rk�.
We may think of Rk as a parameter space for the linear inequalities describing
the convex set S(A). Note that any closed convex set is described by an in�nite
family of linear inequalities: Given a closed convex subset C of Rn, let L = �ℓ ∈
R[x] � deg(ℓ) � �, ℓ�C � ��, then C = {u ∈ Rn � ∀ℓ ∈ L∶ ℓ(u) � �}, by the
separation theorem for closed convex sets. What makes spectrahedra special is
the simple parametrisation of L in terms of a linear matrix polynomial.○ We may also think of a spectrahedron as a set of matrices. If A(x) = A� + x�A� +� + xnAn is a linear matrix polynomial and ΦA∶Rn → Sk the a�ne-linear map
u � A� + u�A� + ⋅ ⋅ ⋅ + unAn, consider the set of matrices im(ΦA) ∩ Sym+k . If ΦA is
injective, we can identify this with S(A). �e geometric picture here is that of a
cone (namely Sym+k ) sliced by a linear subspace. �e subspace we are slicing with
is the span of A�, . . . ,An shi�ed by A�. For instance, this is the way wewould think
about the Gram spectrahedra in Example �.�(�).

If ΦA is not injective, then A(x) is basically a cylinder over im(ΦA) ∩ Sym+k ,
given in terms of the kernel of ΦA (see Exercise �.� below), so we do not loose too
much by passing to the image.

It is instructive to make the analogy with polyhedra again: Let P = �u ∈
Rn � ℓ�(u) � �, . . . , ℓk(u) � �� and consider the a�ne-linear map Φ∶Rn → Rk,
u � (ℓ�(u), . . . , ℓk(u)). �en P is the inverse image of the positive orthant (Rk)+
underΦ. �us, again up to injectivity ofΦ, any polyhedron is a slice of a standard
cone (Rk)+ for some k, just as in the case of spectrahedra.

Exercise �.�. Let A = A� + ∑n
i=� xiAi be a linear matrix polynomial. Let B�, . . . , Bm be a basis of

span(A�, . . . ,An) and put B = A� +∑m
i=� xiBi . Show that there exists a bijective linear transforma-

tion ψ∶Rn → Rm ×Rn−m such that ψ(S(A)) = S(B) ×Rn−m and ΦA = (ΦB × �) ○Ψ.
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�.�. FIRST PROPERTIES OF SPECTRAHEDRA

Proposition �.�. Spectrahedra are convex and basic closed.

Proof. Let S = S(A) for some linear matrix polynomial A. Convexity is clear from the
de�nition. We must show that there exist polynomials g�, . . . , gr ∈ R[x] such that S =S(g�, . . . , gr). To say that A(u) is positive semide�nite for u ∈ Rn is saying that all its
eigenvalues are positive or zero. �e eigenvalues are the roots of the characteristic poly-
nomial χA(u)(t) = det(tIk − A(u)). �us u is a point in S if and only if χA(u)(−t) has
no positive roots. By the subsequent lemma, this is the case if and only if all coe�cients
of (−�)k χA(u)(−t) are greater than or equal to zero. �us we can take g�, . . . , gr to be the
coe�cients of (−�)k χA(x)(−t) as a polynomial in t. ⇤

Lemma �.�. Let f ∈ R[t] be a monic polynomial in one variable and assume that all roots of
f are real. �en f has no positive roots if and only if all its coe�cients are non-negative.

Proof. Clearly, if all coe�cients of f are greater than or equal to zero, it cannot have positive
roots. Conversely, if the roots of f are −α�, . . . ,−αk with αi � �, then all coe�cients of
f = (x + α�)�(x + αk) are positive or zero. ⇤

While the positive de�nite matrices are the interior of the cone of positive semide�nite
matrices, it may still happen that a linear matrix polynomial A is nowhere positive de�nite
even if S(A) has non-empty interior. For a trivial example, we could always arti�cially
enlarge A by adding zeros, since

S(A) = S �A �
� �� .

�is degenerate case we would o�en like to exclude.

De�nition �.�. A linear matrix polynomial A of size k is called monic if A(�) = Ik, the
identity matrix.

Lemma �.�. Let A be a linear matrix polynomial of size k.
(�) If A is monic, the interior of S(A) is the set�u ∈ Rn � A(u) > ��
(�) If � is an interior point of S(A), then there exists a monic linear matrix polynomial

B of size rk(A(�)) with S(A) = S(B).
Proof. (�) Use that Sym++k = int(Sym+k). (Giving an exact argument is Exercise �.�).
(�) Let A = A� + x�A� +�+ x�An. Since � ∈ S(A), we must have A� � �. Hence there exists
U ∈ GLk such that

UTA�U = �Ir �
� �� ,

where r = rk(A�). Write

UTAU = � B C
CT B′� ,

where B and B′ are linearmatrix polynomials of size r resp. k−r, and C is a non-symmetric
linear matrix polynomial of size r × (k − r). We claim that C = � and B′ = �. By the choice
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of U , the constant term of B′ is zero, say B′ = x�B′� +� + xnB′n with B′i ∈ Symk−r. Since � is
an interior point of S(A) ⊂ S(B′), there is ε > � such that ±εB′i > � for i = �, . . . , n. �at
is impossible, unless B′i = � for i = �, . . . , n. Now ifW is an open neighbourhood of � with
B(u) > � for all u ∈W , then B′(u) = � implies C(u) = � for all u ∈W (see exercise below).
�is implies C = �, and the lemma is proved. ⇤
Exercise �.�. Prove part (�) of the lemma.

Exercise �.�. Let

A = �A� A�
AT
� � �

be a real block-matrix with A� symmetric. Show that if A is positive semide�nite, then A� = �.
Remark �.�. �is lemma essentially says that it is enough to consider spectrahedra de�ned
by monic linear matrix polynomials. For if S = S(A) is any spectrahedron, let V be its
a�ne hull. �en S has non-empty relative interior in V and a�er a translation we may
assume that � is in the relative interior of S. We may then change coordinates, replace Rn

by V , and assume that S is given by a monic linear matrix polynomial.
While this argument works �ne as a �rst reduction step in a proof, actually computing

a monic representation in large examples can be a di�cult and computationally expensive
task, which is usually avoided whenever possible.

Corollary �.�. A spectrahedron S has non-empty interior if and only if there exists a linear
matrix polynomial A such that S = S(A) and A is positive de�nite in some point of S. In this
case, int(S) = �u ∈ Rn � A(u) > ��.
Proof. If A(u) > � for some u ∈ S, we may translate and assume u = �. �en C = A(�)−�
is positive de�nite and A′(x) = √CA(x)√C is a monic linear matrix polynomial withS(A) = S(A′). With this observation, the claim follows from the lemma. ⇤

Remark �.��. If A is a monic linear matrix polynomial of size k, the interior of S(A) is the
basic open set de�ned by the principalminors ofA(x), which are the determinants ofA(x)
with the last k rows and columns deleted, for k = �, . . . , k − �. �ese are k polynomials of
ascending degree �, . . . , k. But in general, it is not true that the closure of a basic open setU(g�, . . . , gr) = {u ∈ Rn � g(u) > �} is the basic closed set S(g�, . . . , gr), and it is indeed not
true that a matrix is positive semide�nite if all its principal minors are non-negative. (Just
take the diagonal matrix Diag(�,−�), all of whose principal minors are �). What is true,
however, is that a matrix is positive semide�nite if and only if all its diagonal minors are
non-negative (which are the determinants of the submatrices of A(x) obtained by deleting
all rows and columns with indices in some subset of {�, . . . , k}). �is gives another proof
of Prop. �.�. However, this description uses �k inequalities rather than k.

So what makes spectrahedra special among convex semialgebraic sets? First, spectra-
hedra are basic closed, as we have seen. �ere are indeed closed semialgebraic sets that are
not basic, so these cannot be spectrahedra.

Exercise �.��. Let u� = (−�, �) and u� = (�, �) in R� and let S = B�(u�) ∪ B�(u�), i.e. the union of
two discs of radius � about u� and u�. Show that S is basic closed, but the convex hull of S is not.
(Getting the idea is more important than a rigorous proof.) �is set is called the football stadium.
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Exercise �.��. Let C = �(b, c) ∈ R� �For all x ∈ R∶ x� − bx� + (���)c � ��. Show that C is closed and
convex, but not basic closed.

Another property of spectrahedra is that all their faces are exposed. We will discuss
this in the proper context later.

Finally, there is a very restrictive necessary condition, called hyperbolicity (or real-
zero property). �is comes from the fact that symmetric matrices have real eigenvalues.
If A = Ik +∑n

i=� xiAi is a monic linear matrix polynomial of size k, the determinant f =
det(A) is a polynomial (of degree at most k) in R[x] which vanishes on the boundary of
the spectrahedron S(A). Since all the matrices∑uiAi for u ∈ Rn are real symmetric, their
characteristic polynomials det(tIk−∑uiAi) have only real roots. Since det(tIk−∑uiAi) =
tk det(A(t−�u)) = tk f (t−�u), this means that the polynomial f has only real roots when
restricted to any line span(u) = {t−�u � t ∈ R∗} ∪ {�} through �. �is can be seen for a
polynomial of degree � in two variables in the picture below.

An important paper in which such polynomials were studied in connection with spec-
trahedra is [HV��]. Some of the results there will be discussed in detail later on. For now,
the basic point we wish to make is simply that spectrahedra are very special convex sets.

A hyperbolic plane curve of degree �

Example �.��. �e set {(u, v) ∈ R� � u� + v� � �} is known as the TV screen. It is basic
closed and convex but not a spectrahedron. �e reason is that x� + y� − � does not satisfy
the hyperbolicity condition above.

Exercise �.��. Prove that the TV screen is indeed not a spectrahedron.
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�. PROJECTED SPECTRAHEDRA ANDDUALITY

�.�. OVERVIEW

A projected spectrahedron is the image of a spectrahedron under an a�ne-linearmap.
Such an image is again convex and semialgebraic (by quanti�er elimination) but need not
be a spectrahedron. One reason is that a projected spectrahedron is not necessarily closed,
since linear maps are not closed. For example, the projection of the spectrahedron

�(u, v) ∈ R� � �u �
� v� � ��

onto the �rst factor is the open interval (�,∞). But there is much more to it.

Example �.�.
(�) �e TV-screen C = �(u, v) ∈ R� � u� + v� � �� is not a spectrahedron (Example

�.��). But the spectrahedron

S =
�������������������������
(u, v , a, b) ∈ R�

������������������������������

���������������

� + a b
b � − a

� u
u a

� v
v b

���������������
� �
�������������������������

in R� maps onto the TV-screen under the projection (u, v , a, b) � (u, v). For(u, v , a, b) ∈ S satis�es a� + b� � � and u� � a, v� � b, hence u� + v� � a� + b� � �.
Conversely, any point (u, v) ∈ C li�s to the point (u, v , u�, v�) ∈ S.

(�) Let R[x]d be the vector space of polynomials in x of degree at most d and let

Σ�d = � f �� +� + f �r � f�, . . . , fr ∈ R[x]d , r ∈ N�
be the cone of sums of squares (sos-cone). �e sos-cone is not a spectrahedron. In
fact, it is closed and convex, but it is not basic closed if d > �. (In Exercise �.�� we
identi�ed an a�ne-linear slice that is not basic closed).

It is however a projected spectrahedron, namely it is the image of Sym+k under
the Gram map Symk → R[x]�d , A � mTAm, where m is a vector of polynomials
spanning R[x]d (see Example �.�(�)).

Exercise �.�. Represent the football stadium as a projected spectrahedron.
��
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Note �rst that we speak of projected spectrahedra, because every a�ne-linear map can
be factored into an injective one followed by a projection. �is simple fact translates into
the following statement.

Lemma �.�. Let P ⊂ Rn be a projected spectrahedron. �en there exists a linear matrix
polynomial A(x , y) in variables x = (x�, . . . , xn) and y = (y�, . . . , yp), for some p, with

P = �u ∈ Rn � ∃v ∈ Rp∶A(u, v) � ��.
Proof. Let P = φ(S) where S = S(B) is a spectrahedron in Rm and φ∶Rm → Rn an a�ne
linear map. Let Γ∶Rm → Rn × Rm, v � (φ(v), v) be the Graph map. Since Γ is injective,
Γ(S) is a spectrahedron. Namely, Γ(S) = S(A) for

A(x , y) = �������
B(y) � �
� φ(y) − x �
� � φ(y) + x

������� ,
where the entries φ(y)− x and φ(y)+ x are diagonal blocks in the entries of x. �us P has
the desired representation. ⇤

Arepresentation of P as in the lemma is also called a li�ed linearmatrix inequality rep-
resentation, an extended formulation or simply a semide�nite representation. If A(x , y)
is a linear matrix polynomial as above, we will o�en denote the projectionRn+p → Rn onto
the �rst coordinates by πx . �us the li�ed representation will be denoted by

P = πxS(A(x , y))
or just P = πxS(A).

While spectrahedra are very special convex sets, it is not known whether projected
spectrahedra have any distinguishing features at all (beyond the obvious).

Helton-Nie Conjecture. Every convex semialgebraic set is a projected spectrahedron.

�e conjecture is open in general, but is well motivated by what is known. Helton and
Nie proved a series of results which can be summed up as saying that any convex semi-
algebraic set with su�ciently regular boundary is a projectred spectrahedron. Recently,
Scheiderer has given a proof of the full conjecture for subsets of the plane. Understanding
and proving some of these results will be one of our main goals.

We will start in this lecture by establishing some basic properties of projected spec-
trahedra. In particular, we will show that all the usual operations preserving convexity,
including convex duality, also preserve the property of being a projected spectrahedron.

�.�. CONES AND DUALITY

We will need some basics from convexity concerning cones and duality. Let V be a
�nite-dimensional real vector space. By a cone in V , we will always mean a convex cone,
i.e. a non-empty subset K ⊂ V such that u + v ∈ K and αv ∈ K hold for all u, v ∈ K and
α ∈ R with α � �. In particular, a cone always contains �. A cone K is called pointed if
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K ∩ (−K) = {�}. For example, Sym+k is a pointed cone in Symk, while any non-zero linear
subspace of V is an example of a non-pointed cone. Given a subset S of V , we write

cone(S) = � k�
i=� αiui � ui ∈ S , αi � �, k ∈ N�

for the conic hull of S in V , the smallest cone in V containing S.

Proposition �.�. A cone K ⊂ V is closed and pointed if and only if there exists a compact
convex subset C of V with � ∉ C and K = cone(C).
Proof. See [Barvinok, II.�]. ⇤

We write V∗ = Hom(V ,R) = {L∶V → R linear} for the dual space of V , whose ele-
ments are the linear functionals on V . If φ∶V →W is a linear map between vector spaces,
the map φ∗∶W∗ → V∗ given by L � L ○ φ is again linear. By de�nition, it has the property

L(φ(v)) = φ∗L(v) for all v ∈ V .

Exactness of the duality or direct computation also show im(φ∗) = {L ∈ V∗ � L�ker(φ) = �}.
If C ⊂ V is convex, we denote by

C∗ = �L ∈ V∗ � For all v ∈ C∶ L(v) � −��
the convex dual of C. If K ⊂ V is a cone, then

K∗ = �L ∈ V∗ � For all v ∈ C∶ L(v) � ��.
For given L ∈ K∗ and u ∈ K, we must have L(αu) = αL(u) � −� for all α > �, so L(u) � �.
�is fact makes the duality theory for cones run somewhatmore smoothly than for general
convex sets. Note also that ifU ⊂ V is a linear subspace, thenU∗ = U⊥ = {L ∈ V∗ �L�U = ��.
(Since U∗ also denotes the dual space of U , the notation U⊥ is preferred.)

�e fundamental fact is biduality, a consequence of the separation theorem for closed
convex sets (see [Barvinok] or [Convexity-LN]).

�eorem �.� (Biduality). For any convex subset C of V, we have(C∗)∗ = clos�conv(C ∪ {�})�.
In particular,

(�) if C ⊂ V is a closed convex subset containing �, then (C∗)∗ = C.
(�) if K ⊂ V is a closed cone, then (K∗)∗ = K. ⇤

If V is a �nite-dimensional euclidean space with scalar product �−,−�, we can identify
the dual space V∗ with V using the map V → V∗, u � �u,−�. In this setting, the dual of a
cone K ⊂ V is K∗ = {u ∈ V � For all v ∈ K∶ �u, v� � �}, and K is called selfdual if K∗ = K.
On the space V of matrices, the standard scalar product is given by the trace via�A, B� = tr(ABT)
for A, B ∈Matk.
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�e following will be essential.

Proposition �.�. �e cone of real positive semide�nite matrices is selfdual.

Proof. Let A, B ∈ Sym+k and write A = PPT , B = QQT (see Exercise �.�). �en �A, B� =�PPT ,QQT� = tr(PPTQQT) = tr(QTPPTQ) = tr(QTP(QTP)T) � �. (Here, we used that
the trace is invariant under cyclic permutations.) Conversely, let A ∈ Symk with �A, B� � �
for all B ∈ Sym+k . �en vTAv = tr(vTAv) = tr(AvvT) = �A, vvT� � �, for all v ∈ Rk. ⇤
Exercise �.�. LetV� andV� be �nite-dimensional euclidean spaces with scalar products �−,−�� and�−,−��. Given a linear map φ∶V� → V�, show that there is a unique linear map φ∗∶V� → V� with�φ(v),w�� = �v , φ∗(w)��
for all v ∈ V�, w ∈ V�. Verify that this corresponds to the dual map of φ under the identi�cation
V� = V∗� , V� = V∗� via the scalar product.

Before returning to projected spectrahedra, we need a few more technical lemmas.

Lemma �.�. Let K� and K� be cones in V.
(�) (K� + K�)∗ = K∗� ∩ K∗�
(�) If K� and K� are closed, then (K� ∩ K�)∗ = clos(K∗� + K∗� ).

Proof. (�) is immediate. For (�), we use biduality and (�) to conclude clos(K∗� + K∗� ) =(K∗� + K∗� )∗∗ = (K∗∗� ∩ K∗∗� )∗ = (K� ∩ K�)∗. ⇤
Exercise �.�. Find an example of two closed cones K� and K� inR� such that K� +K� is not closed.

Lemma �.�. Let J ⊂ V and K ⊂W be cones and φ∶V →W a linear map. �en
(�) φ(J)∗ = (φ∗)−�(J∗);
(�) φ−�(K)∗ = φ∗((K ∩ im(φ))∗).

Proof. (�)�is follows directly from the equality φ∗(L(v)) = L(φ(v)) for all v ∈ V .
(�) If L ∈ (K ∩ im(φ))∗ ⊂ W∗, then φ∗L(v) = L(φ(v)) � � for all v ∈ φ−�(K), hence

φ∗L ∈ φ−�(K)∗. Conversely, since ker(φ) ⊂ φ−�(K), any L ∈ φ−�(K)∗ must vanish on
ker(φ) and is therefore in the image of φ∗. �en if L = φ∗L′, we have L′(φ(v)) = L(v) � �
whenever φ(v) ∈ K, hence L′ ∈ (K ∩ im(φ))∗. ⇤

Lemma �.�. Let K be a closed cone in V and U a linear subspace of V.
(�) If int(K) ∩U ≠ �, then K∗ ∩U⊥{�}.
(�) If K is pointed and K ∩U = {�}, then K +U is closed.

Proof. (�) Let π∶V → V�U be the canonical projection. If x ∈ int(K)∩U , then � = π(x) is
an interior point of π(K) in V�U . �us π(K) = V�U and K +U = π−�(π(K)) = V . �us
K∗ ∩U⊥ = (K +U)∗ = V∗ = {�}.

(�) Since the cone K is closed and pointed, there is a compact convex subset S of V
not containing � with K = cone(S), by Prop. �.�. By hypothesis, S ∩ ker(π) = �, with π as
before, so that π(S) is again compact and convexwith � ∉ π(S). Hence π(K) = cone(π(S))
is closed, again by Prop. �.�, and so is K +U = π−�(π(K)). ⇤
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�.�. OPERATIONS ON PROJECTED SPECTRAHEDRA

We are now ready for the main result of this chapter.

�eorem �.�. Let P,Q ⊂ Rm, R ⊂ Rn be projected spectrahedra, and let φ∶Rm → Rn be an
a�ne-linear map. �en the following sets are again projected spectrahedra.

(�) Intersection: P ∩Q
(�) Cartesian product: P × R
(�) Minkowski sum: P +Q
(�) Conic hull: cone(P)
(�) Convex hull: conv(P ∪Q)
(�) Linear image: φ(P)
(�) Inverse image: φ−�(R)
(�) Convex dual: P∗ ⊂ (Rm)∗
(�) Closure: clos(P)
(��) Relative interior: relint(P)

Proof. Let P = πxS(A), Q = πxS(B) for linear matrix polynomials A(x , y), B(x , y′) in
variables x = (x�, . . . , xm), y = (y�, . . . , yp), y′ = (y′�, . . . , y′p′).

