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Introduction

Many problems arising in the applied sciences lead to nonlinear initial value problems

(nonlinear Cauchy problems) of the following type

Vt + AV = F (V, . . . ,∇βV ), V (t = 0) = V 0.

Here V = V (t, x) is a vector-valued function taking values in IRk (or Ck), where t ≥ 0,

x ∈ IRn, and A is a given linear differential operator of order m with k, n, m ∈ IN. F is

a given nonlinear function of V and its derivatives up to order |β| ≤ m, and ∇ denotes

the gradient with respect to x, while V 0 is a given initial value. In particular the case

|β| = m, i.e. the case of fully nonlinear initial value problems, is of interest.

An important example from mathematical physics is the wave equation describing

an infinite vibrating string (membrane, sound wave, respectively) in IR1 (IR2, IR3, re-

spectively; generalized: IRn). The second-order differential equation for the elongation

y = y(t, x) at time t and position x is the following:

ytt −∇′ ∇y√
1 + |∇y|2 = 0,

where ∇′ denotes the divergence. This can also be written as

ytt − Δy = ∇′ ∇y√
1 + |∇y|2 − Δy =: f(∇y,∇2y).

We notice that f has the following property:

f(W ) = O(|W |3) as |W | → 0.

Additionally one has prescribed initial values

y(t = 0) = y0, yt(t = 0) = y1.

The transformation defined by V := (yt,∇y) turns the nonlinear wave equation for y into

a first-order system for V as described above. The investigation of such nonlinear evo-

lution equations has found an increasing interest in the last years, in particular because

of their application to the typical partial differential equations arising in mathematical

physics.

We are interested in the existence and uniqueness of global solutions, i.e. solutions

V = V (t, x) which are defined for all values of the time parameter t. The solutions will

be smooth solutions, e.g. C1-functions with respect to t taking values in Sobolev spaces

of sufficiently high order of differentiability. In particular they will be classical solutions.

Moreover we wish to describe the asymptotic behaviour of the solutions as t → ∞.
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It is well known for the nonlinear wave equation, the first example above, that in

general one cannot expect to obtain a global smooth solution. That is to say, the solution

may develop singularities in finite time, no matter how smooth or how small the initial

data are. This phenomenon is known for more general nonlinear hyperbolic systems

and also for many other systems from mathematical physics, biology, etc., including the

systems which are mentioned below. Therefore, a general global existence theorem can

only be proved under special assumptions on the nonlinearity and on the initial data. The

result will be a theorem which is applicable for small initial data, assuming a certain

degree of vanishing of the nonlinearity near zero. The necessary degree depends on

the space dimension, being a weaker assumption for higher dimensions. This is strongly

connected with the asymptotic behaviour of solutions to the associated linearized system

(F ≡ 0 resp. f ≡ 0 in the example above) as t → ∞, which gives a first insight into the

means used for the proof.

Further examples of nonlinear evolution equations which can be written in the general

first-order form after a suitable transformation are the following. They will be discussed

in more detail in Chapter 11.

• Equations of elasticity:

∂2
t Ui =

n∑
m,j,k=1

Cimjk(∇U)∂m∂kUj, i = 1, . . . , n,

U(t = 0) = U0, Ut(t = 0) = U1.

We shall discuss the homogeneous, initially isotropic case for n = 3 and the homo-

geneous, initially cubic case for n = 2.

• Heat equations:

ut − Δu = F (u,∇u,∇2u), u(t = 0) = u0.

• Equations of thermoelasticity:

∂2
t Ui =

n∑
m,j,k=1

Cimjk(∇U, θ)∂m∂kUj + C̃im(∇U, θ)∂mθ, i = 1, 2, 3,

(θ + T0)a(∇U, θ)∂tθ = ∇′q(∇U, θ,∇θ) + tr{C̃km(∇U, θ)′km · (∂t∂sUr)rs}(θ + T0),

U(t = 0) = U0, Ut(t = 0) = U1, θ(t = 0) = θ0.

The homogeneous, initially isotropic case will be discussed here.

• Schrödinger equations:

ut − iΔu = F (u,∇u), u(t = 0) = u0.
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• Klein–Gordon equations:

ytt − Δy + my = f(y, yt,∇y,∇yt,∇2y), m > 0,

y(t = 0) = y0, yt(t = 0) = y1.

• Maxwell equations:

Dt −∇× H = 0,

Bt + ∇× E = 0,

D(t = 0) = D0, B(t = 0) = B0,

∇′D = 0, ∇′B = 0,

D = ε(E), B = μ(H).

• Plate equations:

ytt + Δ2y = f(yt,∇2y) +
n∑

i=1

bi(yt,∇2y)∂iyt,

y(t = 0) = y0, yt(t = 0) = y1.

In order to obtain existence theorems to these systems, we shall apply the classical

method of continuing local solutions (local with respect to t), provided a priori estimates

are known. The proof of the a priori estimates represents the non-classical part of

the approach. It requires ideas and techniques which mainly have been developed in

the last years, in particular the idea of using the decay of solutions to the associated

linearized problems. These new techniques were essential to overcome the difficulties in

the study of fully nonlinear systems, i.e. systems where the nonlinearity involves the

highest derivatives appearing on the linear left-hand side. We remark that in this sense

the Schrödinger equations and the plate equations above are not fully nonlinear. The

highest derivatives that appear in the nonlinearity can still directly be dominated by the

linear part in the energy estimates, see Chapter 11.

