Algebraic Characterization of Rings of Continuous *p*-adic Valued Functions

Samuel Volkweis Leite¹ and Alexander Prestel

Abstract The aim of this paper is to characterize among the class of all commutative rings containing \mathbb{Q} the rings $C(X, \mathbb{Q}_p)$ of all continuous \mathbb{Q}_p -valued functions on a compact space X. The characterization is similar to that of M. Stone from 1940 (see [St]) for the case of \mathbb{R} -valued functions. The Characterization Theorem 4.6 is a consequence of our main result, the *p*-adic Representation Theorem 4.5.

1 Introduction

The ring $C(X, \mathbb{R})$ of all \mathbb{R} -valued continuous functions on a compact space X is an \mathbb{R} -Banach algebra. Not surprisingly there are numerous characterizations of these rings among the class of all \mathbb{R} -Banach algebras (see e.g. [A-K]). What is, however, surprising is M. Stone's purely algebraic characterization of the rings $C(X, \mathbb{R})$ among the class of all commutative rings A containing \mathbb{Q} . The secret of Stone's approach is that he encodes the space X in a simple algebraic subset T of A. Let us briefly indicate this approach in modern language.

A subset T of a commutative ring A with $\mathbb{Q} \subseteq A$ is called a *pre-ordering* of A if it satisfies

$$T + T \subseteq T$$
, $T \cdot T \subseteq T$, $a^2 \in T$ for all $a \in A$, $-1 \notin T$.

If the set of sums of squares of A does not contain -1, this set is a pre-ordering of A. In case of $A = C(X, \mathbb{R})$, the set of squares already forms a pre-ordering ². The totality of preorderings on A is partially ordered by inclusion and it carries a natural topology making it a quasi-compact space. For a fixed pre-ordering T_0 , the real spectrum of (A, T_0) is the closed set of pre-orderings $P \supseteq T_0$ satisfying in addition $P \cup -P = A$ and $P \cap -P$ a prime ideal of A. These objects are usually called orderings of A (see [P-D]). The maximal spectrum X of (A, T_0) yields an isomorphism $A \cong C(X, \mathbb{R})$ if T_0 satisfies the conditions required by Stone. Without going into further details let us mention only the crucial step in proving this isomorphism.

 T_0 is called *archimedean* if to every $a \in A$ there exists some $n \in \mathbb{N}$ such that $n - a \in T_0$. Then the crucial step is the *Local-Global-Principle*: If $a \in A$ is strictly positive for all $P \in X$ (i.e. $a \in P \setminus (-P)$), then $a \in T_0$. In this sense the pre-ordering T_0 encodes the space X. In case of the polynomial ring $A = \mathbb{R}[X_1, \ldots, X_n]$, for suitable T_0 this principle is Schmüdgen's famous Positivstellensatz (see [P-D], Theorem 5.2.9).

¹This paper contains the main result of the Ph.D. Thesis [L] of the first author written under the supervision of the second author.

²Although pre-orderings on commutative rings have already been used by M. Stone, the notation "preordering" was introduced much later by Krivine in a systematic study [Kr].

In the present paper we treat in a similar way the rings $C(X, \mathbb{Q}_p)$ of all \mathbb{Q}_p -valued continuous functions on a compact space X. We end up with a purely algebraic characterization of these rings among the class of commutative rings A containing \mathbb{Q} . In order to achieve this, we introduce certain subsets | of $A \times A$ called *p*-divisibilities ³. The totality $D_p(A)$ of *p*divisibilities on A is partially ordered by inclusion and admits a canonical topology making it a quasi-compact space. We call a *p*-divisibility | a *p*-valuation(-divisibility) if for all $a, b \in A$ we have totality: a | b or b | a, and cancellation: $0 \nmid c$, $ac | bc \Rightarrow a | b$.

The class of *p*-valuations | extending a given *p*-divisibility $|_0$ forms a closed subspace Spec $D_p(A, |_0)$, called the *p*-adic valuation spectrum above $|_0$. Let X denote the maximal spectrum $\operatorname{Spec}^{\max} D_p(A, |_0)$. Finally we call $|_0 p$ -archimedean if for all $a \in A$ there exists $n \in \mathbb{N}$ such that $p^{-n} | a$. The crucial step in our approach then is the Local-Global-Principle:

If $p \mid a$ for all $\mid \in X$, then $p \mid_0 a$.

This principle is essential for encoding the *p*-adic valuation spectrum above $|_0$ in the simple algebraic notion of the *p*-divisibility $|_0$. Compared with the pre-ordering case, the extension theory of *p*-divisibilities is considerably more difficult. In case of the integral domain $A = \mathbb{Q}_p[X_1, \ldots, X_n]$ the local-global-principle parallels Roquette's profound result on the "Kochen-ring" of $\mathbb{Q}_p(X_1, \ldots, X_n)$ in [R].

Concerning applications of the Local-Global-Principle (real or p-adic) everything depends on the demonstration of the archimedean property of T_0 or $|_0$, resp. In the well treated real situation some striking cases are known. Most interesting of all is Schmüdgen's result that the preordering T_0 corresponding to a basic closed semi-algebraic subset W of \mathbb{R}^n is archimedean if and only if W is compact (see [P-D], Theorem 5.1.17). In the less treated p-adic situation a suitable counterpart to Schmüdgen's result is not yet known.