(�) We have P ∩Q = πxS(C(x , y, y′)) where
C(x , y, y′) = �A(x , y) �

� B(x , y′)� .
(�) Clearly, P ×Rn = {(u, u′) ∈ Rm+n � ∃v ∈ Rp∶A(u, v) � �} is a projected spechtrahe-

dron, and so isRm×R. �erefore P×R = (P×Rn)∩(Rm×R) is a projected spectrahedron.
(�) Let σ ∶Rm ×Rm → Rm be the linear map (u, u′)� u + u′, then P +Q = σ(P ×Q).
(�) Since P is already convex, the conic hull is simply given by

cone(P) = {u ∈ Rm � ∃λ > � � λ−�u ∈ P} ∪ {�}.
Write A(x , y) = A�+A′(x , y)with A′(�, �) = �. Now λ−�u ∈ P for u ∈ Rm and λ > �means
A(λ−�u, λ−�v) = A�+λ−�A′(u, v) � � for some v ∈ Rpwhich is equivalent to λA�+A′(u, v) �
�. �us the �rst guess is to look at {u ∈ Rm � ∃λ � �∃v ∈ Rp∶ λA� + A′(u, v) � �}. �at
almost works, but we run into trouble for λ = �. To �x this, we de�ne

Ci(x , y, s, t) = � s xi
xi t � ,

so that S(Ci) = {(u, v , λ, µ) � λ, µ � �, λµ � u�
i }. With this we can write

cone(P) = �u ∈ Rm � ∃v , λ, µ � λA� + A′(u, v) � � and Ci(u, λ, µ) � � for i = �, . . . ,m�.
To see this, let u ∈ cone(P). If u ≠ �, this means λ−�u ∈ P for some λ > �. �en there exists
µ such that λµ � u�

i for all i, and v such that λA�+A′(u, v) � �. Conversely, if u is contained
in the right hand side, we have λ−�u ∈ P for some λ � �. If λ > �, then u ∈ cone(P), as
desired. If λ = �, then Ci(u, v , λ, µ) � � implies ui = � for all i = �, . . . , n, so that u = �.

(�) Let K = cone(P×{�})+cone(Q×{�}) ⊂ Rm+�. Now K is a projected spectrahedron,
hence so is conv(P ∪Q) = {u ∈ Rm � (u, �) ∈ K}. (�e equality can be checked directly.)

(�) By de�nition.
(�)�e set {(u, v) ∈ Rm ×R �φ(u) = v} is a projected spectrahedron, and φ−�(R) is the

projection onto the �rst factor.
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(�) Let Φ∶Rm+p → Symk be the map (u, v) � A(u, v). Assume �rst that A(�, �) = �,
so that Φ is linear and S(A) = Φ−�(Sym+k) is a cone. By Cor. �.�, we may assume im(Φ) ∩
int(Sym+d) ≠ �. Using the preceding lemmas and the fact that Sym+k is selfdual, we see
that S(A)∗ = Φ−�(Sym+k)∗ = Φ∗((Sym+k ∩ im(Φ))∗) = Φ∗(Sym+k + im(Φ)⊥) is a projected
spectrahedron. Hence so is P∗ = (πxS(A))∗ = (π∗x)−�S(A)∗. �is proves the conic case.

In general, we know that the conic hull P′ = cone(P × {�}) ⊂ Rm+� is a projected
spectrahedron by (�). Hence so are (P′)∗ = �L′ ∈ (Rm+�)∗ � L′�P′ � �� and the intersection
Q = (P′)∗ ∩ {L′ ∈ (Rm+�)∗ � L′(�, �) = ��. Let ψ∶ (Rm+�)∗ → (Rm)∗ be the restriction
map given by (ψL′)(u) = L′(u, �) for L′ ∈ (Rm+�)∗ and u ∈ Rm. We claim that P∗ = ψQ.
For given L′ ∈ Q and u ∈ P, we have (ψL′)(u) = L′(u, �) = L′(u, �) − L′(�, �) � −�,
since (u, �) ∈ P′. Conversely, given L ∈ (Rm)∗ with L�P � −�, put L′(v , α) = L(v) + α for(v , α) ∈ Rm+�. �en L′(λu, λ) = λ(L(u) + �) � � for all u ∈ P and λ � �, so that L′ ∈ Q and
ψL′ = L, proving the claim.

(�) Follows from (�), since wemay assume � ∈ P and thus clos(P) = (P∗)∗ by biduality.
(��) Since πx(relint(S(A))) = relint(πx(S(A))) = relint(P) (see Exercise �.� below),

it su�ces to show that relint(S) for S = S(A) is a projected spectrahedron. For any �xed
point u� ∈ relint(S) and u ∈ Rm+p, we have u ∈ relint(S) if and only if there exists ε > �
such that u + ε(u − uo) ∈ S, i.e. A(u + ε(u − u�)) � � (Exercise �.�). Now we just write out
A(x) = A� + A′(x) with A′(�) = �, put δ = �

�+ε , compute

δA(u + ε(u − u�)) = δA� + A′(u) − δεA′(u�)
and conclude that

relint(S) = �u ∈ Rm+p � ∃δ ∈ (�, �)∶ δA� + A′(u) + (δ − �)A′(u�) � ��.
Combining this with a representation of the open unit interval

(�, �) = �δ ∈ R � ∃λ∶ �λ �
� δ� � � and �λ �

� � − δ� � �� ,
we obtain a representation of relint(S) as a projected spectrahedron. ⇤
Exercise �.�. Let C be a convex subset of a real vector space V and let U be the a�ne hull of C.
Recall that the relative interior of C is the set

relint(C) = �u ∈ C � ∃ε > �∶ Bε(u) ∩U ⊂ C�.
(a) For any �xed point u� ∈ relint(C), show

relint(C) = �u ∈ V � ∃ε > �∶ u + ε(u − u�) ∈ C�.
(b) Show that relint(C) is convex.
Exercise �.�. Let C ⊂ Rm be a convex set and φ∶Rm → Rn a linear map. Show that

φ(relint(C)) = relint(φ(C)).
Exercise �.�. To what extent do the results in �m. �.� also hold for spectrahedra? I.e. if P,Q , R
are spectrahedra, which of (�)-(��) are again spectrahedra?

Note that the proof of �eorem �.� is completely constructive, so given concrete rep-
resentations of P,Q , R as projected spectrahedra, the steps in the proof can be turned into
concrete representations of the resulting convex sets.
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We have already seen that the cone Σ�d of sums of squares of polynomials of degree
at most d in R[x]�d is a projected spectrahedron. By �m. �.�(�), its dual Σ∗�d is also a
projected spectrahedron. But in fact, more is true.

Proposition �.��. �e dual cone Σ∗�d is a spectrahedron.
Proof. By de�nition, we have

Σ∗�d = �L ∈ R[x]∗�d � For all f ∈ R[x]d ∶ L( f �) � ��.
Any linear functional L ∈ R[x]�d de�nes a symmetric bilinear form

bL∶� R[x]d ×R[x]d → R(g , h) � L(gh)
and from this we obtain a linear map

Φ∶� R[x]∗�d → Sym(R[x]d)
L � bL

.

Now Σ∗�d is the spectrahedron Φ−�(Sym+R[x]d). ⇤
Using�m. �.�(�), this also shows again that Σ�d is a projected spectrahedron.

�.�. SEMIDEFINITE PROGRAMMING

A semide�nite programme is a convex optimisation problem of a particular kind. In
the optimisation literature, such a programme is usually written in the following form:

(P) Find inf�B, X�
subject to �Ai , X� = ci for i = �, . . . , n

X � �
��������� in the variable X ∈ Symk ,

where A�, . . . ,An , B ∈ Symk and c ∈ Rn are given. �us the problem is to compute the
minimum (or in�mum) of the linear function X � �B, X� on the space of symmetric
matrices under the constraint that X should be contained in the spectrahedron de�ned by
the linear equations �Ai , X� = ci .

Starting in the ����s, e�cient algorithms for solving semide�nite programmes have
been developed, based on so-called interior-point methods. �is is the main reason for
the current interest in spectrahedra, but is completely outside the scope of this course. (An
overview is given in [Convexity-LN], more details for example in [Forst-Ho�mann]).

However, wewant tomake a few observations that also help tomotivate later geometric
results. First, duality plays an extremely important role. To the semide�nite programme
(P) above (o�en called the primal programme), there is a corresponding dual programme

(D) Find sup�c, y�
subject to ∑n

i=� yiAi � B � in the variable y ∈ Rn .

�e relation between (P) and (D) is a little mystifying at �rst. In particular, it is not clear
how it translates into the cone duality we were looking at above (see Exercise �.�).

Second, suppose we are given a general convex programming problem of the form

Find inf L(u)
subject to u ∈ C � in the variable u ∈ Rn .
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where C is some convex subset of Rn and L a linear functional. If we wish to apply semi-
de�nite programming methods, it makes little di�erence whether we can represent C as
a spectrahedron C = S(A) or only as a projected spectrahedron C = πxS(A(x , y)). In
either case, we just solve the programme for the spectrahedron S(A). What matters much
more is how and whether we can actually �nd the representing linear matrix polynomial A
and whether the size of the matrices and the number of extra variables y are not too large.
So we should always keep the following in mind:

For optimisation, li�ed representations are no worse than non-li�ed representations, even
though the geometry is very di�erent.

Finally, we want to comment that the usefulness of duality in solving semide�nite pro-
grammes stems from optimality results like the following.

�eorem �.��. Consider the semide�nite programmes (P) and (D) above. Assume that the
matrices A�, . . . ,An are linearly independent and that both (P) and (D) possess strictly feasible
points. �en X′ is an optimal solution of (P) and y′ an optimal solution of (D) if and only if

�X′, B − n�
i=� y′iAi� = �

and there is no duality gap, which means that

inf�B, X′� = sup�c, y′�.
Proof. See [Barvinok, IV.�,�m. �.� and Problem �], or [Convexity-LN, §��,��]. ⇤

Here, a strictly feasible point of (P) is a positive de�nite matrix X satisfying the con-
straints in (P) and similarly for (D). �is theorem provides only one example of various
assumptions one can make on the dual pair (P), (D) implying that there is no duality gap.
�e condition here is usually called the interior point orKarush-Kuhn-Tucker condition.

Exercise �.�. Let K� ⊂ V� and K� ⊂ V� be cones in �nite-dimensional euclidean spaces V� and V�
with scalar products �−,−�� and �−,−��. A linear map φ∶V� → V� and elements b ∈ V� and c ∈ V�
de�ne the following dual pair of optimisation problems

Find inf�b, x��
subject to φ(x) − c ∈ K�

x ∈ K�

��������� in x ∈ V and
Find sup�c, y��
subject to φ∗(y) − b ∈ K∗�

y ∈ K∗�
��������� in y ∈ V�.

Verify that the duality of semide�nite programming is a special case of this general setup.
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�. POSITIVE POLYNOMIALS AND THE LASSERRE RELAXATION

�e Lasserre relaxation in an approximation of the convex hull of a (compact) basic
closed semialgebraic set through a sequence of projected spectrahedra. In this chapter, we
review some background results on positive polynomials and describe the general setup.

�.�. POSITIVE POLYNOMIALS AND QUADRATICMODULES

Let S ⊂ Rn be a semialgebraic set and letP(S) = � f ∈ R[x] � For all u ∈ S∶ f (u) � ��
be the set of non-negative polynomials on S. Understanding the structure of P(S) is a
central goal of real algebraic geometry, for which we introduce some standard notions.

A quadratic module in R[x] (or indeed in any commutative ring with �) is a subset
M ⊂ R[x] such that

(�) � ∈ M,
(�) M +M ⊂ M,
(�) f �M ⊂ M for all f ∈ R[x].

A quadratic module is called a preordering if
(�) M ⋅M ⊂ M.
It is clear that P(S) above is a preordering. �e sos-cone Σ is the smallest preordering,

contained in all quadratic modules in R[x]. More generally, for a �nite set of polynomials
g = {g�, . . . , gr} ⊂ R[x], the set

M(g) = �s� + s�g� +� + srgr � s�, . . . , sr ∈ Σ, �
is clearly the smallest quadratic module containing g, called the quadratic module gener-
ated by g. �e preordering generated by g can be written out as

P(g) = � �
i∈{�,�}r si g

i�
� �g irr � si ∈ Σ�.

Notation �.�. We will always implicitly de�ne g� = �, so that an element of M(g) can be
written in the form∑r

i=� si gi with si ∈ Σ.
Now if S is the basic closed set S(g), then it is clear from the de�nition thatM(g) and

P(g) are contained inP(S). Much research in real algebraic geometry revolves around the
question of how close these inclusions are to equality.

��
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Example �.�.
(�) Every non-negative polynomial in one variable is a sum of (two) squares, so for

S = R, we haveP(S) = Σ.�is becomes false in higher dimensions, i.e. Σ � P(Rn)
for n � �, by a classical result of Hilbert.

(�) Every f ∈ R[x]with f �[�,�] � � is contained in P(x(�−x)), i.e. has a representation
f = s + t ⋅ x(� − x)

for s, t ∈ Σ. (For general subsets of the line, see [Marshall, §�.�].)

Exercise �.�. Show that P(R) = Σ and P([�, �]) = M(x(� − x)) as claimed above.

An important general result, which triggered a lot of further research on positive poly-
nomials and sums of squares, is the following, o�en called Schmüdgen’s Positivstellensatz.

�eorem �.� (Schmüdgen ����). If S(g) is compact, the preordering P(g) contains all poly-
nomials f ∈ R[x] with f (u) > � for all u ∈ S(g).
Proof. See [Marshall, Cor. �.�.�]. ⇤
De�nition �.�. A quadratic moduleM inR[x] is called archimedean, if it contains a poly-
nomial h such that S(h) is compact. If M(g) is archimedean, we also say that g provides
an archimedean description of the compact set S(g).
�eorem �.� (Putinar ����). If the quadratic module M(g) is archimedean, then it contains
all polynomials f ∈ R[x] with f (u) > � for all u ∈ S(g).
Proof. See [Marshall,�m. �.�.� and�m. �.�.�]. ⇤
Corollary �.�. A �nitely generated quadratic module M(g) in R[x] is archimedean if and
only if there exists a positive integer N such that N −∑n

i=� x�i is contained in M. ⇤
Remark �.�. Given Putinar’s theorem, Schmüdgen’s theorem can be rephrased as saying
that P(g) is archimedean whenever S(g) is compact. One can �nd examples of such g for
whichM(g) is not archimedean, which shows that Schmüdgen’s theorem does not extend
to quadratic modules without additional assumptions.

For practical purposes, if S is compact, the assumption thatM should be archimedean
is o�en considered quite mild, since one can just add the polynomial N − ∑r

i=� x�i to the
description of S if S ⊂ BN(�). Since the representation of a positive polynomial in the
quadratic module is simpler than in the preordering (r + � summands instead of �r), the
use of quadratic modules is o�en preferred.

On the other hand, we have the following negative result.

�eorem �.� (Scheiderer). If S is a semialgebraic set of dimension at least �, then P(S) is
not a �nitely generated quadratic module. In other words, if S = S(g) has dimension at least
�, there exists f ∈ P(S) with f ∉ M(g).
Proof. See [Marshall, Prop. �.�.�]. ⇤

Of course, if S is compact, then any f ∈ P(S) � P(g) must necessarily have a zero
somewhere in S, by Schmügen’s theorem.

Note that the cone P(S) lives in the in�nite-dimensional vector space R[x]. What if
instead we consider the �nite-dimensional slices P(S)d = P(S) ∩R[x]d?
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Proposition �.�. �e cone P(S)d is closed and semialgebraic in R[x]d .
Proof. For each point u ∈ Rn, let Lu ∈ R[x]∗d be the linear functional f � f (u). �en we
can write P(S)d =�

u∈S L−�u ([�,∞)).
Since the functionals Lu are continuous, this expresses P(S)d as an intersection of closed
sets, hence it is closed. Furthermore the projection onto the �rst factor of the set�( f , u, f (u)) � f ∈ R[x]d , u ∈ Rn� ∩ (R[x]d × S × (−∞, �)) ⊂ R[x]d ×Rn ×R
is semialgebraic and is the complement of P(S)d . Hence P(S)d is semialgebraic. ⇤

While P(S)d is convex, closed and semialgebraic, it is usually not a spectrahedron,
since (like Σ�d) it is not basic closed. So how about �nitely-generated quadratic modules
instead? Let M = M(g�, . . . , gr) and write

Md = M ∩R[x]d .
Here, there is a crucial di�erence to the sos-cone. Namely, compare Md with the cone

Mg[d] = � r�
i=� si gi � deg(si gi) � d for all i = �, . . . , r�,

in R[x]d , which we call the truncation of degree d of M (with respect to g). In the case of
the sos-cone, there is no di�erence between Σ�d and Σ[�d], because leading terms in a sum
of squares cannot cancel. But for general quadraticmodules, it is not true thatMg[d] = Md

or even that Md is contained in Mg[e] for some e � d.
Exercise �.�. Verify that Σ�d = Σ[�d] for all d.
Example �.��. Let g = (x(� − x))� and M = M(g) ⊂ R[x] in the polynomial ring in one
variable, describing the closed interval S(M) = [�, �]. It is not hard to check that x ∉ M.
For suppose we had x = s + tg with s, t ∈ Σ, then since x��g, we could conclude x�s. Since s
is a sum of squares, this really implies x��s (why?). So the right hand side would be divisible
by x�, a contradiction.

On the other hand,M is a preordering (since there is only one generator) and S(M) =[�, �] is compact, soM contains all strictly positive polynomials by Schmüdgen’s theorem.
In particular, x + ε ∈ M holds for all ε > �. Now if we had x + ε ∈ M(e) for all ε > � and
�xed e � �, we could write

x + ε = sε + tεg
with deg(sε), deg(tε)+ � � e. We could then (carefully!) take limits as ε → � and conclude
x ∈ M, a contradiction. �at last argument is made precise in the following proposition.

Proposition �.��. If M(g)∩(−M(g)) = {�}, the cone Mg[d] is closed inR[x]d , for all d � �.
Proof. See [Marshall, Lemma �.�.�]. ⇤

De�nition �.��. Let M = M(g) be a �nitely generated quadratic module. For each integer
d, we say that M is d-stable with respect to g if there exists an integer e � � such that
Md ⊂ Mg[e]. We say that M is stable if it is d-stable for all degrees d � �.
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Note that if Md ⊂ Mg[e], then Md = Mg[e] ∩ R[x]d . It is also not hard to show that
whether M is stable does not depend on the choice of generators g. However, the notion
of d-stability for �xed d does depend on the choice of generators.

Exercise �.�. Show that stability is independent of the choice of generators.

By de�nition, a quadratic module M(g) is stable if it admits degree bounds for repre-
sentations of f ∈ P(g) in M that depend only on the degree of f . In compact situations,
stability is only possible in exceptional situations of small dimension:

Exercise �.�. Use �m. �.�, �m. �.� and Prop. �.�� to show: If S(g) is compact of dimension at
least �, then P(g) is not stable. (Neither is M(g), if the description is archimedean.) �is is also
true in dimension �, by a (much deeper) result of Scheiderer.

�.�. THE LASSERRE RELAXATION

�e basic building blocks for the Lasserre relaxation will be the dual cones Mg[d]∗,
which are spectrahedra by the following direct generalisation of Prop. �.��.

Proposition �.��. Let M = M(g) be a �nitely generated quadratic module in R[x]. For all
d � �, the dual cone Mg[d]∗ is a spectrahedron. Hence Mg[d] is a projected spectrahedron.
Proof. Let d � � and consider the �nite-dimensional vector space

V = �(p�, . . . , pr) ∈ R[x]r+� � �deg(pi) + deg(gi) � d�.
Just as in the proof of �.��, we associate with L ∈ R[x]∗d the bilinear form

bL∶� V ×V → R�(p�, . . . , pr)(p′�, . . . , p′r)� � ∑r
i=� L(pip′i gi)

and obtain a linear map

Φ∶� R[x]∗d → Sym(V)
L � bL

with Mg[d]∗ = Φ−�(Sym+(V)). To see this, let L ∈ Mg[d]∗, then bL(p, p) = ∑r
i=� p�i gi � �.

Conversely, if bL is positive semide�nite and p ∈ R[x] with �deg(p) + deg(gi) � d, then
L(p�gi) = bL�(�, . . . , p, . . . , �), (�, . . . , p, . . . , �)� � �, hence L ∈ Mg[d]∗. ⇤

Proposition �.��. Let S = S(g) be a basic closed subset of Rn and write

Mg[d]′ = �L ∈ Mg[d]∗ � L(�) = ��.
Consider the projection

π∶� R[x]∗d → Rn

L � �L(x�), . . . , L(xn)�.
�en conv(S) ⊂ π(Mg[d]′).
Proof. For u ∈ S, let

Lu∶� R[x]d → R
f � f (u) .

�en u = π(Lu), and since the polynomials in Mg[d] are non-negative on S, we have
Lu ∈ Mg[d]∗ and L(�) = �. �is implies S ⊂ π(Mg[d]′), so also conv(S) ⊂ π(Mg[d]′). ⇤
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De�nition �.��. With notations as above, we de�ne:
(�) For d � �, the projected spectrahedronLg[d] = π(Mg[d]′)

in Rn is called the Lasserre relaxation of degree d of conv(S) with respect to g.
(�) �e Lasserre relaxation is exact in degree d ifLg[d] = conv(S),

or exact up to closure if these two sets have the same closure.
(�) �e sequence of Lasserre relaxations (Lg[d])d∈N converges to a subset C ⊂ Rn if

clos(C) = clos��
d��Lg[d]�.

Note that the chainMg[�] ⊂ Mg[�] ⊂ � is ascending by de�nition, therefore the chains
Mg[�]′ ⊃ Mg[�]′ ⊃ � and Lg[�] ⊃ Lg[�] ⊃ � are descending.

Our �rst goal is to characterise exactness in terms of stablity. We need the following
version of the separation theorem for closed convex sets.

Proposition �.��. Let C ⊂ Rn be closed and convex. Given a point u ∈ Rn, u ∉ C, there exists
a polynomial ℓ ∈ R[x] with deg(ℓ) = � such that

ℓ�C > � and ℓ(u) < �.
Proof. See [Barvinok,�m. III.�.�] or [Convexity-LN, Satz �.�]. ⇤
Exercise �.�. Give a direct proof of Prop. �.��.

Proposition �.��. Let g ⊂ R[x] be �nite and let S = S(g). For d � �, consider the statements:
(�) �e Lasserre relaxation is exact up to closure in degree d, i.e.

conv(S) ⊂ Lg[d] ⊂ clos(conv(S)).
(�) Every ℓ ∈ R[x] with deg(ℓ) = � and ℓ�S � � is contained in Mg[d].

