Algebraic Characterization of Rings
of Continuous p-adic Valued Functions

Samuel Volkweis Leite! and Alexander Prestel

Abstract The aim of this paper is to characterize among the class of all commutative rings
containing Q the rings C(X,Q,) of all continuous Q,-valued functions on a compact space
X. The characterization is similar to that of M. Stone from 1940 (see [St]) for the case of
R-valued functions. The Characterization Theorem 4.6 is a consequence of our main result,
the p-adic Representation Theorem 4.5.

1 Introduction

The ring C'(X, R) of all R-valued continuous functions on a compact space X is an R-Banach
algebra. Not surprisingly there are numerous characterizations of these rings among the class
of all R-Banach algebras (see e.g. [A-K]). What is, however, surprising is M. Stone’s purely
algebraic characterization of the rings C'(X,R) among the class of all commutative rings A
containing Q. The secret of Stone’s approach is that he encodes the space X in a simple
algebraic subset T" of A. Let us briefly indicate this approach in modern language.

A subset T of a commutative ring A with Q C A is called a pre-ordering of A if it satisfies
T+TCT, T-TCT, a*cTforallac A, —1¢T.

If the set of sums of squares of A does not contain —1, this set is a pre-ordering of A. In
case of A = C(X,R), the set of squares already forms a pre-ordering 2. The totality of pre-
orderings on A is partially ordered by inclusion and it carries a natural topology making it a
quasi-compact space. For a fixed pre-ordering Tp, the real spectrum of (A, 1) is the closed set
of pre-orderings P DO Tj satisfying in addition PU —P = A and PN —P a prime ideal of A.
These objects are usually called orderings of A (see [P-D]). The maximal spectrum X of
(A, Tp) yields an isomorphism A = C'(X,R) if Tj satisfies the conditions required by Stone.
Without going into further details let us mention only the crucial step in proving this iso-
morphism.

Ty is called archimedean if to every a € A there exists some n € N such that n —a € Tj.
Then the crucial step is the Local-Global-Principle: If a € A is strictly positive for all P € X
(i.e. a € P~ (—P)), then a € Tp. In this sense the pre-ordering Ty encodes the space X. In
case of the polynomial ring A = R[X3, ..., X,,], for suitable Ty this principle is Schmiidgen’s
famous Positivstellensatz (see [P-D], Theorem 5.2.9).

!This paper contains the main result of the Ph.D. Thesis [L] of the first author written under the super-
vision of the second author.

2 Although pre-orderings on commutative rings have already been used by M. Stone, the notation “pre-
ordering” was introduced much later by Krivine in a systematic study [Kr].
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In the present paper we treat in a similar way the rings C(X, Q,) of all Q,-valued continuous
functions on a compact space X. We end up with a purely algebraic characterization of
these rings among the class of commutative rings A containing Q. In order to achieve this,
we introduce certain subsets | of A x A called p-divisibilities . The totality D,(A) of p-
divisibilities on A is partially ordered by inclusion and admits a canonical topology making it
a quasi-compact space. We call a p-divisibility | a p-valuation(-divisibility) if for all a,b € A
we have totality: a | b or b | a, and cancellation: 01t ¢, ac | bc= a | b.

The class of p-valuations | extending a given p-divisibility |y forms a closed subspace Spec
D, (A, o), called the p-adic valuation spectrum above |o. Let X denote the maximal spectrum
Spec™™ D, (A, |o). Finally we call |y p-archimedean if for all @ € A there exists n € N such
that p=" | a. The crucial step in our approach then is the Local-Global-Principle:

If p|aforall | € X, then p |y a.

This principle is essential for encoding the p-adic valuation spectrum above |y in the simple
algebraic notion of the p-divisibility |o. Compared with the pre-ordering case, the exten-
sion theory of p-divisibilities is considerably more difficult. In case of the integral domain
A = Q,[X1,...,X,] the local-global-principle parallels Roquette’s profound result on the
“Kochen-ring” of Q,(X3,...,X,) in [R].