2 Divisibilities on commutative rings

Let A be a commutative ring with unit $1 \neq 0$. A binary relation $a \mid b$ on A (in set theoretic terms we shall write $\mid \subseteq A \times A$) will be called a *divisibility* on A, if for all $a, b, c \in A$ we have

- (1) $a \mid a$
- (2) $a \mid b, b \mid c \Rightarrow a \mid c$
- (3) $a \mid b, a \mid c \Rightarrow a \mid b c$
- (4) $a \mid b \Rightarrow ac \mid bc$
- (5) $0 \nmid 1$.

Easy consequences from these axioms are e.g. $a \mid 0$ and $a \mid -a$. The set $I(\mid) := \{a \in A; 0 \mid a\}$ is a proper ideal of A. For all $\alpha, \beta \in I(\mid)$ and $a, b \in A$ we have $a \mid b \Rightarrow a + \alpha \mid b + \beta$. It follows that $a + I \mid b + I :\Leftrightarrow a \mid b$

defines a divisibility on the quotient ring $\overline{A} = A/I(|)$. The ideal I(|) will be called the *support* of |.

³Compared with the real situation one could as well call them "pre-*p*-valuations".

Clearly, if $\delta : A \to B$ is a homomorphism of commutative rings with 1, i.e., $\delta(1) = 1$, and | is a divisibility on B, then

defines a divisibility |' on A with support $I(|') = \delta^{-1}(I(|))$.

We call a divisibility | on A total if for all $a, b \in A$ we have a|b or b|a. We shall say that | admits cancellation if for all $c \notin I(|)$ (i.e., $0 \nmid c$), ac|bc implies a|b. If | is total and admits cancellation, we shall also call | a valuation divisibility.

Proposition 2.1. If the divisibility | has cancellation, then I(|) is prime.

Proof. Assume that 0|ab and $0 \nmid a$. Then cancelling a in $0 \cdot a|ba$ gives 0|b.

Example 2.2 Let A be an integral domain and F = Quot A. Then every subring B of F defines a divisibility | on A by taking

$$a|b:\Leftrightarrow a = b = 0 \text{ or } (a \neq 0 \text{ and } \frac{b}{a} \in B).$$

Note that | clearly has cancellation and $I(|) = \{0\}$. Conversely, if | is a divisibility with cancellation and $I(|) = \{0\}$ on A, then

$$B := \{\frac{b}{a}; a, b \in A, a | b, a \neq 0\} \cup \{0\}$$

is a subring of F.

It is clear that $| \leftrightarrow B$ is a 1-1 correspondence. Note that | is total if and only if B is a valuation ring of F. Note also that A need not be a subring of B. For example let $A = \mathbb{R}[X]$ and B the valuation ring of the degree valuation on $F = \mathbb{R}(X)$. Then $A \cap B = \mathbb{R}$.

Example 2.3 Let $v : A \to \Gamma \cup \{\infty\}$ be a valuation in the sense of Bourbaki, i.e., Γ is an ordered abelian group $I = v^{-1}(\infty)$ is a prime ideal of $A, \overline{v} : F \to \Gamma \cup \{\infty\}$ is an ordinary valuation on the field $F = \text{Quot } \overline{A}$ with $\overline{A} = A/I$, and $v(a) = \overline{v}(\overline{a})$ for all $a \in A$. Then

 $a|b \Leftrightarrow v(a) \le v(b)$

defines a divisibility on A with I(|) = I prime. Clearly | has cancellation and is total.

Our main example here is $A = F = \mathbb{Q}_p$ and $v_p : \mathbb{Q}_p \to \mathbb{Z} \cup \{\infty\}$. We then call $|_p$, defined by

 $a|_p b \Leftrightarrow v_p(a) \le v_p(b)$

the canonical p-adic divisibility.

Example 2.4 Let $A = C(X, \mathbb{Q}_p)$ be the ring of all continuous functions $f : X \to \mathbb{Q}_p$ where X is a compact space. We call

$$f|^*g \Leftrightarrow \forall x \in X(v_p(f(x)) \le v_p(g(x)))$$

the canonical p-adic divisibility on A. If X is finite and has more than one point, then $|^*$ has no cancellation, is not total, and $I(|^*) = \{0\}$, but not prime.

A valuation $v: F \to \Gamma \cup \{\infty\}$ on a field F of characteristic 0 is called a *p*-valuation if Γ is a discretely ordered abelian group with v(p) as minimal positive element and the residue field \overline{F} of v is the finite field \mathbb{F}_p of p elements. (F, v) is called *p*-adically closed if $v: F \to \Gamma \cup \{\infty\}$ is a *p*-valuation, (F, v) is henselian, and the quotient group $\Gamma/\mathbb{Z}v(p)$ is divisible. Clearly, (\mathbb{Q}_p, v_p)

is *p*-adically closed. Every *p*-valued field admits an algebraic extension that is *p*-adically closed, called a *p*-adic closure. *p*-adic closures are in general not unique up to isomorphism. In case $\Gamma = \mathbb{Z}$, the *p*-adic closure is unique up to isomorphism as it is the henselization. For more information the reader is referred to [P-R].

Returning to a *p*-valued field (F, v) let us simply write 1 for the positive minimal value v(p). For every $x \in F$ the quotient

$$\gamma(x) = \frac{1}{p} \cdot \frac{x^p - x}{(x^p - x)^2 - 1}$$

is defined and has value ≥ 0 . The operator γ is usually called the *Kochen operator*. It plays in the theory of *p*-valued fields a similar role as the square operator does in the theory of pre-ordered fields.

Theorem 2.5. Let F be a field of characteristic 0 and let B be a subring of F containing the ring $\mathbb{Z}[\gamma(F)]$ generated by all $\gamma(x)$ for $x \in F$. If $p^{-1} \notin B$, then B is contained in the valuation ring O_v of some p-valuation v on F.