�en (�) implies (�). �e converse also holds if S has non-empty interior.

Proof. (�)�⇒ (�). Let ℓ ∈ R[x] be as in (�), say ℓ = ∑n
i=� aixi + b. Since S has non-empty

interior, we must have M(g) ∩ (−M(g)) = {�}. By Prop. �.��, this implies that Mg[d] is
closed and hence Mg[d] = (Mg[d]∗)∗ by biduality (�m. �.�). So if ℓ is not contained in
Mg[d], there exists L ∈ Mg[d]∗ with L(ℓ) < �. We claim that there also exists such L with
L(�) = �. If L(�) ≠ �, then L(�) > � since � ∈ Mg[d], so we can just rescale. If L(�) = �, take
any L� ∈ Mg[d]∗ with L�(�) = � (e.g. a point evaluation) and let L′ = αL + L�. �en L′ has
the desired property when α is su�ciently large.

It follows that u = �L(x�), . . . , L(xn)� is a point inLg[d] ⊂ clos(S). On the other hand,
ℓ(u) = ℓ�L(x�), . . . , L(xn)� = n�

i=� aiL(xi) + b = n�
i=� aiL(xi) + L(b)= L(ℓ) < �,

a contradiction. (Note that we needed L(�) = � to have L(b) = b).
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(�) �⇒ (�). Let C = clos(conv(S)). Suppose that (�) does not hold, then, since
conv(S) ⊂ Lg[d] by Prop. �.��, there must exist u ∈ Lg[d] � C. Hence, by Prop. �.��,
there is a polynomial ℓ ∈ R[x]� with ℓ�S � � and ℓ(u) < �. Since u ∈ Lg[d], there exists
L ∈ Mg[d]′ such that u = �L(x�), . . . , L(xn)�. Now since deg(ℓ) = � and L(�) = �, we have

L(ℓ) = ℓ�L(x�), . . . , L(xn)� = L(u) < �,
which implies ℓ ∉ Mg[d]. ⇤
Corollary �.��. Let S = S(g) be an archimedean description of a compact set S with non-
empty interior. �e Lasserre relaxation of conv(S) with respect to g becomes exact if and
only if the quadratic module M(g) is �-stable.
Proof. Let M = M(g). By Putinar’s theorem, M� contains all ℓ ∈ R[x]� that are strictly
positive on S. Since M(g) is �-stable, M� = Mg[d] ∩R[x]� for some d. Hence M� is closed
by Prop. �.��, since S has non-empty interior. So Mg[d] contains all ℓ ∈ R[x]� that are
non-negative on S and conv(S) = Lg[d] by Prop. �.��. (Note that conv(S) is closed.) ⇤
�eorem �.��. Let S = S(g) be an archimedean description of a compact set S. �en the
Lasserre relaxations of S with respect to g converge to conv(S).
Proof. We will show that conv(S) = �d��Lg[d]. �e inclusion from le� to right is clear by
Prop. �.��. Conversely, if u ∉ conv(S), then there exists ℓ ∈ R[x]� with ℓ�S > � and ℓ(u) < �
by Prop. �.��. By Putinar’s theorem �.�, we have ℓ ∈ M and hence ℓ ∈ Mg[d] for some d > �.
�is implies u ∉ Lg[d], by the same argument as before. ⇤
Example �.��. To illustrate the Lasserre relaxation method, we discuss an example in de-
tail. Let g� = y − x�, g� = x, g� = � − x, g� = y, g� = � − y in variables x , y. Put M = M(g)
and S = S(g). Clearly, S is already convex, and we claim that S = Lg[�]. We use Prop. �.��
and show that Mg[�] contains all ℓ ∈ R[x]� with ℓ�S � �.

x

y Let ℓ ∈ R[x]� be such a polynomial. If ℓ(u) > �
for all u ∈ S, then ℓ will assume its mininum ε
in some point of S, since S is compact. Since
ε ∈ Mg[�], it su�ces to show m − ε ∈ Mg[�].
Also, if ℓ is already non-negative on the box[�, �] × [�, �], we can use Farkas’s lemma (a
standard convexity result; see for example
[Rockafellar, Cor. ��.�.�] or [Convexity-LN,
Exercise ��.�]) and conclude that ℓ is contained
in cone(x , � − x , y, � − y) ⊂ Mg[�].

�us we are le� with the case that ℓ describes a tangent to the cubic curve y = x�
for x ∈ (�, �). �e tangent at a point (a, a�) with a ∈ (�, �) is given by the polynomial
ℓa(x , y) = y − �a�x + �a�. Direct computation now shows

ℓa = y − �a�x + �a� = x� − �a�x + �a� + (y − x�)= (x − a)�x + �a�x − a�� + (y − x�)= �a�x − a�� + g� + (x − a)�g� ∈ Mg[�].
Exercise �.�. Compute the �rst and second Lasserre relaxation in the above example.
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�.�. MODEL-THEORETIC CHARACTERISATION OF STABILTY

In this section, we will describe some abstract tools that can be used to prove the exis-
tence of degree bounds for sums of squares and quadratic modules. We will assume some
familiarity with the theory of real-closed �elds, in particular the Tarski principle, which
says that a �rst-order formula in the language of ordered �elds (or rings) holds in one real-
closed �eld, say R, if and only if it holds in every real-closed �eld. In fact, we are only
interested in extension �elds of R and the corresponding extensions of semialgebraic sets:
If S is a semialgebraic subset of Rn and R is any real-closed extension �eld of R, we write
S(R) for the base extension of S to R, which is just the subset of Rn described by the same
formula� as S. Now an important consequence of the Tarski principle is that S(R) is non-
empty if and only if S is non-empty. So unlike the complex numbers or the algebraic �eld
extensions ofQ studied in number theory, the purpose of real closed extension �elds ofR is
not to add solutions to polynomial systems. �e point is rather that solvability remains the
same, even though the underlying �eldmay be radically di�erent fromR in other respects.

To understand this, recall that in a �rst-order formula we cannot quantify over the nat-
ural numbers or over subsets. �is has two important consequences: (�)�e archimedean
axiom ∀a ∈ R∃n ∈ N∶ �a� < n is not a �rst order formula, and indeed the interesting real
closed extension �elds of R are non-archimedean, in other words, they contain in�nitesi-
mal elements. (�) A statement of the form “�ere exists a polynomial such that…” cannot
be encoded in a �rst-order formula, but a statement of the form “�ere exists a polynomial
of degree d such that…”, for some �xed d, can be encoded. �is provides the connection
to the degree bounds in quadratic modules that we want to study.

Now, in precise technical terms, here is the statement we will need.

�eorem �.�� (ℵ�-Saturation). �ere exists a real-closed extension �eld R∗ of R with the
following property: Every countable semialgebraic cover of a semialgebraic subset of (R∗)n
has a �nite subcover. More precisely, any ultrapowerR∗ = RN�F , whereF is a non-principal
ultra�lter on N, has this property.
Proof. See [Prestel-Delzell,�m. �.�.��]. ⇤
Corollary �.��. �ere exists a real-closed extension �eld R∗ of R such that the following
holds. Any countable ascending chain

S� ⊂ S� ⊂ S� ⊂ �
of semialgebraic subsets of Rn either becomes stationary or else the union �i∈N Si(R∗) ⊂(R∗)n is not semialgebraic over R∗. ⇤

�e ultrapower R∗ can be written down more or less explicitly assuming that a non-
principal ultra�lter F on N is given. (But it lies in the nature of non-principal ultra�lters
that they exist only by virtue of the axiomof choice, so one cannot actuallywrite one down.)
To relieve the somewhat ethereal nature of the argument and to help understand what is
going on here, we look at a more concrete example.

�A general semialgebraic set S in Rn is of the form S = �k
i=�{u ∈ Rn � gi j(u) > �, hi j(u) = � for all j =

�, . . . , l� for some �nite family of polynomials gi j , hi j ∈ R[x]. �en the base extension is simply the semi-
algebraic set S(R) = �k

i=�{u ∈ Rn � gi j(u) > �, hi j(u) = � for all j = �, . . . , l�. Since R is real closed, this is
independent of the description by the Tarski principle.
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Example �.��. Let Si = [−i , i] ⊂ R and consider the ascending chain of closed intervals
S� ⊂ S� ⊂ � in R. Of course, this chain is not stationary, yet �i∈N Si = R is semialgebraic.
However, order the rational function �eldR(t) by making t in�nitely large, i.e. larger than
any constant in R. (It is not hard to show that R(t) has a unique such order.) �en� Si(R(t)) = { f ∈ R(t) � ∃n ∈ N∶ � f � < n�
is the convex hull of Z in R(t). �is is not a semialgebraic subset of R(t).

�e non-archimedean �eld R(t) is tiny compared to the ultrapower R∗, but this ex-
ample captures the nature of the compactness of R∗ in the above theorem.

Exercise �.�. Why is conv(Z) ⊂ R(t) not semialgebraic?

We now present an application to our problem of stability of quadratic modules. Given
a �nitely generated quadratic moduleM = M(g) inR[x] and a real-closed extension �eld
R of R, consider the quadratic module MR(g) generated by g in R[x]. It turns out that M
is stable if and only if MR(g) is the base extension of M to R for all R�R.
Proposition �.��. Let M = M(g) in R[x] be a �nitely-generated quadratic module. �e
following are equivalent:

(�) M is stable with respect to g.
(�) For all real-closed extension �elds R of R, (MR(g))d is semialgebraic for all d � �.
(�) �e cone Md is semialgebraic for all d � �, and for all real-closed extension �elds R

of R, MR(g)d coincides with the base extension Md(R) of Md to R.

Proof. (�) �⇒ (�) Clearly, Mg[d] is semialgebraic for every d � � (it is even a projected
spectrahedron). �en if M is stable, we have Md ⊂ Mg[e] for some e � �, so that Md =
Mg[e] ∩ R[x]d is semialgebraic. Now consider the base-extension Md(R) and the set
M(R) = �d∈N Md(R). Since addition (resp. multiplication) in R[x] is given by semial-
gebraic maps R[x]d × R[x]d → R[x]d (resp. R[x]d × R[x]d → R[x]�d) and the corre-
sponding maps in R[x] are obtained by base extension, M(R) is a quadratic module in
R[x] containing g, hence MR(g) ⊂ M(R). On the other hand, since M is stable we have
M(R)d = Md(R) = (Mg[e] ∩R[x]d)(R) = MR(g)[e] ∩ R[x]d ⊂ MR(g)d . (Details are le�
as an exercise.)

(�)�⇒ (�) is clear.
(�)�⇒ (�) For d , e � �, let Se = Mg[e] ∩R[x]d . For every real-closed extension �eld

R�R, the base extension Se(R) is equal to MR(g)[e] ∩ R[x]d and �e�� Se(R) = MR(g)d ,
which is semialgebraic by hypothesis. Hence �m. �.�� implies that the ascending chain
S� ⊂ S� ⊂ � inR[x]d must become stationary, i.e. there is some e′ with S(e) = S(e′) for all
e � e′, hence Md = �e�� Se = Se′ = Mg[e′] ∩R[x]d . So M is stable. ⇤
Exercise �.�. Fill in the details in the proof of (�)�⇒ (�) above.
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�. POSITIVE MATRIX POLYNOMIALS

�.�. OVERVIEW

In the previous chapter, we showed that proving the exactness of the Lasserre relaxation
for the convex hull of a compact basic closed semialgebraic set is equivalent to establish-
ing stability in degree � for the corresponding quadratic module. In other words, we need
uniform degree bounds for representations of supporting hyperplanes obtained from Puti-
nar’s (or Schmüdgen’s) theorem. On the other hand, we have already seen, in Example �.��
and much more generally in Exercise �.�, that such degree bounds cannot exist in great
generality, i.e. for polynomials of arbitrary degree in arbitrary dimensions.

However, there do in fact exist non-uniform degree bounds, i.e. depending on other
data than just the degree of the represented polynomial.

�eorem �.� (Putinar’s theorem with degree bounds [NS��]).
Let S = S(g) be an archimedean description of a compact set. Given δ > �, every polynomial
f ∈ R[x] satisfying f (u) � δ for all u ∈ S admits a representation

f = s� + s�g� +� + grsr
in the quadratic module M(g) where s�, . . . , sr ∈ Σ have degrees bounded by

deg(si) � D(g , deg( f ), � f �, δ)
for i = �, . . . , r (where g� = �). ⇤

Here, � f � = max{ f (u) � u ∈ S} is the maximum norm of f on the compact set S, and
the notation in the theorem means that the degree bound is provided by a �xed function
D of the given arguments, i.e. a function D∶ (X ×N×R+×R+)�→ N, where X is the set of
�nite subsets of R[x]. Nie and Schweighofer have also determined the complexity of the
function D (c.f. Remark �.� below).

�is result by itself will not help usmuch: To prove exactness of the Lasserre relaxation,
we would need to show that the degree bound in the theorem can be chosen independently
of δ and � f � if f has degree �. �e insight of Helton and Nie was that this could be proved
under suitable regularity assumptions with the use of Lagrange functions. �eir approach,
to be discussed in the next chapter, requires a version of Putinar’s theorem for (non-linear)
matrix polynomials and with degree bounds.

By a sum of squares in the non-commutative ring Symk R[x] we mean a matrix poly-
nomial of the formGTG whereG is amatrix polynomial of size r×k for some r � �. Clearly,
if a matrix polynomial is a sum of squares, it is positive semide�nite in every point of Rk.
Some exercises to warm up with the notion.

��
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Exercise �.�. Show that F ∈ Symk R[x] is a sum of squares if and only if there exist k × k-matrices
P�, . . . , Ps ∈Matk R[x] such that F = PT

� P� +� + PT
s Ps.

Exercise �.�. Let F ∈ Symk R[x] be a matrix polynomial. Show that F is a sum of squares in
Symk R[x] if and only if the polynomial yTFy in variables (x , y) = (x�, . . . , xn , y�, . . . , yk) is a
sum of squares in R[x , y].
Exercise �.�. Show that if F ∈ Symk R[x] is a sum of squares, then det(F) and hence all diagonal
minors of F are sums of squares in R[x]. What about the converse?

Exercise �.�. Show that every globally positive semide�nite matrix polynomial in one variable is a
sum of squares. (When you get stuck, go and �nd [CLR��,�m. �.�].)

Putinar’s theorem generalises to matrix polynomials as follows.

�eorem �.� (Putinar’s theorem for matrix polynomials with degree bounds [HN��]).
Let S = S(g) be an archimedean description of a compact set. Given δ > �, every matrix
polynomial F ∈ Symk R[x] satisfying F(u) � δIk for all u ∈ S admits a representation

F = S� + g�S� +� + grSr ,
where S�, . . . , Sr ∈ Symk R[x] are sums of squares with degrees bounded by

deg(Si) � D(g , k, deg(F), �F�, δ)
for i = �, . . . , r.
Remark �.�. More precisely, the degree bound can be chosen to be of the form

D(g , k, deg(F), �F�, δ) = c�k� deg(F)� �F�
δ
�c ,

where c > � depends only g = (g�, . . . , gr).
�e next question is how we should prove such a thing. �ere are at least two di�erent

approaches, but none is entirely simple or untechnical. Since the result is central to the
approach of Helton and Nie, we want to give at least an idea. Below, we will �rst give a rel-
atively quick proof of the matrix version of Putinar’s theorem without degree bounds, fol-
lowed by a rough sketch of a general technique for proving the existence of degree bounds.

�e recent diploma theses of Randolf Ihrig [Ih��] and Roxana Heß [He��] give very
good accounts of these results, including all the details we will have to omit.

�.�. POSITIVITY IN AFFINE ALGEBRAS

We brie�y recall the correspondence between a�ne R-varieties, (real) radical ideals
and a�ne R-algebras: For any ideal I in R[x], the set V = VC(I) of common complex
zeros of elements in I is the a�ne R-variety de�ned by I. We denote by V(R) = VR(I) its
real points. Conversely, for any subset S ⊂ Rn, we write I(S) for the vanishing ideal of S
in R[x]. �e Nullstellensatz says that I(VC(I)) = √I = { f ∈ R[x] � ∃k � �∶ f k ∈ I} is the
radical of I. �e coordinate ring of the a�ne variety V = VC(I) is the residue class ring

R[V] = R[x]�√I.
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�e real analogue is the real Nullstellensatz, which says that I(VR(I)) = re
√
I is the real

radical, de�ned by re
√
I = { f ∈ R[x] � ∃k � �, s ∈ Σ∶ f �k + s ∈ I}. It is easy to see that a

vanishing ideal I(S) for S ⊂ Rn is real radical, i.e. re
�I(S) = I(S). A standard result in

real algebraic geometry says that the radical ideal
√
I is real radical if and only if V(R) is

Zariski-dense in V .
�e algebraR[V] is a reduced, �nitely generatedR-algebra. Conversely, given any such

algebraA, �x �nitely many generators y�, . . . , yn ofA and consider the surjective ring ho-
momorphism φ∶R[x] → A, φ(xi) = yi . Since A is reduced, I = ker(φ) is a radical ideal
inR[x] andA is isomorphic to the coordinate ring of the a�neR-variety VC(I). Further-
more, this can be made independent of the choice of generators y�, . . . , yn by indentifying
points in VC(I)withR-algebra homomorphismsA→ C. In this way, the set HomR(A,C)
can be regarded as the abstract variety corresponding toA, with real points HomR(A,R).

Given an a�ne R-variety V and elements g�, . . . , gr ∈ R[V], we have a corresponding
semialgebraic subset SV(g�, . . . , gr) = {u ∈ V(R) � g�(u) � �, . . . , gr(u) � �}. Just as in
the polynomial ring, we call a quadratic module M ⊂ R[V] archimedean if it contains an
element g such that SV(g) is compact. We need the following generalisation of Putinar’s
theorem (�m. �.�) to this setup. (Incidentally, the proof involves Schmüdgen’s theorem).

Corollary �.� (Putinar’s�eorem for a�ne algebras). Let V be an a�neR-variety with co-
ordinate ringR[V] and let M ⊂ R[V] be a �nitely generated archimedean quadratic module.
�en M contains all elements f ∈ R[V] such that f (u) > � for all u ∈ SV(M).
Proof. We can �x an embedding of V into a�ne space and just interpret Putinar’s theorem
modulo the vanishing ideal: Let y�, . . . , yn be generators of R[V] and let I ⊂ R[x] be the
kernel of φ∶ xi � yi , so that V(R) is identi�ed with the algebraic subset VR(I) of Rn. Let
g�, . . . , gr ∈ R[x] be such that φ(g�), . . . , φ(gr) generate M in R[V] and let h�, . . . , hs ∈
R[x] be generators of the ideal I. Let M� = φ−�(M) = M + I, then

M� = M(g�, . . . , gr , h�, . . . , hs ,−h�, . . . ,−hs).
�is follows from the observation that any element of the form phi ∈ I, for p ∈ R[x], can
be rewritten as phi = � p+�� �� hi + � p−�� �� (−hi).

We need to show that M� is archimedean. Since M is archimedean, there is g ∈ R[x]
such that SV(φ(g)) ⊂ V(R) is compact. By Schmüdgen’s theorem �.�, the preordering

P = P(g , h�, . . . , hs ,−h�, . . . , hs)
contains all polynomials that are strictly positive on the compact set S(g)∩VR(I). Hence
there is g′ ∈ P such that S(g′) ⊂ Rn is compact. On the other hand, we have P(φ(g)) =
M(φ(g)) ⊂ M and thus P = φ−�(P(φ(g))) ⊂ φ−�(M) = M�, so M� is archimedean.

Now if f ∈ R[x] satis�es φ( f )(u) > � for all u ∈ SV(M), this implies f (u) � � for all
u ∈ S(M�) and therefore f ∈ M�, by Putinar’s theorem �.�. Hence φ( f ) ∈ φ(M�) = M. ⇤

�.�. PUTINAR’S THEOREM FORMATRIX POLYNOMIALS

To prove Putinar’s theorem for matrix polynomials, we will use an idea of Klep and
Schweighofer, as presented in [Ih��] and [He��]. Let F ∈ Symk R[x] be amatrix polynomial
and let AF be the commutative R[x]-subalgebra of Symk R[x] generated by F. Explicitly,



�� �. POSITIVE MATRIX POLYNOMIALSAF consists of all expressions of the form p(x , F) where p ∈ R[x , t] is a polynomial in x
and one additional variable t.

Lemma �.�. Let F ∈ Symk R[x] be a matrix polynomial and let

φ∶� R[x , t] → AF

p(x , t) � p(x , F) .

(�) �e minimal polynomial µF of F in the polynomial ring R(x)[t] in one variable is
contained in R[x , t] and generates the ideal ker(φ).

