
7. Biharmonic equationThe biharmonic equation is the \square of the Laplace equation",�2u = 0; (1)where � = @2=@x21 + � � � + @2=@x2n is the Laplacian operator. Like the Laplace equation, thebiharmonic equation is elliptic, but, being of order four rather than two, it requires two boundaryconditions rather than one to de�ne a unique solution. In 2D, it is the equation satis�ed, to a goodapproximation, by a small transverse deection of a thin at elastic plate.
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The eigenvalues and eigenfunctions of the biharmonicoperator �2, with suitable homogeneous boundaryconditions, give the modes of transverse vibration ofsuch a plate. The physicist and astronomer ErnstChladni (1756{1827) carried out a famous series of ex-periments using particles of sand to locate the nodalcurves of a plate clamped at its centre and excited invarious modes. The resulting patterns are known asChladni �gures and some results from an experimentof this kind are shown in Figure 1. One can try theexperiment oneself at some science museums.The biharmonic equation has two independent funda-mental solutions (spherically symmetric and singularat the origin), one of which is the fundamental so-lution of the Laplace equation. These are log r andr2 log r in 2D, r�1 and r in 3D, r�2 and log r in 4D,and r2�d and r4�d in dimensions d � 5. In the 2Dcase, just as any harmonic function in the (x; y)-planeis the real part of an analytic function f(z), wherez = x + iy, so any biharmonic function is the realpart of a function of the form f(z) + z g(z), where fand g are analytic and z = x� iy is the complex con-jugate of z. For instance, r2 log r = <(z g(z)) whereg(z) = z log z. The functions f and g (which are notuniquely determined) are the Goursat functions of theproblem.In two dimensions, the function u(x; y) minimisingthe value of the integralI(u) = Z Z
 n(uxx)2 + 2 (uxy)2 + (uyy)2o dx dyover a given domain 
, subject to suitable conditions on the boundary, can be shown to satisfythe biharmonic equation on 
. This is an analogue for the biharmonic equation of the Dirichletintegral for the Laplace equation (! ref ). In particular, if 
 is the whole of IR, then this integral28 February 2001: David Handscomb

solid mechanics and creeping owis minimised, subject to u taking given values u(Xj ; Yj) = Uj at a �nite number of points (at least3 of them), when u is a so-called thin-plate spline|an interpolating function of the simple formu(x; y) = a+ b1x+ b2y +Xj cjr2j log rj ;where r2j = (x�Xj)2+(y�Yj)2; whose later coe�cients cj satisfy the conditionsPj cj =Pj cjXj =Pj cjYj = 0 to ensure that I(u) is �nite. The thin-plate spline is a standard device for constructinga smooth function through data given at points arbitrarily distributed in the plane. The techniquecan be extended to 3D by adding in a term b3z and a condition Pj cjZj = 0 and replacing the 2Dfundamental solution r2 log r by the corresponding 3D solution r. Extension to more than threedimensions is possible, but one then needs to replace the biharmonic equation by a polyharmonicequation �ru = 0 with r > 2. Generalisations of these data �tting methods based on functionsother than solutions of the biharmonic equation are the business of the �eld of radial basis functions.

Fig. 2: A thin-plate spline, interpolatingfunction values given at 9 scattered points

The biharmonic equation also arises in thetheory of steady Stokes (i.e., speed � 0)ow of viscous uids, where it is the equa-tion satis�ed by the stream function. Forexample, it has been shown that in thevicinity of a right-angle corner, the eigen-functions of the biharmonic operator oscil-late in�nitely often in sign, with each suc-cessive region of oscillation being 16:56743times smaller in size and 36267:55 timessmaller in amplitude than the last. Thisresult can be interpreted as the statementthat a plate distorted in a certain way willin principle bend back and forth in�nitelyoften near a corner, or that a uid mo-tion at Reynolds number 0 will in princi-ple exhibit an in�nite sequence of counter-rotating \Mo�att vortices".
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