Proof. Clearly, p is not a unit of B. Thus there exists a prime ideal P of B with $p \in P$. By Chevalley's place extension theorem ([E-P], ch 3.1) there exists a valuation v of F such that $O_v \supseteq B$ and $M_v \cap B = P$. Since now the valuation ring O_v containes $\mathbb{Z}[\gamma(F)]$, but not p^{-1} , v is a p-valuation by [P-R], Lemma 6.1.

Motivated by this theorem we call a divisibility | on a commutative ring with $1 \neq 0$, a *p*-divisibility if it satisfies for all $a, b \in A$

(6) $0 \nmid a \Rightarrow pa \nmid a$, and

(7)
$$p[(a^{p}b - b^{p}a)^{2} - (b^{p+1})^{2}] \mid [(a^{p}b - b^{p}a)b^{p+1}].$$

Note that (6) implies in particular $p \nmid 1$.

Theorem 2.6. Let A be an integral domain with $\mathbb{Q} \subseteq A$ and F = Quot A its field of fractions. Then there is a 1-1 correspondence between p-valuation rings $B \subseteq F$ and total p-divisibilities | of A that have cancellation and support $I(|) = \{0\}$.

Proof. If $B \subseteq F =$ Quot A is a p-valuation ring, then Example 2.2 shows that for $a, b \in A$

$$a|b:\Leftrightarrow a=0 \text{ or } \frac{b}{a}\in B$$

gives a total *p*-divisibility on A with cancellation and $I(|) = \{0\}$.

Conversely, let $| \subseteq A \times A$ be a total *p*-divisibility with cancellation and $I(|) = \{0\}$. Then again Example 2.2 together with Theorem 2.5 shows that

$$B := \{ \frac{b}{a}; \ a, b \in A, \ a \neq 0, \ a|b\} \cup \{0\}$$

is a valuation ring of F being contained in the valuation ring O_v of some p-valuation of F. It then follows that $B = O_v$. In fact, the valuation ring B is mapped by the residue map $\delta : O_v \to \mathbb{F}_p$ of v to a valuation ring $\delta(B)$ of \mathbb{F}_p . As \mathbb{F}_p is finite, it follows that $\delta(B) = \mathbb{F}_p$. Hence also $B = O_v$.

As we have seen above the canonical *p*-adic valuation v_p defines on \mathbb{Q}_p by $a|_p b \Leftrightarrow v_p(a) \leq v_p(b)$ a total *p*-divisibility $|_p$ with cancellation and support $\{0\}$. From this we also see that the canonical *p*-adic divisibility $|^*$ of $C(X, \mathbb{Q}_p)$ is in fact a *p*-divisibility. But in general $|^*$ need neither be total nor have cancellation.

3 The divisibility spectrum

In this section we shall first introduce the divisibility spectrum of a commutative A with $1 \neq 0$. We then restrict ourself to the spectrum of p-divisibilities assuming that $\mathbb{Q} \subseteq A$. This will provide us with some compact (zero-dimensional) space X on which later the elements of A will operate as continuous functions with values in \mathbb{Q}_p .

Let A be a commutative ring with unit $1 \neq 0$. The next proposition justifies the name 'valuation divisibility' in Section 2 for divisibilities that are total and admit cancellation.

Proposition 3.1. The valuation divisibilities on A correspond 1-1 to the Bourbaki valuations of A.

Proof. Let first $v : A \to \Gamma \cup \{\infty\}$ be a Bourbaki valuation on A, i.e., $I = v^{-1}(\infty)$ is a prime ideal of A, \overline{v} : Quot $\overline{A} \to \Gamma \cup \{\infty\}$ with $\overline{A} = A/I$ is an ordinary field valuation, and $\overline{v}(a+I) = v(a)$ for all $a \in A$. Then for elements a, b from $A, a|^v b \Leftrightarrow v(a) \leq v(b)$ defines a total divisibility on A having cancellation and support $I(|^v) = I$.

Conversely, let | be a valuation divisibility on A. Then I = I(|) is prime by Proposition 2.1 and | induces a total divisibility $\bar{|}$ on the integral domain $\bar{A} = A/I$ having cancellation and support {0}. Thus by Example 2.2 the ring

$$B := \{\frac{b}{\overline{a}}; \ \overline{a} \neq \overline{0} \text{ and } a|b\} \cup \{\overline{0}\}$$

is a valuation ring of $F = \text{Quot } \overline{A}$, say $B = O_{\overline{v}}$ for some ordinary valuation $\overline{v} : F \to \Gamma \cup \{\infty\}$. Now $v(a) := \overline{v}(\overline{a})$ clearly defines a Bourbaki valuation on A with $v^{-1}(\infty) = I$ inducing \overline{v} on \overline{A} . By construction of v we have for all $a, b \in A$, $a|b \Leftrightarrow v(a) \leq v(b)$.

It is obvious that the correspondence between v and | is one to one.

Remark 3.2. Assuming $\mathbb{Q} \subseteq A$ in the construction of Theorem 3.1, all fields Quot A, have characteristic 0. Thus by Theorem 2.6 the valuation divisibility | of Theorem 3.1 is a p-divisibility if and only if \overline{v} is a p-valuation.

Now let us introduce

$$D(A) =$$
 class of all divisibilities of A ,
 $D_p(A) =$ class of all *p*-divisibilities of A .

Note that both classes are closed by taking unions of chains w.r.t. inclusion. Thus by Zorn's Lemma every (p-)divisibility is contained in some maximal (p-)divisibility. On D = D(A) we introduce the *spectral* topology as the topology generated by the sets

$$U(a,b) = \{ | \in D; a \nmid b \}$$

where a, b range over A. If we add the complements $V(a, b) = \{| \in D; a|b\}$ to the above generators, we call this finer topology the *constructible* one.

