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Overview of the research area

�e research presented here concerns questions from adjacent areas of mathematics,
mainly real and classical algebraic geometry, convex geometry and convex optimisation.
�e unifying theme is the geometric study of convex semi-algebraic sets.
Semide�nite programming has developed into a versatile tool of convex optimisation.

�e objective of a semide�nite programme is optimising a linear function over a spectra-
hedron, i.e. an a�ne-linear slice of the cone of positive semide�nite matrices. Semide�nite
programming is a particular instance of themore general framework of cone programming
in convex optimisation, as described in the 1990s by Nemirovski [34]. �e spectrahedral
cones fall into the bigger class of hyperbolicity cones, which were �rst studied in the 1950s
in connection with PDE theory. It is an open problem, known as the Generalised Lax
Conjecture, whether every hyperbolicity cone is in fact spectrahedral. Work towards this
conjecture is one of the underlying motivations for this research proposal.
�e relation between the geometry of spectrahedral cones and semide�nite program-

ming is analogous to that between the geometry of polyhedra (or polytopes) and classical
linear programming. Algebraic geometry enters the picture because the boundary of a
semi-algebraic cone (with non-empty interior) is contained in an algebraic hypersurface.
Such cones (resp. their a�ne slices) thus correspond to certain projective (resp. a�ne) va-
rieties. As an example, consider the so-called elliptope
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�is spectrahedron (together with its higher-dimensional analogues) plays an important
role in combinatorial optimisation. Its boundary is contained in the surface in a�ne-three
space given by the equation  + xyz − x − y − z = . �e homogenisation p = w +

xyz − xw − yw − zw, which de�nes the famous Cayley cubic in P, is a hyperbolic
1
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polynomial in (w , x , y, z) with respect to the point e = (, , , ). �is means that all
zeros of the univariate polynomial p(te − v) are real, for �xed v ∈ R. In other words, p
behaves like a generalised characteristic polynomial of a symmetricmatrix. �is is re�ected
in the symmetric linear determinantal representation
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Determinantal representations (with additional properties) present the algebro-geometric
approach to the study of spectrahedral cones. In improving our understanding of the ge-
ometry of spectrahedra, the search for the big picture, as in theGeneralised LaxConjecture,
goes hand in hand with the study of the geometry in low dimensions, as is customary in
algebraic geometry.
Spectrahedral cones are intimately related to positive polynomials and sums of squares,

another central theme of real algebraic geometry. �e cone P(Rn) of polynomials in n
variables that take only non-negative values on all of Rn is a notoriously inaccessible, “un-
knowable” object. Given a polynomial f , it is generally hard to decide whether it belongs
to P(Rn) or not. By contrast, the smaller cone Σ of sums of squares of polynomials, which
is contained in P(Rn), is dual to a spectrahedral cone if one restricts to a �xed degree.
Deciding membership in Σ can therefore be carried out by a semide�nite programme.
�is is generalised from Rn to basic closed semi-algebraic sets by passing from sums of

squares to weighted sums of squares: Given a set S = {u ∈ Rn ∣ g(u) ⩾ , . . . , gr(u) ⩾ }
de�ned by polynomials g, . . . , gr, one considers the coneM generated by the expressions
f gi for all polynomials f . It is contained in the cone P(S) of polynomials that are non-
negative on S. Representing and approximating elements of P(S) by elements inM is the
goal of the various Positivstellensätze of real algebraic geometry. �e idea, as in the global
case, is that, for a given polynomial, it should be easier to test for membership in M than
to test for non-negativity on S. If one bounds the degree of the expressions f gi above,
the resulting �nite-dimensional cone is again dual to a spectrahedral cone and therefore
amenable to semide�nite programming.
Cones that are dual to spectrahedral cones are particular instances of projected spec-

