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INTRODUCTION

Let f be a real homogeneous polynomial of degree d in variables x,y, z. A Her-
mitian determinantal representation of f is an expression

(1) f = det(aMy + yM,y + zMs3),

where My, My, M3 are Hermitian d x d matrices. The representation is definite if
there is a point e € R? for which the matrix e; M; + ey My + e3Mj is positive definite.

This imposes an immediate condition on the projective curve Ve(f). Because the
eigenvalues of a Hermitian matrix are real, every real line passing through e meets
this hypersurface in only real points. A polynomial with this property is called
hyperbolic (with respect to e). Hyperbolicity is reflected in the topology of the
real points Vr(f). When the curve V¢(f) is smooth, f is hyperbolic if and only if
Vi(f) consists of |4] nested ovals, and a pseudo-line if d is odd.

FIGURE 1. Cubic and quartic hyperbolic curves P?(R).

The Helton-Vinnikov theorem [3] (previously known as the Lax conjecture) says
that every hyperbolic polynomial in three variables possesses a definite determi-
nantal representation (1) with real symmetric matrices. Thus given a hyperbolic
plane curve, one can investigate the problem of computing a definite determinantal
representation.

Computing symmetric determinantal representations of hyperbolic plane curves
both symbolically and numerically was investigated by Sturmfels and two of the
current authors in [6] and in the case of quartic curves in [5]. Recently, it was
discovered [7] that looking for Hermitian matrices M;, My, M3, rather than real
symmetric matrices, greatly simplifies this computational problem and the proof of
Helton and Vinnikov’s theorem.

The goal of this paper is to present an algorithm for computing determinantal
representations (1), examine this algorithm both numerically and symbolically, and
to compare it with existing methods. This construction is based heavily on [7],

which generalizes a classical construction due to Dixon [1].
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1. THE ALGORITHM

The input to our algorithm will be a polynomial f € R[z,y, z] of degree d with
smooth complex variety Ve(f) and a point e = (e, e, e3) € R® with respect to
which f is hyperbolic. We will be interested in intersecting the curve V¢ (f) with
the degree-(d — 1) curve given by the directional derivative

(2) g(x,y,Z) = 61_$+62_+63_-

For now, we will assume that the intersection Ve (f)NVe(g) in P? is transverse. That
is, the two curves V¢ (f) and Ve(g) intersect in d(d — 1) distinct points. In fact, this
implies none of these intersection points are real |7, Lemma 2.4].

The output of the algorithm will be three Hermitian d x d matrices My, My, M5
such that f = c¢-det(zM; + yMs + zM3) where ¢ € Rog and e; M + ea My + e3Ms is
positive definite. Also, g will be one of the diagonal minors of the resulting matrix
M = x My +yMs + zMj3, namely the minor of M obtained by removing the first row
and first column from M.

The construction below is based on the idea that if the Hermitian matrix M is a
determinantal representation of f = det(M), then its adjugate matrix MY satisfies

MMM = det(M)-I = f-1.

Let a denote the top row of M4, Then, taking the top row of this matrix equation,
we obtain the relation a(xM; + yMs + zM3) = (f,0,...,0). Similar arguments
give (xM; + yMs + 2M3)a” = (f,0,...,0)T. We introduce a suitable vector a =
(a11, @12, - .., a14) and solve these linear equations in the entries of the M;. This finds
(M, My, M3) without ever explicitly computing M2,

The algorithm proceeds as follows:

A1) Compute the d(d — 1) points Ve(f) N Ve(g).

A2) Split the points into two disjoint, conjugate sets Ve(f,g) = SU S.
A3) Let aq; equal g.
)

A4) Extend aj; to a basis a = (aq1, ..., a1q) of the vector space of polynomials in
Clz,y, z]q—1 that vanish on the points S.

(A5) Inthe 3d? variables (M) ;, (Ma); ;, (Ms); j, solve the 2d(*F?) = (d+2)(d+1)d
affine linear equations coming from the polynomial vector equations
a (xMy +yMy+ zMs) = (f,0...0)
(xMy +yMy + zMs) @ = (f,0...0)7.

(A6) Output the unique solution M, My, Mj.

(
(
(
(

We need to argue that such a solution M, My, M3 exists, is unique, and has the
desired properties, which we do below. Numerical implementation of this algorithm
and surrounding computational issues will be discussed in Section 2. In Section 3,
we discuss the field extensions necessary for symbolic implementation.
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Theorem 1. Let f € Rx,y, z] be hyperbolic with respect to a point e € R3 with
f(e) > 0. Suppose that Vc(f) is smooth and that all the intersection points of Ve(f)
and Ve(g) are transverse, where g = 61%+62%+63%. Then the system of equations
in (A5) has a unique solution My, My, M3, which are Hermitian matrices satisfying

f = c-det(xMy + yMs + 2M3)  and ey My + eaMy + es M3 > 0,
where ¢ € Ryy.