Concerning applications of the Local-Global-Principle (real or p-adic) everything depends
on the demonstration of the archimedean property of Ty or |, resp. In the well treated
real situation some striking cases are known. Most interesting of all is Schmiidgen’s result
that the preordering T, corresponding to a basic closed semi-algebraic subset W of R"™ is
archimedean if and only if W is compact (see [P-D], Theorem 5.1.17). In the less treated
p-adic situation a suitable counterpart to Schmiidgen’s result is not yet known.

2 Divisibilities on commutative rings

Let A be a commutative ring with unit 1 # 0. A binary relation a | b on A (in set theoretic
terms we shall write |C A x A) will be called a divisibility on A, if for all a,b,c € A we have
(1) ala
(2) albblc=alc
(3) albalc=al|b—c
(4) a| b= ac|bec
(5) 011.

Easy consequences from these axioms are e.g. a | 0 and a | —a. The set I(|) :=={a € 4;0 | a}
is a proper ideal of A. For all o, 5 € I(|) and a,b € A we havea |b=a+a | b+ (.

It follows that
a+I|b+1:<alb

defines a divisibility on the quotient ring A = A/I(]). The ideal I(|) will be called the support
of |.

3Compared with the real situation one could as well call them “pre-p-valuations”.
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Clearly, if 6 : A — B is a homomorphism of commutative rings with 1, i.e., 6(1) = 1, and |
is a divisibility on B, then al'b - 6(a)|0(b)

defines a divisibility | on A with support I(]") = §~1(I(])).

We call a divisibility | on A total if for all a,b € A we have a|b or bla. We shall say that |
admits cancellation if for all ¢ € I(]) (i.e., 01 ¢), ac|bc implies a|b. If | is total and admits
cancellation, we shall also call | a valuation divisibility.

Proposition 2.1. If the divisibility | has cancellation, then I(|) is prime.
Proof. Assume that 0|ab and 0 { a. Then cancelling a in 0 - alba gives 0|b. O

Example 2.2 Let A be an integral domain and F' = Quot A. Then every subring B of F
defines a divisibility | on A by taking

b
a]b:@a:b:Oor(a#OandaeB).

Note that | clearly has cancellation and I(]) = {0}. Conversely, if | is a divisibility with
cancellation and I(|) = {0} on A, then

b
B = {a;a,beA,a|b,a7é0}U{0}

is a subring of F'.

It is clear that | <+ B is a 1 — 1 correspondence. Note that | is total if and only if B is a
valuation ring of F'. Note also that A need not be a subring of B. For example let A = R[X]
and B the valuation ring of the degree valuation on F' = R(X). Then AN B =R.

Example 2.3 Let v : A — I' U {oo} be a wvaluation in the sense of Bourbaki, i.e., I' is an
ordered abelian group I = v~'(00) is a prime ideal of A,% : F' — T' U {oco} is an ordinary
valuation on the field F' = Quot A with A = A/I, and v(a) = v(a) for all a € A. Then

alb < v(a) < v(b)

defines a divisibility on A with I(|) = I prime. Clearly | has cancellation and is total.

Our main example here is A = F = Q, and v, : Q, = ZU{oo}. We then call |,, defined by
alpb < vy(a) < vp(b)
the canonical p-adic divisibility.

Example 2.4 Let A = C(X,Q,) be the ring of all continuous functions f : X — Q, where
X is a compact space. We call

flrg & Vo e X(v(f(x)) < vp(g()))

the canonical p-adic divisibility on A. If X is finite and has more than one point, then |* has
no cancellation, is not total, and I(|*) = {0}, but not prime.

A valuation v : F' — I'U {oco} on a field F' of characteristic 0 is called a p-valuation if I" is a
discretely ordered abelian group with v(p) as minimal positive element and the residue field '
of v is the finite field F, of p elements. (F,v) is called p-adically closed if v : F' — I'U{oo} is a
p-valuation, (F,v) is henselian, and the quotient group I'/Zv(p) is divisible. Clearly, (Q,, v,)
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is p-adically closed. Every p-valued field admits an algebraic extension that is p-adically
closed, called a p-adic closure. p-adic closures are in general not unique up to isomorphism.
In case I' = Z, the p-adic closure is unique up to isomorphism as it is the henselization. For
more information the reader is refered to [P-R].

