Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. REINHARD RACKE DIPL.-MATH. MICHAEL POKOJOVY

17. Dezember 2010

Mathematik für Physiker I

9. Übungsblatt

Aufgabe 9.1 Sei X ein normierter Raum, und sei $(x_n)_{n\in\mathbb{N}}\subset X$ eine gegen $x\in X$ konvergierende Folge. Zeigen Sie, dass dann $(x_n)_{n\in\mathbb{N}}$ beschränkt ist, d.h., es gibt ein C>0 mit $||x_n||\leq C$ für alle $n\in\mathbb{N}$.

Aufgabe 9.2 Sei M eine Teilmenge des euklidischen Raumes \mathbb{R}^m , $m \in \mathbb{N}$. Zeigen Sie:

- a) M ist genau dann abgeschlossen, wenn $\partial M \subset M$.
- b) M ist genau dann offen, wenn $X \setminus M$ abgeschlossen ist.

Aufgabe 9.3 Zeigen Sie, dass $(C^1([0,1],\mathbb{R}),\|\cdot\|_{\infty})$ kein Banachraum ist, wobei $\|u\|_{\infty} = \max_{x \in [0,1]} |u(x)|$ für $u \in C^0([0,1],\mathbb{R}) \supset C^1([0,1],\mathbb{R})$.

Aufgabe 9.4 Untersuchen Sie die nachstehenden Folgen auf Konvergenz. Beweisen Sie direkt unter Verwendung der Definition, dass die jeweilige Folge konvergiert oder divergiert.

a)
$$(e^{\frac{1}{n^2}})_{n \in \mathbb{N}}$$
,
b) $((a^n + b^n)^{1/n})_{n \in \mathbb{N}}$ $(a, b > 0 \text{ fest})$.

c) $(\cos \pi n)_{n \in \mathbb{N}}$,

Hinweis: Ziehen Sie das Maximum von a und b aus den Klammern heraus.

Aufgabe 9.5 Malen Sie aus:

Abgabe: Freitag, 14. Januar 2011, in der Vorlesung.

WIR WÜNSCHEN IHNEN FROHE WEIHNACHTEN UND VIEL ERFOLG IM NEUEN JAHR!