Identifying a subset Y of $A \times A$ with its characteristic function and applying Tychonoff's Theorem to the function space $\{0, 1\}^{A \times A}$ one proves by standard arguments

Lemma 3.3. The constructible topology on D(A) is compact. Thus the spectral topology is, in particular, quasi-compact (i.e. every open cover contains a finite subcover).

We call the class

Spec $D(A) = \{ | \in D(A); | \text{ is total and admits cancellation} \}$

the divisibility spectrum of A, and Spec $D_p(A) = D_p(A) \cap$ Spec D(A) the p-divisibility spectrum of A.

These two classes are as well closed under unions of chains. Thus again by Zorn's Lemma every element is contained in a corresponding maximal one. We denote the subclasses of maximal elements by

 $\operatorname{Spec}^{\max} D(A)$ and $\operatorname{Spec}^{\max} D_p(A)$.

Proposition 3.4. 1. $D_p(A)$, Spec D(A), and Spec $D_p(A)$ are closed subclasses of D(A) in the constructible topology, hence are quasi-compact in both topologies.

- 2. $D(A)^{max}$ and $D_p(A)^{max}$ are quasi-compact in the spectral topology.
- 3. Spec $D_p(A)$ and $Spec^{max}D_p(A)$ are compact in both topologies, they actually are 0dimensional spaces: V(a,b) = U(bp,a) for all $a, b \in A$.

Proof. The proofs are straigt forward by standard arguments. Let us only mention that in 3 one shows that V(a, b) = U(bp, a) on Spec D_p . In fact by Theorem 3.1 and Remark 3.2 the elements of Spec D_p correspond to Bourbaki *p*-valuations. Recall, if $| \in$ Spec D_p , then there is a *p*-valuation \overline{v} on $\overline{A} = A/I(|)$ such that $a|b \Leftrightarrow \overline{v}(\overline{a}) \leq \overline{v}(\overline{b})$. As $1 = \overline{v}(p)$ is minimal positive, we get $a|b \Leftrightarrow pb \nmid a$.

For a fixed divisibility $|_0$ on A we shall consider the subclasses of the above introduced classes consisting of extensions of $|_0$ and denote them by $D(A, |_0)$ and $D_p(A, |_0)$ respectively. As $D(A, |_0)$ is closed in the spectral topology, all topological considerations from above remain true for the relativized classes.

In the following the fixed divisibility $|_0$ will always be assumed to be *p*-archimedean, i.e.,

(8) $\forall a \in A \exists m \in \mathbb{Z} : p^m|_0 a.$

The canoncial *p*-adic divisibilities on \mathbb{Q}_p and on $C(X, \mathbb{Q}_p)$ both satisfy axiom (8).

Theorem 3.5. Let A be a commutative ring with $\mathbb{Q} \subseteq A$, and let $|_0$ be a p-archimedean p-divisibility on A. Then an element | of Spec $D_p(A, |_0)$ is maximal if and only if I(|) is prime and the corresponding p-valuation \overline{v} on F = Quot A/I(|) has value group \mathbb{Z} .

Proof. " \Rightarrow " Let | be maximal in Spec $D_p(A, |_0)$. By Theorem 3.1 and Remark 3.2 | corresponds uniquely to a *p*-valuation $\overline{v} : F \twoheadrightarrow \Gamma \cup \{\infty\}$. Denoting (as usual) the positive minimal element $\overline{v}(p)$ of Γ by $1, \mathbb{Z} = \mathbb{Z}\overline{v}(p)$ is a convex subgroup of Γ . Since $|_0$ is archimedean, so is |. Hence for every $a \in A$ there exists some $m \in \mathbb{Z}$ such that $m \leq \overline{v}(\overline{a})$.

If now Γ would be bigger than \mathbb{Z} , there existed some $b \in A \setminus I(|)$ with $m \leq \overline{v}(\overline{b})$ for all $m \in \mathbb{Z}$. Thus the set $P = \{\overline{b} \in \overline{A}; m \leq \overline{v}(\overline{b}) \text{ for all } m \in \mathbb{Z}\}$ forms a non-zero prime ideal of \overline{A} . Taking $w(\overline{b} + P) := \overline{v}(\overline{b})$ defines a *p*-valuation on the quotient field F' of \overline{A}/P with value group \mathbb{Z} . Setting a|'b in case $w(\overline{a} + P) \leq w(\overline{b} + P)$ defines a *p*-divisibility $|' \in \text{Spec } D_p(A, |_0)$ strictly containing |. This contradicts the maximality of |. Therefore $\Gamma = \mathbb{Z}$.

"⇐" Now assume that the *p*-valuation \overline{v} corresponding to | has value group \mathbb{Z} on F =Quot A/I(|). If $|' \in$ Spec $D_p(A, |_0)$ is a proper extension of | then $I(|) \subsetneq I(|')$ or, I(|) = I(|') and the valuation ring O' of \overline{v}' properly extends the valuation ring O of \overline{v} . This second case is not possible, since (by Lemma 2.3.1 of [E-P]) a proper extension O' of O corresponds to a proper convex subgroup of the value group of O which is \mathbb{Z} . Such a subgroup clearly does not exist. In the first case, choose $a \in I(|') \setminus I(|)$. Since v has value group \mathbb{Z} and \overline{a} is non-zero in A/I(|), there exists some $m \in \mathbb{Z}$ such that $\overline{v}(\overline{a}) \leq m$, i.e., $a|p^m$. But then $a \in I(|')$ implies 0|'a. Now $| \subseteq |'$ gives $0|'p^m$, a contradiction.