Returning to a p-valued field (F,v) let us simply write 1 for the positive minimal value v(p).

For every x € F the quotient
(2) 1 P —x
rN=-+—-
! p (a?—z)—1
is defined and has value > 0. The operator 7 is usually called the Kochen operator. It plays
in the theory of p-valued fields a similar role as the square operator does in the theory of

pre-ordered fields.

Theorem 2.5. Let F be a field of characteristic 0 and let B be a subring of F' containing
the ring Z|y(F)| generated by all y(z) for x € F. If p* & B, then B is contained in the
valuation ring O, of some p-valuation v on F.

Proof. Clearly, p is not a unit of B. Thus there exists a prime ideal P of B with p € P. By
Chevalley’s place extension theorem ([E-P], ch 3.1) there exists a valuation v of F' such that
O, 2 B and M, N B = P. Since now the valuation ring O, containes Z[y(F')], but not p~*,
v is a p-valuation by [P-R], Lemma 6.1. O

Motivated by this theorem we call a divisibility | on a commutative ring with 1 # 0, a
p-divisibility if it satisfies for all a,b € A
(6) 01a= pafta, and
(7) pl(a?b —tPa)® — (BP1)%] | [(a?b — bPa)br*].
Note that (6) implies in particular p 1 1.
Theorem 2.6. Let A be an integral domain with Q C A and F = Quot A its field of

fractions. Then there is a 1 — 1 correspondence between p-valuation rings B C F and total
p-dwisibilities | of A that have cancellation and support 1(|) = {0}.

Proof. If B C F' = Quot A is a p-valuation ring, then Example 2.2 shows that for a,b € A
b
alb:=a=0o0r — € B
a
gives a total p-divisibility on A with cancellation and I(|) = {0}.

Conversely, let | C A x A be a total p-divisibility with cancellation and I(|) = {0}. Then
again Example 2.2 together with Theorem 2.5 shows that

B = {g; abe A a0, ab}U{0}

is a valuation ring of F' being contained in the valuation ring O, of some p-valuation of F.
It then follows that B = O,. In fact, the valuation ring B is mapped by the residue map
d: O, = F, of v to a valuation ring 6(B) of F,. As F, is finite, it follows that §(B) = F,.
Hence also B = O,,. O

As we have seen above the canonical p-adic valuation v, defines on Q, by a|,b < v,(a) < v,(b)
a total p-divisibility |, with cancellation and support {0}. From this we also see that the
canonical p-adic divisibility |* of C'(X,Q,) is in fact a p-divisibility. But in general |* need
neither be total nor have cancellation.



3 The divisibility spectrum

In this section we shall first introduce the divisibility spectrum of a commutative A with
1 # 0. We then restrict ourself to the spectrum of p-divisibilities assuming that Q C A. This
will provide us with some compact (zero-dimensional) space X on which later the elements
of A will operate as continuous functions with values in Q,.

Let A be a commutative ring with unit 1 # 0. The next proposition justifies the name
‘valuation divisibility’ in Section 2 for divisibilities that are total and admit cancellation.

Proposition 3.1. The valuation divisibilities on A correspond 1 — 1 to the Bourbaki valua-
tions of A.

Proof. Let first v : A — T' U {oo} be a Bourbaki valuation on A4, i.e., I = v™1(00) is a
prime ideal of A, 7: Quot A — I' U {oo} with A = A/I is an ordinary field valuation, and
U(a+I) = v(a) for all a € A. Then for elements a,b from A, a|'b < v(a) < v(b) defines a
total divisibility on A having cancellation and support I(|") = 1.

Conversely, let | be a valuation divisibility on A. Then I = I(|) is prime by Proposition 2.1
and | induces a total divisibility | on the integral domain A = A/I having cancellation and
support {0}. Thus by Example 2.2 the ring

B:= {g; @ # 0 and a|b} U {0}

is a valuation ring of F = Quot A, say B = Oy for some ordinary valuation 7 : F — ['U{co}.
Now v(a) := 7(a) clearly defines a Bourbaki valuation on A with v~"(c0) = I inducing 7 on
A. By construction of v we have for all a,b € A, alb < v(a) < v(b).

