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Abstract The aim of this paper is to characterize among the class of all commutative rings
containing Q the rings C(X,Qp) of all continuous Qp-valued functions on a compact space
X. The characterization is similar to that of M. Stone from 1940 (see [St]) for the case of
R-valued functions. The Characterization Theorem 4.6 is a consequence of our main result,
the p-adic Representation Theorem 4.5.

1 Introduction

The ring C(X,R) of all R-valued continuous functions on a compact space X is an R-Banach
algebra. Not surprisingly there are numerous characterizations of these rings among the class
of all R-Banach algebras (see e.g. [A-K]). What is, however, surprising is M. Stone’s purely
algebraic characterization of the rings C(X,R) among the class of all commutative rings A
containing Q. The secret of Stone’s approach is that he encodes the space X in a simple
algebraic subset T of A. Let us briefly indicate this approach in modern language.

A subset T of a commutative ring A with Q ⊆ A is called a pre-ordering of A if it satisfies

T + T ⊆ T, T · T ⊆ T, a2 ∈ T for all a ∈ A, −1 6∈ T.

If the set of sums of squares of A does not contain −1, this set is a pre-ordering of A. In
case of A = C(X,R), the set of squares already forms a pre-ordering 2. The totality of pre-
orderings on A is partially ordered by inclusion and it carries a natural topology making it a
quasi-compact space. For a fixed pre-ordering T0, the real spectrum of (A, T0) is the closed set
of pre-orderings P ⊇ T0 satisfying in addition P ∪−P = A and P ∩−P a prime ideal of A.
These objects are usually called orderings of A (see [P-D]). The maximal spectrum X of
(A, T0) yields an isomorphism A ∼= C(X,R) if T0 satisfies the conditions required by Stone.
Without going into further details let us mention only the crucial step in proving this iso-
morphism.

T0 is called archimedean if to every a ∈ A there exists some n ∈ N such that n − a ∈ T0.
Then the crucial step is the Local-Global-Principle: If a ∈ A is strictly positive for all P ∈ X
(i.e. a ∈ P r (−P )), then a ∈ T0. In this sense the pre-ordering T0 encodes the space X. In
case of the polynomial ring A = R[X1, . . . , Xn], for suitable T0 this principle is Schmüdgen’s
famous Positivstellensatz (see [P-D], Theorem 5.2.9).

1This paper contains the main result of the Ph.D. Thesis [L] of the first author written under the super-
vision of the second author.

2Although pre-orderings on commutative rings have already been used by M. Stone, the notation “pre-
ordering” was introduced much later by Krivine in a systematic study [Kr].
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In the present paper we treat in a similar way the rings C(X,Qp) of all Qp-valued continuous
functions on a compact space X. We end up with a purely algebraic characterization of
these rings among the class of commutative rings A containing Q. In order to achieve this,
we introduce certain subsets | of A × A called p-divisibilities 3. The totality Dp(A) of p-
divisibilities on A is partially ordered by inclusion and admits a canonical topology making it
a quasi-compact space. We call a p-divisibility | a p-valuation(-divisibility) if for all a, b ∈ A
we have totality : a | b or b | a, and cancellation: 0 - c, ac | bc⇒ a | b.
The class of p-valuations | extending a given p-divisibility |0 forms a closed subspace Spec
Dp(A, |0), called the p-adic valuation spectrum above |0. Let X denote the maximal spectrum
SpecmaxDp(A, |0). Finally we call |0 p-archimedean if for all a ∈ A there exists n ∈ N such
that p−n | a. The crucial step in our approach then is the Local-Global-Principle:

If p | a for all | ∈ X, then p |0 a.

This principle is essential for encoding the p-adic valuation spectrum above |0 in the simple
algebraic notion of the p-divisibility |0. Compared with the pre-ordering case, the exten-
sion theory of p-divisibilities is considerably more difficult. In case of the integral domain
A = Qp[X1, . . . , Xn] the local-global-principle parallels Roquette’s profound result on the
“Kochen-ring” of Qp(X1, . . . , Xn) in [R].

Concerning applications of the Local-Global-Principle (real or p-adic) everything depends
on the demonstration of the archimedean property of T0 or |0, resp. In the well treated
real situation some striking cases are known. Most interesting of all is Schmüdgen’s result
that the preordering T0 corresponding to a basic closed semi-algebraic subset W of Rn is
archimedean if and only if W is compact (see [P-D], Theorem 5.1.17). In the less treated
p-adic situation a suitable counterpart to Schmüdgen’s result is not yet known.