trahedra (also called spectrahedral shadows or semide�nitely representable sets), which
are the images of spectrahedra under linear maps. Explicitly, such cones and their slices
are de�ned by li�ed linear matrix inequalities. Projected spectrahedra present a much
wider class of convex sets. In fact, theHelton-Nie Conjecture says that every convex semi-
algebraic set is a projected spectrahedron. A general machinery for producing approxima-
tions or representations of basic closed semi-algebraic sets as projected spectrahedra is the
so-called Lasserre Relaxation, which is based on representations supporting hyperplanes
by weighted sums of squares. Proving the convergence and exactness of the Lasserre Relax-
ation is equivalent to establishing re�ned Positivstellensätze for linear functions. A proof
of the full Helton-Nie Conjecture would have far-reaching theoretical consequences for
convex optimisation (namely that several classes of cone programmes coincide). Equally
important is the study of the complexity of representations by projected spectrahedra and
�nding constructive methods for particular classes of sets as explicitly as possible.
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�e blend of convexity and algebraic geometry that gives rise to the mathematics in
this proposal has received much attention from several research groups worldwide in re-
cent years. �is is witnessed by the NSF Focus Research Group Semide�nite Optimization
and Convex Algebraic Geometry (2008-2011) based at several U.S. universities and the new
French National Research Agency (ANR) project GEOLMI (Geometry and Algebra of Lin-
ear Matrix Inequalities with Systems Control Applications) (since 2011). It has also been
the subject of specialised workshops (Ban� workshop Convex Algebraic Geometry, 2010)
and featured prominently in larger programmes (Modern Trends in Optimization and Its
Application at IPAM, UCLA, 2010; SIAM Conference on Optimization, Darmstadt, 2011).
�e forthcoming book Semide�niteOptimization andConvexAlgebraicGeometry (edited

by Blekherman, Parillo and �omas) [5] will be the �rst somewhat comprehensive refer-
ence on the subject and gives a good idea of current developments.

A. Spectrahedral cones and determinantal representations

Problem statement. A spectrahedral cone is the preimage of the cone of real symmetric
positive semide�nite matrices under a linear map. Such a cone can be written in the form

S = {u ∈ Rn ∣ uA +⋯ + unAn is positive semide�nite},

whereA, . . . ,An are real symmetricmatrices of some size d. In otherwords, the spectrahe-
dron S is de�ned by the linear matrix inequality A(x) ⪰ , where A(x) = xA +⋯+ xnAn

is a symmetric matrix whose entries are real linear forms. Spectrahedral cones are the
domains of semide�nite programmes in convex optimisation, which has been the main
motivation for their study in the last 15 years.
A principal theoretical problem is to characterise the spectrahedral cones among convex

semi-algebraic cones. Let S be as above and assume that A(e) is positive de�nite for some
point e ∈ Rn, so that e is an interior point of S. Consider

p = det(xA +⋯ + xnAn),

a real homogeneous polynomial of degree d in the variables x, . . . , xn. �e polynomial p
is hyperbolic with respect to e, which means that the polynomial p(te −v) in one variable
t has only real zeros for all v ∈ Rn. �e boundary of S is contained in the determinantal
hypersurface de�ned by the vanishing of p. Furthermore, S consists precisely of those
points v ∈ Rn for which all zeros of p(te − v) are non-negative. In particular, S can be
characterised solely in terms of p and e. �us, given any hyperbolic polynomial p with
p(e) > , we consider the hyperbolicity cone C(p) of p, which is the set of points v ∈ Rn

such that all zeros of p(te − v) are non-negative. �e problem of representing C(p) as a
spectrahedral cone is closely related to the determinantal representations of p. Arguably
the central open problem is the Generalised Lax Conjecture:

Every hyperbolicity cone is spectrahedral.

In terms of determinantal representations, this can be phrased as follows: Given a hyper-
bolic polynomial p, does there exist another hyperbolic polynomial q whose hyperbolicity
cone contains that of p and such that pq admits a de�nite determinantal representation?
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�e theory of determinantal hypersurfaces is a classical subject of complex algebraic
geometry. (See Beauville [1] and Catanese [9] for results in a modern language.) From this
point of view, spectrahedra and determinantal representations of hyperbolic polynomials
present additional challenges.
␇ �e �rst is reality, i.e. one is interested in real symmetric (or complex hermitian)
determinantal representations of real hypersurfaces.

␇ �e second is positivity. A determinantal representation p = det(A(x)) of a hy-
perbolic polynomial p as above will only relate to a spectrahedral representation of
the hyperbolicity cone if A(e) is positive de�nite.

␇ �ehyperbolicity cone of a hyperbolic polynomial pmay have a spectrahedral rep-
resentation, even if p itself does not possess a determinantal representation. �is is
because a multiple of pmay de�ne the same hyperbolicity cone and admit a deter-
minantal representation, as explained in the reformulation of the Generalised Lax
Conjecture above. �is possibility circumvents all known obstructions to determi-
nantal representability, which apply in the irreducible case. It is necessary to study
determinantal representations of reducible (or even non-reduced) hypersurfaces,
which is beyond the scope of the classical results.

