Beispiel: Die Abbildung

$$p \colon S^2 \to \hat{\mathbb{C}}, \quad x \mapsto \left(\frac{x_1}{1-x_3}, \frac{x_2}{1-x_3}\right)^T, \quad \text{wobei } S^2 := \partial B(0,1) \subset \mathbb{R}^3,$$

heißt stereographische¹ Projektion oder konforme azimutale² Projektion³.

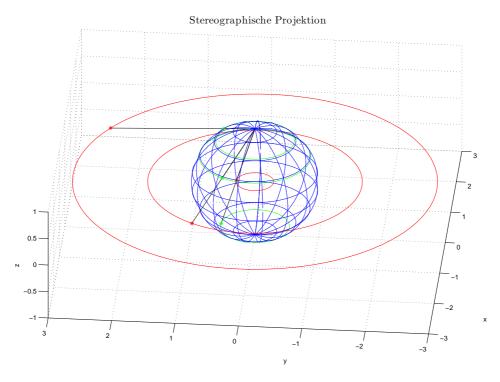


Abbildung 3.1

Die Menge S^2 wird manchmal als $Riemannsche\ Zahlenkugel$ bezeichnet. Die stereographische Projektion ist kreisverwandt und winkeltreu.

Beispiel 3.7 (Möbius⁴transformation⁵):

Eine Abbildung

$$f: \mathbb{C}\backslash\{-\frac{d}{c}\}\to\mathbb{C}, \quad z\mapsto \frac{az+b}{cz+d}$$

mit $a,b,c,d\in\mathbb{C},\ |c|+|d|\neq 0$, wird Möbiustransformation oder gebrochen lineare Abbildung genannt. Diese lässt sich stetig auf ganz $\hat{\mathbb{C}}$ erweitern, indem man zusätzlich $f(-\frac{d}{c}):=\infty$ und $f(\infty):=\begin{cases} \frac{a}{c}, & c\neq 0\\ \infty, & c=0 \end{cases}$ definiert.

Für c=0 gilt insbesondere $f(z)=\frac{a}{c}z+\frac{b}{d}$. Also handelt es sich hierbei um eine (affin) lineare Funktion, welche wir im Beispiel 3.4 ausführlich behandelt haben. Insbesondere wissen wir, dass f biholomorph und konform ist. Für $c\neq 0$ gilt $f(z)=\frac{1}{c}\left(a+\frac{bc-ad}{cz+d}\right)$. Also setzt sich f als Verküpfung biholomorpher, konformer Funktionen aus dem Beispiel 3.4 (affin lineare Funktion) und dem Beispiel 3.5 (Inversion $z\mapsto \frac{1}{z}$) zusammen. Daher ist f kreisverwandt. Für ad=bc ist f konstant, ansonsten biholomorph und konform.

Eine Möbiustransformation $f(z) = \frac{az+b}{cz+d}$, $ad-bc \neq 0$, lässt sich durch eine Matrix $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2\times 2}$ repräsentieren⁶. Für letztere gilt wegen $\det(A) \neq 0$

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

griech.: στερεόζ – Raum/räumlich, fest, γράφειν – zeichnen, beschreiben

²arab.: as-sumūt – die Wege

³lat.: proicere – hinauswerfen, hinwerfen

 $^{^4}$ August Ferdinand Möbius, 17.11.1790 – 26.9.1868

 $^{^5}$ lat.: transformare – umformen

 $^{^6}$ Die Darstellung ist sogar eindeutig, wenn man zusätzlich $\det(A) = 1$ fordert.

Mit $g(w) := \frac{dw-b}{-cw+a}$ ergibt sich

$$g(f(z)) = \frac{d\frac{az+b}{cz+d} - b}{-c\frac{az+b}{cz+d} + a} = \frac{adz + bd - bcz - bd}{-acz - bc + acz + ad} = \frac{adz - bcz}{-bc + ad} = z$$

und analog auch f(g(w)) = w. Also ist $g = f^{-1}$. Überdies ist die Umkehrabbildung f^{-1} selber eine Möbiustransformation repräsentiert durch A^{-1} . Außerdem sind $f, f^{-1}: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ bijektiv. Sind f_1, f_2 zwei Möbiustransformationen repräsentiert durch A_1 und A_2 , so ist auch deren Verknüpfung $f_1 \circ f_2$ eine Möbiustransformation dargestellt durch A_1A_2 .