(�) �e varietyVR(kerφ) corresponding toAF is the hypersurface consisting of all points(u, λ) ∈ Rn ×R such that λ is an eigenvalue of F(u).
Proof. (�) Recall that µF is the unique monic polynomial in R(x)[t] of minimal degree in
t such that µF(F) = �. By the Cayley-Hamilton theorem, it is a factor of the characteristic
polynomial χF(t) = det(tIk−F(x , t)), say χF = µF ⋅ r with r ∈ R(x)[t]monic. Let c ∈ R[x]
be the least commonmultiple of the denominators of the (maximally reduced) coe�cients
of µF with respect to t, so that cµF ∈ R[x][t] is primitive. By Gauss’s lemma (in the form
of �.� below), we have �

c r ∈ R[x][t]. Since r is monic, this implies �
c ∈ R[x], hence c ∈ R×

and µF ∈ R[x][t]. It now follows from Lemma �.� that µF divides any element of ker(φ)
in R[x , t] and is therefore a generator. (�) follows from (�), since VR(µF) = VR(χF). ⇤

Lemma �.�. Let R be a factorial ring with �eld of fractions K and let p, q ∈ R[t] be polyno-
mials with q primitive. If p = qr for some r ∈ K[t], then r ∈ R[t].
Proof. �is is a consequence of Gauss’s lemma from algebra (see [Lang, Cor. IV.�.�]). ⇤

�eorem �.� (Putinar’s theorem for matrix polynomials). Let S = S(g) be an archimedean
description of a compact set. Every matrix polynomial F ∈ Symk R[x] such that F(u) is
positive de�nite for all u ∈ S admits a representation

F = S� + g�S� +� + grSr
where S�, . . . , Sr ∈ Symk are sums of squares of matrix polynomials inAF ⊂ Symk R[x].
Proof. Let AF be the subalgebra of Symk R[x] generated by F and let φ∶R[x , t] → AF

be as above with corresponding R-variety V = V(kerφ). To apply Putinar’s theorem for
a�ne algebras, we �rst need to check that the quadratic module generated by g in AF is
archimedean. Since M(g) is archimedean, it contains h ∈ R[x] such that S(h) ⊂ Rn is
compact. Now SV(φ(h)) = �(u, λ) ∈ Rn ×R � h(u) � �, λ an eigenvalue of F(u)� ⊂ V(R)
is also compact, because the spectral radius of F(u) (largest absolute value of an eigenvalue)
is bounded on the compact set S(g). �us MAF(g) is also archimedean. (See [He��, Satz
�.�.�] for a more careful version of this argument.)

Now F ∈ AF regarded as a function on VR(ker(φ)) ⊂ Rn+� is just the polynomial t,
i.e. it is the function V ∋ (u, λ) � λ where λ is an eigenvalue of F(u) (Lemma �.�(�)).
Since F is positive de�nite, this is a strictly positive function on SV(g) and we can apply
Putinar’s theorem in the form of Cor. �.� to conclude that F is contained in the quadratic
module generated by g inAF . ⇤
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�.�. EXISTENCE OF DEGREE BOUNDS

To prove the existence of degree bounds, there are esssentially two approaches: First,
via a more constructive proof of Putinar’s theorem which allows for an analysis of the re-
quired degrees on the way. �is was the original method in [NS��] and [HN��]. Alterna-
tively, if one is only interested in the existence of bounds (and not in the precise asymptotic
behaviour as in Remark �.�), one can use model-theoretic ideas similar to those in §�.�.

Note �rst that if we could prove Putinar’s theorem over any real closed �eld, this would
give us uniform degree bounds, using a similar argument as in the proof of Prop. �.��.
However, we know that such bounds cannot exist and, consequently, Putinar’s theorem
does not hold over general real closed �elds. So we need a more subtle idea.

Suppose we are given an archimedean description g of a compact set S = S(g) and
a matrix polynomial F of size k that is positive de�nite on S. �e key point is the use of
the archimedean property of the reals: Since F is positive de�nite and S is compact, there
exists N ∈ N such that F(u) � (��N)Ik for all u ∈ S. It turns out that this is the condition
we should generalise to real closed �elds. Given a real closed extension R�R, the convex
hull O = conv(Z) ⊂ R is a subring of R (called the canonical valuation ring). �e proper
generalisation of Putinar’s theorem to arbitrary real closed �elds is the following:

�eorem �.� (Putinar’s theorem for matrix polynomials over real closed �elds).
Let S = S(g�, . . . , gr) be an archimedean description of a compact set and let R�R be real
closed with canonical valuation ringO. Suppose that F ∈ SymkO[x] is a matrix polynomial
such that there exists N ∈ N with F(u) � (��N)Ik for all u ∈ S. �en F has a representation

F = S� + g�S� +� + grSr
where S�, . . . , Sr ∈ SymkO[x] are sums of squares of matrix polynomials. ⇤

We do not give a proof here. First, one has to generalise Putinar’s theorem for polyno-
mials to the above setting. �e necessary tools were developed by Jacobi and Prestel and
can be found in [Prestel-Delzell, §�.�]. �m. �.� can then be derived in a similar way as
we have done above in �m. �.� above (see [He��]). But we can now use this generalised
version of Putinar’s theorem to deduce the existence of the degree bounds we want.

Proof of�m. �.�. For �xed k, d and N ,D ∈ N, consider the set
PN ,D =

���������������
F = ��i��d Aix i ∈ Symk R[x]

�������������������
�(Ai)r,s� � N for all � � r, s � k, �i� � d∀u ∈ S∶ F(u) � (��N)Ik ,∃S�, . . . , Sr sums of squares in Symk R[x]
with deg(Si) � D and F = ∑r

i=� giSi

���������������
By Putinar’s theorem for matrix polynomials (�m. �.�), the union PN = �PN ,D is semi-
algebraic, namely it consists of all F ∈ Symk R[x] with the absolute values of coe�cients
bounded by N and F � (��N)Ik on S. Now �m. �.� exactly says that the same remains
true for the base extensions PN ,D(R) for any real closed extension R�R. �us we can apply
Cor. �.�� and conclude that the ascending chain PN ,� ⊂ PN ,� ⊂ � becomes stationary. �is
is what we wanted to show. (Note that, compared to the precise bound given in Remark
�.�, we now have a dependence on the size of the coe�cients of F rather than the maxi-
mum norm, but since all norms on a �nite-dimensional space are equivalent, this makes
no di�erence for the existence of a bound.) ⇤



�� �. POSITIVE MATRIX POLYNOMIALS

REFERENCES

[CLR��] M.D. Choi, T.Y. Lam, B. Reznick. Real zeros of positive semide�nite forms I.
Math. Z. ���(�), p. �–��, ����.

[He��] R. Heß. Die Sätze von Putinar und Schmüdgen für Matrixpolynome mit Gradschranken.
Diplomarbeit, Universität Konstanz, ����.

[Ih��] R. Ihrig. Positivstellensätze für den Ring der Polynommatrizen.
Diplomarbeit, Universität Konstanz, ����.

[Lang] S. Lang. Algebra. Revised�ird Edition, GTM ���, Springer, New York, ����.
[NS��] J. Nie and M. Schweighofer. One the complexity of Putinar’s Positivstellensatz.

J. Complexity ��(�), p. ���–���, ����. http://arxiv.org/abs/����.����
[HN��] J. W. Helton and J. Nie. Semide�nite representation of convex sets.

Math. Program. ���(�), p. ��–��, ����. http://arxiv.org/abs/����.����



GEOMETRY OF LINEARMATRIX INEQUALITIES Daniel Plaumann
Universität Konstanz

Summer ����

�. GENERAL EXACTNESS RESULTS

�e goal of this section is to present the results ofHelton andNie in [HN��], which pro-
vide su�cient conditions for the exactness of the Lasserre relaxation. �e theses of Rainer
Sinn [Si��] and Tom Kriel [Kr��] both give very good accounts, with many improvements
in proofs and exposition, and the presentation here borrows from both.

�.�. LAGRANGEMULTIPLIERS AND CONVEX OPTIMISATION

�e basic idea of Helton and Nie is that in order to represent a linear polynomial de�n-
ing a supporting hyperplane of a convex basic closed set in the corresponding quadratic
module, it is helpful to study representations of its (non-linear) Lagrange function. To ex-
plain this, we need a bit of background and terminology from optimisation. �e following
is a special case of the Karush-Kuhn-Tucker theorem.

�eorem �.�. Let S = S(g�, . . . , gr) be a basic closed set. Let f ∈ R[x] and assume that u ∈ S
is a point in which f attains its minimum on S. Assume further that there is v ∈ Rn with

� �∇gi(u), v� > � if deg(gi) � ��∇gi(u), v� � � if deg(gi) � �
whenever gi(u) = �. �en there exist λ�, . . . , λr � � such that

∇ f (u) = r�
i=� λi∇gi(u)

λi gi(u) = � for all i = �, . . . , r.
(�e same holds if f , g�, . . . , gr are just continuously di�erentiable functions.)

�e constants λ�, . . . , λr are called Lagrange multipliers for f at theminimiser u; the
second statement, which says that the Lagrange multipliers for inactive inequalities are
zero, is called complementary slackness. �ere are a number of conditions, called constraint
quali�cations, implying the existence of Lagrangemultipliers in aminimiser.�e one stated
here is theMangasarian-Fromowitz constraint quali�cation.

Proof. We prove only the special case where the objective function f is linear, following
[Si��, Cor. A��]. �is will be all we need. See [Forst-Ho�mann, �m. �.�.� et seq.] for a
full proof. So let f = ℓ ∈ R[x]� and let u ∈ S be a minimiser of ℓ on S. It is not restrictive to
assume that u = � and ℓ(u) = �. Furthermore, we may assume that g�(�) = � = gq(�) = �
and gq+�(�), . . . , gr(�) > � for some q � �, i.e. exactly the �rst q inequalities are active at �.

��
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We show that there are λ�, . . . , λq � �with∇ℓ(�) = ∑q
i=� λi∇gi(�) (and put λq+� = � = λr =

�). Suppose not, then we may apply Farkas’s lemma as spelt out below and conclude that
there exists w ∈ Rn such that �∇gi(�),w� � � for i = �, . . . , q but �∇ℓ(�),w� < �. On the
other hand, wemay pick v ∈ Rn as in the hypothesis. Choose ε > �with �∇ℓ(�),w+εv� < �.
Now if � � i � q and deg(gi) � �, then �∇gi(�),w + εv� > � for all ε > �, which implies

gi(δ(w + εv)) � �
for all su�ciently small δ > �, since gi(�) = �. �e same holds if deg(gi) = �, since in this
case we have gi(δ(w + εv)) = δ�∇gi(�),w + εv� � �. Finally, we may also assume that the
same holds for the inactive inequalities (i = q + �, . . . , r), by making δ smaller if necessary.
But this implies that δ(w+εv) is a point in S for which ℓ(δ(w+εv)) = δ�∇ℓ(�),w+εv� < �,
contradicting the fact that � = ℓ(�) is the minimum of ℓ on S. ⇤

�e following basic lemma was used in the proof (and in fact earlier in Example �.��).

Lemma �.� (Farkas’s lemma). Let c�, . . . , cm ∈ Rn and let

P = �u ∈ Rn � �ci , u� � � for all i = �, . . . ,m�.
�en P∗ = cone(c�, . . . , cm). In other words, for c ∈ Rn there either exists u ∈ P such that�c, u� < � or there exist λ�, . . . , λm � � with c = ∑m

i=� λici .
Proof. We have cone(c�, . . . , cm)∗ = P, so that P∗ = cone(c�, . . . , cm)∗∗ = cone(c�, . . . , cm)
by biduality (�m. �.�). ⇤

Recall that a function f ∶Rn → R is concave on a convex subset C ⊂ Rn if

f (λu + (� − λ)v) � λ f (u) + (� − λ) f (v)
holds for all u, v ∈ C and λ ∈ [�, �]. If the inequality is strict at all points, f is called strictly
concave. It is called (strictly) convex if the opposite inequality holds, i.e. if − f is (strictly)
concave. Some essential facts are contained in the following exercises.

Exercise �.�. Let C ⊂ Rn be a convex set and let f ∶Rn → R.
(a) If f is continuously di�erentiable, then f is concave on C ⊂ Rn if and only if

f (v) � f (u) + �∇ f (u), v − u�
holds for all u, v ∈ C.

(b) If f is twice continuously di�erentiable, then f is concave on C if and only if its Hessian(D� f )(u) is negative semide�nite for all u ∈ C. Furthermore, if (D� f )(u) is negative de�-
nite on C, then f is strictly concave. Give an example showing that the converse is false.

Exercise �.�. Let C = S(g�, . . . , gr) be a basic closed set and suppose that g�, . . . , gr are concave on
C. Show that C is convex.

Exercise �.�. If C ⊂ Rn is compact and convex and f ∶Rn → R is concave on C, then there is an
extreme point of C in which f attains its minimum on C.

Exercise �.�.
(a) �e set of extreme points of a compact convex subset of R� is compact.
(b) Give an example of a compact convex subset of R� whose set of extreme points is not closed.
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Corollary �.�. Let C = S(g�, . . . , gr) be compact and convex with non-empty interior and
suppose that g�, . . . , gr are concave on C. �en Lagrange multipliers exist for any linear poly-
nomial at any minimiser on C.

Proof. Let ℓ ∈ R[x]� and let u ∈ C be aminimiser of ℓ onC. SinceC has non-empty interior,
there exists a point u� ∈ C with gi(u�) > � for i = �, . . . , r. Now if gi(u) = �, then

� < gi(u�) � gi(u) + �∇gi(u), u� − u� = �∇gi(u), u� − u�,
since gi is concave on C. Hence the hypotheses of�m. �.� are satis�ed for v = u� − u. ⇤

Note that in the proof of the corollary we did not need that ℓ has degree one. But in
this way, it relies only on the special case of�m. �.� which we have proved.

�.�. THE HELTON-NIE THEOREMS

We now come to the main results of this chapter, starting with the simplest version.

�eorem �.�. Let C = S(g�, . . . , gr) be an archimedean description of a compact convex set
with non-empty interior. Suppose that the following condition is satis�ed:
[SOS-Concavity] �e matrices −D�gi ∈ SymnR[x] are sums of squares for i = �, . . . , r.
�en C possesses an exact Lasserre relaxation with respect to g�, . . . , gr.

Here is the principal lemma needed for the proof.

Lemma �.�. Let F ∈ Symk R[x] be a matrix polynomial which is a sum of squares, and �x
u ∈ Rn. �en the matrix polynomial

Gu(x) = ��
�

t�
�

F(u + s(x − u))dsdt,
(where the integration is carried out entry-wise) is again a sum of squares.

Proof. By Exercise �.�, amatrix polynomialG ∈ Symk R[x] is a sumof squares if and only if
the polynomial yTGy ∈ R[x , y], which is homogeneous of degree � in y = (y�, . . . , yk)T , is
a sumof squares.�us, by hypothesis, the polynomial f = yTF(u+s(x−u))y ∈ R[x , y, s] is
a sum of squares and therefore possesses a positive semide�nite Grammatrix (c.f. Example
�.�(d)). �is means f = (Bm)TBm where m is a column vector of monomials in x , y, s
and B a suitable real rectangular matrix. Now write m = U(s) ⋅ m where m is a vector
of monomials in x , y and U is a matrix polynomial in s of appropriate size�. So putting
A(s) = �BU(s)�TBU(s), we �nd that f = mTA(s)m and hence

yTGu y = ��
�

t�
�

f (x , y, s)dsdt = mT ��
��

�

t�
�

A(s)dsdt��m,

showing that Gu is a sum of squares, as claimed. (For a slicker proof, using integration of
Banach space-valued functions, see [Kr��, Lemma �.�.�].) ⇤

�To see that this is possible, let m contain all monomials in x , y up to degree d. Let U(s) be the rectan-
gular matrix [IN , s ⋅ IN ,�, sd ⋅ IN]T ∈Mat(d+�)N×N R[s], where N = length(m). �en U(s) ⋅m contains all
monomials of degree d in x , y, s.
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Proof of�m. �.�. Let ℓ ∈ R[x]� with ℓ�C � � and let u ∈ C be a minimiser. Since the matrix
polynomials−D�gi are sums of squares, the polynomials gi are concave (Exercise �.�).�en
Cor. �.� guarantees the existence of Lagrange multipliers for ℓ in u, so that we have

∇ℓ(u) = r�
i=� λi∇gi(u)

λi gi(u) = � for all i = �, . . . , r.
for certain λ�, . . . , λr � �. It follows that the function fℓ = ℓ − ℓ(u) − ∑r

i=� λi gi and its
gradient both vanish at u, so the fundamental theorem of calculus implies

fℓ = ��
�

∂
∂t

fℓ(u + t(x − u))dt = ��
�

t�
�

∂�
∂s�

fℓ(u + s(x − u))dsdt =(�.�)

= r�
i=� λi ⋅ (x − u)T�

��
�

t�
�

−D�gi(u + s(x − u))dsdt��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=A(i)u (x)
�(x − u).

By Lemma �.�, the matrix polynomials A(i)u are sums of squares, and therefore

ℓ = ℓ(u) + r�
i=� λi gi + r�

i=� λi(x − u)TA(i)u (x − u)
is a represention of ℓ inM(g) in which the degrees are bounded by max{deg(gi)}. ⇤

A polynomial g whose Hessian is a sum of squares is called sos-convex. By Exercise
�.�, any such polynomial is convex. But as usual, the converse does not hold in general.

Exercise �.�. Let f ∈ R[x] be a homogeneous polynomial.
(a) Show that if f is convex, then f is non-negative on Rn.
(b) Show that if f is sos-convex, then f is a sum of squares.
(c) Give an example of a convex polynomial f� ∈ R[x] such that the homogenisation xdeg f

� f (x�x�) ∈
R[x�, x�, . . . , xn] is not convex.

For an example of a convex sum of squares that is not sos-convex, see Ahmadi and Parillo [AP��].
�ere also exist convex homogeneous polynomials that are not sums of squares, even though not a
single explicit example of such a polynomial is known (see Blekherman [Bl��]).

Example �.�. Consider the TV-screen C = S(g), where g = �− x� − y�. �e Hessian of g is

D�g = �−��x� �
� −��y�� ,

so g is sos-concave. �us�m. �.� implies that the Lasserre relaxation of C with respect to
g becomes exact. (Note that M(g) is a preordering and therefore archimedean.)

Exercise �.�. Work out the construction in the proof of�m. �.� for the TV-screen. Inwhich degree
does the Lasserre relaxation become exact?

Next, we present a more sophisticated version of�m. �.� in which the de�ning poly-
nomials are not required to be sos-concave. Instead, we will asssume that the concavity is
strict, at least along the extreme part of the boundary, with a uniform lower bound on the
curvature. �e proof makes use of Putinar’s theorem for matrix polynomials.
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�eorem �.�. Let C = S(g�, . . . , gr) be an archimedean description of a compact convex set
with non-empty interior. Suppose that the following condition is satis�ed:
[Concavity] �e function gi is concave on C and if u ∈ C is in the closure of the set of

extreme points of C with gi(u) = �, then D�gi(u) is negative de�nite.
�en C possesses an exact Lasserre relaxation with respect to g�, . . . , gr.

Proof. For any � � i � r, let Zi be the closure of the set of extreme points of C at which gi
vanishes. For u ∈ Rn write

A(i)u (x) = ��
�

t�
�

−D�gi(u + s(x − u))dsdt ∈ SymnR[x].
Since −D�gi(u) > � for all u ∈ Zi and −D�gi(v) � � for v ∈ C by hypotheses, it follows
from linearity of integration that A(i)u (v) > � for all v ∈ C and u ∈ Zi . �us by compactness
of C and Zi , there exists δ > � with A(i)u (v) � δIn for all u ∈ Zi , v ∈ C. We may therefore
apply Putinar’s theorem for matrix polynomials (�m. �.�) and obtain representations

A(i)u (x) = r�
j=� g jS

(i)
j,u

where each S(i)j,u ∈ SymnR[x] is a sum of squares of degree bounded by

deg(S(i)j,u ) � D(g , deg(A(i)u ), �A(i)u �, δ).
Now we again use compactness of Zi to make the bound independent of u. By taking�A(i)� =max{�A(i)u � � u ∈ Zi} and noting that deg(A(i)u ) � deg gi , we have

deg(S(i)j,u ) � D(g , max{deg(gi)}, �A(i)�, δ).
Now, as in the proof of�m. �.�, let ℓ ∈ R[x]� with ℓ�C � � and let u ∈ C be aminimiser,

which we may assume to be an extreme point of C (see Exercise �.�). Again �x Lagrange
multipliers λ�, . . . , λr � � for ℓ at u (Cor. �.�), so that

∇ℓ(u) = r�
i=� λi∇gi(u)

λi gi(u) = � for all i = �, . . . , r.
�en using identity (�.�), we obtain a representation

ℓ = ℓ(u) + r�
i=� λi gi + r�

i=�
r�
j=��λi(x − u)TS(i)j,u (x − u)�g j

in which the degrees are independent of u and hence of ℓ. ⇤

Since not every strictly concave polynomial is sos-concave, it is clear that�m. �.� can
be applied to examples inwhich�m. �.� fails. In fact, one can even show thatmost concave
polynomials (in a suitable sense) are not sos-concave (see Blekherman [Bl��]). But explicit
examples of such polynomials (as in [AP��]) are not easy to come by.

On the other hand, the assumption that the de�ning polynomials g be strictly concave
on S(g) is still quite restrictive. We can further weaken the hypotheses if we make use of
our freedom in choosing the de�ning polynomials g of the basic closed set S(g).
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De�nition �.�. A twice continuously di�erentiable function f ∶Rn → R is called strictly
quasi-concave at a point u ∈ Rn if the Hessian D� f (u) is negative de�nite on the algebraic
tangent space {v ∈ Rn � �∇ f (u), v� = �}, i.e. if

For all v ∈ Rn � {�}∶ �∇ f (u), v� = � �⇒ vT(D� f )(u)v < �.
�e de�nition is simple enough but not very intuitive. A more natural de�nition of

(non-strict) quasi-concavity is contained in the following exercise.

Exercise �.�. Let C ⊂ Rn be convex. A C�-function f ∶Rn → R is called quasi-concave on C if all
its sublevel sets Ca = {u ∈ C � f (u) � a}, for a ∈ R, are convex. Show that a strictly quasi-concave
function, as de�ned above, is quasi-concave.

Example �.��. �e polynomial f = xy is strictly quasi-concave on the open quadrant(�,∞) × (�,∞). Indeed, we compute ∇ f = (y, x)T and

D� f = �� �
� �� .

�en given (u, v) ∈ R�, we have �(∇ f )(u, v)�⊥ = span(−u, v) and the restriction of D� f
to that line is −�uv, which is negative for u, v > �. On the other hand, D� f is constant and
inde�nite, so that f is not concave anywhere.

