Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. REINHARD RACKE DIPL.-MATH. MICHAEL POKOJOVY

20. Mai 2011

Mathematik für Physiker II

5. Übungsblatt

Aufgabe 5.1 Sei $f: [a, b] \to \mathbb{R}$ eine Regelfunktion. Sei $x_0 \in [a, b]$. Zeigen Sie:

- a) $\tilde{f}: [a,b] \to \mathbb{R}, x \mapsto \begin{cases} f(x), & x \neq x_0, \\ c, & x = x_0, \end{cases}$ $c \in \mathbb{R}$ fest, ist eine Regelfunktion.
- b) Es gilt

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \tilde{f}(x) dx.$$

c) Die Dirichlet-Funktion $D \colon [0,1] \to \mathbb{R}, \ x \mapsto \left\{ \begin{array}{ll} 1, & x \in \mathbb{Q}, \\ 0, & x \not\in \mathbb{Q}, \end{array} \right.$ ist keine Regelfunktion.

Aufgabe 5.2 Sei $f:(0,\infty)\to\mathbb{R}$ eine differenzierbare Funktion. Es gebe ein C>0 so, dass $|f'(x)|\leq C$ für alle $x\in(0,\infty)$ gilt. Beweisen Sie, dass dann f in $(0,\infty)$ gleichmäßig stetig ist.

Aufgabe 5.3 Berechnen Sie die nachfolgenden unbestimmten Integrale, ohne eine Formelsammlung zu verwenden:

- a) $\int x^2 \ln x dx, \ x > 0,$
- b) $\int \frac{x^3 2x^2 + x + 5}{x^2 1} dx$,
- c) $\int \frac{2x}{\tan(x^2)} dx$,
- d) $\int \frac{1}{a^x + a^{-x}} dx$, a > 0.

Aufgabe 5.4 Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz:

- a) $\int_0^\infty e^{-sx} \cos(x) dx$, $s \in \mathbb{R}$,
- b) $\int_0^\infty \frac{\sin(x)}{x} dx,$
- c) $\int_1^\infty \frac{1}{1+x^4} \mathrm{d}x,$
- d) $\int_0^\infty \sin(x) dx$.

Abgabe: Freitag, 27. Mai 2011, in der Vorlesung.