2 Divisibilities on commutative rings

Let A be a commutative ring with unit 1 6= 0. A binary relation a | b on A (in set theoretic
terms we shall write |⊆ A×A) will be called a divisibility on A, if for all a, b, c ∈ A we have

(1) a | a
(2) a | b, b | c⇒ a | c
(3) a | b, a | c⇒ a | b− c
(4) a | b⇒ ac | bc
(5) 0 - 1.

Easy consequences from these axioms are e.g. a | 0 and a | −a. The set I(|) := {a ∈ A; 0 | a}
is a proper ideal of A. For all α, β ∈ I(|) and a, b ∈ A we have a | b⇒ a+ α | b+ β.
It follows that

a+ I | b+ I :⇔ a | b
defines a divisibility on the quotient ring A = A/I(|). The ideal I(|) will be called the support
of |.

3Compared with the real situation one could as well call them “pre-p-valuations”.
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Clearly, if δ : A → B is a homomorphism of commutative rings with 1, i.e., δ(1) = 1, and |
is a divisibility on B, then

a|′b :⇔ δ(a)|δ(b)
defines a divisibility |′ on A with support I(|′) = δ−1(I(|)).
We call a divisibility | on A total if for all a, b ∈ A we have a|b or b|a. We shall say that |
admits cancellation if for all c 6∈ I(|) (i.e., 0 - c), ac|bc implies a|b. If | is total and admits
cancellation, we shall also call | a valuation divisibility.

Proposition 2.1. If the divisibility | has cancellation, then I(|) is prime.

Proof. Assume that 0|ab and 0 - a. Then cancelling a in 0 · a|ba gives 0|b.

Example 2.2 Let A be an integral domain and F = Quot A. Then every subring B of F
defines a divisibility | on A by taking

a|b :⇔ a = b = 0 or (a 6= 0 and
b

a
∈ B).

Note that | clearly has cancellation and I(|) = {0}. Conversely, if | is a divisibility with
cancellation and I(|) = {0} on A, then

B := { b
a

; a, b ∈ A, a|b, a 6= 0} ∪ {0}

is a subring of F .
It is clear that | ↔ B is a 1 − 1 correspondence. Note that | is total if and only if B is a
valuation ring of F . Note also that A need not be a subring of B. For example let A = R[X]
and B the valuation ring of the degree valuation on F = R(X). Then A ∩B = R.

Example 2.3 Let v : A → Γ ∪ {∞} be a valuation in the sense of Bourbaki, i.e., Γ is an
ordered abelian group I = v−1(∞) is a prime ideal of A, v : F → Γ ∪ {∞} is an ordinary
valuation on the field F = Quot A with A = A/I, and v(a) = v(a) for all a ∈ A. Then

a|b⇔ v(a) ≤ v(b)

defines a divisibility on A with I(|) = I prime. Clearly | has cancellation and is total.

Our main example here is A = F = Qp and vp : Qp → Z∪{∞}. We then call |p, defined by

a|pb⇔ vp(a) ≤ vp(b)

the canonical p-adic divisibility.

Example 2.4 Let A = C(X,Qp) be the ring of all continuous functions f : X → Qp where
X is a compact space. We call

f |∗g ⇔ ∀x ∈ X(vp(f(x)) ≤ vp(g(x)))

the canonical p-adic divisibility on A. If X is finite and has more than one point, then |∗ has
no cancellation, is not total, and I(|∗) = {0}, but not prime.

A valuation v : F � Γ∪ {∞} on a field F of characteristic 0 is called a p-valuation if Γ is a
discretely ordered abelian group with v(p) as minimal positive element and the residue field F
of v is the finite field Fp of p elements. (F, v) is called p-adically closed if v : F � Γ∪{∞} is a
p-valuation, (F, v) is henselian, and the quotient group Γ/Zv(p) is divisible. Clearly, (Qp, vp)
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is p-adically closed. Every p-valued field admits an algebraic extension that is p-adically
closed, called a p-adic closure. p-adic closures are in general not unique up to isomorphism.
In case Γ = Z, the p-adic closure is unique up to isomorphism as it is the henselization. For
more information the reader is refered to [P-R].
Returning to a p-valued field (F, v) let us simply write 1 for the positive minimal value v(p).
For every x ∈ F the quotient

γ(x) =
1

p
· xp − x

(xp − x)2 − 1
is defined and has value ≥ 0. The operator γ is usually called the Kochen operator. It plays
in the theory of p-valued fields a similar role as the square operator does in the theory of
pre-ordered fields.