So far we did not show that Spec $D_p(A)$ is non-empty.

Theorem 3.6. Let A be a commutative ring with $\mathbb{Q} \subseteq A$. Then Spec $D_p(A)$ is non-empty if and only if there exists a p-divisibility | on A. Equivalently, we have that A admits a ring homomorphism δ with $\delta(1) = 1$ into some p-valued field. Spec $D_p(A)$ contains a parchimedean element if and only if A admits a ring homomorphism with $\delta(1) = 1$ into the p-adic number field \mathbb{Q}_p .

Proof. Assume $\delta : A \to F$ is a ring homomorphism with $\delta(1) = 1$ and (F, v) is a *p*-valued field. Then the definition

$$a|b \Leftrightarrow v(\delta(a)) \le v(\delta(b))$$

for $a, b \in A$ obviously yields a *p*-divisibility on A with $I(|) = \ker \delta$. If $(F, v) = (\mathbb{Q}_p, v_p)$ then clearly | is *p*-archimedean.

Next let |' be a *p*-divisibility on *A*. By Zorn's Lemma we can pass to a maximal extension | of |' inside the class of *p*-divisibilities extending |'. Thus also | is a *p*-divisibility. We want to see that | admits cancellation. Let $c \in A$ and assume $0 \nmid c$. We then define $a|^{c}b$ if $ac \mid bc$ for all $a, b \in A$. One easily checks that $|^{c}$ is a *p*-divisibility on *A* extending |. As | is maximal, $| = |^{c}$. This implies cancellation by *c*. In fact, if $ac \mid bc$, then $a|^{c}b$ and as $| = |^{c}$, we get $a \mid b$. Since now | has cancellation, by Proposition 2.1 I(|) is prime and we may pass to the ring $\overline{A} = A/I(|)$ and its field of fractions F =Quot \overline{A} . By Example 2.2 the divisibility | corresponds to the subring

$$B = \{ \frac{\overline{b}}{\overline{a}}; \ 0 \nmid a, \ a|b\} \cup \{\overline{0}\}$$

of F. Since | is a p-divisibility, the Kochen relations (7) imply that $\mathbb{Z}[\gamma(F)]$ is contained in B, while (6) implies that $p^{-1} \notin B$. Thus by Theorem 2.5 there exists a p-valuation \overline{v} on F such that $B \subseteq O_{\overline{v}}$. Now by Remark 3.2 the definition

$$a|_1b \Leftrightarrow \overline{v}(\overline{a}) \le \overline{v}(\overline{b})$$

yields an extension $|_1$ of | that belongs to Spec $D_p(A)$. Thus Spec $D_p(A)$ is non-empty.

Finally, let $| \in \text{Spec } D_p(A)$. By Remark 3.2, $| \text{ induces a } p\text{-valuation } \overline{v} \text{ on } \text{Quot } A/I(|)$. Thus the canonical homomorphism $\delta : A \to A/I(|)$ maps A to a p-valued field.

It remains to show that the existence of a *p*-archimedean element $| \in \text{Spec } D_p(A)$ provides us with some homomorphism from A to \mathbb{Q}_p . We may assume that | is maximal in Spec $D_p(A)$. Then by Theorem 3.5, I(|) is prime and | corresponds to some *p*-valuation \overline{v} on F =Quot A/I(|) with value group \mathbb{Z} . In that case, however, the completion of F w.r.t. \overline{v} is isomorphic to the field \mathbb{Q}_p . Thus the desired homomorphism is just the canonical homomorphism $\delta : A \to A/I(|)$.

4 *p*-adic representations

Now let us fix a commutative ring A with $\mathbb{Q} \subseteq A$ together with a p-archimedean p-divisibility $|_0$ on A. By Theorem 3.6 the maximal spectrum

$$X = \operatorname{Spec}^{max} D_p(A, |_0)$$

is non-empty, and by Proposition 3.4.(3.) it is a 0-dimensional compact space. By Theorem 3.5 every $| \in X$ induces a canonical homomorphism

$$\alpha_{|}: A \to \overline{A} = A/I(|) \subseteq F := \text{ Quot } \overline{A}$$

together with a *p*-valuation $\overline{v} : F \to \mathbb{Z} \cup \{\infty\}$ such that $a|b \Leftrightarrow \overline{v}(\overline{a}) \leq \overline{v}(b)$ for all $a, b \in A$. The completion of F w.r.t. \overline{v} is just the field \mathbb{Q}_p of *p*-adic numbers with \overline{v} being the restriction of v_p to F.⁴ As \mathbb{Q} is dense in \mathbb{Q}_p w.r.t. the topology induced by the *p*-adic valuation v_p on \mathbb{Q}_p , the embedding of F into \mathbb{Q}_p , is uniquely determined. Thus every $| \in X$ yields a canonical homomorphism

$$\alpha_{|}: A \to \mathbb{Q}_{p}$$

with $a|b \Leftrightarrow v_p(\alpha_{|}(a)) \leq v_p(\alpha_{|}(b))$ for all $a, b \in A$. Therefore, every $a \in A$ induces a canonical map \widehat{a} from A to \mathbb{Q}_p by taking $\widehat{a}(|) := \alpha_{|}(a)$

for every 'point' | in X.