Proof. (Ezistence.) First, let us show that the affine linear equations (A5) have some
solution My, My, M3. By Construction 4.5 and Theorem 4.6 of 7], there exists a Her-
mitian linear matrix M’ = x M| 4+ yM + zM; such that for some ¢ # 0, the determi-
nant det(M’) equals ¢! f, the matrix M'(e) = ey M|+ ey Mj+e3Mj is either positive
or negative definite, and the first row of the adjugate matrix A = (1/c=2)(M’)*4 is
precisely a = (a11, 12, . .., a14). Since the matrices M’ and (M')*Y are Hermitian,
it follows that the first column of (1/c?=2)(M")*Y is al = (@17, @z, ..., a1q)" -

In fact, the constant ¢ must be positive. We can see this from examining our
matrices at the point e. Since M’(e) is definite, both (M')2d(e) and A(e) must be
definite as well. Furthermore, because the (1, 1) entry of A(e), namely a11(e) = g(e),
is positive we see that the matrix A(e) is positive definite. Then the equation

det(4) = (1/c¢2) det((M')*V) = (1/c" )" (1) = f7

evaluated in the point e shows that ¢ is positive. To find a solution to the equations
(A5), let M = (1/¢c)M'. Then

det(M) = (1/c)%det(M') = (1/c)f.

Furthermore M?¥ equals (1/c)?}(M")*¥ which is (1/c) - A. We know that both
M2 M and M - M®Y equal det(M)I. Dividing these identities by (1/c) we see
that A-M = f-T and M - A = f-I. From taking the first row of the first equation
and the first column of the second equation, we see that M satisfies the equations

aM=(f0...00 and Ma' =(f0...07".

Since ¢ - f = det(M) and M(e) is positive definite, in order to finish the proof, it
suffices to show that this is the unique solution to these equations.

(Uniqueness.) Suppose M’ = xM{+yM;+zMj is a matrix satisfying the equations
(A5). We immediately see that at any point (z,y, z) in Vc(f) the matrix M’ does
not have full rank. Since det(M’) has degree d and f is irreducible, we can conclude
that det(M’) = af for some constant a # 0.

Again we use the identity M’ - (M2 = det(M')] = afI. For generic (x,y, 2)
in C3, the matrix M’ is invertible. These identities then show that the first row of
(M"Y is aa and the first column of (M’)2¥ is aa® .

Let A be the matrix from above whose first row is a and first column a’. Because
both A and (M’)*¥ have rank one along the curve Vc(f), the entries of aA and
(M”24 must differ by a multiple of f. However, the entries of these matrices have
degree d — 1 whereas f has degree d, so we see that (M’)*¥ must equal aA. In
particular, (M’)*¥ is a constant multiple of M2, Tt follows that M’ is a constant
multiple of the original solution M. Because our affine linear equations (A5) are not
homogenous, we see that the solution M is unique. O
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Remark 2. If fact, in our algorithm we can replace ¢ in (2) by any polynomial
g € Rlz,y, z]4_1 where g(e) > 0 and ¢ interlaces f with respect to e. By this,
we mean that for every point p € R3 the roots of the univariate polynomial g(te+ p)
interlace those of f(te + p).

Example 3. To illustrate our algorithm, we apply it to the quartic
(3) flz,y,2) = a*—4a%y? +y* —42?2% — 2% + 2*,

which is hyperbolic with respect to the point e = [1 : 0 : 0], and appears as Ex-
ample 4.12 in [7]. This curve has two nodes, [0 : 1 : 1] and [0 : —1 : 1], but done
carefully, our algorithm still works. Figure 2 shows the real curves Vi (f) and Vg(g)
in different affine planes.

NN

;;;;

FIGURE 2. The hyperbolic quartic (3) and its directional derivative.

First we define a;; to be the directional derivative iDe f =23 —2xy? — 2222 The
intersection of f and a;; consists of the eight points [2 : /3 : 4], [2 : +i : £/3]
and the two nodes, [0 : £1 : 1], each with multiplicity 2. We divide these points into
two conjugate sets S U S where

S:{[0:1:1], 0:—1:1), [2:V3:4], [2: —V3:1], [2:4: V3], [2:¢:—\/§]}.