Theorem 2.5. Let F be a field of characteristic 0 and let B be a subring of F containing
the ring Z[γ(F )] generated by all γ(x) for x ∈ F . If p−1 6∈ B, then B is contained in the
valuation ring Ov of some p-valuation v on F .

Proof. Clearly, p is not a unit of B. Thus there exists a prime ideal P of B with p ∈ P . By
Chevalley’s place extension theorem ([E-P], ch 3.1) there exists a valuation v of F such that
Ov ⊇ B and Mv ∩ B = P . Since now the valuation ring Ov containes Z[γ(F )], but not p−1,
v is a p-valuation by [P-R], Lemma 6.1.

Motivated by this theorem we call a divisibility | on a commutative ring with 1 6= 0, a
p-divisibility if it satisfies for all a, b ∈ A

(6) 0 - a⇒ pa - a, and

(7) p[(apb− bpa)2 − (bp+1)2] | [(apb− bpa)bp+1].

Note that (6) implies in particular p - 1.

Theorem 2.6. Let A be an integral domain with Q ⊆ A and F = Quot A its field of
fractions. Then there is a 1 − 1 correspondence between p-valuation rings B ⊆ F and total
p-divisibilities | of A that have cancellation and support I(|) = {0}.
Proof. If B ⊆ F = Quot A is a p-valuation ring, then Example 2.2 shows that for a, b ∈ A

a|b :⇔ a = 0 or
b

a
∈ B

gives a total p-divisibility on A with cancellation and I(|) = {0}.
Conversely, let | ⊆ A × A be a total p-divisibility with cancellation and I(|) = {0}. Then
again Example 2.2 together with Theorem 2.5 shows that

B := { b
a

; a, b ∈ A, a 6= 0, a|b} ∪ {0}

is a valuation ring of F being contained in the valuation ring Ov of some p-valuation of F .
It then follows that B = Ov. In fact, the valuation ring B is mapped by the residue map
δ : Ov → Fp of v to a valuation ring δ(B) of Fp. As Fp is finite, it follows that δ(B) = Fp.
Hence also B = Ov.

As we have seen above the canonical p-adic valuation vp defines on Qp by a|pb⇔ vp(a) ≤ vp(b)
a total p-divisibility |p with cancellation and support {0}. From this we also see that the
canonical p-adic divisibility |∗ of C(X,Qp) is in fact a p-divisibility. But in general |∗ need
neither be total nor have cancellation.
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3 The divisibility spectrum

In this section we shall first introduce the divisibility spectrum of a commutative A with
1 6= 0. We then restrict ourself to the spectrum of p-divisibilities assuming that Q ⊆ A. This
will provide us with some compact (zero-dimensional) space X on which later the elements
of A will operate as continuous functions with values in Qp.

Let A be a commutative ring with unit 1 6= 0. The next proposition justifies the name
‘valuation divisibility’ in Section 2 for divisibilities that are total and admit cancellation.

Proposition 3.1. The valuation divisibilities on A correspond 1− 1 to the Bourbaki valua-
tions of A.

Proof. Let first v : A → Γ ∪ {∞} be a Bourbaki valuation on A, i.e., I = v−1(∞) is a
prime ideal of A, v : Quot A→ Γ ∪ {∞} with A = A/I is an ordinary field valuation, and
v(a + I) = v(a) for all a ∈ A. Then for elements a, b from A, a|vb ⇔ v(a) ≤ v(b) defines a
total divisibility on A having cancellation and support I(|v) = I.
Conversely, let | be a valuation divisibility on A. Then I = I(|) is prime by Proposition 2.1
and | induces a total divisibility | on the integral domain A = A/I having cancellation and
support {0}. Thus by Example 2.2 the ring

B := { b
a

; a 6= 0 and a|b} ∪ {0}

is a valuation ring of F = Quot A, say B = Ov for some ordinary valuation v : F → Γ∪{∞}.
Now v(a) := v(a) clearly defines a Bourbaki valuation on A with v−1(∞) = I inducing v on
A. By construction of v we have for all a, b ∈ A, a|b⇔ v(a) ≤ v(b).

It is obvious that the correspondence between v and | is one to one.