It is obvious that the correspondence between v and | is one to one. ]

Remark 3.2. Assuming Q C A in the construction of Theorem 3.1, all fields Quot A,
have characteristic 0. Thus by Theorem 2.6 the valuation divisibility | of Theorem 3.1 is a
p-divisibility if and only if v is a p-valuation.

Now let us introduce

D(A) = class of all divisibilities of A,
D,(A) = class of all p-divisibilities of A.

Note that both classes are closed by taking unions of chains w.r.t. inclusion. Thus by Zorn’s
Lemma every (p-)divisibility is contained in some maximal (p-)divisibility. On D = D(A)
we introduce the spectral topology as the topology generated by the sets

U(a,b) ={| € D; atb}

where a, b range over A. If we add the complements V' (a,b) = {| € D; alb} to the above
generators, we call this finer topology the constructible one.

Identifying a subset Y of A x A with its characteristic function and applying Tychonoft’s
Theorem to the function space {0, 1}**4 one proves by standard arguments

Lemma 3.3. The constructible topology on D(A) is compact. Thus the spectral topology is,
in particular, quasi-compact (i.e. every open cover contains a finite subcover).
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We call the class
Spec D(A) = {| € D(A); | is total and admits cancellation}

the divisibility spectrum of A, and Spec D,(A) = D,(A)N Spec D(A) the p-divisibility spec-
trum of A.

These two classes are as well closed under unions of chains. Thus again by Zorn’s Lemma
every element is contained in a corresponding maximal one. We denote the subclasses of
maximal elements by

Spec™™D(A) and Spec™¥D,(A).

Proposition 3.4. 1. D,(A), Spec D(A), and Spec D,(A) are closed subclasses of D(A)
i the constructible topology, hence are quasi-compact in both topologies.

2. D(A)™ and Dy(A)™* are quasi-compact in the spectral topology.

3. Spec D,(A) and Spec™*D,(A) are compact in both topologies, they actually are 0-
dimensional spaces: V(a,b) = U(bp,a) for all a,b € A.

Proof. The proofs are straigt forward by standard arguments. Let us only mention that in
3 one shows that V(a,b) = U(bp,a) on Spec D,. In fact by Theorem 3.1 and Remark 3.2
the elements of Spec D, correspond to Bourbaki p-valuations. Recall, if | € Spec D,, then
there is a p-valuation ¥ on A = A/I(|) such that alb < w(a) < v(b). As 1 = v(p) is minimal
positive, we get alb < pb 1 a. ]

For a fixed divisibility |o on A we shall consider the subclasses of the above introduced classes
consisting of extensions of |y and denote them by D(A, o) and D,(A, |o) respectively. As
D(A, o) is closed in the spectral topology, all topological considerations from above remain
true for the relativized classes.

In the following the fixed divisibility | will always be assumed to be p-archimedean, i.e.,
(8) Vae AImeZ: p|pa.
The canoncial p-adic divisibilities on @, and on C'(X,Q,) both satisfy axiom (8).

Theorem 3.5. Let A be a commutative ring with Q C A, and let |o be a p-archimedean
p-divisibility on A. Then an element | of Spec D,(A,|o) is mazimal if and only if I(]) is
prime and the corresponding p-valuation v on F' = Quot A/I(|) has value group 7.

Proof. “=" Let | be maximal in Spec D,(A, |yp). By Theorem 3.1 and Remark 3.2 | corre-
sponds uniquely to a p-valuation v : F' — I'U{oo}. Denoting (as usual) the positive minimal
element (p) of I by 1,Z = Zv(p) is a convex subgroup of I". Since |y is archimedean, so is
|. Hence for every a € A there exists some m € Z such that m < v(a).