Die Menge aller Möbiustransformationen versehen mit der Verknüpfungsoperation \circ ist eine nichtkommutative Untergruppe aller Bijektionen auf $\hat{\mathbb{C}}$ und wird üblicherweise als $\mathrm{Aut}(\mathbb{C})$ – Automorphismengruppe⁷ von $\hat{\mathbb{C}}$ – bezeichnet. Diese Gruppe ist wegen $\mathrm{Aut}(\mathbb{C})$ = $\mathrm{PGL}(2,\mathbb{C})$ ein Spezialfall der projektiven linearen Gruppe. Außerdem ist $\mathrm{Aut}(\mathbb{C})$ isomorph zu $\mathrm{SL}(2,\mathbb{C})$.

Es stellt sich die Frage nach den Fixpunkten einer allgemeinen Möbiustransformation f. Ist $f \equiv \mathrm{id}$, so ist jeder $z \in \mathbb{C}$ ein Fixpunkt von f. Wir betrachten deshalb die verbleibenden Fälle:

- c = 0: Mit $f(z) = \frac{az+b}{d} \stackrel{!}{=} z$ folgt:
 - $-d \neq a$: $z = \frac{b}{d-a}$ ist der einzige Fixpunkt.
 - $-d = a, b \neq 0$: Es gibt keinen Fixpunkt.
 - -d=a, b=0: $f\equiv \mathrm{id}$ und jedes $z\in\mathbb{C}$ ist ein Fixpunkt.

 $c \neq 0$: Es gilt

$$f(z) = \frac{az+b}{cz+d} \stackrel{!}{=} z \Leftrightarrow az+b = z(cz+d)$$

$$\Leftrightarrow z^2 + \frac{d-a}{c}z - \frac{b}{c} = 0$$

$$\Leftrightarrow z = z_{1,2} := \frac{(a-d) \pm \sqrt{(a-d)^2 + 4bc}}{2c}.$$

Es liegen also nach dem Fundamentalsatz der Algebra zwei Fixpunkte vor. Dabei ist die Wurzel aus $z = re^{i\varphi}$ als $\sqrt{z} := \sqrt{r}e^{\frac{i\varphi}{2}}$ erklärt (vgl. Beispiel 3.11).

Satz 3.7: (Sechs-Punkte-Satz).

Eine (von der Identität verschiedene) Möbiustransformation f ist durch die Vorgabe von drei paarweise verschiedenen Punkten $z_1, z_2, z_3 \in \hat{\mathbb{C}}$ mit drei verschiedenen Werten $f(z_k) = w_k \in \hat{\mathbb{C}}$ eindeutig bestimmt.

Beweis

Eindeutigkeit: Sind f_1 , f_2 zwei Möbiustransformationen mit $f_j(z_k) = w_k$, k = 1, 2, 3, k = 1, 2, und $z_1 \neq z_2 \neq z_3 \neq z_1$. Dann schließt man $(f_2^{-1} \circ f_1)(z_k) = z_k$, k = 1, 2, 3, d.h., $f_2^{-1} \circ f_1$ ist eine Möbiustransformation mit drei Fixpunkten. Daher muss $f_2^{-1} \circ f_1 = \text{id}$ gelten, woraus $f_1 = f_2$ folgt.

Existenz: Leicht rechnet man nach, dass sich die gesuchte Möbiustransformation durch die Matrix

$$\begin{pmatrix} w_2 - w_3 & -w_1(w_2 - w_3) \\ w_2 - w_1 & -w_3(w_2 - w_1) \end{pmatrix}^{-1} \begin{pmatrix} z_2 - z_3 & -z_1(z_2 - z_3) \\ z_2 - z_1 & -z_3(z_2 - z_1) \end{pmatrix}$$

repräsentieren lässt. Man beachte dabei, dass die zweite Faktormatrix die Möbiustransformation darstellt, welche z_1, z_2, z_3 auf 0, 1 bzw. ∞ abbildet, während die zur ersten Matrix gehörige Möbiustransformation 0, 1, ∞ auf w_1, w_2 bzw. w_3 abbildet.