Remark 3.2. Assuming Q ⊆ A in the construction of Theorem 3.1, all fields Quot A,
have characteristic 0. Thus by Theorem 2.6 the valuation divisibility | of Theorem 3.1 is a
p-divisibility if and only if v is a p-valuation.

Now let us introduce

D(A) = class of all divisibilities of A,
Dp(A) = class of all p-divisibilities of A.

Note that both classes are closed by taking unions of chains w.r.t. inclusion. Thus by Zorn’s
Lemma every (p-)divisibility is contained in some maximal (p-)divisibility. On D = D(A)
we introduce the spectral topology as the topology generated by the sets

U(a, b) = {| ∈ D; a - b}
where a, b range over A. If we add the complements V (a, b) = {| ∈ D; a|b} to the above
generators, we call this finer topology the constructible one.
Identifying a subset Y of A × A with its characteristic function and applying Tychonoff’s
Theorem to the function space {0, 1}A×A one proves by standard arguments

Lemma 3.3. The constructible topology on D(A) is compact. Thus the spectral topology is,
in particular, quasi-compact (i.e. every open cover contains a finite subcover).
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We call the class

Spec D(A) = {| ∈ D(A); | is total and admits cancellation}

the divisibility spectrum of A, and Spec Dp(A) = Dp(A)∩ Spec D(A) the p-divisibility spec-
trum of A.

These two classes are as well closed under unions of chains. Thus again by Zorn’s Lemma
every element is contained in a corresponding maximal one. We denote the subclasses of
maximal elements by

SpecmaxD(A) and SpecmaxDp(A).

Proposition 3.4. 1. Dp(A), Spec D(A), and Spec Dp(A) are closed subclasses of D(A)
in the constructible topology, hence are quasi-compact in both topologies.

2. D(A)max and Dp(A)max are quasi-compact in the spectral topology.

3. Spec Dp(A) and SpecmaxDp(A) are compact in both topologies, they actually are 0-
dimensional spaces: V (a, b) = U(bp, a) for all a, b ∈ A.

Proof. The proofs are straigt forward by standard arguments. Let us only mention that in
3 one shows that V (a, b) = U(bp, a) on Spec Dp. In fact by Theorem 3.1 and Remark 3.2
the elements of Spec Dp correspond to Bourbaki p-valuations. Recall, if | ∈ Spec Dp, then
there is a p-valuation v on A = A/I(|) such that a|b⇔ v(a) ≤ v(b). As 1 = v(p) is minimal
positive, we get a|b⇔ pb - a.

For a fixed divisibility |0 on A we shall consider the subclasses of the above introduced classes
consisting of extensions of |0 and denote them by D(A, |0) and Dp(A, |0) respectively. As
D(A, |0) is closed in the spectral topology, all topological considerations from above remain
true for the relativized classes.

In the following the fixed divisibility |0 will always be assumed to be p-archimedean, i.e.,

(8) ∀a ∈ A ∃m ∈ Z : pm|0a.

The canoncial p-adic divisibilities on Qp and on C(X,Qp) both satisfy axiom (8).

Theorem 3.5. Let A be a commutative ring with Q ⊆ A, and let |0 be a p-archimedean
p-divisibility on A. Then an element | of Spec Dp(A, |0) is maximal if and only if I(|) is
prime and the corresponding p-valuation v on F = Quot A/I(|) has value group Z.

Proof. “⇒” Let | be maximal in Spec Dp(A, |0). By Theorem 3.1 and Remark 3.2 | corre-
sponds uniquely to a p-valuation v : F � Γ∪{∞}. Denoting (as usual) the positive minimal
element v(p) of Γ by 1,Z = Zv(p) is a convex subgroup of Γ. Since |0 is archimedean, so is
|. Hence for every a ∈ A there exists some m ∈ Z such that m ≤ v(a).
If now Γ would be bigger than Z, there existed some b ∈ ArI(|) with m ≤ v(b) for all m ∈ Z.
Thus the set P = {b ∈ A;m ≤ v(b) for all m ∈ Z} forms a non-zero prime ideal of A. Taking
w(b + P ) := v(b) defines a p-valuation on the quotient field F ′ of A/P with value group Z.
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Setting a|′b in case w(a+ P ) ≤ w(b+ P ) defines a p-divisibility |′ ∈ Spec Dp(A, |0) strictly
containing |. This contradicts the maximality of |. Therefore Γ = Z.