Lemma �.��. A twice continuously di�erentiable function f ∶Rn → R is strictly quasi-concave
at a point u ∈ Rn if and only if there exists M � � such that

D� f (u) −M ⋅ ∇ f (u)∇ f (u)T < �.
Proof. Put v� = ∇ f (u) and A = D� f (u) and suppose there exists M as above. �en given
v ∈ Rn with vT� v = �, we have vTAv = vTAv −MvTv�vT� v < �. Conversely, suppose that f is
strictly quasi-concave at u. If v� = �, quasi-concavity implies A < � and there is nothing to
show, so assume v� ≠ �. Since A is negative de�nite and hence non-degenerate as a bilinear
form on the subspace V = span(v�)⊥, it admits an orthogonal complement, i.e. there exists
w ∈ Rn such that Rn = V ⊕ span(w) and vTAw = wTAv = � for all v ∈ V . �en for any
vector v + λw ∈ Rn, with v ∈ V and λ ∈ R, and for any M ∈ R, we compute(v + λw)T(A−Mv�vT� )(v + λw) = vTAv + λ�(wTAw −M�w , v���).
Sowe chooseM � � such thatM�w , v��� > wTAw. (Note that �w , v�� ≠ �, sincew ∉ V .) ⇤

Lemma �.�� ([Kr��], Lemma �.�.�). For any M > �, there exists a polynomial h in one
variable that is a sum of squares and satis�es the following for all t ∈ [−�, �]:

(�) h(t) > �
(�) h(t) + h′(t)t > �
(�) �h′(t)+h′′(t)t

h(t)+h′(t)t ≤ −M ⇤
Exercise �.�. Give a proof of Lemma �.��. Suggestion: Show �rst that

f (t) = � − e−(M+�)t(M + �)t
is a C�-function with the desired properties.
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Proposition �.��. Let S = S(g�, . . . , gr) be an archimedean description of a compact set and
assume that the polynomials gi are strictly quasi-concave on S. �en there exist h�, . . . , hr ∈
M(g�, . . . , gr) which are strictly concave on S such that S = S(h�, . . . , hr).
Proof. Choose R > � with S ⊂ BR(�). A�er rescaling, we may assume gi(BR(�)) ⊂ [−�, �]
for i = �, . . . , r. Now let M � �, let h ∈ R[t] be as in Lemma �.�� above and put

h� = R� −�n
i=� x�i and hi = gi ⋅ h(gi) for i = �, . . . , r.

�en S ⊂ S(h) is clear. Conversely, let u ∈ Rn � S. If u ∉ BR(�), then h�(u) < �, hence
u ∉ S(h). If u ∈ BR(�) � S, then −� � gi(u) < � for some i and hence (h(gi))(u) =
h(gi(u)) > �, which implies hi(u) < �. �us we have shown S = S(h). Also, since h is a
sum of squares, so is h(gi), which implies h�, . . . , hr ∈ M(g). Since M(g) is archimedean,
we also have h� ∈ M(g).

Now we need to make sure that h�, . . . , hr are strictly concave on S. �e polynomial h�
is everywhere strictly concave, since D�h� = −In. For the others, we compute

D�hi = �h(gi) + h′(gi)gi�D�gi + ��h′(gi) + h′′(gi)gi)∇gi ⋅ (∇gi)T
= �h(gi) + h′(gi)gi��D�gi + �h′(gi) + h′′(gi)gi

h(gi) + h′(gi)gi ∇gi ⋅ (∇gi)T�� �h(gi) + h′(gi)gi��D�gi −M ⋅ ∇gi ⋅ (∇gi)T�.
�us using property (�) of h and applying Lemma �.�� to gi , we can make D�hi negative
de�nite at all points of S for i = �, . . . , r, by choosing M su�ciently large. ⇤

We sum up the results of this chapter in the following corollary, combining the various
conditions in a single statement.

Corollary �.��. Let C = S(g�, . . . , gr) be an archimedean description of a compact convex
set with non-empty interior and suppose that for each i = �, . . . , r one of the following two
conditions is satis�ed:
[SOS-Concavity] �e matrices −D�gi ∈ SymnR[x] are sums of squares for i = �, . . . , r.
[Quasi-Concavity] �e function gi is strictly quasi-concave on C.
�en C possesses an exact Lasserre relaxation with respect to g�, . . . , gr.

Proof. Suppose that g�, . . . , gq are sos-concave and gq+�, . . . , gr are strictly quasi-concave,
for some � � q � r. Since M(g) is archimedean, we have R − ∑n

i=� x�i ∈ M(g) for some
R � �. By Prop. �.��, we can replace R − ∑n

i=� x�i , gq+�, . . . , gr by strictly concave polyno-
mials in M(g) de�ning the same set and obtain a new description C = S(h�, . . . , hs) with
h�, . . . , hs ∈ M(g) such that each hi for i = �, . . . , s is either sos-concave or strictly concave
on C. Now the arguments in the proof of �.� and �.� can be combined by a simple case dis-
tinction between the sos-concave and strictly concave de�ning polynomials to show that
C has an exact Lasserre relaxation with respect to h and therefore with respect to g. ⇤

Example �.��. Let g� = xy− �, g� = �−x− y and g� = x+ y. Since g� is strictly quasi-concave
on (�,∞)×(�,∞) and g�, g� are linear and therefore sos-concave, the basic closed setS(g)
possesses an exact Lasserre relaxation with respect to g. (It is in fact a spectrahedron).
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Example �.��. �e statement in Cor. �.�� is still not the best possible. Let g� = y−x�, g� = x,
g� = �−x, g� = y, g� = �− y in variables x , y. We saw in Example �.�� that the third Lasserre
relaxation of S = S(g)with respect to g is exact. But the polynomial g� = y−x� has Hessian

D�g� = �−�x �
� ��

and is therefore not strictly quasi-concave at the origin. �erefore, the exactness of the
Lasserre relaxation does not follow from Cor. �.��. We will revisit this example later.
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�. NECESSARY CONDITIONS FOR EXACTNESS

So far we have only seen su�cient conditions for the exactness of the Lasserre relax-
ation but not a single example in which it demonstrably fails to become exact. In this
chapter, we will �ll this gap. �e principal obstruction against exactness that we are going
to use is contained in the following result by Gouveia and Netzer in [GN��, Prop. �.�].

Proposition �.�. Let S = S(g�, . . . , gr) ⊂ Rn and let Z ⊂ Rn be a line such that S ∩ Z has
non-empty interior in Z. Assume that there exists a point u� ∈ S in the relative boundary of
conv(S)∩Z such that the gradients∇gi(u�) are orthogonal to Z whenever gi(u�) = �. �en
all Lasserre relaxations Lg[d] for d � � strictly contain conv(S).
Proof. Let Z and u� be as in the hypothesis. A�er a change of coordinates, we may assume
u� = � and Z = {u ∈ Rn � u� = � = un = �}. We may further assume that u� � � holds for
all u ∈ conv(S) ∩ Z. Let hi = gi �Z = gi(x�, �, . . . , �) ∈ R[x�] for i = �, . . . , r and consider
the Lasserre relaxation Lh[d] ⊂ Z for some d � �. We have Lh[d] ⊂ Lg[d] ∩ Z. (To see
this, let u ∈ Lh[d], i.e. u = (L(x�), �, . . . , �) for some L ∈ Mh[d]′ ⊂ R[x�]∗. �en L extends
to L� ∈ R[x]∗ via L�( f ) = L( f (x�, �, . . . , �)) for f ∈ R[x]. We have L� ∈ M[g]′ since
f (x�, �, . . . , �) ∈ Mh[d] for any f ∈ Mg[d]. �us u = (L�(x�), . . . , L�(xn)) ∈ Lg[d].)

Now let c ∈ R+ ∪ {∞} with conv(S) ∩ Z = [�, c] and put hr+� = c − x� if c ∈ R and
hr+� = � otherwise. �en S(h�, . . . , hr+�) = [�, c] and Lh,hr+�[d] ⊂ Lh[d]. By Prop. �.��, we
have Lh,hr+� = [�, c] if and only if Mh,hr+�[d] contains all ℓ ∈ R[x�]� such that ℓ�[�,c] � �. In
particular, Lh,hr+� = [�, c] would imply x� ∈ Mh,hr+�[d], so we would have a representation

x� =�
i∈I sihi +�

i∉I sihi

where h� = � and we have split indices by putting I = {i ∈ {�, . . . , r} � hi(�) > ��, so that
hi(�) = � for i ∉ I. Evaluating at �, we see that si(�) = � for i ∈ I. So the si for i ∈ I have no
constant term and, since they are sums of squares, they have no linear term either. Now
by hypothesis, the gradient ∇gi(�) is orthogonal to Z for all i ∈ {�, . . . , r + �} � I, which
implies that hi for i ∉ I also has no constant and no linear term. �is is a contradiction,
since x� is linear, so we conclude that no such representation of x� exists. It follows thatLh,hr+�[d] strictly contains [�, c], hence Lg[d] strictly contains conv(S). ⇤

Corollary �.�. Let S = S(g) be basic closed with non-empty interior and suppose there
exists u� ∈ �∂conv(S)� ∩ S such that ∇gi(u�) = � whenever gi(u�) = �. �en all Lasserre
relaxations Lg[d] for d � � strictly contain conv(S).
Proof. Apply Prop. �.� to any line L through u� and int(S). ⇤

��
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Example �.�.
Let g = x�(� − x) − y� and put S = S(g). �e origin is
a singular point of V(g), i.e. ∇g(�) = �. So no Lasserre
relaxation of conv(S) with respect to g is exact.
But a quick computation shows that

conv(S) = S(g , �x − �) ∪ S(�y + x , x − �y, � − �x)
which is not basic closed. �e second set in the union is
just a triangle while the other possesses an exact Lasserre
relaxation by Cor. �.�� (see Exercise �.� below).

x

y

Exercise �.�. Show that conv(S) in the above example is a projected spectrahedron.

�e necessary condition for exactness in Corollary �.� depends on the description of
the basic closed set S. But there is also a more intrinsic geometric condition.

LetC ⊂ Rn be closed and convex. A face ofC is a convex subset F ⊂ C with the property
that �

�(u + v) ∈ F implies u, v ∈ F whenever u, v ∈ C. A face F is called proper if F ≠ �,C.
It is called exposed if it is cut out by a supporting hyperplane, i.e. if there exists ℓ ∈ R[x]�
with ℓ�C � � and F = {u ∈ C � ℓ(u) = �}. Otherwise, F is called non-exposed.�

Exercise �.�. Check that if ℓ ∈ R[x]� with ℓ�C � �, then {u ∈ C � ℓ(u) = �} is indeed a face of C.

Example �.�. �e faces of a polyhedron S(ℓ�, . . . , ℓr) are exactly the vertices, edges, etc.,
de�ned by the vanishing of a subset of ℓ�, . . . , ℓr and are always exposed.

Example �.�.
�e convex set in the picture is the basic closed set

C = S(y − x�, � + x , y, � − y).
�e origin is a non-exposed face of C, since the only linear
polynomial ℓ ∈ R[x]� with ℓ�C � � and ℓ(�, �) = � is ℓ = y,
which exposes the larger face {(u, �) ∈ R� � − � � u � �} of
C rather than just the origin.

x

y

Exercise �.�. Show that no proper face of a closed convex set C contains a point of relint(C).
Exercise �.�. Let C be closed and convex. Show that a convex subset F of C is a face if and only if
C � F is convex and any convex subset of C containing F has strictly greater dimension than F.

Proposition �.�. Let C ⊂ Rn be closed and convex and let F be a face of C.
(�) Every face of F is also a face of C.
(�) F is closed.
(�) If u ∈ relint(F) and ℓ ∈ R[x]� with ℓC � � and ℓ(u) = �, then ℓ�F = �.
(�) Any point in the relative boundary of C is contained in a proper exposed face of C.
(�) For any point u ∈ C there exists a unique face of C containing u in its relative interior.

�is is precisely the smallest face of C containing u.
(�) F is exposed if and only if for every face F ′ strictly containing F there is ℓ ∈ R[x]�

with ℓ�C � � such that ℓ�F = � but ℓ�F′ ≠ �.
�Unfortunately, the terminology here is not uniform in the literature. It is equally common to call face

what we call exposed face and use another term (e.g. facelet or extremal convex subset) for what we call face.
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Proof. (�)–(�) Exercise.
(�) Let u ∈ C � relint(C). By the general separation theorem, there exists ℓ ∈ R[x]�

with ℓ(u) = � and ℓ > � on relint(C). �us {u ∈ C � ℓ(u) = �} is the face we want. (See also
[Barvinok,�m. �.�] or [Convexity-LN, Satz �.�].)

(�) Let F be the intersection of all faces containing u.�en F is a face ofC, and therefore
obviously the smallest face containingu. Ifuwere not contained in the relative interior of F,
it would be contained in a proper face of F, whichwould also be a face ofC, a contradiction.
If F ′ is another face containing u, then F ⊂ F ′ by de�nition of F. So if F � F ′, then u cannot
be contained in the relative interior of F ′.

(�) If F is exposed, there exists such ℓ by de�nition. Conversely, let F be a face ofC with
this property and consider N = {ℓ ∈ R[x]� � ℓ�C � � and ℓ�F = �}. We choose a sequence(Uk)k�� of open subsets inRn such that F = �k��Uk andRn�Uk is compact for every k � �.
(Explicitly, we may take Uk = �u∈F B �

k
(u) ∪ (Rn � Bk(�)).) Given a point u ∈ C � F , we

can pick ℓu ∈ N with ℓu(u) > �. For if we take just any ℓ ∈ N , then either ℓ(u) > � or u
is contained in the relative interior of some face containing F and there exists ℓu ∈ N with
ℓu(u) > � by hypothesis. Now since C � Uk is compact, we can �nd u�, . . . , um ∈ C � Uk

such that ℓk = ∑m
i=� ℓui is strictly positive on C � F. �en the convergent series

ℓ = ∞�
k=�

ℓk
�k�ℓk�

(where � ⋅ � is some norm on R[x]�) determines an element ofN that exposes F. ⇤
Exercise �.�. Show that any maximal proper face of a closed convex set is exposed.

�eorem �.�. All faces of a spectrahedron are exposed.

Proof. Consider �rst the psd cone Sym+k itself. If A ∈ Sym+k is any psd matrix, it is not hard
to show that the unique face of Sym+k containing A in its relative interior is

F = �B ∈ Sym+k � kerA ⊂ kerB�.
(See [Barvinok, §II.��] or [Convexity-LN, Satz �.�].) To see that such F is an exposed face,
let C be a psd matrix with imC = kerA. (To prove the existence of such C, let r = rkA
and choose an orthogonal matrixU ∈ GLk such thatUTAU is the diagonal matrix with the
�rst r diagonal entries the non-zero eigenvalues of A and the remaining equal to �. Let J
be the diagonal matrix with the �rst r entries equal to � and the remaining equal to � and
put C = UJUT . �en AC = � and kerA ∩ kerC = {�}, hence imC = kerA, as desired.)
Now given B ∈ Sym+k with �B,C� = �, we have BC = � (since C is also psd) and hence
kerA = imC ⊂ kerB. �is shows F = {B ∈ Sym+k � �B,C� = �}, so that F is exposed. (In the
above notation, ℓ = �X ,C� with X = (Xi j)i� j is the polynomial in R[X]� exposing F.)

Now if U ⊂ Symk is an a�ne-linear subspace and F a face of the spectrahedron U ∩
Sym+k , let A ∈ relint(F) and let F ′ be the unique face of Sym+k with A ∈ relint(F ′). �en
F ′ ∩ U contains A in its relative interior, hence F ′ ∩ U = F. By what we have just seen,
F ′ = {B ∈ Sym+k � �B,C� = �} for some C ∈ Sym+k , so that F = {B ∈ U ∩ Sym+k � �B,C� = �}.

In general, if φ∶Rn → Symk is an a�ne linear map, the faces of φ−�(Sym+k) are in bijec-
tion with the faces of S = imφ ∩ Sym+k , and if H is a hyperplane in Symk exposing a face
H∩S, the corresponding face φ−�(H∩S) = φ−�(H)∩φ−�(S) of φ−�(S) is also exposed. ⇤
Exercise �.�. Fill in the details in the above proof.
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�is statement does not extend to projected spectrahedra since projections of exposed
faces need not be exposed (see Example �.� below). However, an exact Lasserre relaxation
of a convex basic closed set with respect to its describing inequalities cannot have any non-
exposed faces.�is was �rst shown in [NPS��]. It can also be easily deduced fromProp. �.�.

Exercise �.�. Find an example of a speactrahedron in R� whose projection onto the �rst two coor-
dinates has a non-exposed face.

�eorem �.�. Let C = S(g) be convex with non-empty interior. If C has a non-exposed face,
then no Lasserre relaxation of C with respect to g is exact.

Proof. Let F ⊂ C be a non-exposed face. By Prop. �.�(�), there exists some face F ′ of C
containing F such that ℓ�F′ = � for all ℓ ∈ R[x]� with ℓ�F = � and ℓ�C � �. Let u� ∈ relint(F)
and u� ∈ relint(F; ), and let Z be the line through u� and u�. �en C ∩ Z has non-empty
interior in Z and u� is a point in the relative boundary of C ∩ Z. So we can apply Prop. �.�
once we have veri�ed the condition on the gradients. Suppose that gi(u�) = � for some
i. Since C is convex and gi �C � �, we must have �∇gi(u�), u − u�� � � for all u ∈ C. In
other words, the polynomial ℓ = �∇gi(u�), x − u�� ∈ R[x]� is non-negative on C. Since
u� ∈ relint(F) and ℓ(u�) = �, we must have ℓ�F = � and hence also ℓ�F′ = �. So ℓ vanishes
in u� and u� and thus on all of Z, which means that ∇gi(u�) is orthogonal to Z. ⇤
Example �.�.
Returning to the convex set

C = S(y − x�, � + x , y, � − y).
from Example �.�, we conclude from�m. �.� that C can-
not have an exact Lasserre relaxation with respect to the
de�ning polynomials y − x�, �+ x , y, �− y, since the origin
is a non-exposed face. However, C is the convex hull of the
face {−�}×[�, �] and C∩S(x), both of which are projected
spectrahedra.�is is clear for the �rst, while for the second
we gave an explicit proof in Example �.��.

x

y

Remarks �.��.
(�) Note that�m. �.� only applies whenS(g) is already convex. Itmay in fact happen

that conv(S(g)) has an exact Lasserre relaxation with respect to g even when
conv(S) has a non-exposed face. For example, Gouveia and Netzer show for the
football stadium conv(S(g)) de�ned by g = −((x + �)� + y� − �)((x − �)� + y� − �)
(cf. Exercise �.��) that conv(S(g)) = Lg[�] (see [GN��, Prop. �.��]).

(�) Furthermore,�m. �.� only applies when the Lasserre relaxation is indeed exact.
An inexact Lasserre relaxation of a convex basic closed set may well have non-
exposed faces. For example, the set in Example �.� has a Lasserre relaxation with
a non-exposed face [GN��, Cor. �.��].
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�. HYPERBOLIC POLYNOMIALS

In this chapter, we return to the study of spectrahedra, rather than projected spectrahe-
dra, and their connection with hyperbolic and determinantal polynomials. �e main goal
is the celebrated Helton-Vinnikov theorem, which provides a complete characterisation of
the two-dimensional convex semialgebraic sets that can be represented by linear matrix
inequalities, i.e. a characterisation of the plane spectrahedra.

It turns out to be technically more convenient to deal with cones rather than general
convex sets. However, everything we show about convex cones and spectrahedral cones
has an analogue for convex sets and spectrahedra that can be obtained by taking slices.

�.�. HYPERBOLICITY

De�nition �.�. A homogeneous polynomial f ∈ R[x] is called hyperbolic with respect to
a point e ∈ Rn if f (e) ≠ � and if the univariate polynomial f (u + te) ∈ R[t] has only real
roots, for every u ∈ Rn. It is called strictly hyperbolic if it is hyperbolic and the roots of
f (u + te) are all distinct, for every u ∈ Rn, u ∉ R ⋅ e.
Examples �.�.

(�) �e polynomial f = x� + y� − z� ∈ R[x , y, z] is (strictly) hyperbolic with respect to
e = (�, �, �), since f (u + te) = u�

� + u�
� − (u� + t)� has discriminant �(u�

� + u�
�) > �

and therefore two distinct real roots in t, for all u = (u�, u�, u�) ∈ R� �R ⋅ e.
(�) �e polynomial f = x� + y� − z� ∈ R[x , y, z] is not hyperbolic with respect to

any point in R�. (�is is the homogenized version of the polynomial de�ning the
TV screen; see Example �.��). In particular, for e = (�, �, �), one can check that
f (u + te) has two real but also a pair of non-real complex-conjugate roots.

(�) �e determinant det(X) of a general symmetric d × d-matrix X = (Xi j)��i� j�d ,
regarded as a polynomial on Symd and thus an element ofR[Xi j � � � i � j � d], is
hyperbolic with respect to the point e = Id . �is is because for any A ∈ Symd , the
roots of det(A− tId) are exactly the eigenvalues of A. In particular,

Sym+d = �A ∈ Symd � det(A− tId) has only non-negative roots�.
(�) Let A = ∑n

i=� xiAi be a homogeneous linear matrix polynomial of size d × d and
suppose there exists e ∈ Rn with A(e) = Id . �en f = det(A) ∈ R[x] is homo-
geneous of degree d and hyperbolic with respect to e. Again, this is because f =(u−te) = det(A(u)−tId) is the characteristic polynomial of the symmetricmatrix
A(u) and therefore has only real roots. More generally, the same remains true if

��
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A(e) is just any positive de�nite matrix, by considering
�
A(e)−� ⋅A(x)�A(e)−�.