If now I would be bigger than Z, there existed some b € ANI(|) with m < v(b) for all m € Z.
Thus the set P = {b € A;m < (b) for all m € Z} forms a non-zero prime ideal of A. Taking
w(b 4 P) := w(b) defines a p-valuation on the quotient field F’ of A/P with value group Z.
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Setting a|'b in case w(a + P) < w(b+ P) defines a p-divisibility |' € Spec D,(A, |y) strictly
containing |. This contradicts the maximality of |. Therefore I' = Z.

“<” Now assume that the p-valuation T corresponding to | has value group Z on F =
Quot A/I(|). If |" € Spec D,(A, |o) is a proper extension of | then I(|) & I(|') or, I(]) = I(])
and the valuation ring O’ of ¥’ properly extends the valuation ring O of . This second case
is not possible, since (by Lemma 2.3.1 of [E-P]) a proper extension O" of O corresponds to a
proper convex subgroup of the value group of O which is Z. Such a subgroup clearly does not
exist. In the first case, choose a € I(|") \ I(]). Since v has value group Z and @ is non-zero
in A/I(]), there exists some m € Z such that v(a) < m, i.e., a|p™. But then a € I(|") implies
0)'a. Now | C |" gives 0|'p™, a contradiction. O

So far we did not show that Spec D,(A) is non-empty.

Theorem 3.6. Let A be a commutative ring with Q C A. Then Spec D,(A) is non-empty
if and only if there exists a p-divisibility | on A. FEquivalently, we have that A admits a
ring homomorphism § with 6(1) = 1 into some p-valued field. Spec D,(A) contains a p-
archimedean element if and only if A admits a ring homomorphism with §(1) = 1 into the

p-adic number field Q,.

Proof. Assume § : A — F is a ring homomorphism with §(1) = 1 and (F,v) is a p-valued
field. Then the definiti
e en the definition alb < v(6(a)) < v(6(b)

for a,b € A obviously yields a p-divisibility on A with I(]) = ker §. If (F,v) = (Q,,v,) then
clearly | is p-archimedean.

Next let |" be a p-divisibility on A. By Zorn’s Lemma we can pass to a maximal extension |
of |" inside the class of p-divisibilities extending |". Thus also | is a p-divisibility. We want to
see that | admits cancellation. Let ¢ € A and assume 01 ¢. We then define a|° if ac | be for
all a,b € A. One easily checks that |° is a p-divisibility on A extending |. As | is maximal,
| = |¢. This implies cancellation by ¢. In fact, if ac | be, then a|°b and as | = |¢, we get a | b.
Since now | has cancellation, by Proposition 2.1 I(|) is prime and we may pass to the ring
A = A/I(]) and its field of fractions F = Quot A. By Example 2.2 the divisibility |
corresponds to the subring

B- {g; 0fa, alb} U {0}

of F. Since | is a p-divisibility, the Kochen relations (7) imply that Z[y(F)] is contained in
B, while (6) implies that p~' ¢ B. Thus by Theorem 2.5 there exists a p-valuation v on F
such that B C Oy. Now by Remark 3.2 the definition

ahb < v(@) < (D)

yields an extension |; of | that belongs to Spec D,(A). Thus Spec D,(A) is non-empty.

Finally, let | € Spec D,(A). By Remark 3.2, | induces a p-valuation & on Quot A/I(]).
Thus the canonical homomorphism § : A — A/I(|) maps A to a p-valued field.

It remains to show that the existence of a p-archimedean element | € Spec D,(A) provides
us with some homomorphism from A to Q,.



We may assume that | is maximal in Spec D,(A). Then by Theorem 3.5, I(|) is prime
and | corresponds to some p-valuation v on F' = Quot A/I(|) with value group Z. In that
case, however, the completion of F' w.r.t. v is isomorphic to the field Q,. Thus the desired
homomorphism is just the canonical homomorphism 6 : A — A/I(]). O

4 p-adic representations

Now let us fix a commutative ring A with Q C A together with a p-archimedean p-divisibility
lo on A. By Theorem 3.6 the maximal spectrum