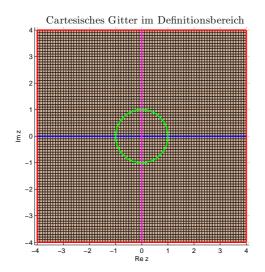
Spezielle Möbiustransformationen:

1. Die durch $f(z):=\frac{z-i}{z+i}$ gegebene Möbiustransformation bildet die obere Halbebene auf die offene Einheitskreisschreibe ab. Einerseits ist f nach Satz 3.7 eindeutig durch die Vorschriften $i\mapsto 0,\ 0\mapsto -1,\ 1\mapsto \frac{1-i}{1+i}=\frac{(1-i)^2}{2}=-i$ festgelegt. Andererseits bildet f die reelle Achse auf den Einheitskreis ab, denn für z=x+0i gilt:

$$f(z) = \frac{x-i}{x+i} = \frac{1}{x^2+1}(x^2-1-2xi) \Rightarrow |f(z)| = \frac{1}{x^2+1}\sqrt{(x^2-1)^2+4x^2} = \frac{1}{x^2+1}\sqrt{x^4-2x^2+1+4x^2} = 1.$$

Dass die obere bzw. untere Halbeben in die offene Kreisschreibe bzw. das Innere deren Komplements übergehen, folgt nun mit dem Offenheitsprinzip und der Orientierungstreue.

 $^{^7 {\}rm griech.:}~\alpha \acute{v} \tau \acute{o} \zeta$ – selbst, $\mu o \rho \varphi \acute{\eta}$ – Gestalt, Form



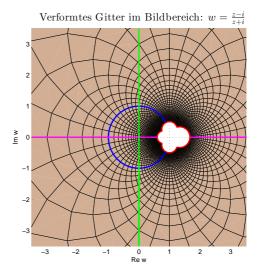


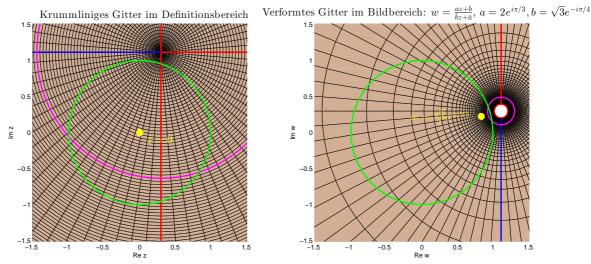
Abbildung 3.2

2. Die für $a, b \in \mathbb{C}$ mit $|a|^2 - |b|^2 = 1$ definierte Möbiustransformation

$$f(z) := \frac{az+b}{\bar{b}z+\bar{a}} \text{ mit } \tilde{a} := \frac{b}{\bar{a}}$$

bildet den Einheitskreis auf sich ab, wobei 0 in den Punkt $\tilde{a} \in B(0,1) \setminus \{0\}$ übergeht (vgl. auch Kapitel 5, Automorphismengruppe des Einheitskreises). Mit $\alpha := -\frac{b}{a}$ und $e^{i\theta} := -\frac{a}{\bar{a}}$ gilt

$$f(z) = \frac{a}{\bar{a}} \frac{z - \alpha}{-\bar{\alpha}z + 1} = -\frac{a}{\bar{a}} \frac{z - \alpha}{\bar{\alpha}z - 1} = e^{i\theta} \frac{z - \alpha}{\bar{\alpha}z - 1}.$$



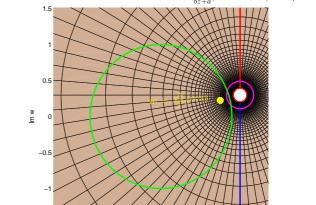


Abbildung 3.3

Beispiel 3.9: (Nichteuklidische Geometrie) – s. Kompendium, Band 2, ff. 82–83.