“⇐” Now assume that the p-valuation v corresponding to | has value group Z on F =
Quot A/I(|). If |′ ∈ Spec Dp(A, |0) is a proper extension of | then I(|) $ I(|′) or, I(|) = I(|′)

and the valuation ring O′ of v′ properly extends the valuation ring O of v. This second case
is not possible, since (by Lemma 2.3.1 of [E-P]) a proper extension O′ of O corresponds to a
proper convex subgroup of the value group of O which is Z. Such a subgroup clearly does not
exist. In the first case, choose a ∈ I(|′) r I(|). Since v has value group Z and a is non-zero
in A/I(|), there exists some m ∈ Z such that v(a) ≤ m, i.e., a|pm. But then a ∈ I(|′) implies
0|′a. Now | ⊆ |′ gives 0|′pm, a contradiction.

So far we did not show that Spec Dp(A) is non-empty.

Theorem 3.6. Let A be a commutative ring with Q ⊆ A. Then Spec Dp(A) is non-empty
if and only if there exists a p-divisibility | on A. Equivalently, we have that A admits a
ring homomorphism δ with δ(1) = 1 into some p-valued field. Spec Dp(A) contains a p-
archimedean element if and only if A admits a ring homomorphism with δ(1) = 1 into the
p-adic number field Qp.

Proof. Assume δ : A → F is a ring homomorphism with δ(1) = 1 and (F, v) is a p-valued
field. Then the definition

a|b⇔ v(δ(a)) ≤ v(δ(b))

for a, b ∈ A obviously yields a p-divisibility on A with I(|) = ker δ. If (F, v) = (Qp, vp) then
clearly | is p-archimedean.

Next let |′ be a p-divisibility on A. By Zorn’s Lemma we can pass to a maximal extension |
of |′ inside the class of p-divisibilities extending |′. Thus also | is a p-divisibility. We want to
see that | admits cancellation. Let c ∈ A and assume 0 - c. We then define a|cb if ac | bc for
all a, b ∈ A. One easily checks that |c is a p-divisibility on A extending |. As | is maximal,
| = |c. This implies cancellation by c. In fact, if ac | bc, then a|cb and as | = |c, we get a | b.
Since now | has cancellation, by Proposition 2.1 I(|) is prime and we may pass to the ring
A = A/I(|) and its field of fractions F = Quot A. By Example 2.2 the divisibility |
corresponds to the subring

B = { b
a

; 0 - a, a|b} ∪ {0}

of F . Since | is a p-divisibility, the Kochen relations (7) imply that Z[γ(F )] is contained in
B, while (6) implies that p−1 6∈ B. Thus by Theorem 2.5 there exists a p-valuation v on F
such that B ⊆ Ov. Now by Remark 3.2 the definition

a|1b⇔ v(a) ≤ v(b)

yields an extension |1 of | that belongs to Spec Dp(A). Thus Spec Dp(A) is non-empty.

Finally, let | ∈ Spec Dp(A). By Remark 3.2, | induces a p-valuation v on Quot A/I(|).
Thus the canonical homomorphism δ : A→ A/I(|) maps A to a p-valued field.

It remains to show that the existence of a p-archimedean element | ∈ Spec Dp(A) provides
us with some homomorphism from A to Qp.
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We may assume that | is maximal in Spec Dp(A). Then by Theorem 3.5, I(|) is prime
and | corresponds to some p-valuation v on F = Quot A/I(|) with value group Z. In that
case, however, the completion of F w.r.t. v is isomorphic to the field Qp. Thus the desired
homomorphism is just the canonical homomorphism δ : A→ A/I(|).

4 p-adic representations

Now let us fix a commutative ring A with Q ⊆ A together with a p-archimedean p-divisibility
|0 on A. By Theorem 3.6 the maximal spectrum

X = SpecmaxDp(A, |0)
is non-empty, and by Proposition 3.4.(3.) it is a 0-dimensional compact space. By Theorem
3.5 every | ∈ X induces a canonical homomorphism

α| : A→ A = A/I(|) ⊆ F := Quot A

together with a p-valuation v : F → Z ∪ {∞} such that a|b ⇔ v(a) ≤ v(b) for all a, b ∈ A.
The completion of F w.r.t. v is just the field Qp of p-adic numbers with v being the restriction
of vp to F.4 As Q is dense in Qp w.r.t. the topology induced by the p-adic valuation vp on Qp,
the embedding of F into Qp, is uniquely determined. Thus every | ∈ X yields a canonical
homomorphism

α| : A→ Qp

with a|b⇔ vp(α|(a)) ≤ vp(α|(b)) for all a, b ∈ A. Therefore, every a ∈ A induces a canonical
map â from A to Qp by taking

â(|) := α|(a)
for every ‘point’ | in X.