The vector space of cubics in C[z,y, z] vanishing on these six points is four dimen-
sional and we extend ay; to a basis {ai1, a12,a13,a14} for this space, where

ayy = iz’ + dizy? — 42z — 4Pz 4 427,
a3 = —3ix® + 4Py + dizy? — 4y® + 4y,
ay = —a° — 2ix’y — 2ix’z + dayz.
Let M = 2A+yB+2zC. The two 4 x 4 polynomial matrix equations aM = (f,0) and

Ma" = (f, O)T give us 120 affine linear equations in the 48 variables A;;, B;;, Cj;.
For example, the first entry of the vector aM is

(A1y +iAg — 3iAz) — Agp)xt + (4431 — 2iAg + By +iBay — 3iBs; — By)zy

+ (=2A11 + 4iAgy + 4iA3) + 4B31 — 2iBy1)x*y* + (—4A31 — 2B11 + 4iBay + 4i By )xy®

— 4B31y* + (—4Ag — 2iAg + C11 +iCo1 — 3iC31 — Cyy)2’z

+ (4441 — 4Bo1 — 2iByy +4C31 — 2iCyy)x’yz + (—4Ag) + 4By — 2C1 + 4iCoy + 4iC31 )y~
4 (—4Bg1 — 4C31)yP2 + (—2A11 — 40y — 2iCyy)x22 + (4431 — 2By + 4Cy1 )2y2>

+ (4B3; — 4C91)y%2? + (449 — 2C11)x2 + (4Bgy + 4C31)yz> + 4C9 2.
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Identifying this polynomial with f gives us 15 affine linear equations. For example,
from the monomial z*, we see that Ay, + 14 — 3ids — Ay = 1. Similarly, from
each of the other entries of aM — (f,0) and Ma” — (f,0)T we get 15 affine linear
equations in the 3-42 variables A;;, B;;, Ci;, for a total of 2-4-15 = 120. The unique
solution to these 120 equations gives the Hermitian matrix representation

14z 2z 2ix — 2y 2i(y — 2)
1 2z x 0 —ir + 2y
tATYB 0 = S g9y 0 v iw—2s |

—2i(y —2) ix+2y —ivz—2z 4x
whose determinant is (1/256) - f.

2. NUMERICAL IMPLEMENTATION

Here we discuss the numerical implementation of this algorithm in Mathematica.
Below we give some preliminary computation times. Overall, this method results in
very fast computations, although the accuracy becomes poor for large d.

One major issue with numerical computations is that the affine linear equations
in (A5) are overdetermined — there are d* +3d*+2d equations in 3d* variables. With
small numerical errors, these equations no longer have a solution. We solve this by
taking a least squares solution to the system.

The steps that take a significant amount of computation time are the following.

e Computing the points V(f, g).

e Computing the basis (a1, ..., a1q)-

e Translating the polynomial equations (A5) into a system of linear equations.
e Solving the resulting least squares problem.

Extracting the affine equations from the polynomial identities aM = (f,0...0)
and Ma® = (f,0...0)T is a step that takes surprisingly long in our Mathematica
implementation, even longer than solving the least squares problem.

None the less, this method finds (approximate) determinantal representations
surprisingly fast. To test our code, we generated hyperbolic polynomials of degree
d by taking the determinant of xI + y(B + BT) + 2(C 4+ CT) where B and C are
random d X d matrices with normally distributed entries. Any such determinant
will be hyperbolic with respect to the point [1 : 0 : 0]. Averaging test times for 10
examples in each degree gave the following computation times:

degree 5 6 7 8 9 10 15

time (sec) 0.4 0.8 1.7 3.2 6.1 10.7 110

error 1-107° 1 7-107° [ 1-1077 [1-1075[2-107° | 1-107*| 500
relative error | 1-107* [ 1-107*(9.107* [2.107°|1-10%|5-107% | 1-107°

Here by “error” we mean the maximum over the absolute values of the coefficients
of the difference between the original polynomial f and the appropriately scaled
determinant ¢ - det(M). We also found it useful to look at the “relative error”, by
which we mean the error divided by the largest coefficient of f.

One additional source of numerical errors is the computation of the determinant
of the output of our algorithm. Because of the size of this matrix, a symbolic com-
putation of the determinant is infeasible and instead we compute it by interpolation.
Then we use the interpolated polynomial to compute the errors in the coefficients.
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For comparison, the only other known methods for computing definite determi-
nantal representations are discussed in [6]. Here, finding definite determinantal
representations is already extremely time consuming for quintics (d = 5) and practi-
cally infeasible for larger degrees (d > 6). Thus the method described above provides
a great improvement in computation ability.