Note that the spectrahedral cone S(A) can also be expressed in terms of f asS(A) = �u ∈ Rn � A(u) � ��= �u ∈ Rn � f (u − te) has only non-negative roots�.
In view of these examples, we make the following de�nition.

De�nition �.�. Let f ∈ R[x] be hyperbolic with respect to e. �e setC e( f ) = �u ∈ Rn � f (u − te) has only non-negative roots�
is called the (closed) hyperbolicity cone of f with respect to e.

In this sense, one can think of hyperbolic polynomials as generalised characteristic
polynomials and the hyperbolicity cones as generalised psd cones. But in spite of the name,
it is not apparent from the de�nition that C e( f ) is indeed a convex cone. Also, the name
suggests that f should be hyperbolic with respect to any point in the (interior of the) hy-
perbolicity cone.�ese statements can be proved directly (see for example [Convexity-LN,
§��]). Instead, we will deduce them later from the Helton-Vinnikov theorem.

In example �.�(�), we have already seen the following.

Proposition �.�. If A is a homogeneous linear matrix polynomial with A(e) > � for some
e ∈ Rn, the spectrahedral cone S(A) coincides with the hyperbolicity cone C e(det(A)). ⇤

�e hyperbolicity condition is therefore necessary for a cone to be spectrahedral. �us
the following statement is not surprising, though a little additional work is needed for the
proof, which we will omit here (see [HV��, §�]).

�eorem �.�. Let C ⊂ Rn be a closed semialgebraic convex cone with non-empty interior and
let f ∈ R[x] � {�} be the unique polynomial of minimal degree vanishing on the boundary
of C. �en C is a hyperbolicity cone if and only if f is hyperbolic with respect to some point
e ∈ int(C) and, in this case, C = C e( f ). ⇤

For example, this shows that the cone {u ∈ R� � u�
� + u�

� � u�
�} (the cone over the TV

screen) is not spectrahedral, since the polynomial x�+ y�−z� is not hyperbolic (c.f. �.�(�)).
Given a homogeneous polynomial f ∈ R[x] and a symmetric linearmatrix polynomial

A such that f = det(A), we say that A is a symmetric (linear) determinantal representa-
tion of f . If, in addition, f is hyperbolic with respect to e and A(e) > �, we say that the
determinantal representation is de�nite.

Exercise �.�. Show that every hyperbolic polynomial in two variables possesses a de�nite symmetric
determinantal representation.

But it is in fact not hard to see that not every hyperbolic polynomial possesses a sym-
metric determinantal representation.

Proposition �.�. If n � � and d � �, there exist hyperbolic polynomials in n variables of
degree d that do not possess a symmetric determinantal representation.



�.�. HYPERBOLICITY ��

Proof. �e set of hyperbolic polynomials of degree d has non-empty interior inR[x](d), the
space of homogeneous polynomials of degree d. Indeed, every strictly hyperbolic polyno-
mial is an interior point of that set, since the roots of a univariate polynomial depend con-
tinuously on the coe�cients (see Exercise �.�). �e dimension of the vector space R[x](d)
is �n+d−�d �. On the other hand, if f ∈ R[x](d) has a symmetric determinantal representation
f = det(A), then A must be of size d × d and the space of homogeneous linear matrix
polynomials of size d in n variables has dimension n�d+�� �. �e map taking A to det(A) is
polynomial, so the dimension of the image cannot increase. It follows that if every hyper-
bolic polynomial is to possess a symmetric determinantal representation, we must have

n�d + �
�
� = n(d + �)d

�
� (n + d − �)!

d!(n − �)! = �n + d − �d
�.

�is is equivalent to n!(d + �)!d � �(n + d − �)!. Now one can check directly that this
inequality fails to hold for n � � and d � �. ⇤
Exercise �.�. Fix e ∈ Rn and denote byHe ⊂ R[x](d) the set of hyperbolic polynomials of degree
d with respect to e.

(a) Show that every strictly hyperbolic polynomial of degree d is an interior point ofHe .
(b) Show that the strictly hyperbolic polynomials are dense inHe .

Hint: If f ∈ R[t] has only real roots, examine the roots of f + α f ′ for α ∈ R.
More is true: He is connected, simply connected and conincides with the closure of its interior,
which is the set of strictly hyperbolic polynomials. (See Nuij [Nu��]).

Exercise �.�. Examine the inequality in the proof of Prop. �.� for d = �, �, �, �, �.
However, if we do the count of parameters in the above proof for n = �, we �nd that the

resulting inequality holds for all d. In ����, it was conjectured by Peter Lax, in connection
with the study of hyperbolic PDEs in [La��], that every hyperbolic polynomial in three
variables possesses a de�nite determinantal representation. �is became known as the Lax
conjecture. It was proved in [HV��] through the work of Vinnikov and Helton-Vinnikov.

�eorem �.� (Helton-Vinnikov). Every hyperbolic polynomial in three variables possesses a
de�nite symmetric determinantal representation.

Corollary �.�. Every three-dimensional hyperbolicity cone is spectrahedral.

We will not give a full proof of the Helton-Vinnikov theorem. However, we will prove
a weaker version in section �.� below that will still imply the above corollary.

Since it is clear from the count in Prop. �.� that the Helton-Vinnikov theorem cannot
extend to the case n � �, the search began for a suitable higher dimensional analogue.
Various weaker versions have been proposed in recent years some of which have been dis-
proved. Perhaps the most natural generalisation is simply the statement of Cor. �.�.

Generalised Lax Conjecture. Every hyperbolicity cone is spectrahedral.

A few special cases of the conjecture are known, but in general it remains elusive.
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�.�. DEFINITE DETERMINANTAL REPRESENTATIONS AND INTERLACING

To prove the Helton-Vinnikov theorem, it is helpful to understand it as a statement
in two parts. �e �rst part amounts to the construction of determinantal representations
over R or C, the second to a characterisation of those determinantal representations that
are de�nite and therefore re�ect the hyperbolicity. �e following notion will be used to
address the second part.

De�nition �.�. Let f , g ∈ R[t] be univariate polynomials with deg( f ) = d and deg(g) =
d − � and suppose that f and g have only real roots. Denote the roots of f by α� � � � αd

and the roots of g by β� � � � βd−�. We say that g interlaces f if αi � βi � αi+� for all
i = �, . . . , d − �. We say that g strictly interlaces f , if all these inequalities are strict.

If f ∈ R[x](d) is hyperbolic with respect to e ∈ Rn, we say that g ∈ R[x](d−�) (strictly)
interlaces f with respect to e if g(u + te) (strictly) interlaces f (u + te) in R[t] for every
u ∈ Rn, u ∉ R ⋅ e. Note that this implies that g is hyperbolic with respect to e, as well.

Example �.��. �e simplest and most important example is the following: If f ∈ R[t]
is a univariate polynomial with only real roots, then its derivative f ′ interlaces f . More
generally, if f ∈ R[x] is hyperbolic with respect to e ∈ Rn, the directional derivative

De( f ) = ∂
∂t

f (x + te)�
t=� =

n�
i=� ei

∂
∂xi

f

interlaces f , since f ′(u+ te) ∈ R[t] interlaces f (u+ te) ∈ R[t] for all u ∈ Rn. If f is strictly
hyperbolic, then De f strictly interlaces f .

Lemma �.��. Suppose that f ∈ R[x](d) is irreducible and hyperbolic with respect to e. Fix
g , h in R[x](d−�) where g interlaces f with respect to e. �en h interlaces f with respect to e
if and only if g ⋅ h is non-negative or non-positive on VR( f ).
Proof. It su�ces to prove this statement for the restriction of gh to a line {u + te � t ∈ R}
for generic u ∈ Rn. �us we may assume that the roots of f (u + te) are distinct from each
other and from the roots of g(u + te) ⋅ h(u + te).

Suppose that g ⋅h is non-negative on VR( f ). By the genericity assumption, the product
g(u + te)h(u + te) is positive on all the roots of f (u + te). Between consecutive roots of
f (u+te), the polynomial g(u+te) has a single root and thus changes sign. For the product
gh to be positive on these roots, h(u + te)must also change sign and have a root between
each pair of consecutive roots of f (u + te). Hence h interlaces f with respect to e.

Conversely, suppose that g and h both interlace f . Between any two consecutive roots
of f (u + te), both g(u + te) and h(u + te) each have exactly one root, and their product
has exactly two. It follows that g(u + te)h(u + te) has the same sign on all the roots of
f (u + te). Taking t → ∞ shows this sign to be the sign of g(e)h(e), independent of the
choice of u. Hence gh has the same sign at every point of VR( f ). ⇤

�e version of the Helton-Vinnikov theorem that we are going to prove in the next sec-
tion yieldsHermitian determinantal representations, rather than symmetric ones. One can
make a theory of spectrahedra de�ned by Hermitian matrices, which may be the natural
point of view for certain questions. However, in terms of the class of sets that one obtains,
this does not add anything new, essentially due to the following simple observation.
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Lemma �.��. Let M be a homogeneous Hermitian linear matrix polynomial of size d × d.
�en there exists a real symmetric linear matrix polynomial N of size �d × �d such that�u ∈ Rn �M(u) � �� = �u ∈ Rn � N(u) � ��
and det(N) = det(M)�.
Proof. WriteM = A+ iB, where A is real symmetric and B is real skew-symmetric, and put

N = � A B−B A� . To see that N has the desired property, apply the change of coordinates

UTNU = �A− iB �
� A+ iB� where U = �����

�√
� ⋅ Id i√

� ⋅ Id
i√
� ⋅ Id �√

� ⋅ Id
����� .

In particular, det(N) = det(M)det(M) = det(M)�. ⇤
Recall that the adjugatematrix of a d×d-matrixA (also called adjointmatrix orCramer

matrix) is the d × d-matrix Aadj whose ( j, k)-entry is (−�) j+k times the (d − �) × (d − �)-
minor of A obtained by deleting the jth row and kth column and taking the determinant.
�e fundamental fact isCramer’s rule, which says that A⋅Aadj = det(A) ⋅ Id . �is is a general
indentity holding for matrices with entries in any commutative ring.

If M is a (symmetric or hermitian) homogeneous linear matrix polynomial d × d, its
adjugateMadj is, by de�nition, a homogeneous matrix polynomial of size d × d and degree
d − �. �e relation between M and Madj will play a crucial role in the next section.

De�nition �.��. Let M be a Hermitian linear matrix polynomial of size d × d. �enC(M) = �λTMadjλ � λ ∈ Cd � {�}�,
is a subset of R[x](d−�), which we call the system of hypersurfaces associated with M.

Here is a useful identity that goes back to the work of Hesse in ���� [He����b].

Proposition �.��. Let M be a Hermitian matrix of linear forms. �en the polynomial

(�.��) (λTMadjλ)(µTMadjµ) − (λTMadjµ)(µTMadjλ)
is contained in the ideal generated by det(M), for any λ, µ ∈ Cd . In particular, the polynomial(λTMadjλ)(µTMadjµ) is non-negative on VR(det(M)).
Proof. Consider a general d × d-matrix of variables X = (Xi j). At a generic point inVC(det(X)), the matrix X has rank d − �. �e identity X ⋅ Xadj = det(X) ⋅ Id implies that
Xadj then has rank one at such a point. It follows that the � × �-matrix

�λTXadjλ λTXadjµ
µTXadjλ µTXadjµ

�
also has rank at most one on VC(det(X)). Since the polynomial det(X) is irreducible, the
determinant of this � × � matrix thus lies in the ideal generated by det(X). Restricting to
X = M gives the desired identity.

For the claim of non-negativity, note that (µTMadjλ) = (λTMadjµ). So the polynomial(λTMadjλ)(µTMadjµ) is equal to a polynomial times its conjugate modulo det(M) and is
therefore non-negative on VR(det(M)). ⇤
We can use this identity to determine whether a determinantal representation is de�nite.
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�eorem �.��. Let f ∈ R[x](d) be irreducible and hyperbolic with respect to e, and let f =
det(M) be a Hermitian determinantal representation of f . If some polynomial in C(M)
interlaces f with respect to e, every polynomial in C(M) does and thematrix M(e) is (positive
or negative) de�nite.

Proof. First, suppose that g = λTMadjλ interlaces f and let h be another element of C(M),
say h = µTMadjµ where µ ∈ Cd . From Proposition �.��, we see that the product g ⋅ h is
non-negative on VR( f ). �en, by Lemma �.��, h interlaces f .

To show that M(e) is de�nite, we �rst show that any two elements g , h of C(M) have
the same sign at the point e. Since f is irreducible, the polynomial g ⋅ h cannot vanish onVR( f ). By Proposition �.��, the product g ⋅ h is non-negative on VR( f ) and thus strictly
positive on a dense subset of VR( f ). Furthermore, since both g and h interlace f , they
cannot have any zeros between e and VR( f )when restricted to any line {u+ te � t ∈ R}, for
u ∈ Rn �{�}. So the product g ⋅ hmust be positive at e. Now since λTMadj(e)λ ∈ R has the
same sign for all λ ∈ Cd , the Hermitian matrix Madj(e) is de�nite. Hence so is the matrix
M(e) = f (e)(Madj(e))−�. ⇤

Remark �.��. �e converse of�m. �.�� also holds. (See [PV��,�m. �.�]).

We conclude this section with a useful lemma showing that the map taking a matrix
with linear entries to the determinant is closed when restricted to de�nite representations,
which it need not be in general.

Lemma �.��. Let e ∈ Rn. �e set of all homogeneous polynomials f ∈ R[x]d with f (e) = �
that possess aHermitian determinantal representation f = det(M) such that M(e) is positive
de�nite is a closed subset of R[x]d .
Proof. First we observe that if f (e) = � and f = det(M) with M(e) > �, then f has such a
representationM′ for whichM′(e) is the identity matrix. To �nd it, we can decompose the
matrixM(e)−� as UUT for some complex d × d-matrix U . �enM′ = UTMU is a de�nite
determinantal representation of f with M′(e) = Id .

Now let fk ∈ R[x]d be a sequence of polynomials converging to f such that fk =
det(M(k)) with M(k)(x) = x�M(k)� + � + xnM(k)n and M(k)(e) = Id . For each j, let e j
denote the jth unit vector. Since fk(te − e j) is the characteristic polynomial of M(k)j , the
eigenvalues of each M(k)j converge to the zeros of f (te − e j). It follows that each sequence(M(k)j )k is bounded. We may therefore assume that the sequence M(k) is convergent (af-
ter successively passing to a convergent subsequence of M(k)j for each j = �, . . . , n) and
conclude that f = det(limk→∞M(k)). ⇤

�.�. HYPERBOLIC CURVES AND THE HELTON-VINNIKOV THEOREM

�e goal of this section is to show that every hyperbolic plane curve possesses a Her-
mitian determinantal representation. �is is a weaker statement than the Helton-Vinnikov
theorem (�m. �.�), which says that there even exists a symmetric determinantal represen-
tation, but it still su�ces to characterise the plane spectrahedra. �e proof follows [PV��].

First of all, we now speak of curves and convex subsets of the plane rather than of three-
dimensional cones. �is is because we consider projective varieties instead of a�ne cones,
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which gives a better geometrie picture. �us a homogeneous polynomial f ∈ R[x , y, z] of
degree d de�nes the projective plane curve

ZC( f ) = �p ∈ P�(C) � f (p) = ��ZR( f ) = �p ∈ P�(R) � f (p) = ��
where P�(C) is the complex projective plane. We use the letter Z to distinguish the plane
projective curve from the a�ne cone VC( f ) ⊂ C�.

Recall how points in the projective plane are denoted in homogeneous coordinates: A
point in P�(C) is an equivalence class of points inC��{�} de�ning the same line through
the origin.�e point inP�(C) corresponding to (a, b, c) ∈ C��{�} is denoted by (a ∶ b ∶ c)
and we have (a ∶ b ∶ c) = (λa ∶ λb ∶ λc) for all λ ∈ C∗. In particular, (a ∶ b ∶ c) is real if and
only if λa, λb, λc are all real for some λ ∈ C∗. (�us (i ∶ i ∶ i) is a real point, while (� ∶ � ∶ i)
is not.) Complex conjugation acts on P�(C) via the rule (a ∶ b ∶ c) = (a ∶ b ∶ c), so that
P�(R) is exactly the set of �xed points of this action.

Let f ∈ R[x , y, z] be homogeneous and irreducible of degree d. We wish to �nd a
determinantal representation f = det(M) where M is a Hermitian matrix of linear forms.
We will describe a general method for constructing such a representation. �e idea goes
back to the work of Hesse in ���� [He����a] and was extended by Dixon in ���� [Di����].

Construction �.��. Let f , g ∈ R[x , y, z] be homogeneous with f irreducible, deg( f ) = d
and deg(g) = d − �. Assume that ZR( f ) ∩ZR(g) = �.

(�) Put S = ZC( f ) ∩ZC(g) and let T ⊂ S be such that S = T ∪ T and T ∩ T = �.
(�) Consider the complex vector space

V = IC(T) ∩C[x , y, z](d−�) = �h ∈ C[x , y, z](d−�) � h�T = ��,
which is of dimension at least (d+�)d� − d(d−�)

� = d (the dimension of C[x , y, z](d−�)
minus the number of conditions imposed by the vanishing at the points in T).
Note that S may contain fewer than d(d − �) points, in which case we have to take
multiplicities into account in the de�nition of V to make things work, but we will
ignore this point here. Put a�� = g and extend to a linearly independent family

a��, . . . , a�d ∈ V
(�) Fix j, k with � � j � k � d. �e polynomial a�ka�k vanishes on the intersection

points S of ZC( f ) and ZC(g). If S consists of d(d − �) distinct points, the ho-
mogeneous vanishing ideal of S is generated by f and g = a��. �us we obtain
polynomials p, q ∈ C[x , y, z] such that

a� ja�k = p f + qa��.
Since a� ja�k, f and a�� are all homogeneous, we can assume that p and q are also
homogeneous, and we �nd deg(q) = d − �.

Again, if S contains fewer than d(d − �) points, we have to take multiplicities
into account, but the statement remains true (using Max Noether’s theorem).

Put a jk = q. If j = k, then a�� and a� ja� j are both real and we take a j j to be real
as well. Finally put ak j = a jk for j > k.
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(�) We denote by Ag the d × d-matrix with entries a jk. By construction, we have

a��a jk − a�ka j� ∈ ( f ).
for all j < k. Note that Ag depends not only on f and g, but also on the choice of
splitting S = T ∪T and the choice of basis of V . We will ignore this and denote by
Ag any matrix arising in this way.

Now we are ready for the main result of this section.

�eorem �.��. Let f , g ∈ R[x , y, z] be homogeneous with f irreducible, deg( f ) = d and
deg(g) = d − �. Assume that ZR( f ) ∩ZR(g) = � and let Ag be as in Construction �.��.

(�) Every entry of the adjugate matrix (Ag)adj is divisible by f d−� and the matrix

Mg = (�� f d−�)Aadj
g

has linear entries. Furthermore, there exists γ ∈ R such that

det(Mg) = γ f .
(�) Assume that f is strictly hyperbolic with respect to a point e and that g strictly inter-

laces f . �en γ ≠ � and the matrix Mg(e) is (positive or negative) de�nite.
�e proof will make use of the following simple lemma.

Lemma �.��. Let A be a d ×d-matrix with entries in a factorial ring R. If f ∈ R is irreducible
and divides all � × �-minors of A, then for every � � k � d, the element f k−� divides all
k × k-minors of A.

Proof. By hypothesis, the claim holds for k � �. So assume k > � and suppose that f k−�
divides all (k − �) × (k − �)-minors of A. Let B be a submatrix of size k × k of A. From
BadjB = det(B) ⋅ Ik we conclude det(Badj) = det(B)k−�.

Suppose det(B) = f mg where f does not divide g. �en det(B)k−� = f m(k−�)gk−�. By
assumption f k−� divides all entries of Badj, hence f k(k−�) divides its determinant det(B)k−�.
Since f is irreducible, f does not divide gk−�, so f k(k−�)must divide f m(k−�).�en k(k−�) ≤
m(k − �) which implies that k − � ≤ m, as claimed. ⇤

Proof of�m. �.��. (�) By construction, the � × � minors of Ag of the form a��a jk − a�ka j�,
are divisible by f . �erefore, if u ∈ ZC( f ) is a point with a��(u) ≠ �, we can conclude
that every row of Ag(u) is a multiple of the �rst, so that Ag(u) has rank �. Since a�� is not
divisible by f , it follows that a��(u) ≠ � holds on a Zariski-dense subset of ZC( f ). So all
the � × � minors of Ag are divisible by f . Since f is irreducible in C[x , y, z], this implies
that all (d − �) × (d − �)-minors of Ag are divisible by f d−�, by Lemma �.��.

�e entries of Aadj
g have degree (d − �)� and f has degree d, so thatMg = (�� f d−�) ⋅Aadj

g

has entries of degree (d − �)� − d(d − �) = �. Furthermore, by Lemma �.��, det(Ag) is
divisible by f d−�. So det(Ag) = c f d−� for some c ∈ R[x , y, z] and we obtain

det(Mg) = det( f �−dAadj
g ) = f d(�−d) det(Aadj

g ) = f d(�−d) det(Ag)d−�= f d(�−d)cd−� f (d−�)� = cd−� f .
Since det(Mg) has degree d, we see that c is a constant and we take γ = cd−�.
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(�) To show that det(Mg) is not the zero-polynomial, we begin by showing that

λTAgλ

is not the zero-polynomial, for any λ ∈ Cd . As argued in the proof of (�), the matrix Ag has
rank one at all points of VC( f ) and for every λ ∈ Cd , we have

(�.��) a�� ⋅ (λTAgλ) − (λTAge�)(λTAge�) ∈ ( f ).
If λTAgλ is identically zero, we conclude that λTAge� vanishes onVC( f ). Since f has degree
d and λTAge� has degree d−�, λTAge� must then vanish identically as well.�is contradicts
the linear independence of the polynomials a��, . . . , a�d .