X = Spec™D,(A,|o)
is non-empty, and by Proposition 3.4.(3.) it is a 0O-dimensional compact space. By Theorem
3.5 every | € X induces a canonical homomorphism

o A—A=A/I(]) CF:= Quot A

together with a p-valuation ¥ : F — Z U {co} such that a|b < ©(a@) < v(b) for all a,b € A.
The completion of F' w.r.t. U is just the field Q, of p-adic numbers with ¥ being the restriction
of v, to F.* As Q is dense in Q, w.r.t. the topology induced by the p-adic valuation v, on Q,,
the embedding of F into Q,, is uniquely determined. Thus every | € X yields a canonical
homomorphism

a: A—Q,
with alb < v,y(aj(a)) < vp(ay(D)) for all a,b € A. Therefore, every a € A induces a canonical
map a from A to Q, by taking R

a(|) = a(a)

for every ‘point’ | in X.

Theorem 4.1. Let A be a commutative ring with Q C A and let |o be a p-archimedean p-
divisibility on A. Then the map @ is continuous for every a € A. Therefore o : A — C(X,Q,)
defined by ¢(a) =a is a homomorphism of rings with dense image ¢(A) in C(X,Q,), satis-
Jying
alob = ¢(a)|"P(b), for all a,b e A.
Proof. As Q is dense in Q,, the sets
Un(r)={z € Qp; vy(x —r)>n}, reQ, neN

form a base for the topology on @Q,. Thus it suffices to show that the preimage of U, (r)
under @ is open in the topology of X. This, however, follows from Proposition 3.4.(3.) and
the fact that
@ (Ua(r) ={l € X5 pla—r} =V(p"a-7r)NX

foralla e A;r € Q and n € N.

In order to show that ¢(A) is dense in C(X,Q,) w.r.t. the maximum norm it suffices by
the p-adic Stone-Weierstrass Approximation (see [K]) to show that two different points of
X, say |1 # |2 can always be separated by some function @, i.e., a(|;) # a(|2): Let a,b € A
distinguish |; from |5, say a|;b and a 1 b. Then either @ or b separates |; from |s, as it is
easily checked. O

4Note that every element of F' has a canonical expansion as a power series in the uniformizer p with
coefficients from {0,1,...,p — 1} (cf. [E-P], Proposition 1.3.5).
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Let X be a compact space. We then denoted by C(X, Q,) the ring of all Q,-valued continuous
functions on X. This ring carries a canonical p-adic norm which makes it a p-adic Banach
algebra over Q,. The norm is defined by

If 1= max {|f(z)],; © € X}

where | |, is the p-adic absolute value on Q, defined by |z, = p~»(®).
The norm || ||* on C(X,Q,) is even power multiplicative, i.e., for all n € N

A =)™
Theorem 4.1 provides us with a homomorphism ¢ : A — C(X,Q,) with dense image. We
have, however, no information about the kernel of ¢. In order to achieve this goal we shall
introduce one more condition on the p-divisibility |o of Theorem 4.1.
Let us assume that | is a p-archimedean p-divisibility on the commutative ring A with Q C A.
We can then define for every a € A

ord a := sup {m e Z; pm|a} c ZU{OO} and H a ”:p— orda‘

Lemma 4.2. For all a,b € A,r € Q we get
(¢) fa+b][< maz (| all,]o])
() [la-bl<llal o]
(c) [l 1= 1Irl
(d) [rall=Irly [l ol

Proof. (a) and (b) are easily checked. (c) is equivalent to ord r = v,(r), and will be shown
in Proposition 4.3 below.

(d) then follows from || ra [|[<|[r || [ a [|=|rly [l a |l and || a [=[ r~'ra [|<[|r=" || || ra || .
In fact, since by (c), || || is multiplicative on Q, we then get |r|, || a ||=] 7 [|7' [ a <
| ra || O

It remains to show ord r = v,(r) for r € Q. This follows from

Proposition 4.3. The only p-archimedean divisibility with p t 1 of the field Q of rational
numbers is the one obtained by the p-adic valuation v,.