We intend to explore many other aspects of these computations. Our goals include
running significantly more trials, understanding the trade off between accuracy and
computation time, extending our code to work with nodal curves (like Example 3),
and investigating other methods of generating random hyperbolic polynomials. We
are also considering computational methods for finding the polynomials (a1, . .., a14)
without computing the intersection points Ve (f) N Ve(g).

3. SYMBOLIC ASPECTS

Ideally we would like to carry out our algorithm symbolically, but most of the
time the required field extensions will be too large. Given a hyperbolic polynomial
f € Qx,y, z]q, one can ask: What is the field extension necessary to carry through
the construction above symbolically?

If fact, after computing the points V(f, ¢g) and splitting them as S U S, all of the
remaining steps in the algorithm only require linear algebra, and thus can be done
with rational arithmetic. Thus we are interested in the smallest number field K such
that the set of points S can be defined over K. For fixed f, it seems very hard to say
anything about the smallest such field for the best possible choice of the interlacing
polynomial g. But at least we can say what happens in the generic case.

Definition 4. Let K be a field of characteristic 0 and let f, g € K|z, y] be polynomi-
als such that the intersection V(f, g) in A% is O-dimensional. By the Galois group
of the intersection V(f, g), we mean the Galois group of the field L generated by
the coordinates of the intersection points over K,

L= K(ai,bi: (ai,b,-) € V(f, g))

Note that L as in the preceding definition is a Galois extension, because any K-
automorphism of K maps a common zero (a,b) of f and g to another one. This
argument also shows, that the degree of this field extension L/K is at most (d - e)!,
where deg(f) = d and deg(g) = e, since it gives an embedding of Gal(L/K) into the
symmetric group over the common roots of f and g.

Lemma 5. Let d and e be positive integers and let K = Q(fi;, g) be the rational
function field in the variables fi; for i +j < d and gy for k +1 < e. Let f =
divj<d fijx'y? and g = D ivj<e gi;x'y? in K|z, y]. The variety V(f,g) in A% consists
of d - e distinct points and has Galois group Sge.

Proof. Let R € K|[z] be the resultant of f and g as elements of K[x][y]. Then R has
degree d-e and non-zero discriminant since the coefficients of f and g are algebraically
independent. It follows that the field extension L of K by the coordinates of the
common zeros of f and g is the splitting field of R over K.

Any specialization of f;;, gi; to rational numbers induces a place X' — Q, which
extends to a place L — F, where F' is a finite field extension of Q such that the
Galois group Gal(F/Q) embeds into Gal(L/K) (see [2, §2.3 and Lemma 16.1.1].
By the example below, there is such a specialization with Gal(F/Q) = Sg., hence
Gal(L/K) = Sge. O
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Example 6. The resultant of the polynomials y — 2 and y® — x — 1 with respect
to the variable y is the polynomial R = 2% — 2 — 1. The splitting field of R over Q
is known to have Galois group Sge, cf. [8, p. 42].

Theorem 7. For almost all polynomials f, g € Q[z,y| of degree d and e respectively,
the Galois group of the intersection V(f, g) is Sge.

Here, by “almost all” we mean all pairs of polynomials with coefficients outside a
thin set in the sense of Serre, cf. [8, §3.3]. Suitably interpreted, this means that for
random f and g, the Galois group of V(f, g) is Sz with probabilty one.

Proof. Let L and K be as in the proof of the preceding lemma and let p € K[z] be
the minimal polynomial of a primitive element of L/K. For any specialization of f;;
and g, to rational numbers for which p remains irreducible, the resulting extension
F/Q has Galois group Sy by |2, Lemma 16.1.1(b)].

By Hilbert’s Irreducibility Theorem, the set of all points in AY, where N =
trdeg(K/Q), for which p becomes reducible, is thin, cf. [8, Proposition 3.3.5]. O

Corollary 8. For almost all hyperbolic polynomials f € Qlz,y, z]q and almost all
interlacing curves g € @[a&y, 2]4-1, the smallest Galois extension K/Q over which
a splitting Ve(f, g) = SU S is defined, has Galois group Sq(q—1).

Proof. First note that the set of all hyperbolic polynomials of degree d has non-
empty interior in the vector space of polynomials of degree d and that the set of all
interlacing curves for a smooth hyperbolic curve of degree d has non-empty interior
in the vector space of all polynomials of degree d — 1, cf. [4]. Given such f, g, let F’
be the splitting field of V(f, g) and let F’ C F be a Galois extension of Q over which
S is defined. Then the Galois group of F” is a normal subgroup of Gal(F/Q) that
leaves S invariant. If Gal(#/Q) = Sy(4—1), there is no non-trivial such subgroup. [
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