Theorem 4.1. Let A be a commutative ring with Q ⊆ A and let |0 be a p-archimedean p-
divisibility on A. Then the map â is continuous for every a ∈ A. Therefore φ : A→ C(X,Qp)
defined by φ(a) = â is a homomorphism of rings with dense image φ(A) in C(X,Qp), satis-
fying

a|0b⇒ φ(a)|∗φ(b), for all a, b ∈ A.
Proof. As Q is dense in Qp, the sets

Un(r) = {x ∈ Qp; vp(x− r) ≥ n}, r ∈ Q, n ∈ N

form a base for the topology on Qp. Thus it suffices to show that the preimage of Un(r)
under â is open in the topology of X. This, however, follows from Proposition 3.4.(3.) and
the fact that

(â)−1(Un(r)) = {| ∈ X; pn|a− r} = V (pn, a− r) ∩X
for all a ∈ A, r ∈ Q and n ∈ N.
In order to show that φ(A) is dense in C(X,Qp) w.r.t. the maximum norm it suffices by
the p-adic Stone-Weierstrass Approximation (see [K]) to show that two different points of
X, say |1 6= |2 can always be separated by some function â, i.e., â(|1) 6= â(|2): Let a, b ∈ A
distinguish |1 from |2, say a|1b and a -2 b. Then either â or b̂ separates |1 from |2, as it is
easily checked.

4Note that every element of F has a canonical expansion as a power series in the uniformizer p with
coefficients from {0, 1, . . . , p− 1} (cf. [E-P], Proposition 1.3.5).
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Let X be a compact space. We then denoted by C(X,Qp) the ring of all Qp-valued continuous
functions on X. This ring carries a canonical p-adic norm which makes it a p-adic Banach
algebra over Qp. The norm is defined by

‖ f ‖∗:= max {|f(x)|p; x ∈ X}

where | |p is the p-adic absolute value on Qp defined by |x|p = p−vp(x).
The norm ‖ ‖∗ on C(X,Qp) is even power multiplicative, i.e., for all n ∈ N

‖ fn ‖∗= (‖ f ‖∗)n.

Theorem 4.1 provides us with a homomorphism φ : A → C(X,Qp) with dense image. We
have, however, no information about the kernel of φ. In order to achieve this goal we shall
introduce one more condition on the p-divisibility |0 of Theorem 4.1.
Let us assume that | is a p-archimedean p-divisibility on the commutative ring A with Q ⊆ A.
We can then define for every a ∈ A

ord a := sup {m ∈ Z; pm|a} ∈ Z ∪ {∞} and ‖ a ‖= p− ord a.

Lemma 4.2. For all a, b ∈ A, r ∈ Q we get

(a) ‖ a+ b ‖≤ max (‖ a ‖, ‖ b ‖)

(b) ‖ a · b ‖≤‖ a ‖ ‖ b ‖

(c) ‖ r ‖= |r|p

(d) ‖ ra ‖= |r|p ‖ a ‖.

Proof. (a) and (b) are easily checked. (c) is equivalent to ord r = vp(r), and will be shown
in Proposition 4.3 below.
(d) then follows from ‖ ra ‖≤‖ r ‖ ‖ a ‖= |r|p ‖ a ‖ and ‖ a ‖=‖ r−1ra ‖≤‖ r−1 ‖ ‖ ra ‖ .
In fact, since by (c), ‖ ‖ is multiplicative on Q, we then get |r|p ‖ a ‖=‖ r−1 ‖−1 ‖ a ‖≤
‖ ra ‖ .

It remains to show ord r = vp(r) for r ∈ Q. This follows from

Proposition 4.3. The only p-archimedean divisibility with p - 1 of the field Q of rational
numbers is the one obtained by the p-adic valuation vp.