Beispiel 3.10: Sei $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^n$, mit $n \in \mathbb{N}, n > 1$. Da f holomorph mit $f'(z) = nz^{n-1}$ ist, gilt f'(z) = 0genau dann, wenn z=0. Also ist f in $\mathbb{C}\setminus\{0\}$ lokal konform. Stellt man z in der multiplikativen Form $re^{i\varphi}$ dar, so gilt $f(z) = r^n e^{in\varphi}$. Hierbei bezeichnen $e_k = e^{i\frac{2k\pi}{n}}$, k = 0, ..., n-1, die n-ten Einheitswurzeln (vlg. Blatt 0), d.h., die Nullstellen des Polynoms $z \mapsto z^n - 1$. Speziell gilt:

$$n=2:\ e_0=1,\ e_1=e^{\pi i}=-1,$$

$$n=3:\ e_0=1,\ e_1=e^{i\frac{2\pi}{3}},\ e_2=e^{i\frac{4\pi}{3}},$$

$$n=4:\ e_0=1,\ e_1=e^{i\frac{\pi}{2}}=i,\ e_2=e^{i\pi}=-1,\ e_3=e^{i\frac{3\pi}{2}}=-i\ \text{usw}.$$
 Schränkt man f auf den offenen Kreissektor⁸ $S_k:=\left\{z\in\mathbb{C}\backslash\{0\}\,|\,\frac{2k\pi}{n}<\arg z<\frac{2(k+1)\pi}{n}\right\}$ ein, so ist $g:=f|_{S_k}\colon S_k\to\mathbb{C}\backslash\mathbb{R}_0^+$ eine konforme Abbildung, denn: Ist $z=re^{i\varphi}\in S_k$, dann ist $z^n=r^ne^{in\varphi},\ r^n>0,$

⁸lat.: sector – der Schneidende

 $n\varphi \in (2k\pi, 2(k+1)\pi)$, also ist $g: S_k \to \mathbb{C}\backslash \mathbb{R}_0^+$ surjektiv. Wegen $z_1^n = z_2^n \Rightarrow n\varphi_1 = n\varphi_2 \pmod{\frac{2\pi}{n}}$ und damit $\varphi_1 = \varphi_2$ ist g injektiv. Da g^{-1} wegen $g \neq 0$ existiert und holomorph ist, ist g konform.

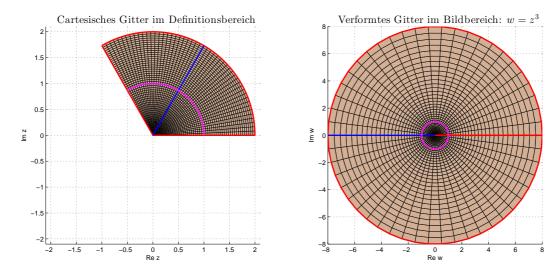


Abbildung 3.4

Beispiel 3.11 (Komplexe Wurzelfunktion):

Zu f aus Beispiel 3.10 existiert also die Umkehrfunktion

$$f_{.,k"}^{-1} := \sqrt[n]{\cdot} : \mathbb{C} \backslash \mathbb{R}_0^+ \to S_k, \quad z \mapsto \sqrt[n]{z},$$

welche k-tes Blatt oder k-ter Zweig der komplexen n-ten Wurzel⁹ genannt wird. Im Fall von k = 0 spricht man vom Hauptzweig der komplexen n-ten Wurzel. Dieser ergibt sich als Umkehrung der biholomorphen Funktion

$$f \colon S_0 \to \mathbb{C} \backslash \mathbb{R}_0^+,$$

welche sich auch für $\arg z=0$

$$f \colon \tilde{S}_0 := \{ z \in \mathbb{C} \mid 0 \le \arg z < \frac{2\pi}{n} \} \to \mathbb{C}$$

bijektiv (und stetig) fortsetzen lässt.

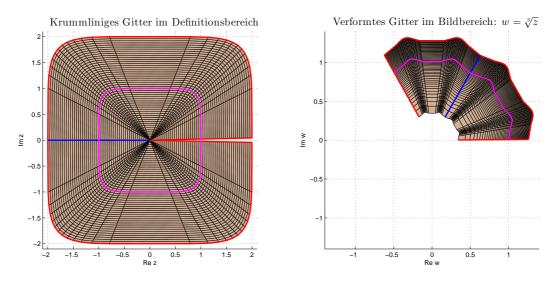


Abbildung 3.5

Mit $z = re^{i\varphi}$ folgt

$$\sqrt[n]{z} = \sqrt[n]{r}e^{i\frac{\varphi}{n}} \to \begin{cases} \sqrt[n]{r}, & \varphi \to 0, \\ \sqrt[n]{r}, & \varphi \to 2\pi, \end{cases}$$

⁹lat.: radix – Wurzel, Ursprung

d.h., es ergibt sich ein anderer Wert nach einmaligen Umlauf des Nullpunktes. Erst nach n Umläufen erhält man wieder denselben Wert, z. B.,

Es folgt insbesondere, dass $\sqrt[n]{\cdot}$ einen Sprung entlang der rellen positiven Achse hat.