Theorem 4.1. Let A be a commutative ring with $\mathbb{Q} \subseteq A$ and let $|_0$ be a p-archimedean pdivisibility on A. Then the map \hat{a} is continuous for every $a \in A$. Therefore $\phi : A \to C(X, \mathbb{Q}_p)$ defined by $\phi(a) = \hat{a}$ is a homomorphism of rings with dense image $\phi(A)$ in $C(X, \mathbb{Q}_p)$, satisfying

$$a|_{0}b \Rightarrow \phi(a)|^{*}\phi(b), \text{ for all } a, b \in A.$$

Proof. As \mathbb{Q} is dense in \mathbb{Q}_p , the sets

$$U_n(r) = \{ x \in \mathbb{Q}_p; \ v_p(x-r) \ge n \}, \ r \in \mathbb{Q}, \ n \in \mathbb{N}$$

form a base for the topology on \mathbb{Q}_p . Thus it suffices to show that the preimage of $U_n(r)$ under \hat{a} is open in the topology of X. This, however, follows from Proposition 3.4.(3.) and the fact that

$$(\widehat{a})^{-1}(U_n(r)) = \{ | \in X; \ p^n | a - r \} = V(p^n, a - r) \cap X$$

for all $a \in A, r \in \mathbb{Q}$ and $n \in \mathbb{N}$.

In order to show that $\phi(A)$ is dense in $C(X, \mathbb{Q}_p)$ w.r.t. the maximum norm it suffices by the *p*-adic Stone-Weierstrass Approximation (see [K]) to show that two different points of X, say $|_1 \neq |_2$ can always be separated by some function \hat{a} , i.e., $\hat{a}(|_1) \neq \hat{a}(|_2)$: Let $a, b \in A$ distinguish $|_1$ from $|_2$, say $a|_1b$ and $a \nmid_2 b$. Then either \hat{a} or \hat{b} separates $|_1$ from $|_2$, as it is easily checked.

⁴Note that every element of F has a canonical expansion as a power series in the uniformizer p with coefficients from $\{0, 1, \ldots, p-1\}$ (cf. [E-P], Proposition 1.3.5).

Let X be a compact space. We then denoted by $C(X, \mathbb{Q}_p)$ the ring of all \mathbb{Q}_p -valued continuous functions on X. This ring carries a canonical p-adic norm which makes it a p-adic Banach algebra over \mathbb{Q}_p . The norm is defined by

$$|| f ||^* := \max \{ |f(x)|_p; x \in X \}$$

where $| |_p$ is the *p*-adic absolute value on \mathbb{Q}_p defined by $|x|_p = p^{-v_p(x)}$. The norm $|| ||^*$ on $C(X, \mathbb{Q}_p)$ is even *power multiplicative*, i.e., for all $n \in \mathbb{N}$

$$\parallel f^n \parallel^* = (\parallel f \parallel^*)^n$$

Theorem 4.1 provides us with a homomorphism $\phi : A \to C(X, \mathbb{Q}_p)$ with dense image. We have, however, no information about the kernel of ϕ . In order to achieve this goal we shall introduce one more condition on the *p*-divisibility $|_0$ of Theorem 4.1.

Let us assume that | is a *p*-archimedean *p*-divisibility on the commutative ring A with $\mathbb{Q} \subseteq A$. We can then define for every $a \in A$

ord
$$a := \sup \{m \in \mathbb{Z}; p^m | a\} \in \mathbb{Z} \cup \{\infty\}$$
 and $||a|| = p^{-\operatorname{ord} a}$.

Lemma 4.2. For all $a, b \in A, r \in \mathbb{Q}$ we get

- (a) $|| a + b || \le max (|| a ||, || b ||)$
- $(b) \parallel a \cdot b \parallel \leq \parallel a \parallel \parallel b \parallel$
- (c) $|| r || = |r|_p$

$$(d) \parallel ra \parallel = |r|_p \parallel a \parallel.$$

Proof. (a) and (b) are easily checked. (c) is equivalent to ord $r = v_p(r)$, and will be shown in Proposition 4.3 below.

(d) then follows from $|| ra || \le || r || || a || = |r|_p || a || and || a || = || r^{-1}ra || \le || r^{-1} || || ra ||.$ In fact, since by (c), || || is multiplicative on \mathbb{Q} , we then get $|r|_p || a || = || r^{-1} ||^{-1} || a || \le || ra ||$.

It remains to show ord $r = v_p(r)$ for $r \in \mathbb{Q}$. This follows from

Proposition 4.3. The only p-archimedean divisibility with $p \nmid 1$ of the field \mathbb{Q} of rational numbers is the one obtained by the p-adic valuation v_p .

Proof. The support I(|) is a proper ideal of \mathbb{Q} . Hence $I(|) = \{0\}$. Moreover, as \mathbb{Q} is a field, axiom (4) implies that | has cancellation. Thus by Example 2.2 it suffices to show that the ring $B = \{\frac{b}{a}; a, b \in \mathbb{Q}, a \neq 0, a|b\} \cup \{0\}$ contains the valuation ring $\mathbb{Z}_{(p)}$ of v_p restricted to \mathbb{Q} . In fact, then also B is a valuation ring of \mathbb{Q} , hence has to be equal to $\mathbb{Z}_{(p)}$ (cf. [E-P], Theorem 2.1.4). Note that $B \neq \mathbb{Q}$ as $p^{-1} \notin B$.

Let $n, m \in \mathbb{Z}$ and n prime to p. We have to show that n|m. As | is p-archimedean there exists $r \in \mathbb{N}$ such that $p^{-r}|n^{-1}$. Therefore $n|p^r$. Since n is prime to p there exist $k, l \in \mathbb{Z}$ with

$$kp^r + ln = 1.$$

Since $n|p^r$, also $n|kp^r$. Clearly also n|ln. Thus (by (3)) n|1. Hence n|m.