Proof. The support I(]) is a proper ideal of Q. Hence I(|) = {0}. Moreover, as Q is a field,
axiom (4) implies that | has cancellation. Thus by Example 2.2 it suffices to show that the
ring B = {%; a,b € Q, a # 0, a|b} U {0} contains the valuation ring Z, of v, restricted
to Q. In fact, then also B is a valuation ring of Q, hence has to be equal to Z, (cf. [E-P],
Theorem 2.1.4). Note that B # Q as p~* & B.

Let n,m € Z and n prime to p. We have to show that n|m. As | is p-archimedean there
exists r € N such that p~"|n~!. Therefore n|p". Since n is prime to p there exist k,l € Z
with

kp" +in = 1.

Since n|p", also n|kp". Clearly also n|in. Thus (by (3)) n|1. Hence n|m. O



By Lemma 4.2, || || is a sub-multiplicative p-adic semi-norm on A. In the next lemma we
shall give equivalent conditions for || || to be even power multiplicative. Note that in this
case || a™ ||= 0 is equivalent to || a ||= 0. It is well-known that power multiplicativity is
already implied from the case n = 2.

Main Lemma 4.4. Let |y be a p-archimedean p-divisibility on A. Then the following three
conditions are equivalent:

(i) ploa® = ploa for all a € A,
(ii) the norm || || defined by |o is power multiplicative.

(11i) (Local-Global-Priciple) Let X = Spec™*D,(A,|o). Then p | a for all | € X implies

ploa.
Proof. (iii) = (i) follows from Theorem 4.1 and the fact that all | € X satisfy (i).
(i) = (ii): As || a® ||<]| a ||* is obvious, it remains to prove || a ||?<| @* ||. By the
definition of || ||, this amounts to prove that ord a? < 2 ord a. Let m = ord a and assume

p*™*1 |a?. Then clearly p|(ap~™)?. Hence by (i) we would get plap™™ or equivalently p™*|a,
a contradiction.

(ii) = (iil): Let us assume p o a. We shall then construct some extension | € Spec D,(A, |o)
such that a | 1. This clearly implies p { a. The extension | of |y will be obtained in three
steps:

e In step 1 we construct |; D |o such that a |; 1 and |; satisfies all axioms of a p-divisibility
except (6). Instead, we shall only obtain p 1 1.

e In step 2 we maximalize |; to |2 such that |5 satisfies axiom (6), hence is a p-divisibility.

e In step 3 we apply Theorem 3.6 to D,(A, |2) in order to obtain | € Spec D,(A, |o) with
al 1.

For step 1 and 2 we need a little preparation: We call an additive subgroup C of A convex
w.r.t. | if for all a,b € A we have: a € C,a | b= b € C. For a subset S of A we define
the convex group C'(S) generated by S to be obtained by iterating countably many times in
alternating order the two operations

G(S) = additive group generated by S
M(S) = {be€ A;x | b for some z € S}.

Then C(S) is a convex subgroup of A containing S. The operator C' obviously satisfies
S CC(S)=CC(S) and aC(S) C C(aS). Moreover we have

a|b=CH{b}US) CC{alUSs).

Step 1: We define z|;y & ya" € C({za’;0 < i < r}) for some r € N. First observe
that |; extends |p. In fact: z|loy = y € C(z)(r = 0). Moreover we get a |; 1 since
a € C({a,a*})(r = 1). Next one checks the axioms (1) - (4) using the above mentioned
properties of the operator C'. The axioms (7) and (8) follow from |y C |;. It remains to prove
p 11 1 (then also axiom (5) follows). Let us assume on the contrary the existence of some
r € N such that

a" € C({pa’;0 <i<r}).
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By (ii) we have ord a’ = i ord a. From our assumption p fy a we get ord a < 0. Hence we
have the following contradiction:

ord a” > 1+ min i<, ord @’ = 1+ ord a’.

Step 2: Let now |y be an extention of |; maximal with the properties (1) - (4), (7), (8) and
p 12 1. We then prove (6) for |o. Assume cp|yc for some ¢ € A. Since |5 is p-archimedean,
to every b € A we find some m € N such that 1 | p™bc. Applying pc |oc iteratively yields
p |2 p0c |2 pbe |2 P b |3 - - - |2 pbe |2 be.