Now suppose that the claim is false and that det(Mg) is identically zero. From the proof
of (�), it is clear that det(Ag) is then zero, as well. In particular, the determinant of Ag(e)
is zero, so there is some nonzero vector λ ∈ Cn in its kernel, and λTAg(e)λ is also zero. But
we have just shown that the polynomial (λTAgλ) is nonzero, and Eq. (�.��) shows that the
product a�� ⋅ (λTAgλ) is non-negative on VR( f ). By Lemma �.��, (λTAgλ) therefore inter-
laces f . �us this polynomial cannot vanish at the point e and the determinant det(Mg)
is not identically zero.

Now all we need to show is that Mg(e) is de�nite. To do this, we show that Ag is the
adjugate matrix of Mg . By construction, Mg = f �−d ⋅ Aadj

g . Taking adjugates, we see that

Madj
g = �

f (d−�)(d−�) ⋅ (Aadj
g )adj = �

f (d−�)(d−�) ⋅ det(Ag)d−� ⋅ Ag = cd−�Ag ,

where det(Ag) = c f d−� as in the proof of (�) above. �us a�� is a constant multiple of
eT� M

adj
g e� and belongs to C(Mg). Since a�� interlaces f with respect to e, �eorem �.��

implies that the matrix Mg(e) is de�nite. ⇤
Corollary �.��. Every hyperbolic polynomial in three variables possesses a de�nite Hermitian
determinantal representation.

Proof. Suppose f ∈ R[x , y, z] is irreducible and strictly hyperbolic with respect to e. �en
the directional derivativeDe f strictly interlaces f and can be used an input inConstruction
�.��. By�m. �.��(�), this will result in a de�nite Hermitian determinantal representation
of f . If f is strictly hyperbolic but not irreducible, then each irreducible factor of f is
strictly hyperbolic and we can build a Hermitian determinantal representation of f as a
block matrix form the representations of all factors.

In general, if f ∈ R[x , y, z](d) is (not necessarily strictly) hyperbolic with respect to e
with f (e) = �, there exists a sequence of strictly hyperbolic polynomials ( fk) ⊂ R[x , y, z](d)
(with respect to e) and fk(e) = � converging to f . Now each fk has a Hermitian determi-
nantal representation, hence so does f by Lemma �.��. ⇤
Corollary �.��. Every three-dimensional hyperbolicity cone is spectrahedral.

Proof. �is follows at once in view of Lemma. �.��. ⇤
Corollary �.��. Every hyperbolicity cone is a convex cone.

Proof. Let f ∈ R[x](d) be hyperbolic with respect to e. For u ∈ C e( f ) and α > �, the roots
of f (αu + te) are those of f (u + α−�te), so it is clear that αu ∈ Ce( f ). Given two points
u, v ∈ C e( f ), let V be the three-dimensional subspace spanned by e , u, v. �en C e( f ) ∩ V
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is the hyperbolicity cone of f �V and is therefore spectrahedral by the preceding corollary.
In particular, it is convex and therefore contains u + v. ⇤

Corollary �.��. If f is hyperbolic with respect to e, then it is hyperbolic with respect to any
interior point of C e( f ).
Proof. �is is easy to see if f has a Hermitian determinantal representation and therefore
holds for three-dimensional hyperbolicity cones. �e general case can be reduced to the
three-dimensional one as in the proof of the corollary above. ⇤

Finally, let us see an example. Carrying out Construction �.�� in practise is not an easy
matter. �e following example is taken directly from [PV��, Example �.��].

Example �.��. We apply Construction �.�� to the quartic

(�.��) f (x , y, z) = x� − �x�y� + y� − �x�z� − �y�z� + z�,
which is hyperbolic with respect to the point e = (� ∶ � ∶ �). �is curve has two nodes,(� ∶ � ∶ �) and (� ∶ −� ∶ �), so that f is not strictly hyperbolic. But the construction will still
work, and this happens to simplify the explicit computations considerably. Figure � shows
the real curve in the plane {x = �}.
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Figure �. �e hyperbolic quartic (�.��) and interlacing cubics.

We de�ne a�� to be the directional derivative �
�De f = x�−�xy�−�xz�.�e curvesVC( f )

and VC(a��) intersect in the eight points (� ∶ ±√� ∶ ±i), (� ∶ ±i ∶ ±√�) and the two nodes,(� ∶ ±� ∶ �), each with multiplicity �, for a total of � ⋅� = �� intersection points, counted with
multiplicities. We divide these points into two conjugate sets (making an arbitrary choice)
and decompose S = VC( f ) ∩ VC(a��) into S = T ∪ T where

T = �(� ∶ � ∶ �), (� ∶ −� ∶ �), (� ∶√� ∶ i), (� ∶ −√� ∶ i), (� ∶ i ∶√�), (� ∶ i ∶ −√�)�.
�e vector space of cubics in C[x , y, z] vanishing on these six points is four dimensional
and we extend a�� to a basis a��, a��, a��, a�� for this space, where

a�� = ix� + �ix y� − �x�z − �y�z + �z�,
a�� = −�ix� + �x�y + �ix y� − �y� + �yz�,
a�� = −x� − �ix�y − �ix�z + �xyz.

�en, to �nd a�� for example, we write a�� ⋅ a�� as an element of the ideal ( f , a��),
a�� ⋅ a�� = (��x� − ��xy� − ��xz�) ⋅ a�� + (��z� − ��x�) ⋅ f ,
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and set a�� = ��x� − ��xy� − ��xz�. We proceed similarly for the remaining entries and
eventually obtain the output of Construction �.��, the Hermitian matrix of cubics

A =
����������
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��

����������
.

By taking the adjugate ofAanddividing by f �, we�nd the desiredHermitian determinantal
representation,

M = �
f �
⋅ Aadj = ��

����������
��x �z �ix − �y �i(y − z)
�z x � −ix + �y−�ix − �y � x ix − �z−�i(y − z) ix + �y −ix − �z �x

����������
.

�e determinant ofM is ��� ⋅ f . As promised by�eorems �.�� and �.��, the cubics in C(M)
interlace f (see Figure �) and the matrix M is positive de�nite at the point (�, �, �).
�.�. HYPERBOLICITY CONES AS PROJECTED SPECTRAHEDRA

Following Netzer and Sanyal in [NS��], we can also use the exactness results of Helton
and Nie to study representations of hyperbolicity cones as projected spectrahedra. For
a hyperbolic polynomial f with smooth hyperbolicity cone, this boils down to verifying
quasi-concavity of f on the boundary. But this requires some care, since the concavity
cannot be strict along lines through the origin, on which f is constant. �us we have to
take suitable a�ne slices. First, we will need the following basic lemma.

Lemma �.��. Let f ∈ R[x] be hyperbolic with respect to e. If u ∈ Rn is a point with f (u) = �
and ∇ f (u) ≠ �, then ∂

∂t f (u + te)�t=� ≠ �.
Proof. If ∇ f (u) ≠ �, then ∂

∂s f (u + sv)�s=� ≠ � for generic v ∈ Rn. Fix such v ∈ Ce( f ) =
int(C e( f )) and consider the hyperbolic polynomial f (ru+ sv+ te) in three variables r, s, t.
By�m. �.��, this polynomial has a Hermitian determinantal representation

f (ru + sv + te) = det(rA+ sB + tC)
where B and C are positive de�nite, hence factor as B = UUT and C = VVT . Now s = � is a
simple root of f (u+sv) = det(A+sB), whichmeans thatU−�A(UT)−� has one-dimensional
kernel. But then so does V−�A(VT)−�, hence t = � is also a simple root of f (u + te) =
det(A+ tC). (For a direct proof of this lemma, see also [PV��, Lemma �.�]). ⇤

Lemma �.��. Let f ∈ R[x] be hyperbolic with respect to e with f (e) > � and suppose thatC e( f ) is pointed. Let H be any a�ne hyperplane with e ∈ H, � ∉ H. �en f �H is strictly
quasi-concave at any point u ∈ C e( f ) ∩H with f (u) ≠ � or with f (u) = � and ∇ f (u) ≠ �.
Proof. Let H′ = H − e, a linear hyperplane in Rn. Note that showing strict quasi-concavity
of f �H at u amounts to the following: If v ∈ H′ � {�} is such that ∂

∂t f (u + tv)�t=� = �, then
∂�
∂t� f (u + tv)�t=� < � (see Exercise �.� below).

(�) Let u ∈ C e( f ) ∩ H with f (u) ≠ �, then f (u) > �, so we may rescale and assume
f (u) = �. By Cor. �.��, f is then hyperbolic with respect to u. �us for any v ∈ H′ � {�},
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the univariate polynomial f (v + tu) has only real roots. Since f is homogeneous, the same
is true for f (u + tv) = td f (t−�u + v), where d = deg( f ). Since f (u) ≠ �, all these roots are
di�erent from �, hence we may write

f (u + tv) = (� + λ�t)�(� + λk t)
where k = degt( f (u + tv)) � d and −(��λ�), . . . ,−(��λk) are the roots of f (u + tv). SinceC e( f ) is pointed, it does not contain any lines, so f (u + tv) cannot be constant for any
v ∈ H′ � {�}. So in this case, we must have k > �. In particular, the coe�cient of t in
f (u + tv) is a� = ∑k

i=� λi and the coe�cient of t� is a� = �
�(a�� −∑k

i=� λ�i ). So if a� = �, then
a� < �, showing that f �H is strictly quasi-concave at u.

(�) Let u ∈ C e( f ) with f (u) = � and ∇ f (u) ≠ �. For any v ∈ H′ � {�}, the polynomial
f (re + s(u − e) + tv) ∈ R[r, s, t] is the restriction of f to the subspace spanned by e , u, v,
a hyperbolic polynomial of degree d = deg( f ) in three variables r, s, t. Applying�m. �.��
and assuming f (e) = �, we can �nd Hermitian matrices A, B of size d × d such that

f (re + s(u − e) + tv) = det(rId + sA+ tB).
Evaluating at r = s = �, t = � gives f (u) = det(Id + A), and since ∇ f (u) ≠ �, we must
have rk(Id + A) = d − � by Lemma �.��. A�er a change of coordinates, we may assume
Id + A = Diag(�, . . . , �, �). Write B = (b jk) j,k�d and expand f (u + tv) = a�t + � + ak tk.
Comparing coe�cients on both sides of f (u + tv) = det(Id + A+ tB), we �nd

a� = bdd and a� = d−��
j=� b j jbdd − b jdb jd .

So if a� = �, we cannot have a� � � unless b jd = � for j = �, . . . , d − �. But that would imply
f (u+ tv) = � for all t, which is impossible under the assumption that C e( f ) is pointed. ⇤
Exercise �.�. Let f ∶Rn → R be a twice continuously di�erentiable function. Show that f is strictly
quasi-concave at a point u ∈ Rn if and only if ∂

∂t f (u + tv)�t=� = � implies ∂�
∂t� f (u + tv)�t=� < � for

all v ∈ Rn � {�}.
To be able to apply Lemma �.��, we need a preliminary reduction step to make sure

that the hypotheses are satis�ed. To do this, we need to get rid of any a�ne-linear subspace
contained in the hyperbolicity cone. In general, ifC ⊂ Rn is non-empty, closed and convex,
there is a unique linear subspace V ⊂ Rn, called the lineality space of C, with the property
C = (C ∩ V⊥) + V and such that C ∩ V⊥ does not contain any a�ne linear subspace. �e
proof is contained in the following exercise.

Exercise �.�. Let C ⊂ Rn be non-emtpy, closed and convex. Prove the following:
(a) If V ⊂ Rn is a linear subspace with u + V ⊂ C for some u ∈ C, then u + V ⊂ C for all u ∈ C.
(b) If V is a subspace with the property in (a), then C = (C ∩ V⊥) + V .
(c) �ere is a unique maximal subspace with the property in (a), called the lineality space of C.
(d) If V is the lineality space, then C ∩ V⊥ does not contain any a�ne-linear subspace.

�eorem �.��. Every hyperbolicity cone with smooth boundary is a projected spectrahedron.

Proof. Let f ∈ R[x] be hyperbolic with respect to e and assume f (e) > �. �at the hyper-
bolicity cone C e( f ) has smooth boundary means ∇ f (u) ≠ � for all u ∈ C e( f ) � {�} with
f (u) = �. Let V ⊂ Rn be the lineality space of C e( f ). �en C e( f ) = (C e( f ) ∩ V⊥) + V by
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Exercise �.�(b). If C e( f )∩V⊥ is a projected spectrahedron, then so is C e( f ) by�m. �.�(�).
�us, with a suitable choice of coordinates and using Exercise �.�(d), we may assume thatC e( f ) contains no a�ne-linear subspace. In particular, the hyperbolicity cone C e( f ) is
then pointed, which implies that there exists an a�ne hyperplaneH ⊂ Rn with e ∈ H, � ∉ H
such that C e( f ) = cone(C e( f ) ∩H) and such that C e( f ) ∩H is compact (c.f. Prop. �.�).

Now Lemma �.�� says that f �H is strictly quasi-concave at all points of C e( f ) ∩ H.
Furthermore, given u ∈ C e( f ) � {�} with f (u) = �, there exists a radius ε such that
Bε(u) ∩ S( f ) = Bε ∩ C e( f ), because t = � is a simple root of f (u + te) by Lemma �.��.
In other words, f locally describes the hyperbolicity cone. Since the de�ning polynomial
ε�−∑n

i=�(xi−ui)� of the closed ball Bε(u) is everywhere strictly quasi-concave, wemay ap-
ply Cor. �.�� and conclude that Bε∩C e( f )∩H possesses an exact Lasserre relaxation. Using
the compactness of the boundary of C e( f )∩H in H, we can write C e( f )∩H as the convex
hull of �nitely many projected spectrahedra. Applying�m. �.�(�), we see that C e( f ) ∩H
is a projected spectrahedron. Hence so is C e( f ) = cone(C e( f ) ∩H), by�m. �.�(�). ⇤

REFERENCES

[Di����] A. C. Dixon. Note on the reduction of a ternary quantic to a symmetrical determinant. Cambr.
Proc. ��, ���–���, ����.

[HV��] J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Comm. Pure Appl.
Math., �� (�), ���–���, ����. http://arxiv.org/abs/math/�������

[He����a] O.Hesse.Über dieDoppeltangenten derCurven vierterOrdnung. J. ReineAngew.Math. �� (����)
���–���.
http://deutsche-digitale-bibliothek.de/item/CNDDPEUUXFQ�MFPKTHW�ZFM�DHUR�UJO

[He����b] ———. Über Determinanten und ihre Anwendung in der Geometrie, insbesondere auf Curven
vierter Ordnung. J. Reine Angew. Math., ��, ��� – ���, ����
http://www.deutsche-digitale-bibliothek.de/item/KGWA�VX�UDHU���NLX�VBJ�ZPMZHWCUZ

[La��] P. D. Lax. Di�erential equations, di�erence equations and matrix theory. Comm. Pure Appl. Math.,
��, ���–���, ����.

[NS��] T. Netzer, R. Sanyal. Smooth hyperbolicity cones are spectrahedral shadows. Preprint, ����.
http://arxiv.org/abs/����.����.

[Nu��] W. Nuij. A note on hyperbolic polynomials.Math. Scand., ��, ��–��, ����.
[PV��] D. Plaumann and C. Vinzant. Determinantal representations of hyperbolic plane curves: An ele-

mentary approach. To appear in J. Symbolic Computation, ����. http://arxiv.org/abs/����.����





GEOMETRY OF LINEARMATRIX INEQUALITIES Daniel Plaumann
Universität Konstanz

Summer ����

�. TWO-DIMENSIONAL CONVEX SETS

In this chapter, we discuss Scheiderer’s recent solution in [Sc��] of the Helton-Nie con-
jecture in dimension two: Every convex semialgebraic subset of the plane is a projected
spectrahedron. �is is obtained as a consequence of a stronger result, namely the stabil-
ity of quadratic modules de�ning �-dimensional compact sets. Here, we will �rst deduce
the two-dimensional Helton-Nie conjecture from this result and then sketch a proof of the
stability theorem for curves.

�.�. CONVEX HULLS OF CURVES AND SCHEIDERER’S THEOREM

Some basic notation and results on a�ne varieties have already been discussed in Sec-
tion �.�. We recall the most important points: To an a�ne variety V = VC(I) ⊂ Cn de�ned
over R by an ideal I ⊂ R[x] in the real polynomial ring, corresponds the coordinate ring
R[V] = R[x]�I(V) (where I(V) = √I is the vanishing ideal), a �nitely-generated re-
ducedR-algebra. �e variety V is treated as an abstract object encoded inR[V], indepen-
dent of the choice of coordinates, i.e. the choice of the surjectionR[x]→ R[V]. Recall also
that amorphism φ∶V →W between two a�ne varieties V andW over R is simply a real
polynomial map from V to W (with respect to some embedding of V and W into a�ne
space). Such a morphism induces a homomorphism φ∗∶R[W] → R[V] of R-algebras,
given by f � f ○ φ.

IfM is a �nitely generated quadraticmodule inR[V], we want tomake sense of the no-
tion of stability forM, as de�ned in Section �.�.�e problem is that we have nowell-de�ned
notion of degree for elements in R[V]. �ere are two solutions: Fixing coordinates and
choosing g�, . . . , gr ∈ R[x] with M = M(g�, . . . , gr) and generators I(V) = (h�, . . . , hs) of
the vanishing ideal, we can consider the quadraticmoduleM� = M(g�, . . . , gr ,±h�, . . . ,±hs)
inR[x], which is just the preimage ofM inR[x]under the residuemapR[x]→ R[x]�I(V)
(c.f. proof of Cor. �.�). �en we say that M is stable if and only if M� is. We would have to
show that this does not depend on the choice of coordinates.

More elegantly, we can just eliminate the notion of degree from the de�nition of sta-
bility: Let A be any R-algebra and M = M(g) a �nitely generated quadratic module in A.
Given a linear subspaceW of A, we write

Mg[W] = � r�
i=� si gi � si =�j t�i j with ti j ∈W for i = �, . . . , r�

��
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and say thatM is stable if for every �nite-dimensional subspaceU of A there exists a �nite-
dimensional subspaceW of A such thatMg ∩U ⊂ Mg[W]. �is de�nition agrees with the
previous one for the polynomial ring and is independent of the choice of generators.

Exercise �.�. Show that the notion of stability of a quadratic module M(g) in an R-algebra A, as
de�ned above, does not depend on the choice of generators g ⊂ M(g).

Now let V be an a�ne R-variety. We write V(R) for the set of real points of V . Given
a subset S of V(R), the preordering P(S) = { f ∈ R[V] � f �S � �} is called the satu-
rated preordering of S. A �nitely generated quadratic module M = M(g), with g ={g�, . . . , gr} ⊂ R[V], is called saturated ifM = P(S(g)), whereS(g) = {u ∈ V(R)�g�(u) �
�, . . . , gr(u) � �} is the basic-closed set de�ned by g. As explained in Section �.�, the sat-
urated preordering P(S) of a semialgebraic set S is never �nitely generated if dim(S) � �.
On the other hand, it is �nitely generated for any subset of the line (c.f. Example �.�(�)). It
turns out that this is also true for compact subsets of smooth algebraic curves. Recall that a
variety is called smooth if it does not possess any singular points, neither real nor complex.
For an a�ne hypersurface VC( f ), f ∈ R[x] irreducible, this just means ∇ f (u) ≠ � for all
u ∈ VC( f ). �e a�ne variety V is called an a�ne curve if all of its irreducible components
are one-dimensional.

�eorem �.� (Scheiderer [Sc��]). Let Z be a smooth a�ne curve over R and S ⊂ Z(R) a
compact semialgebraic subset. �en the preordering P(S) ⊂ R[Z] is �nitely generated. ⇤

Since the saturated preorderingP(S) is�nitely generated, itmakes sense to askwhether
it is stable. To show that it is, we will consider its behaviour under real closed extensions of
R, just as we did for positive matrix polynomials in Section �.�. Let R�R be a real closed
�eld extension and let K = R(√−�) be the algebraic closure. If V = VC(h�, . . . , hs) ⊂ Cn

is an a�ne variety de�ned over R by h�, . . . , hs ∈ R[x] with coordinate ring R[V] =
R[x]��(h�, . . . , hs), then we can regard VK(h�, . . . , hs) ⊂ Kn as an a�ne variety de�ned
over R with coordinate ring R[V] = R[x]�√h�, . . . , hs. One can show that there is a canon-
ical isomorphism R[V] ≅ R[V]⊗R R, which is a more intrinsic description of R[V]. �e
main technical result of Scheiderer in [Sc��] is the following.

�eorem �.�. Let Z be a smooth a�ne curve overR, let S ⊂ Z(R) be a compact semialgebraic
subset and let P = P(S) ⊂ R[Z] be the saturated preordering of S. For any real closed �eld
extension R�R, the preordering PR generated by P in R[Z] is again saturated.

Here, the semialgebraic subset S(PR) of Z(R) is the base extension S(R), hence the
theorem says exactly that PR = P(S(R)). We will discuss this result and its proof in detail
in the next section. For now, we will just apply it to show stability of P(S).
Corollary �.�. For Z and S as above, the saturated preordering P(S) in R[Z] is �nitely
generated and stable.