By Lemma 4.2, $\| \|$ is a sub-multiplicative *p*-adic semi-norm on *A*. In the next lemma we shall give equivalent conditions for $\| \|$ to be even power multiplicative. Note that in this case $\| a^n \| = 0$ is equivalent to $\| a \| = 0$. It is well-known that power multiplicativity is already implied from the case n = 2.

Main Lemma 4.4. Let $|_0$ be a p-archimedean p-divisibility on A. Then the following three conditions are equivalent:

- (i) $p|_0a^2 \Rightarrow p|_0a \text{ for all } a \in A$,
- (ii) the norm || || defined by $|_0$ is power multiplicative.
- (iii) (Local-Global-Priciple) Let $X = Spec^{max}D_p(A, |_0)$. Then p | a for all $| \in X$ implies $p|_0a$.

Proof. (iii) \Rightarrow (i) follows from Theorem 4.1 and the fact that all $| \in X$ satisfy (i).

(i) \Rightarrow (ii): As $|| a^2 || \le || a ||^2$ is obvious, it remains to prove $|| a ||^2 \le || a^2 ||$. By the definition of || ||, this amounts to prove that ord $a^2 \le 2$ ord a. Let m = ord a and assume $p^{2m+1} |a^2$. Then clearly $p|(ap^{-m})^2$. Hence by (i) we would get $p|ap^{-m}$ or equivalently $p^{m+1}|a$, a contradiction.

(ii) \Rightarrow (iii): Let us assume $p \nmid_0 a$. We shall then construct some extension $| \in \text{Spec } D_p(A, |_0)$ such that $a \mid 1$. This clearly implies $p \nmid a$. The extension $| \text{ of } |_0$ will be obtained in three steps:

- In step 1 we construct $|_1 \supseteq |_0$ such that $a |_1 1$ and $|_1$ satisfies all axioms of a *p*-divisibility except (6). Instead, we shall only obtain $p \nmid 1$.
- In step 2 we maximalize $|_1$ to $|_2$ such that $|_2$ satisfies axiom (6), hence is a p-divisibility.
- In step 3 we apply Theorem 3.6 to $D_p(A, |_2)$ in order to obtain $| \in \text{Spec } D_p(A, |_0)$ with a | 1.

For step 1 and 2 we need a little preparation: We call an additive subgroup C of A convex w.r.t. | if for all $a, b \in A$ we have: $a \in C, a \mid b \Rightarrow b \in C$. For a subset S of A we define the convex group C(S) generated by S to be obtained by iterating countably many times in alternating order the two operations

$$G(S) = \text{additive group generated by } S$$

$$M(S) = \{b \in A; x \mid b \text{ for some } x \in S\}.$$

Then C(S) is a convex subgroup of A containing S. The operator C obviously satisfies $S \subseteq C(S) = CC(S)$ and $aC(S) \subseteq C(aS)$. Moreover we have

$$a \mid b \Rightarrow C(\{b\} \cup S) \subseteq C(\{a\} \cup S).$$

Step 1: We define $x|_1y :\Leftrightarrow ya^r \in C(\{xa^i; 0 \le i \le r\})$ for some $r \in \mathbb{N}$. First observe that $|_1$ extends $|_0$. In fact: $x|_0y \Rightarrow y \in C(x)(r = 0)$. Moreover we get $a |_1 1$ since $a \in C(\{a, a^2\})(r = 1)$. Next one checks the axioms (1) - (4) using the above mentioned properties of the operator C. The axioms (7) and (8) follow from $|_0 \subseteq |_1$. It remains to prove $p \nmid_1 1$ (then also axiom (5) follows). Let us assume on the contrary the existence of some $r \in \mathbb{N}$ such that

$$a^r \in C(\{pa^i; 0 \le i \le r\}).$$

By (ii) we have ord $a^i = i$ ord a. From our assumption $p \nmid_0 a$ we get ord $a \leq 0$. Hence we have the following contradiction:

ord
$$a^r \ge 1 + \min_{0 \le i \le r} \text{ ord } a^i = 1 + \text{ ord } a^r$$
.

Step 2: Let now $|_2$ be an extention of $|_1$ maximal with the properties (1) - (4), (7), (8) and $p \nmid_2 1$. We then prove (6) for $|_2$. Assume $cp|_2c$ for some $c \in A$. Since $|_2$ is *p*-archimedean, to every $b \in A$ we find some $m \in \mathbb{N}$ such that $1 \mid_2 p^m bc$. Applying $pc \mid_2 c$ iteratively yields $p \mid_2 p^{1+m}bc \mid_2 p^m bc \mid_2 p^{m-1}bc \mid_2 \cdots \mid_2 pbc \mid_2 bc$. Now define

$$x \mid' y :\Leftrightarrow y \in C(cA \cup \{x\}).$$

Clearly |' extends $|_2$. The axioms (1) to (4) are easy to check and the axioms (7) and (8) are interited. Since $p \mid_2 bc$ for all $b \in A$, we find $C(cA \cup \{p\}) \subseteq C(p)$. As $p \nmid_2 1$ we therefore get $1 \notin C(cA \cup \{p\})$, i.e. $p \nmid' 1$. Since $|_2$ was maximal with these properties, we have $|_2 = |'$, and therefore 0 |'c yields $0 \mid_2 c$. Thus we have shown that $|_2$ is a p-divisibility.