State of the art.
␇ Real and de�nite determinantal representations of plane curves were studied in the

1980s by Dubrovin and Vinnikov (see [11], [68], [69]), but the connection to spectrahe-
dral cones has only been picked up more recently. �e Helton-Vinnikov �eorem from
2004 states that every hyperbolic polynomial in three variables has a de�nite determinan-
tal representation (see [21]). �is was previously known as the Lax Conjecture (see [30]).
In particular, every three-dimensional hyperbolicity cone is spectrahedral.
␇ In 2010, Brändén [7] showed that there exists a hyperbolic polynomial p (of degree

4 in 8 variables, recently reduced to 4 variables) such that no power pr of p admits a def-
inite determinantal representation. �e counterexample is constructed by combinatorial
methods and is based on the so-called Vámos cube from matroid theory.
␇ By contrast, Helton, McCullough and Vinnikov proved that every real homogeneous

polynomial admits a symmetric (but not necessarily de�nite) determinantal representation
a�er multiplying by a su�ciently high power of a linear form [18] (see also Quarez [55]).
␇ Netzer and�om re�ned Brändén’s result to show that , in a suitable sense, very few

hyperbolic polynomials admit a de�nite determinantal representation [39] when degree
and dimension are su�ciently high. (�is is even true in an inhomogeneous setup, which
corresponds to multiplication with a �xed linear form). �ey also related the problem to
the representation theory of certain generalised Cli�ord algebras [40].

Preliminary work.
␇ In two joint papers with Sturmfels and Vinzant [51], [52], we investigated determi-

nantal representations from a computational point of view. In particular, we studied the
computation of determinantal representations of plane quartic curves over Q in exact
arithmetic. We also examined the convex body of all sums of squares representations of
a non-negative ternary quartic, the so-called Gram spectrahedron. While quartic curves
represent an extremely special case, the beauty of classical geometry is striking, and I have
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subsequently found the wealth of concrete examples, where everything can be understood
in great detail, to be very useful in studying more general questions.
␇ In a further paperwithVinzant [53], we revisted the classical construction of symmet-

ric determinantal representations of plane curves due to Dixon. By adapting this construc-
tion to the Hermitian case, we gave a new proof of the existence of a de�nite Hermitian de-
terminantal representation of a hyperbolic curve using only the elementary theory of plane
curves and some topology. �e key point is that the non-degeneracy of the construction
(corresponding to the non-vanishing of an even theta-characteristic in the classical case)
can be seen directly in the case of hyperbolic curves.
␇ Further algorithmic aspects of this construction are being explored in a joint project

with Sinn, Speyer and Vinzant (a prelimanary version [50] is available from my home-
page.) �emethod there is based on [53]. We have also begun to investigate the arithmetic
of the problem, i.e. the question for the minimal �eld extension over which a Hermitian
determinantal representation can be constructed. A di�erent numerical approach, using
homotopy continuation methods, has been explored in joint work with Anton Leykin [31].
Here, we compute real symmetric determinantal representations by exploiting the known
structure of a certain covering map from pairs of matrices to hyperbolic polynomials.
␇ In a very recent paper with Kummer and Vinzant [25], we study systematically the

relationship between a hyperbolic polynomial p and the cone of hyperbolic polynomials
q of degree one less that interlace p, which means that the zeros of q are nested between
those of p. We provide a description of the interlacer cone in terms of certainWronkians
and use this to realize the hyperbolicity cone as a slice of the cone of non-negative poly-
nomials. We study sums-of-squares relaxations of this representation and connections to
determinantal representability. �e correspondence between hyperbolic polynomials and
their interlacers is particularly interesting in the multia�ne case and ties in with the work
of Bränd́en in [6] and [7], Wagner andWei [71], as well as recent results due to Netzer and
Sanyal [38] and Parrilo and Saunderson [43].
␇ In a joint work with Netzer and �om [41], we present an approach to �nding real

de�nite determinantal representations based on sums-of-squares decompositions of the
parametrised Hermite matrix of a polynomial in several variables. �is Hermite matrix
has itself polynomial entries, and it is everywhere positive semide�nite if and only if the
polynomial is hyperbolic. We show that a de�nite determinantal representation of a power
of a hyperbolic polynomial yields a decomposition of the parametrised Hermite matrix as
a sum of matrix squares. We then investigate to what extent the converse holds, giving an
algorithmic approach to the problem. In particular, we show that de�nite determinantal
representations always exist if one allows for denominators.
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B. Semide�nite representations and weighted sums of squares

Problem statement. �e relation between positive polynomials and sums of squares per-
vades real algebraic geometry. Suppose that g, . . . , gr are real polynomials in variables
x = (x, . . . , xn) and consider the basic closed semi-algebraic set

S = {u ∈ Rn ∣ g(u) ⩾ , . . . , gr(u) ⩾ }.