Proof. The support I(|) is a proper ideal of Q. Hence I(|) = {0}. Moreover, as Q is a field,
axiom (4) implies that | has cancellation. Thus by Example 2.2 it suffices to show that the
ring B = { b

a
; a, b ∈ Q, a 6= 0, a|b} ∪ {0} contains the valuation ring Z(p) of vp restricted

to Q. In fact, then also B is a valuation ring of Q, hence has to be equal to Z(p) (cf. [E-P],
Theorem 2.1.4). Note that B 6= Q as p−1 6∈ B.
Let n,m ∈ Z and n prime to p. We have to show that n|m. As | is p-archimedean there
exists r ∈ N such that p−r|n−1. Therefore n|pr. Since n is prime to p there exist k, l ∈ Z
with

kpr + ln = 1.

Since n|pr, also n|kpr. Clearly also n|ln. Thus (by (3)) n|1. Hence n|m.
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By Lemma 4.2, ‖ ‖ is a sub-multiplicative p-adic semi-norm on A. In the next lemma we
shall give equivalent conditions for ‖ ‖ to be even power multiplicative. Note that in this
case ‖ an ‖= 0 is equivalent to ‖ a ‖= 0. It is well-known that power multiplicativity is
already implied from the case n = 2.

Main Lemma 4.4. Let |0 be a p-archimedean p-divisibility on A. Then the following three
conditions are equivalent:

(i) p|0a2 ⇒ p|0a for all a ∈ A,

(ii) the norm ‖ ‖ defined by |0 is power multiplicative.

(iii) (Local-Global-Priciple) Let X = SpecmaxDp(A, |0). Then p | a for all | ∈ X implies
p|0a.

Proof. (iii) ⇒ (i) follows from Theorem 4.1 and the fact that all | ∈ X satisfy (i).
(i) ⇒ (ii): As ‖ a2 ‖≤‖ a ‖2 is obvious, it remains to prove ‖ a ‖2≤‖ a2 ‖. By the
definition of ‖ ‖, this amounts to prove that ord a2 ≤ 2 ord a. Let m = ord a and assume
p2m+1 |a2. Then clearly p|(ap−m)2. Hence by (i) we would get p|ap−m or equivalently pm+1|a,
a contradiction.
(ii)⇒ (iii): Let us assume p -0 a. We shall then construct some extension | ∈ Spec Dp(A, |0)
such that a | 1. This clearly implies p - a. The extension | of |0 will be obtained in three
steps:

• In step 1 we construct |1 ⊇ |0 such that a |1 1 and |1 satisfies all axioms of a p-divisibility
except (6). Instead, we shall only obtain p - 1.

• In step 2 we maximalize |1 to |2 such that |2 satisfies axiom (6), hence is a p-divisibility.

• In step 3 we apply Theorem 3.6 to Dp(A, |2) in order to obtain | ∈ Spec Dp(A, |0) with
a | 1.

For step 1 and 2 we need a little preparation: We call an additive subgroup C of A convex
w.r.t. | if for all a, b ∈ A we have: a ∈ C, a | b ⇒ b ∈ C. For a subset S of A we define
the convex group C(S) generated by S to be obtained by iterating countably many times in
alternating order the two operations

G(S) = additive group generated by S
M(S) = {b ∈ A;x | b for some x ∈ S}.

Then C(S) is a convex subgroup of A containing S. The operator C obviously satisfies
S ⊆ C(S) = CC(S) and aC(S) ⊆ C(aS). Moreover we have

a | b⇒ C({b} ∪ S) ⊆ C({a} ∪ S).

Step 1: We define x|1y :⇔ yar ∈ C({xai; 0 ≤ i ≤ r}) for some r ∈ N. First observe
that |1 extends |0. In fact: x|0y ⇒ y ∈ C(x)(r = 0). Moreover we get a |1 1 since
a ∈ C({a, a2})(r = 1). Next one checks the axioms (1) - (4) using the above mentioned
properties of the operator C. The axioms (7) and (8) follow from |0 ⊆ |1. It remains to prove
p -1 1 (then also axiom (5) follows). Let us assume on the contrary the existence of some
r ∈ N such that

ar ∈ C({pai; 0 ≤ i ≤ r}).
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By (ii) we have ord ai = i ord a. From our assumption p -0 a we get ord a ≤ 0. Hence we
have the following contradiction:

ord ar ≥ 1 + min 0≤i≤r ord ai = 1 + ord ar.