Beispiel 3.12 (Riemannsche Fläche):

Im obigen Beispiel setzen wir n := 2 und definieren

$$f_1 : \tilde{S}_0 := \{ z \mid 0 \le \arg z < \pi \} \to \mathbb{C}, \quad z \mapsto z^2,$$

 $f_2 : \tilde{S}_1 := \{ z \mid \pi \le \arg z < 2\pi \} \to \mathbb{C}, \quad z \mapsto z^2.$

Ferner setzen wir die beiden Funktionen zu einem biholomorphen

$$f \colon \mathbb{C} \to \begin{cases} \mathbb{C}, & \pi \le \varphi \le 2\pi, \\ \mathbb{C}, & 0 \le \varphi \le \pi, \end{cases}$$

zusammen, welches \mathbb{C} (grob formuliert) auf zwei Exemplare B_1 und B_2 von \mathbb{C} abbildet¹⁰ Dies liefert die Riemannsche Fläche R_2 für f mit

$$f: \mathbb{C} \to R_2, \quad z \mapsto z^2 \in \begin{cases} B_2, & \pi \le \varphi \le 2\pi, \\ B_1, & 0 \le \varphi \le \pi. \end{cases}$$

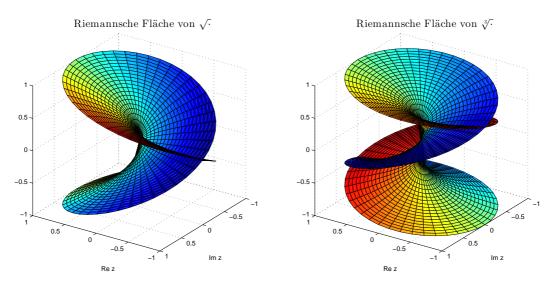


Abbildung 3.6

Dann ist

$$f^{-1} := \sqrt{\cdot} \colon R_2 \to \mathbb{C}, \quad z \mapsto \sqrt{z} \text{ mit } \arg \sqrt{z} \in \begin{cases} [0, \pi], & z \in B_1, \\ [\pi, 2\pi], & z \in B_2. \end{cases}$$

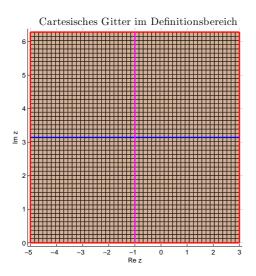
Bemerkung 3.13: Die Punkte 0 und ∞ sind sogenannte *Verzweigungspunkte*. Ein Aufschneiden längs einer Verbindung von Verzweigungspunkten erlaubt ein eindeutiges Umkehren.

Beispiel 3.14 (Der komplexe Logarithmus¹¹):

Für die ganze Funktion $f: \mathbb{C} \to \mathbb{C}, z \mapsto e^z$, gilt $f'(z) = e^z = e^{x+iy} = e^x(\cos y + i\sin y) \neq 0$. Sei $T_k := \{z \in \mathbb{C} \mid 2(k-1)\pi < \text{Im} z < 2k\pi\}, k \in \mathbb{Z}$. Dann ist $f: T_k \to \mathbb{C} \setminus \mathbb{R}_0^+$ bijektiv und daher nach Satz 2.29 biholomorph.

 $^{^{10}}$ Genauer gesagt, f bildet $\mathbb C$ in eine komplexe Mannigfaltigkeit – Mannigfaltigkeit mit biholomorphen Kartenwechselhomöomorphismen – ab. Auch für solche Abbildungen lassen sich die Begriffe der (Bi)holomorphie und Konformität erklären.

 $^{^{11}}$ altgr.: $\lambda \dot{o} \gamma o \zeta$ – Lehre, Verhältnis, $\dot{\alpha} \rho \iota \theta \mu \dot{o} \zeta$ – Zahl.