One would like to get a hold on the cone P(S) = { f ∈ R[x] ∣ f (u) ⩾  for all u ∈ S} of
polynomials that take only non-negative values on S. Let Σ denote the cone of sums of
squares in R[x]. �en P(S) contains the cone

M = {s +∑
r
i= si gi ∣ si ∈ Σ}

of weighted sums of squares, called the quadratic module generated by g, . . . , gr. �e role
of quadratic modules in real algebraic geometry is somewhat similar to that of ideals in
classical algebraic geometry, with the crucial di�erence that the full cone P(S) is usually
not �nitely generated as a quadratic module. Membership in M provides what is called a
certi�cate for positivity: Instead of testing for non-negativity of a polynomial f on S, one
may test for membership of f inM, which is o�en much easier. Moreover, if one can �nd
a representation f = s + ∑r

i= si gi ∈ M, then the non-negativity of f on S has been made
obvious. �e usefulness of this approach depends on the following two questions:
␇ Reliabilty. How close isM to P(S)?
␇ Computability. How hard is it to test for membership of a polynomial inM?

�e answer to the �rst question is provided by various kinds of Positivstellensätze, of
which there are several basic versions and many derived results. �e answer to the second
question dependsmostly on the existence of suitable degree bounds forM. A key observa-
tion is that if s = t +⋯+ tk is a sum of squares of real polynomials, then deg(ti) ⩽ deg(s)
for i = , . . . , k, since leading terms cannot cancel in real sums of squares. However, lead-
ing termsmight well cancel when dealing with weighted sums of squares. LetR[x]d be the
�nite-dimensional space of polynomials of degree at most d and consider

Md = {s +∑
r
i= si gi ∣ si ∈ Σ and deg(s), deg(si gi) ⩽ d} ⊂ R[x]d ,

the truncation of M. Membership of polynomials in Md can be tested, in practice rather
e�ciently, via semide�nite programming. However, because of the possible cancellation
of leading terms, the �nite-dimensional coneM ∩R[x]k of polynomials inM of degree at
most k might not be contained in Md for any d. Given k ⩾ , we say that M is k-stable if
there exists d ⩾  such thatM ∩R[x]k ⊂ Md . IfM is k-stable for all k, it is called stable.
Weighted sums of squares and stability questions are related to the spectrahedral cones

discussed in topicA in several ways. Recall that a spectrahedron is an a�ne slice of a spec-
trahedral cone, and a projected spectrahedron is the image of a spectrahedron under a
linear mapping. While spectrahedra present a very special class of convex sets, projected
spectrahedra provide much more �exibility. Indeed, it has been conjectured by Helton
and Nie that every convex semi-algebraic set is a projected spectrahedron. With a suitable
choice of coordinates, a projected spectrahedron is represented by a linear matrix inequal-
ity involving additional variables. Such representations are also called li�ed linear matrix
inequality representations or semide�nite representations. Projected spectrahedra pos-
sess a number of good properties:
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␇ �ey are closed under convex duality and other basic operations on convex sets. In
particular, the dual of a spectrahedron is a projected spectrahedron.

␇ Semide�nite programming can be used for optimisation of linear functions on pro-
jected spectrahedra, by optimising over a de�ning spectrahedron.

␇ �e convex hull of a compact basic closed semi-algebraic set can be approximated
by a projected spectrahedron via a procedure called the Lasserre Relaxation.