Step 2: Let now |2 be an extention of |1 maximal with the properties (1) - (4), (7), (8) and
p -2 1. We then prove (6) for |2. Assume cp|2c for some c ∈ A. Since |2 is p-archimedean,
to every b ∈ A we find some m ∈ N such that 1 |2 pmbc. Applying pc |2c iteratively yields
p |2 p1+mbc |2 pmbc |2 pm−1bc |2 · · · |2 pbc |2 bc.
Now define

x |′ y :⇔ y ∈ C(cA ∪ {x}).
Clearly |′ extends |2. The axioms (1) to (4) are easy to check and the axioms (7) and
(8) are interited. Since p |2 bc for all b ∈ A, we find C(cA ∪ {p}) ⊆ C(p). As p -2 1
we therefore get 1 6∈ C(cA ∪ {p}), i.e. p -′ 1. Since |2 was maximal with these properties,
we have |2 = |′, and therefore 0 |′ c yields 0 |2 c. Thus we have shown that |2 is a p-divisibility.

Step 3: Finally we apply Theorem 3.6 to Dp(A, |2) in order to obtain some | ∈ SpecDp(A, |0)
with a|1. clearly | may be chosen maximal.

p-adic Representation Theorem 4.5. Let A be a commutative ring with Q ⊆ A that
admits a p-archimedean p-divisibility |0 satisfying p|0a2 ⇒ p|0a for all a ∈ A. Then the
homomorphism φ : A → C(X,Qp) of Theorem 4.1 with X = SpecmaxDp(A, |0) satisfies
‖ φ(a) ‖∗=‖ a ‖0 . Consequently:

• ker φ = {a ∈ A; pn |0 a for all n ∈ N},

• φ is injective, if the semi-norm ‖ ‖0 defined by |0 is a norm,

• φ is surjective, if A is complete w.r.t. the norm ‖ ‖0.

Proof. By Theorem 4.1 and Main Lemma 4.4 we have ‖ φ(a) ‖∗=‖ a ‖0. Thus if ‖ ‖0 is a
norm, φ(a) = 0 implies ‖ a ‖0= 0 and hence a = 0. This proves injectivity.
In order to get surjectivity, let f ∈ C(X,Qp) be given. As φ(A) is dense in C(X,Qp) by
Theorem 4.1, there exists a sequence (φ(an))n∈N, an ∈ A, converging to f . Then clearly
(an)n∈N is a Cauchy-sequence in (A, ‖ ‖0). Thus by completeness there exists a limit a of
(an)n∈N in A. Now φ(a) = f .

From Theorem 4.5 we finally get our

Characterization Theorem 4.6. Let A be a commutative ring with Q ⊆ A. Then, as a
ring, A ∼= C(X,Qp) for some compact (actually 0-dimensional) space X if and only if there
exists a p-divisibility a | b on A such that

(i) A is p-archimedean with respect to |,
(ii) the p-adic semi-norm canonically defined by | on A is a norm satisfying ‖ a2 ‖=‖ a ‖2

for all a ∈ A,

(iii) A is complete with respect to this norm.

So far the characterization 4.6 does not seem to be a completely algebraic one, as it involves
the binary relation |. There is, however, a way to avoid this. The canonical p-adic divisibility
|∗ on C(X,Qp) can actually be algebraically expressed in the following way
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Proposition 4.7. The canonical p-adic divisibility |∗ on C(X,Qp), X a compact space,
satisfies for all f, g ∈ C(X,Qp)

g|∗f ⇔ ∃h hq = gq + pf q

where q ∈ N is a prime different from p.

Proof. “⇐” Let x ∈ X. Then the values of gq(x) and pf q(x) are different. From hq = gq+pf q

we see that the value of
(gq + pf q)(x)

has to be divisible by q. Hence vp(g
q(x)) < vp(pf

q(x)) which clearly implies vp(g(x)) ≤
vp(f(x)). Thus by definition g|∗f.
“⇒” Assuming vp(g(x)) ≤ vp(f(x)) for all x ∈ X we have to construct a continuous function
h : X → Qp such that hq = gq + pf q.
Using the fact that the function gq + pf q can only take values in Z all of which are divisible
by q, the fact that the residue class field is finite, and by patching h from suitable continuous
functions, we are reduced to the case where g = 1 on an open and closed subset Y of X. Now
we can apply Hensel’s Lemma to the 1-unit 1 + pf(x)q (as the characteristic of the residue
field is different to q).

Using Proposition 4.7 we may replace any use of a|b in the Characterization Theorem 4.6 by
the algebraic expression

(*) ∃c cq = aq + pbq,

requiring in addition that (*) is a p-divisibility satisfying (i)-(iii). This way we obtain a
completely algebraic characterization of the rings C(X,Qp) with X compact.
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