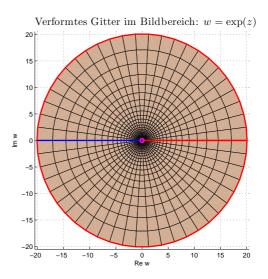
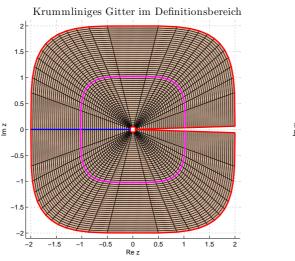


Abbildung 3.7

Analog zum Beispiel 3.12 können wir auch hier eine Riemannsche Fläche mit Verzweigungspunkten 0 und ∞ konstruieren, welche aber diesmal ∞ -blättrig ist. Also ist

$$f: \mathbb{C} \to R_{\infty}, \quad z \mapsto e^z \in B_k \text{ für } k \in \mathbb{Z} \text{ mit } 2(k-1)\pi < \text{Im} z < 2k\pi$$

biholomorph mit einer Umkehrfunktion $f^{-1} =: \ln$, die wir als komplexer Logarithmus Ln bezeichnen.



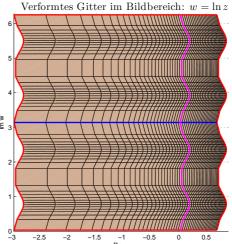


Abbildung 3.8

Für $z = re^{i\varphi}$ ist $\operatorname{Ln} z := \ln r + i\varphi$ mit dem $\operatorname{Hauptzweig}$ für $0 \le \varphi < 2\pi$. Letzteren bezeichnen wir mit \ln und bekommen die Identität $\ln z = \ln |z| + i \arg z$.

Tabelle 1: Tabelle 3.1: Wertetabelle von ln

Beispiel 3.15 (Trigonometrische¹² Funktionen)

Wir definieren (vgl. Beispiele 1.9 (ii)) mittels lokal absolut gleichmäßig konvergenter Potenzreihen die Sinus-¹³ und Cosinus¹⁴funktionen

$$\sin z := \sum_{j=0}^{\infty} (-1)^j \frac{z^{2j+1}}{(2j+1)!}, \quad \cos z := \sum_{j=0}^{\infty} (-1)^j \frac{z^{2j}}{(2j!)}.$$

 $^{^{12}{\}rm griech.:}\ \tau\rho i\gamma\omega\nu o\nu$ – Dreieck, $\mu\acute{e}\tau\rho\nu$ - Maß

¹³sanskrit: jiva – Bogensehne

¹⁴lat.: complementi sinus

Aufgrund des Identitätssatzes gelten die aus dem Reellen bekannten Additionstheoreme etc., z.B.,

$$\sin(a+b) = \sin a \cdot \cos b + \cos a \cdot \sin b \text{ für } a, b \in \mathbb{C},$$

$$\sin^2 z + \cos^2 z = 1 \text{ für } z \in \mathbb{C},$$

$$e^{iz} = \cos z + i \sin z \text{ für } z \in \mathbb{C}.$$

Ebenso gilt

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{ix}e^{-y} + e^{y}e^{-ix}}{2} = \cos x \underbrace{\cosh y}_{\neq 0} - i\sin x \sinh y = \cos(x + iy).$$

Für die Nullstellen der komplexen Kosinusfunktion gilt

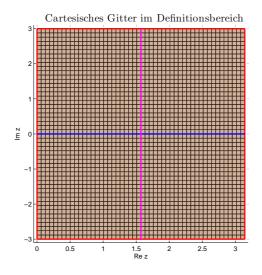
$$\cos z = 0 \Leftrightarrow \begin{cases} \cos(x) = 0 \\ y = 0 \text{ oder } \sin x = 0 \end{cases} \Rightarrow \begin{cases} \sin x + |\cos x| > 0 \\ \cos x = 0 \text{ und } y = 0 \Leftrightarrow z = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}. \end{cases}$$

Also stimmen die Nullstellen des komplexen Cosinus mit deren des reellen Cosinus überein. Analog zum Reellen liegen weiterhin Periodizität 15 und Symmetrie 16 vor:

$$\cos(z+2\pi) = \cos z$$
, $\cos(-z) = \cos z$ für $z \in \mathbb{C}$.

