Universität Konstanz Fachbereich Mathematik und Statistik PROF. DR. ROBERT DENK DIPL.-MATH. MICHAEL POKOJOVY

19. Oktober 2007

Mathematik für Physiker III 2. Übungsblatt

Aufgabe 2.1 Seien $f, g \in C^0([-1,1])$ mit $f(t) \le 1$ und $g(t) \ge 1$ für alle $t \in [-1,1]$. Die folgenden Differentialgleichungen lassen sich mit Mitteln aus Analysis I und II lösen. Beweisen Sie jeweils Existenz und Eindeutigkeit einer Lösung $u \in C^1([-1,1])$ mit u(0) = 1.

a)
$$\frac{u'(t)}{u(t)^2} = t$$

b)
$$\cos(t)u'(t) - \sin(t)u(t) = \tan(t)^2 + 1$$

c)
$$g(u(t))u'(t) = f(t)$$

Aufgabe 2.2 (Bedingung von Rosenblatt)

a) Es sei $B := \{u \in \mathcal{C}([0,h],\mathbb{R}^n) : ||u|| < \infty\}$ mit

$$||u|| := \sup_{t \in (0,h]} \frac{|u(t)|}{t}.$$

Zeigen Sie, dass $(B, \|\cdot\|)$ ein Banachraum ist.

b) Die Funktion $f : [0, h] \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ sei stetig und genüge in $(0, h] \times \mathbb{R}^n$ der Abschätzung

$$|f(t,y) - f(t,x)| \le \frac{\varrho}{t}|y - x|.$$

für ein $\varrho < 1$. Beweisen Sie, dass das Anfangswertproblem

$$y'(t) = f(t, y(t)), y(0) = y_0$$

genau eine Lösung besitzt.

Hinweis: Man wende den Fixpunktsatz auf den Operator $T: B \longrightarrow B$ mit $(Tu)(t) := \int_0^t f(s, y_0 + u(s)) ds$ an.

Aufgabe 2.3 Unter Benutzung eines Existenzsatzes finden Sie jeweils alle $(t, y) \in \mathbb{R}^2$, durch welche genau eine Lösungskurve folgender Differentialgleichungen verläuft:

a)
$$y' = 2ty + y^2$$
,

b)
$$y' = 1 + \tan y$$
,

c)
$$(y-t)y' = y \ln t$$
,

d)
$$ty' = y + \sqrt{y^2 - t^2}$$
.

Abgabetermin: Freitag, 26. Oktober 2007, vor der Vorlesung.