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Introduction

The equations of thermoelasticity describe the elastic and the thermal be-
havior of elastic, heat conductive media, in particular the reciprocal actions
between elastic stresses and temperature differences. We consider the classi-
cal thermoelastic system where the elastic part is the usual second-order one
in the space variable. The equations are a coupling of the equations of elas-
ticity and of the heat equation and thus build a hyperbolic-parabolic sys-
tem. Indeed, both hyperbolic and parabolic effects are encountered. This
book discusses the mathematical questions arising in the study of initial
value problems and of initial boundary value problems to these equations,
both for linear and for nonlinear systems. Classical boundary conditions
of the Dirichlet type — rigidly clamped, constant temperature — or the
Neumann type — traction free, insulated — are considered, as well as the
linearized equations together with contact boundary conditions.

It is known both for hyperbolic and for parabolic nonlinear equations
and systems that global smooth solutions in general might not exist but
that a blow-up may occur. The criteria according to which global solutions
still exist are different for hyperbolic and for parabolic equations. Hence the
question arises whether the behavior will be dominated by the hyperbolic
or by the parabolic part. The answer will depend on the number of space
dimensions. This also applies to the question of asymptotic behavior of
solutions to the linearized system, where the behavior will also depend on
the space dimension, or to be more precise, one dimension on one side and
two or three dimensions on the other side.

The methods used for obtaining global existence theorems for small data
consist of proving suitable a priori estimates, where one often exploits the
decay of solutions to the linearized equations. This requires a precise anal-
ysis of the asymptotic behavior of such solutions as time tends to infinity,
which will finally allow us to describe the asymptotic behavior of solutions
to the nonlinear systems as well.

We are mainly interested in proving the well-posedness in the class of
smooth solutions and in describing the asymptotic behavior of the solutions
as time tends to infinity. This will be possible in the linear case and also
in the nonlinear case provided the nonlinearities and the data satisfy cer-
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2 Introduction

tain conditions. Otherwise, a blow-up in finite time has to be expected as
examples will show; then weak solutions must be considered.

In one space dimension the picture is almost complete. Bounded or
unbounded intervals representing the reference configuration can be dealt
with for all the classical boundary conditions. The asymptotic behavior is
known, the decay rates are known to be optimal (in the case of absence of
forces and heat supplies). For small data global smooth solutions to the
nonlinear system will exist; large data lead to a blow-up.

In two or three space dimensions generic nonlinear cases are understood,
although there are unsolved problems. Local well-posedness is known in
most cases, but concerning global solutions or blow-up for nonlinear situa-
tions, only the Cauchy problem and the bounded radially symmetric case
have been investigated. This corresponds to the fact that the dynamics
in the linear case is complicated apart from these situations, as we shall
describe in detail.

Although the system to be considered is a rather special one, it should
be stressed that the methods employed are rather general and have been
or can be used for purely hyperbolic or parabolic problems.

The aim of the book is to present a state of the art in the treatment of
initial value problems and of initial boundary value problems both in lin-
ear and nonlinear thermoelasticity. Although well-posedness in the linear
theory has been studied for years, the description of the general dynamical
system with its asymptotic behavior as time tends to infinity and, in par-
ticular, the study of nonlinear systems only started in the late sixties and
the early eighties, respectively, and led to very interesting features.

After a brief derivation of the equations in Chapter 1 and the discus-
sion of the well-posedness of the linearized problems in Chapter 2, the
asymptotic behavior of solutions to the linearized models in one space di-
mension is described for bounded and unbounded domains in Chapter 3,
up to a result on the propagation of singularities. Chapter 4 examines the
corresponding two- and three-dimensional systems for radially symmetric
bounded domains and for some Cauchy problems with certain symmetries,
while the generic result for bounded domains will be slow decay. The local
existence of solutions to the original nonlinear problem is obtained rather
generally in Chapter 5. Turning to the question of well-posedness, Chapter
6 discusses the picture in one space dimension in detail for bounded and un-
bounded domains, for stationary forces, giving global small solutions, while
large data lead to a blow-up; in the latter case weak solutions are obtained
in special situations. Chapter 7 considers the existence of global solutions
in the spatially two- or three-dimensional situation both for the Cauchy
problem and for the initial boundary value problem in those domains with
symmetry that allowed a detailed description of the time-asymptotic be-
havior in the linearized case; a blow-up result for the Cauchy problem is
also presented. Chapter 8 presents solutions to contact problems, where the
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linearized equations in several space dimensions together with the typical
contact boundary conditions are studied, leading to some global existence
theorems and a description of the asymptotic behavior both for quasi-static
and fully dynamical situations. Chapter 9 briefly presents some related re-
sults, such as the behavior in the case of additional damping effects, the
asymptotic behavior in space and a survey of some numerical results.

The topics chosen in this book and the references provided are of course
not exhaustive. Nevertheless, we hope that the material presented will help
serve as a general reference in the field.
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[89] Muñoz Rivera, J.E., de Lacerda Oliveira. M.: Exponential stability
for a contact problem in thermoelasticity. IMA J. Appl. Math. 58
(1997), 71–82.

[90] Stability in inhomogeneous and anisotropic thermoelas-
ticity. Boll. U.M.I. 11-A (1997), 115–127.
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sançon (1999).

[122] Stein, E.: Singular Integrals and Differentiability Properties of Func-
tions. Princeton Univ. Press, Princeton, New Jersey (1970).

[123] Stoth, M.: Globale klassische Lösungen der quasilinearen Elas-
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