Sei

$$\tilde{S} := \{z \in \mathbb{C} \mid 0 < x < \pi\}, \quad S := \tilde{S} \cup (\{0\} \times (0, \infty)) \cup (\{\pi\} \times (-\infty, 0)).$$



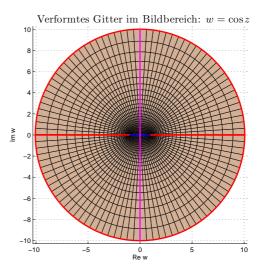


Abbildung 3.9

Wir unterscheiden die folgenden Fälle.

- 1. $x = 0, y \in (0, \infty)$: $\cos z = \cosh y$.
- 2. $x = \pi, y \in (-\infty, 0)$: $\cos z = -\cosh y$.
- 3. $x = \frac{\pi}{2}$, $y \in \mathbb{R}$: $\cos z = -i \sinh y$ (insb., $\cos z = 0$ für y = 0).
- 4. $x \in (0, \pi), y = b \in \mathbb{R} \setminus \{0\}, \cos z = u + iv, u, v \in \mathbb{R}, u = \cos x \cosh b, v = -\sin x \sinh b$:

$$\left(\frac{u}{\cosh b}\right)^2 + \left(\frac{v}{\sinh b}\right)^2 = 1,$$
 (Ellipsengleichung)

d.h. horizontale Segmente werden auf Ellipsen¹⁷ abgebidet.

5. $x=a>\frac{\pi}{2}, y\in\mathbb{R}$:

$$\cos z = \cos a \cosh y - i \sin a \sinh y = u + iv \Rightarrow$$

$$\left(\frac{u}{\cos a}\right)^2 - \left(\frac{v}{\sin a}\right)^2 = 1,$$
(Hyperbelgleichung)

d.h. vertikale Geraden werden auf Hyperbeln¹⁸ abgebildet.

¹⁵griech.: $\pi \varepsilon \rho i ο δο ζ$ – Herumgehen

 $^{^{16}}$ altgr.: συμμετρία – Ebenmaß

 $^{^{17}}$ griech.: $\tilde{\varepsilon}\lambda\lambda\varepsilon\iota\dot{\psi}\iota\zeta$ – Mangel, Fehlen

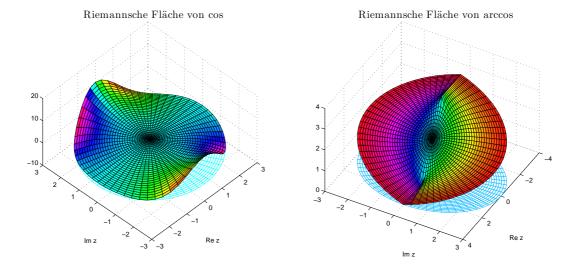
 $^{^{18} {\}rm altgr.:} \ \acute{v} \pi \varepsilon \rho \beta o \lambda \acute{\eta}$ – Übertreffung, Übertreibung

6.
$$y = 0, x = (0, \pi)$$
 (vgl. 4.): $\cos z = \cos x$.

Die Abbildung $f = \cos: \tilde{S} \to \mathbb{C} \setminus \{z \in \mathbb{C} \mid \text{Re}z \in (-\infty, -1] \cup [1, \infty) \text{ und } \text{Im}z = 0\}$ ist biholomoprh, da surjektiv und die Nullstellen der Abbleitung $f'(z) = -\sin z$ in $z_n = n\pi$, $n \in \mathbb{Z}$ liegen. Also existiert eine eindeutige Inverse f^{-1} , welche wir $Arcus^{19}cosinus$ nennen, mit arccos bezeichnen und wie folgt berechnen:

$$\begin{split} w &= \cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{1}{2} \left(\tilde{z} + \frac{1}{\tilde{z}} \right), \quad \tilde{z} := e^{iz} \\ \Rightarrow & \tilde{z} = w \pm \sqrt{w^2 - 1} \Rightarrow \arccos w = -i \ln \tilde{z} = -\ln(w \pm \sqrt{w^2 - 1}). \end{split}$$

Die Verzweigungspunkte lauten -1, 1, ∞ . Zur Konstruktion der Riemannschen Fläche muss \mathbb{C} längs $(-\infty, 1]$ und $[1, \infty)$ aufgeschnitten werden.



¹⁹lat.: arcus – Bogen