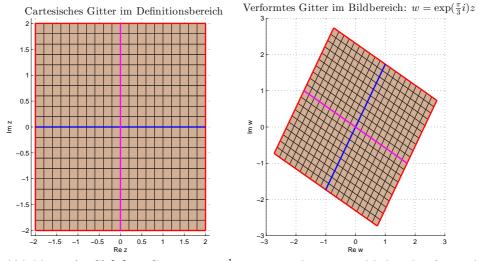
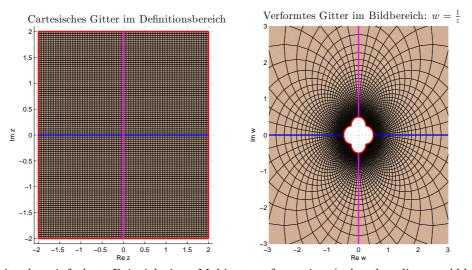
Beispiel 1: Die Abbildung $f_1: \mathbb{C} \to \mathbb{C}, z \mapsto w := \exp(\frac{\pi}{6}i)$ ist eine ganze schlichte (= biholomorphe, insbesondere einblättrige), konforme (insbesondere bijektive) Abbildung.

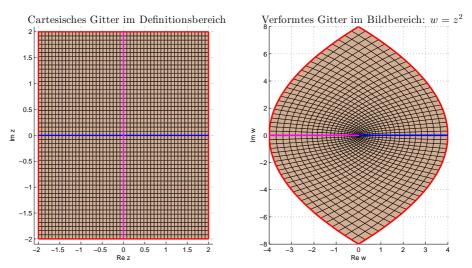


Beispiel 2: Die Abbildung $f_2: \mathbb{C}\setminus\{0\} \to \mathbb{C}, z \mapsto w := \frac{1}{z}$ ist eine nicht ganze schlichte, konforme Abbildung.



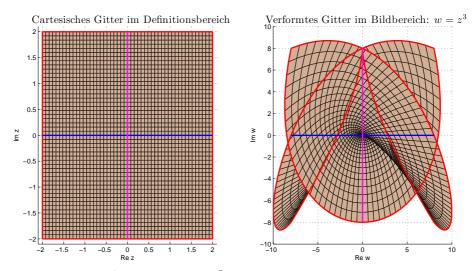
Bemerkung: f_2 ist das einfachste Beispiel einer Möbiustransformation (gebrochen lineare Abbildung). Diese bilden Kreise und Geraden auf Kreise oder Geraden ab. Überdies lassen sie sich zu einer stetigen Abbildung von $\overline{\mathbb{C}}$ nach $\overline{\mathbb{C}}$ fortsetzen, wobei $\overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ die erweiterte komplexe Zahlenebene bezeichnet. Letztere ist kompakt bzgl. der Alexandroffschen Topologie.

Beispiel 3: Die Abbildung $f_3 \colon \mathbb{C} \to \mathbb{C}, z \mapsto w := z^2$ ist eine ganze zweiblättrige Abbildung.



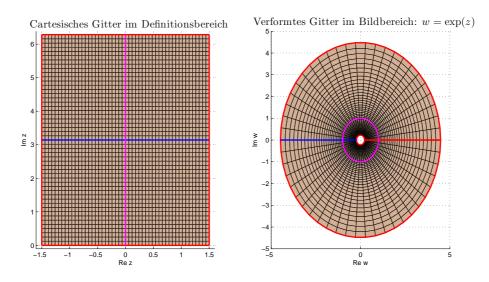
Bemerkung: $f_3|_U$, $U:=\{z\,|\,\mathrm{Re}z>0\}$ ist biholomorph und konform.

Beispiel 4: Die Abbildung $f_4\colon \mathbb{C} \to \mathbb{C}, \, z \mapsto w := z^3$ ist eine ganze dreiblättrige Abbildung.



Bemerkung: $f_4|_U$, $U:=\{z\,|\,z=re^{i\varphi}, r>0, 0<\varphi<\frac{2\pi}{3}\}$ ist biholomorph und konform.

Beispiel 5: Die Abbildung $f_5: \mathbb{C} \to \mathbb{C}$, $z \mapsto w := \exp(z)$ ist eine ganze Abbildung mit abzählbar vielen Blättern (Zweigen).



Bemerkung: $f_5|_U$, $U:=\{z\,|\,0<{\rm Im}z<2\pi\}$ ist biholomorph und konform.