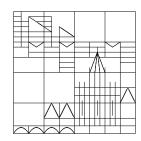
Universität Konstanz Fachbereich Mathematik und Statistik Daniel Plaumann Wintersemester 2012/2013



TORISCHE VARIETÄTEN

6. Übungsblatt Besprechung am 20. Dezember

15. Es sei
$$A = \{e_1, e_2, e_1 + 2e_2, 2e_1 + e_2\} \subset \mathbb{Z}^2$$
. Zeige, dass

$$\mathbb{Z}'\mathcal{A} = \{(a,b) \in \mathbb{Z}^2 \mid a+b \equiv 0 \bmod 2\}$$

gilt und damit $\mathbb{Z}'\mathcal{A}$ vom Index 2 in $\mathbb{Z}\mathcal{A} = \mathbb{Z}^2$ ist. Folgere $Y_{\mathcal{A}} \neq \widehat{X}_{\mathcal{A}}$ und überprüfe auch direkt, dass das Verschwindungsideal $\mathbf{I}(Y_{\mathcal{A}})$ nicht homogen ist.

16. Es sei $M = \mathbb{Z}^{3\times 3}$ das Gitter der ganzzahligen 3×3 -Matrizen und sei \mathcal{P}_3 die Menge der Permutationsmatrizen in M. Wähle die Koordinaten

$$\begin{bmatrix} t_1 & t_2 & t_3 \\ t_4 & t_5 & t_6 \\ t_7 & t_8 & t_9 \end{bmatrix}$$

auf den 3×3 -Matrizen, so dass $\mathbb{C}[M] = \mathbb{C}[t_1^{\pm 1}, \dots, t_9^{\pm 1}]$. Auf \mathbb{P}^5 wähle homogene Koordinaten x_{ijk} indiziert durch die Permutationen σ_{ijk} : $[(1, 2, 3) \mapsto (i, j, k)] \in S_3$.

- (a) Zeige, dass $x_{123}x_{231}x_{312} x_{132}x_{321}x_{213} \in \mathbf{I}(X_{\mathcal{P}_3})$.
- (b) Bestimme $\mathbb{Z}'\mathcal{P}_3$ und zeige dim $X_{\mathcal{P}_3} = 4$.
- (c) Folgere $I(X_{\mathcal{P}_3}) = \langle x_{123}x_{231}x_{312} x_{132}x_{321}x_{213} \rangle$.
- 17. Es sei $P = \text{conv}(0, e_1, e_2, e_1 + e_2 + 3e_3) \subset \mathbb{R}^3$, ein dreidimensionales Simplex. Bestimme die Facettendarstellung von P, die Gitterpunkte in P und die projektive torische Varietät $X_{P \cap \mathbb{Z}^3}$.