Step 3: Finally we apply Theorem 3.6 to $D_p(A, |_2)$ in order to obtain some $| \in \text{Spec}D_p(A, |_0)$ with a|1. clearly | may be chosen maximal.

p-adic Representation Theorem 4.5. Let A be a commutative ring with $\mathbb{Q} \subseteq A$ that admits a p-archimedean p-divisibility $|_0$ satisfying $p|_0a^2 \Rightarrow p|_0a$ for all $a \in A$. Then the homomorphism $\phi : A \to C(X, \mathbb{Q}_p)$ of Theorem 4.1 with $X = Spec^{max}D_p(A, |_0)$ satisfies $\| \phi(a) \|^* = \| a \|_0$. Consequently:

- ker $\phi = \{a \in A; p^n \mid_0 a \text{ for all } n \in \mathbb{N}\},\$
- ϕ is injective, if the semi-norm $\| \|_0$ defined by $|_0$ is a norm,
- ϕ is surjective, if A is complete w.r.t. the norm $\| \|_0$.

Proof. By Theorem 4.1 and Main Lemma 4.4 we have $\| \phi(a) \|^* = \| a \|_0$. Thus if $\| \|_0$ is a norm, $\phi(a) = 0$ implies $\| a \|_0 = 0$ and hence a = 0. This proves injectivity.

In order to get surjectivity, let $f \in C(X, \mathbb{Q}_p)$ be given. As $\phi(A)$ is dense in $C(X, \mathbb{Q}_p)$ by Theorem 4.1, there exists a sequence $(\phi(a_n))_{n \in \mathbb{N}}, a_n \in A$, converging to f. Then clearly $(a_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence in $(A, \| \|_0)$. Thus by completeness there exists a limit a of $(a_n)_{n \in \mathbb{N}}$ in A. Now $\phi(a) = f$.

From Theorem 4.5 we finally get our

Characterization Theorem 4.6. Let A be a commutative ring with $\mathbb{Q} \subseteq A$. Then, as a ring, $A \cong C(X, \mathbb{Q}_p)$ for some compact (actually 0-dimensional) space X if and only if there exists a p-divisibility $a \mid b$ on A such that

- (i) A is p-archimedean with respect to |,
- (ii) the p-adic semi-norm canonically defined by | on A is a norm satisfying $|| a^2 || = || a ||^2$ for all $a \in A$,
- (iii) A is complete with respect to this norm.

So far the characterization 4.6 does not seem to be a completely algebraic one, as it involves the binary relation |. There is, however, a way to avoid this. The canonical *p*-adic divisibility $|^*$ on $C(X, \mathbb{Q}_p)$ can actually be algebraically expressed in the following way **Proposition 4.7.** The canonical p-adic divisibility $|^*$ on $C(X, \mathbb{Q}_p)$, X a compact space, satisfies for all $f, g \in C(X, \mathbb{Q}_p)$

$$|g|^*f \Leftrightarrow \exists h \ h^q = g^q + pf^q$$

where $q \in \mathbb{N}$ is a prime different from p.

Proof. " \Leftarrow " Let $x \in X$. Then the values of $g^q(x)$ and $pf^q(x)$ are different. From $h^q = g^q + pf^q$ we see that the value of $(-q + \pi f^q)(x)$

$$(g^{\star} + pJ^{\star})(x)$$

has to be divisible by q. Hence $v_p(g^q(x)) < v_p(pf^q(x))$ which clearly implies $v_p(g(x)) \leq v_p(f(x))$. Thus by definition $g|^*f$.

" \Rightarrow " Assuming $v_p(g(x)) \leq v_p(f(x))$ for all $x \in X$ we have to construct a continuous function $h: X \to \mathbb{Q}_p$ such that $h^q = g^q + pf^q$.

Using the fact that the function $g^q + pf^q$ can only take values in \mathbb{Z} all of which are divisible by q, the fact that the residue class field is finite, and by patching h from suitable continuous functions, we are reduced to the case where g = 1 on an open and closed subset Y of X. Now we can apply Hensel's Lemma to the 1-unit $1 + pf(x)^q$ (as the characteristic of the residue field is different to q).

Using Proposition 4.7 we may replace any use of a|b in the Characterization Theorem 4.6 by the algebraic expression $(*) \neg a = a + ba$

$$(*) \quad \exists c \ c^q = a^q + pb^q,$$

requiring in addition that (*) is a *p*-divisibility satisfying (i)-(iii). This way we obtain a completely algebraic characterization of the rings $C(X, \mathbb{Q}_p)$ with X compact.

References

F. Albiac, N. J. Kalton: A characterization of real C(K)-spaces, The AMS [A-K] Monthly 114 (2007), 737-743. [E-P]A. Engler, A. Prestel: Valued Fields, Springer Monographs in Mathematics (2005).[K]I. Kaplansky: The Weierstrass theorem in fields with valuations, Proc. Amer. Math. Soc. 1, 356-357 (1950). [Kr] J.-L. Krivine: Anneaux préordonnés, J. Analyse Math. 12 (1964), 307-326. [L]S. Volkweis Leite: *p-adic representations of commutative rings*, Universität Konstanz (2012). [P-D] A. Prestel, C. N. Delzell: *Positive polynomials*, Springer Monographs in Mathematics (2001). [P-R] A. Prestel, P. Roquette: Formally p-adic fields, Springer Lecture Notes in Mathematics, 1050 (1984).

- [R] P. Roquette: *Bemerkungen zur Theorie der formal p-adischen Körper*, Beitrag zur Algebra und Geometrie 1 (1971), 177-193.
- [St] M. H. Stone: A general theory of spectra I, Proc. Nat. Acad. Sci., 26, 280-283 (1940).

 $samuelvolkweisleite@gmail.com\\alex.prestel@uni-konstanz.de$