Proof. We only need to show stability of P. �is comes as an application of Prop. �.��,
which also holds for stability of quadratic modules in general R-algebras, with the same
proof. �at PR is saturated implies that the intersection of PR with any �nite-dimensional
subspace of R[Z] = R[Z]⊗RR is semialgebraic over R. (�e proof is completely analogues
to that of Prop. �.�). �is holds for any real closed R�R, so P is stable by Prop. �.��. ⇤
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We now apply this result in the context of the Lasserre relaxation. Simply speaking,
we would like to show that the convex hull of a compact �-dimensional set inRn possesses
an exact Lasserre relaxation. �is is easy to deduce from Cor. �.�, but only for subsets of
smooth curves. To avoid this assumption, we need a fewmore preparations. Since stability
means that we have degree bounds for all non-negative polynomials, not only linear ones,
we have more �exibility and coordinate-independence, which can be exploited as follows.

Proposition �.�. Let V be an a�ne R-variety, let S ⊂ V(R) be a semialgebraic set and
φ∶V(R)→ Rn a morphism of varieties. If the saturated preordering P(S) inR[V] is �nitely
generated and stable, then conv(φ(S)) is a projected spectrahedron.
Proof. Let φ∗∶R[x] → R[V] be the homomorphism of R-algebras induced by φ and �x
generators P(S) = M(g�, . . . , gr), g�, . . . , gr ∈ R[V]. Since P(S) is �nitely generated and
stable, there exists a �nite-dimensional subspaceW ofR[V] such that (φ∗R[x]�)∩P(S) ⊂
Mg[W]. Now, just as in Prop. �.��, the convex set

Mg[W]′ = {L ∈ R[V]∗ � L�Mg[W] � � and L(�) = �}
is a spectrahedron. We can de�ne the generalised Lasserre-relaxation LW ⊂ Rn as the
image ofMg[W]′ under themap π∶ L � �L(φ∗x�), . . . , L(φ∗xn)�. For u ∈ S, the functional
Lu ∈ R[V]∗ given by evaluation in u is contained inMg[W]′, which implies conv(φ(S)) ⊂LW . As in the proof of �.��(�), suppose we had u ∈ LW , say u = π(L) for L ∈ Mg[W]′, but
u ∉ clos�conv(φ(S))�. �en we can pick ℓ ∈ R[x]� with ℓ�φ(S) � � and ℓ(u) < � by the
separation theorem (Prop. �.��) and conclude L(φ∗ℓ) = ℓ(u) < �, hence φ∗ℓ ∉ Mg[W], a
contradiction. �us conv(φ(S)) = LW is a projected spectrahedron. ⇤
Remark �.�. In spite of its apparent generality, the hypotheses of this proposition can only
be satis�ed if V has dimension at most �, by the main result of [Sc��].

Now if Z is any a�ne curve overR, possibly singular, we can get rid of the singularities
by passing to the normalisation of Z. If Z is irreducible, this is the curve corresponding
to the integral closure of the domain R[Z] in its quotient �eld. �is integral closure is
again a �nitely-generated R-algebra and therefore corresponds to an a�ne curve Z̃ over
R. �e inclusion R[Z] ⊂ R[Z̃] corresponds to a morphism Z̃ → Z of curves, which is
an isomorphism everywhere except over the singular points of Z. Since R[Z̃] is integrally
closed, the curve Z̃ is smooth�. �e map Z̃ → Z is surjective, but its restriction Z̃(R) →
Z(R) to real points may be non-surjective. In fact, a point u ∈ Z(R) is outside the image
of Z̃(R) if and only if it is an isolated singularity of Z, in which case it is the image of
(potentially several) pairs of complex-conjugate points in Z̃. �e map Z̃(R) → Z(R) is
however proper in the euclidean topology, i.e.it is closed with compact �bres.

If Z has several irreducible components, say Z = Z�∪�∪Zk, we can apply the normal-
isation separately to each component and obtain the normalisation Z̃ = Z̃� � � � Z̃k of Z
(where � denotes the disjoint union) with coordinate ring R[Z̃] = R[Z�] ×�×R[Zk].

With all this, we are ready for the �rst main result.

�eorem �.�. Every compact convex semialgebraic set C ⊂ Rn whose set of extreme points
has dimension at most � is a projected spectrahedron.

�In general, the singular locus of an irreducible a�ne variety V with integrally closed coordinate ring
has codimension at least � in V . �us if V is a curve, it must be smooth.
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Proof. Let S be the closure of the set of extreme points of C, a compact semialgebraic set
of dimension at most � by hypothesis. Let Z be the Zariski-closure of S, an a�ne variety of
dimension at most �. Let Z�, . . . , Zk be the irreducible components of Z, let Z̃i → Zi be the
normalisation of each, and let Z̃ → Z be the normalisation of Z, given by Z̃ = Z̃� ��� Z̃k.

Now let u�, . . . , ul ∈ S be the isolated singularities of Z contained in S. As explained
above, u�, . . . , ul do not lie in the image of Z̃(R)→ Z(R). Consider the abstract variety

Y = Z̃ � p� ��� pl
where each pi is a real point. Its real coordinate ring is the R-algebra

R[Y] = R[Z̃�] ×�×R[Z̃k] ×R ×�×R�����������������������������������������
l times

.

�e variety Y comes with a natural morphism φ∶Y → Z which is the normalisation on
Z̃ and sends each pi to ui . Let S̃ be the preimage of S in Y(R) under φ. �en S̃ is
again compact and by Cor. �.�, applied to each irreducible factor of Y , the saturated pre-
ordering P(S̃) ⊂ R[Y] is �nitely generated and stable. By Prop. �.�, this implies that
C = conv(φ(S̃)) is a projected spectrahedron. ⇤

Corollary �.�. Every compact convex semialgebraic subset ofR� is a projected spectrahedron.

Proof. By the Krein-Milman theorem, a compact convex set is the convex hull of its set of
extreme points. For a convex semialgebraic set of dimension �, these form a semialgebraic
set of dimension at most �, so�m. �.� applies. ⇤

Example �.�. For example, we see again that the compact convex regions in Examples
�.� and �.� are projected spectrahedra. Moreover, using the construction in the proof of
�m. �.�, we can also produce an exact (generalised) Lasserre relaxation of these sets, while
it was not previously clear whether that is possible.

Finally, we show how to deduce the full two-dimensional Helton-Nie conjecture from
the above result. �is amounts to dealing with closed, not necessarily compact, semial-
gebraic subsets of the plane, and then performing some surgery on the boundary in the
general case. �e latter uses the following result due to Netzer, which we do not prove
here. But one can think of it as a (very much) re�ned version of the argument showing
that the interior of a projected spectrahedron is a projected spectrahedron (�m. �.�(��)).

�eorem �.� (Netzer [Ne��]). Let C , T be projected spectrahedra inRn with T ⊂ C. LetFT

be the set of all faces F of C with F ∩ T ≠ � and let

T � C = �
F∈FT

relint(F).
�en T � C is a projected spectrahedron. ⇤
Exercise �.�. Show the following (directly or using Netzer’s theorem): If C is a projected spectra-
hedron and u an extreme point of C, then C � {u} is a projected spectrahedron. Hint: Consider
�rst the case in which u is an exposed face of C.

Now we have all we need.

�eorem �.��. Every convex semialgebraic subset of R� is a projected spectrahedron.
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Proof. Let C be such a set. Suppose �rst that C is closed and let Ĉ = clos(cone(C ×{�})) ⊂
R�. SinceC×{�} = Ĉ∩(R�×{�}), it su�ces to show that Ĉ is a projected spectrahedron. Let
U be the lineality space of Ĉ (c.f. �.�). �en Ĉ = (Ĉ ∩U⊥)+U and Ĉ ∩U⊥ is pointed, so we
may assume that Ĉ is pointed. In that case, by Prop. �.�, there exists an a�ne hyperplane
H ⊂ R� such that Ĉ = cone(Ĉ ∩ H) and Ĉ ∩ H is compact. Now Ĉ ∩ H is a projected
spectrahedron by�m. �.�, hence so is Ĉ by�m. �.�(�).

For the general case, we may assume as usual that int(C) ≠ �. We know that C =
clos(C) is a projected spectrahedron and S = C � C is a certain one-dimensional semial-
gebraic subset of the boundary of C. Let F be the �nite set of one-dimensional faces of C.
We decompose S as follows:

S� = the relative interior of S ∩ Ex(C) inside S
SF = F ∩ S for F ∈ F

�en S is the union of S�, �F∈F SF , and �nitely-many extreme points u�, . . . , uk of C. For
F ∈ F , let HF be the open halfplane with int(C) ⊂ HF , F ∩HF = �, so that F ⊂ ∂HF . Put

C� = C � S�
CF = HF ∪ (clos(HF) ∩ C)
Cu = C � {u} for u ∈ Ex(C).

By construction, we now have

C = C� ∩ �
F∈F CF ∩ Cu� ∩�∩ Cuk .

It therefore su�ces to show that each of the �nitelymany sets appearing in this intersection
is a projected spectrahedron.�e setsCF are the union of an open halfplane and an interval
and are therefore projected spectrahedra (either by a direct argument or using�m. �.�).
For Cui , see Exercise �.� below. To deal with C�, let

T = clos�conv(∂C � S�)�
Since T is closed, convex and semialgebraic, we know that T is a projected spectrahedron.
Now letFT be the set of all faces F ofC such that F∩T ≠ � and letT � C = �F∈FT relint(F).
We claim that T � C = C�, showing that C� is a projected spectrahedron, by Netzer’s
theorem �.�. To see this let u ∈ C�. If u is an interior point of C, then clearly u ∈ T � C
(unless T = �, which is a trivial case). If u� ∈ ∂C, then it is not in S�, hence it lies in T
and therefore in T � C. Conversely, given u in C but not in C�, then it is a point of S�.
By the de�nition of S�, this means that {u} is the unique face of C containing u. Hence
u ∉ T � C. �is completes the proof. ⇤

Remark �.��. Using some more convex geometry, one can re�ne the argument in the �rst
part of the proof of�m. �.�� to show that the closure of the convex hull of any semialge-
braic set of dimension at most � is a projected spectrahedron. (see [Sc��,�m. �.�]).
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�.�. SUMS OF SQUARES ON COMPACT CURVES AND BASE EXTENSION

�e goal of this section is to sketch the proof of �m. �.�, which says that the saturated
preordering of a compact subset of a smooth curve over R remains saturated when going
up to a real closed extension �eld.

Example �.��. Consider the situation on the real line, where everything is completely ele-
mentary. For the unit interval S = [−�, �], the saturated preordering P = P(S) in R[x] is
generated by the polynomial �−x�. �is is not hard to show directly. If R�R is a real closed
�eld extension, the preordering PR = P(�− x�) in R[x] is still saturated. But that is because
we can just do the same direct proof over R, not because of what we know over R.

If Z is an a�ne curve over R, the situation is far more complicated. One of the main
results in [Sc��] says that if Z is smooth and P = P(g�, . . . , gr) is a �nitely generated pre-
ordering in R[Z] de�ning a compact set S = S(g�, . . . , gr) ⊂ Z(R), then P is saturated
if and only if in each boundary point u of S in Z(R) one of the generators gi vanishes to
order � (or two generators with opposing sign changes if u is an isolated point; see [Sc��,
�m. �.��]). We can see this in the above example, too: �e polynomial � − x� has simple
roots � and −�, whereas (�−x�)� has triple roots and therefore does not generateP([−�, �]),
as we showed in Example �.��. However, the same statement does not hold for curves over
a non-archimedean real closed �eld R. �e proof of �m. �.� requires completely new
techniques. But it turns out that �nding certain elements in PR with simple zeros on the
boundary of S still plays a role in the proof.

Let A be a commutative ring with �
� ∈ A and let P be a preordering of A. In this gen-

erality, P is called archimedean if for every f ∈ A, there exists n ∈ Z such that n ± f ∈ P.
(It is a consequence of Schmüdgen’s theorem that this de�nition agrees with the one given
earlier for preorderings in the polynomial ring.) If I is a prime ideal in A, we let PI denote
the preordering generated by P in the localisation AI . Explicitly, we have

PI = � as� � a ∈ P, s ∈ A� I�.
We will use the following local-global principle, developed earlier in [Sc��].

�eorem �.�� (Archimedean local-global principle). Let A be a ring containing �
� and let P

be an archimedean preordering of A. �en an element f ∈ A is contained in P if and only if
it is contained in PM for every maximal ideal M of A.

Proof. See [Sc��,�m. �.�] or [Marshall,�m. �.�.�]. ⇤
To study the local preorderings PM , we will need to work in the real spectrum. We

quickly recall the basics and �x notations: �e points of the real spectrum SperA of A
are the pairs (I, �) where I is a prime ideal of A and � an ordering of the residue �eld
Quot(A�I). If α = (I, �) is a point in SperA, the prime ideal I is called the support of α,
denoted supp(α). An element f ∈ A is regarded as a function on A, and f (α) � � means
that the class of f in Quot(A� supp(α)) is non-negative with respect to the ordering given
by α. IfAI is the localisation ofA in a prime ideal I, the ideals ofAI are in canonical bijection
with the ideals of A contained in I. Accordingly, the real spectrum SperAI can be consid-
ered as an open subset of SperA, consisting of those points α ∈ SperA with supp(α) ⊂ I.



�.�. SUMS OF SQUARES ON COMPACT CURVES AND BASE EXTENSION ��

Given a preordering P of A, we write

XP = �α ∈ Sper(A) � f (α) � � for all f ∈ P�
for the subset of SperA de�ned by P.

If V is an a�ne R variety, the real points V(R) can be identi�ed with a subset of
Sper(R[V]). Namely, each point v ∈ V(R) corresponds to a maximal ideal Mv in R[V]
and the residue �eld R[V]�Mv ≅ R has a unique order, so that there is a unique point
αv ∈ Sper(R[V]) with supp(αv) = Mv . If P is a �nitely generated preordering in R[V],
then clearly S(P) ⊂ XP under this identi�cation.

�e following proposition will be very important to reduce the number of maximal
ideals we need to consider when applying the archimedean local global principle.

Proposition �.��. Let A be a local ring with �
� ∈ A and let P be a preordering in A. �en

every f ∈ Awith f > � on XP ⊂ SperA is contained in P.

Proof. See [Sc��, Prop. �.�.]. ⇤

Let R�R be a real closed �eld extension. We denote by O the convex hull of Z in R. It
is a subring of R which clearly has the property that a ∈ O or a−� ∈ O holds for every a ∈ R.
It is therefore a valuation ring, i.e. there is a valuation v∶R → Γ ∪ {∞} into some ordered
group Γ such that O = {a ∈ R � v(a) � �} is the valuation ring of v. �e residue �eld of O
modulo its maximal idealm = {a ∈ O � v(a) > �} is just R and we denote the residue class
mapO → O�m ≅ R by a � a.

Now let V be an irreducible a�ne variety over R with coordinate ring R[V] and con-
sider the base extension of V to R with coordinate ring R[V] = R[V]⊗R R. �e valuation
v extends to a map w∶R[V] → Γ ∪ {∞} as follows: Given an element f = ∑r

i=� fi ⊗ ai ∈
R[V] = R[V]⊗R R with fi ∈ R[V], ai ∈ R, we de�ne

w( f ) =min{v(ai) � i = �, . . . , r}.
One can check that w has the same formal properties as v, i.e.

w( f + g) �min{w( f ),w(g)} and
w( f g) = w( f ) +w(g)

for all f , g ∈ R[V]. (�e �rst is clear from the de�nition. �e second is not di�cult to
show but uses the fact that R[V] is integral.)

We will mostly work in the coordinate ring of V with coe�cients in the valuation ring,
which is the ring O[V] = R[V] ⊗R O. We have O[V] = { f ∈ R[V] � w( f ) � �}. �e
residue map of O extends to a homomorphism O[V] → R[V], denoted f � f , de�ned
coe�cient wise, i.e. ∑r

i=� fi ⊗ ai = ∑r
i=� fi ⊗ ai = ∑r

i=� ai fi ∈ R[V]. Clearly, f = � if and
only if w( f ) > �. Likewise, the residue map also induces a map on points V(O)→ V(R),
v � v. (If v ∈ V(O) is regarded as an R-algebra homomorphism v∶R[V] → O, then v
is just the composition of v with the residue map O → R. If coordinates are �xed and
v = (v�, . . . , vn) is regarded as a tuple inOn, then v = (v�, . . . , vn) ∈ Rn.)

Lemma �.��. Let A be an R-algebra and P an archimedean preordering in A. �en the
preordering PO generated by P in A⊗R O is again archimedean.
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Proof. Note �rst that we have P − P = A. For given f ∈ A, choose c ∈ R with c ± f ∈ P,
then f = �

�(c + f ) − �
�(c − f ) ∈ P − P. It follows that any f ∈ A⊗R O can be written in the

form f = ∑r
i=� fi ⊗ ai with fi ∈ P and ai ∈ O for i = �, . . . , r. Now choose � < c� ∈ R with

c� − fi ∈ P for all i. Also, by de�nition of O, there exists c� ∈ R with � < ai < c� for all i,
hence c� − ai is a square inO. Now we can write

rc�c� − f = r�
i=� c�c� ⊗ � − r�

i=� fi ⊗ ai + r�
i=� c� fi ⊗ � − r�

i=� fi ⊗ c������������������������������������������������������������������������������������������������������������������������������=�= c� r�
i=�(c� − fi)⊗ � + r�

i=� fi ⊗ (c� − ai)
which is an element of PO, showing that PO is archimedean. ⇤

We are now ready for the proof of�m. �.�, which we restate.

�eorem. Let Z be a smooth a�ne curve over R, let S ⊂ Z(R) be a compact semialgebraic
subset and let P = P(S) ⊂ R[Z] be the saturated preordering of S. For any real closed �eld
extension R�R, the preordering PR generated by P in R[Z] is again saturated.

Proof. Let f ∈ R[Z] with f � � on S(R) = S(PR). First, we can �nd c ∈ R with w( f ) =
v(c�), which impliesw(c−� f ) = � and c−� f ∈ O[Z]. Since c−� f ∈ PO clearly implies f ∈ PR,
we may assume f ∈ O[Z] with w( f ) = �. We show f ∈ PO in several steps.

(�) We wish to apply the archimedean local global principle�m. �.�� for PO ⊂ O[Z].
Since S is compact, P = P(S) is archimedean and so PO is archimedean by Lemma �.��. So
we only need to show that f is contained in PM for every maximal ideal M ofO[Z].

(�) �e next step is to show that since f is non-negative on S(R) ⊂ Z(R), it is indeed
non-negative on the corresponding subset XPO of SperO[Z]. We will omit the proof of
this fact (see [Sc��, Lemma �.�]).

(�) Now localising in amaximal idealM, we know that f is non-negative on the subset

XP,M = XPO ∩ SperO[Z]M
of SperO[Z]. If f > � on XP,M , then f ∈ PM by Prop. �.��. So we need only consider those
maximal ideals M ofO[Z]M that contain f and with XP,M ≠ �.

We claim that such a maximal ideal M is necessarily of the form

Mz = � r�
i=� fi ⊗ ai � r�

i=� ai fi(z) = � in R�,
the maximal ideal of O[Z] corresponding to a point z ∈ S. To see this, let α ∈ XP,M with
supp(α) ⊂ M and let p = supp(α) ∩ R[Z], a prime ideal in R[Z]. Since w( f ) ≠ �, we
cannot have supp(α) ⊂ R[Z] ⊗m and so p ≠ (�). Since Z is a curve, this implies that p
is a maximal ideal of R[Z] and therefore corresponds to a point z ∈ Z. Since α ∈ XP,M ,
the point z must be real and contained in S. Now I = p ⊗ O is an ideal of O[Z] with
I ⊂ supp(α) ⊂ M and O[Z]�I = O. So O[Z]�M is a �eld containing R and contained inO, hence it is archimedean and thus coincides withR. �usM corresponds to a real point,
which must be the point z.
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(�) Our goal is to �nd an element h ∈ PO with the property that g = f �h is a unit inO[Z]M and such that g is positive on XP,M . When that is done, we can apply Lemma �.��
and conclude g ∈ PM , hence f = gh ∈ PM , completing the proof.

(�) Showing the existence of h as in (�) is the most technical part of the proof and we
will only give an outline. First, letOc = O[√−�] and consider the set ofOc-points

U(z) = {ζ ∈ Z(Oc) � ζ = z}
that map to z under the residue map. We split the real zeros of f in U(z) into two groups{ζ ∈ U(z) ∩ Z(R) � f (ζ) = �} = {η�, . . . , ηr} ∪ {ζ�, . . . , ζs}
in such a way that η�, . . . , ηr ∈ int(S(R)) and ζ�, . . . , ζs ∉ int(S(R)). Furthermore, let{ω�, . . . ,ωt} ⊂ U(z) be a subset containing exactly one representative from each pair of
non-real complex-conjugate zeros of f in U(z).

Next, one computes the order of vanishing of f at z and �nds ([Sc��, Prop. �.��])

ordz( f ) = r�
j=� ordη j( f ) + s�

k=� ordζk( f ) + � t�
l=� ordω l ( f ).

�e crucial point is now to show that for every point ζ ∈ U(z) with f (ζ) = �, there
exists an element hζ ∈ PO with w(hζ) = �, hζ(ζ) = � and

ordz(hζ) = � � if ζ ∈ Z(R), ζ ∉ int(S(R))
� if ζ ∈ int(S(R)) or ζ ∉ Z(R).

�is is proved in [Sc��, Lemma �.��]. Given this, we can de�ne

h = r�
j=�(hη j) �

� ordη j ( f ) ⋅ s�
k=�(hζk)ordζk ( f ) ⋅ t�

l=�(hω l )ordω l ( f ) ∈ PO .
which, by the above computation of ordz( f ), satis�es ordz(h) = ordz( f ). �is implies that
g = f

h is a unit inO[C]M . Since h ∈ PO, it is clear that g is non-negative in all points of XP,M

where h does not vanish. In the zeros of h, one can argue with continuity in U(z)∩ Z(R),
except when there are isolated points, which require an additional adjustment of h. ⇤
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