Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Reinhard Racke Dipl.-Math. Michael Pokojovy

2. Juli 2008

Funktionentheorie 6. Übungsblatt

Aufgabe 6.1 Bestimmen Sie die Residuen folgender Funktionen an all deren singulären Stellen:

a)
$$z \mapsto f_1(z) := \frac{z^2 + z - 1}{z^2(z - 1)}$$
,

b)
$$z \mapsto f_2(z) := z^3 \cos \frac{1}{z-2}$$
.

Aufgabe 6.2 Berechnen Sie die nachstehenden Integrale:

a)
$$\int_{\Gamma} z^n e^{\frac{2}{z}} dz$$
, $\Gamma := \{ re^{i\varphi} \mid 0 \le \varphi \le 2\pi \}$, $n \in \mathbb{Z}$, $r > 0$,

b)
$$\int_{-\infty}^{\infty} \frac{e^{\alpha x}}{1 + e^x} dx, \ 0 < \alpha < 1.$$

Hinweis: Betrachten Sie das Integral über den Rand des Rechtecks mit den Ecken -R, R, $R+2\pi i$, $-R+2\pi i$ für R>0.

Aufgabe 6.3

a) Die Menge $P_f \subset \mathbb{C}\backslash\mathbb{Z}$ der Pole einer auf \mathbb{C} meromorphen Funktion f sei endlich. Ist $\{\Gamma_n\}_{n\in\mathbb{N}}\subset\mathbb{C}$ eine Folge von stückweise glatten Jordan-Kurven um z=0 mit $\Gamma_m\cap(\mathbb{Z}\cup P_f)=\varnothing$ für alle $m\in\mathbb{N}$ und $\mathrm{dist}(\Gamma_m,\{0\})\to\infty,\,m\to\infty$, dann gilt

$$\sum_{n=-\infty}^{\infty} f(n) = -\pi \sum_{z_0 \in P_f} \operatorname{res}_{z=z_0} f(z) \cot \pi z,$$

falls die Reihe $\sum_{n=-\infty}^{\infty}f(n)$ konvergiert und

$$\lim_{m \to \infty} \int_{\Gamma_m} f(z) \cot \pi z \, \mathrm{d}z = 0$$

gilt, wobei die Kurve Γ_m , $m \in \mathbb{N}$, jeweils entgegen dem Uhrzeigersinne umgelaufen sei.

b) Berechnen Sie:

$$\sum_{n=-\infty}^{\infty} \frac{1}{(a+nb)^2}, \quad a, b \in \mathbb{C}, \quad b \neq 0, \quad \frac{a}{b} \notin \mathbb{Z}.$$

Aufgabe 6.4

a) Es sei $G \subset \mathbb{C}$ ein durch eine stückweise glatte Kurve berandetes beschränktes Gebiet. Die Funktionen f und g seien holomorph in $U \supset \overline{G}$, U offen. Überall auf ∂G gelte

$$|g(z)| \le |f(z)|$$
.

Beweisen Sie, dass dann die Funktionen f und f+g die gleiche Anzahl von Nullstellen in G besitzen.

Hinweis: Betrachten Sie die Funktion $f_a(z) = f(z) + ag(z)$ für $|a| \le 1$.

b) Bestimmen Sie die Anzahl der Nullstellen des Polynoms $P(z) := z^5 - 5z^3 + 2$ in B(0,1).

Hinweis: Zerlegen Sie P gemäß P = f + g für geeignete f und g.

Abgabetermin: Mittwoch, 9. Juli 2008, vor 12:00 Uhr in die Briefkästen bei F411.