�e Lasserre Relaxation can be described in several ways. Within our setup we do as fol-
lows: Given a basic closed semi-algebraic set S = {u ∈ Rn ∣g(u) ⩾ , . . . , gr(u) ⩾ }, letMd

be the truncated quadratic module, as above. �e convex dual M∗d consisting of all linear
functionals ℓ∶R[x]d → Rwith ℓ∣Md ⩾  and ℓ() =  is a spectrahedron inR[x]∗d . Under the
projection π∶R[x]∗d → Rn given by ℓ ↦ (ℓ(x), . . . , ℓ(xn)), the projected spectrahedron
π(M∗d) provides an outer approximation of the convex hull of S, called the d-th Lasserre
Relaxation of S (with respect to g, . . . , gr). If S is compact (and M archimedean), Puti-
nar’s or Schmüdgen’s Positivstellensatz will ensure that the Lasserre Relaxation converges,
i.e. the convex hull of S is the intersection of all Lasserre Relaxations. If some Lasserre
Relaxation actually coincides with the convex hull of S, the relaxation is said to be exact.
�is method lies at the heart of various approximation results in convex optimisation.
�e exactness of the Lasserre Relaxation is very strongly related to the question of stabil-

ity for quadratic modules discussed above. Namely, the Lasserre Relaxation becomes exact
if and only ifM contains all linear polynomials that are positive on S andM is -stable.

State of the art.
␇ �ebest knownPositivstellensätze are those by Schmüdgen and Putinar, which assert

that the quadratic moduleM above contains all polynomials that are strictly positive on S,
provided that S is compact and M is closed under taking products (Schmüdgen), or that
M is archimedean, which also implies compactness (Putinar). �is is in stark contrast to
the famous result of Hilbert that there exist positive polynomials inmore than one variable
that are not sums of squares [23].
␇ Several more re�ned results on the question whether the quadratic module of non-

negative polynomials on a semi-algebraic set S is �nitely generated were obtained by Schei-
derer, especially if S is contained in a curve or surface (see [60], [61], [63]).
␇ Semide�nite programming in convex optimisation was given a popular boost in the

1990s through the work of Nesterov and Nemirovski [34], [33]. �e relation to sums of
squares of polynomials was studied and exploited in several applications soon a�er, in par-
ticular in the extensive work of Lasserre (see for example [26], [27], [28], [29]) and Parrilo
[42], [44], [45].
␇ �e �rst systematic study of projected spectrahedra was undertaken by Helton and

Nie in [19] and [20]. �eir approach is based on proving the exactness of the Lasserre
Relaxation under certain regularity conditions on the boundary. �is is combined with a
glueing result and local-global principle to cover a wider class of sets.
␇ Recently, Scheiderer proved the existence of degree bounds for quadratic modules

supported on smooth compact curves [65], thereby proving the two-dimensional case of
the Helton-Nie Conjecture.
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␇ Netzer and Sanyal employed the results of Helton and Nie to show that every smooth
hyperbolicity cone is a projected spectrahedron [38]. Also, Parrilo and Saunderson have
produced explicit representations of certain hyperbolicity cones [43].

Preliminary work.
␇ In a joint paper with Netzer and Schweighofer [37], we provided an obstruction to

the exactness of the Lasserre Relaxation in the case when the original inequalities describe
the convex hull. In that case, we showed that the Lasserre Relaxation can only become
exact if all faces are exposed. A simpler proof was later given by Gouveia and Netzer in
[15]. However, the methods employed in our proof in [37] still have potential for further
applications in the study of projected spectrahedra within this project.
␇ I have worked on certi�cates of positivity both before and a�er obtaining my PhD,

in particular on sums of squares in coordinate rings of a�ne real varieties. My paper [48]
deals with sums of squares on curves with several irreducible components. Such reducible
curves typically show up as special �bres of morphisms, which are considered in the study
of the moment problem in [67]. In [47], I studied certi�cates of positivity and degree
bounds for sums-of-squares representations of piecewise polynomials on simplicial com-
plexes, which are related to splines. �is combines Positivstellensätze with combinatorial
arguments.
␇ In recent work with Kummer and Vinzant in [25] we obtain approximations of the

hyperbolicity cone of a hyperbolic polynomial by projected spectrahedra. �is we do by
representing the cone of interlacing polynomials as a slice of the cone of non-negative poly-
nomials followed by a sums-of-squares relaxation.
␇ �econstruction of compacti�cations that imply the existence of degree bounds (sta-

bility) for quadratic modules was one of the subjects of my PhD thesis [46]. Parts of these
results were re�ned in a joint paper with Scheiderer [49]. We studied the ring of bounded
polynomials on a semi-algebraic set, which is strongly related to the construction of the
compacti�cations in [54] and [46], which are used to prove stability of quadratic modules.
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