Now define

| y:=yelClcAU{x}).

Clearly | extends |o. The axioms (1) to (4) are easy to check and the axioms (7) and
(8) are interited. Since p |9 be for all b € A, we find C(cAU {p}) C C(p). Asp 1
we therefore get 1 & C(cAU {p}), i.e. p{ 1. Since |, was maximal with these properties,
we have |, = |', and therefore 0 |' ¢ yields 0 |5 ¢. Thus we have shown that |5 is a p-divisibility.

Step 3: Finally we apply Theorem 3.6 to D, (A, |2) in order to obtain some | € SpecD, (A4, |o)
with a|l. clearly | may be chosen maximal. O

p-adic Representation Theorem 4.5. Let A be a commutative ring with Q C A that
admits a p-archimedean p-divisibility | satisfying ploa® = ploa for all a € A. Then the
homomorphism ¢ : A — C(X,Q,) of Theorem 4.1 with X = Spec™**D,(A,|o) satisfies
I ¢(a) "= a llo . Consequently:

o ker o ={a € A;p" |o a for alln € N},
e ¢ is injective, if the semi-norm || ||o defined by |o is a norm,
e ¢ is surjective, if A is complete w.r.t. the norm || ||o.

Proof. By Theorem 4.1 and Main Lemma 4.4 we have || ¢(a) ||*=|| a ||o. Thus if || ||o is a
norm, ¢(a) = 0 implies || a ||[p= 0 and hence a = 0. This proves injectivity.

In order to get surjectivity, let f € C(X,Q,) be given. As ¢(A) is dense in C(X,Q,) by
Theorem 4.1, there exists a sequence (¢(an))nen,an € A, converging to f. Then clearly
(an)nen is a Cauchy-sequence in (A, || ||o). Thus by completeness there exists a limit a of

(@n)nen in A. Now ¢(a) = f. O
From Theorem 4.5 we finally get our

Characterization Theorem 4.6. Let A be a commutative ring with Q C A. Then, as a
ring, A= C(X,Q,) for some compact (actually 0-dimensional) space X if and only if there
exists a p-divisibility a | b on A such that

(i) A is p-archimedean with respect to |,

(ii) the p-adic semi-norm canonically defined by | on A is a norm satisfying || a® ||=|| a ||?
foralla € A,

(1ii) A is complete with respect to this norm.

So far the characterization 4.6 does not seem to be a completely algebraic one, as it involves
the binary relation |. There is, however, a way to avoid this. The canonical p-adic divisibility
|* on C'(X,Q,) can actually be algebraically expressed in the following way
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Proposition 4.7. The canonical p-adic divisibility |* on C(X,Q,), X a compact space,
satisfies for all f,g € C(X,Q))

gl"f < 3h h? = g7+ pf?

where q € N is a prime different from p.

Proof. “<” Let x € X. Then the values of g?(x) and pf?(x) are different. From h? = g9+pf?
we see that the value of
(97 +pf?)(x)

has to be divisible by ¢. Hence v,(¢%(z)) < v,(pf?(x)) which clearly implies v,(g(z)) <
v,(f(x)). Thus by definition g|* f.

“=7 Assuming v,(g(x)) < v,(f(z)) for all z € X we have to construct a continuous function
h: X — Q, such that h? = g? 4+ pf1.

Using the fact that the function g? 4+ pf? can only take values in Z all of which are divisible
by ¢, the fact that the residue class field is finite, and by patching h from suitable continuous
functions, we are reduced to the case where ¢ = 1 on an open and closed subset Y of X. Now
we can apply Hensel’s Lemma to the 1-unit 1 + pf(x)? (as the characteristic of the residue
field is different to q). O

Using Proposition 4.7 we may replace any use of a|b in the Characterization Theorem 4.6 by
the algebraic expression
& P (*) Jcc? =al+ pb?,

requiring in addition that (*) is a p-divisibility satisfying (i)-(iii). This way we obtain a
completely algebraic characterization of the rings C'(X,Q,) with X compact.
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