The general method by which all the systems mentioned before can be dealt with

(cum grano salis) is described by the following scheme.

We discuss the system

Vt + AV = F (V, . . . ,∇βV ), V (t = 0) = V 0,

where F is assumed to be smooth and to satisfy

F (W ) = O(|W |α+1) as |W | → 0, for some α ∈ IN.
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The larger α is, the smaller is the impact that the nonlinearity will have for small

values of |W |, i.e. the linear behaviour will dominate for some time and there is some

hope that it will lead to global solutions for sufficiently small data if the linear decay is

strong enough. This will depend on the space dimension.

The general scheme consists of the following Steps A–E.

A: Decay of solutions to the linearized system:

A solution V to the associated linearized problem

Vt + AV = 0, V (t = 0) = V 0,

satisfies

‖V (t)‖q ≤ c(1 + t)−d‖V 0‖N,p,

where 2 ≤ q ≤ ∞ (or 2 ≤ q < ∞), 1/p + 1/q = 1; c, d > 0 and N ∈ IN are

functions of q and of the space dimension n. (E.g. for the wave equation above:

d = n−1
2

(1 − 2
q
).) This is usually proved by using explicit representation formulae

and/or the representation via the Fourier transform.

B: Local existence and uniqueness:

There is a local solution V to the nonlinear system on some time interval [0, T ],

T > 0, with the following regularity:

V ∈ C0([0, T ], W s,2) ∩ C1([0, T ],W s̃,2),

where s, s̃ ∈ IN are sufficiently large to guarantee a classical solution. The proof of

a local existence theorem is always a problem itself. We shall present the proof of

the corresponding theorem for the wave equation in detail.

C: High energy estimates:

The local solution V satisfies

‖V (t)‖s,2 ≤ C‖V 0‖s,2 · exp

⎧⎨
⎩C

t∫
0

‖V (r)‖α
b,∞dr

⎫⎬
⎭ , t ∈ [0, T ].

C only depends on s, not on T or V 0. b is independent of s, that is, the exponential

term does not involve higher derivatives in the L∞-norm (which allows to close the

circle in Step E). This inequality is proved using general inequalities for composite

functions (see Chapter 4).

D: Weighted a priori estimates:

The local solution satisfies

sup
0≤t≤T

(1 + t)d1‖V (t)‖s1,q1 ≤ M0 < ∞,
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where M0 is independent of T , s1 is sufficiently large, q1 = q1(α) is chosen appropri-

ately for each problem and d1 = d(q1, n) according to A, provided V 0 is sufficiently

small (in a sense to be made precise later; roughly, high Sobolev norms of V 0 are

small).

In this step the information obtained in A is exploited with the help of the classical

formula

V (t) = e−tAV 0 +

t∫
0

e−(t−r)AF (V, . . . ,∇βV )(r) dr,

where e−tAV 0 symbolically stands for the solution to the linearized problem with

initial value V 0.

E: Final energy estimate:

The results in C and D easily lead to the following a priori bound:

‖V (t)‖s,2 ≤ K‖V 0‖s,2, 0 ≤ t ≤ T,

s ∈ IN being sufficiently large, V 0 being sufficiently small and K being independent

of T . This a priori estimate allows us to apply now the standard continuation

argument and to continue the local solution obtained in Step B to a solution

defined for all t ∈ [0,∞).

The method described above immediately provides information on the asymptotic be-

haviour of the global solution as t → ∞ in Step D and in Step E.

This general scheme applies to all the above systems mutatis mutandis; for example,

there may appear certain derivatives with respect to t of V in the integrand of the

exponential in Step C. Moreover the nonlinearity may depend on t and x explicitly.

Nevertheless, difficult questions can arise in the discussion of the details for each specific

system. Particularly interesting are the necessary modifications that have to be made for

the equations of thermoelasticity. This system cannot directly be put into the framework

just described because it consists of different types of differential equations (hyperbolic,

parabolic), and also different types of nonlinearities appear which exclude for example

a uniform sharp estimate as in Step A. Instead different components of V have to be

dealt with in different ways. Altogether however, global existence theorems will again

be proved in the spirit of the Steps A–E.

This underlines the generality of the approach. Of course, this generality prevents

the results from being optimal in some cases. We shall discuss this in detail for the

following general wave equation:

ytt − Δy = f(yt,∇y,∇yt,∇y2),

y(t = 0) = y0, yt(t = 0) = y1.
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For this we shall go through the Steps A–E in Chapters 1–8. Moreover, a more or

less optimal result is presented, the proof of which uses invariance properties of the

d’Alembert operator ∂2
t − Δ under the generators of the Lorentz group. The other

examples will be studied in Chapter 11. In several of the cases there, these subtle

invariances are not available.

To underline the necessity of studying conditions under which small data problems

allow global solutions we shall shortly describe some blow-up results — results on the

development of singularities in finite time even for small data — in Chapter 10. In

Chapter 9 a few other methods are briefly mentioned and Chapter 12 tries to outline

some recent developments and future projects going beyond the main line of this book.

The scheme described above can be found in [83]. Similar ideas are present in [100,

102, 131, 151].

One may think of the global existence results as a kind of stability result for small

perturbations of the associated linear problems. Of course it is of great interest to study

solutions for large data but this is beyond the scope of this book. We refer the interested

reader to the literature [115, 152, 153, 159]. We also remark that there are much more

results on semilinear systems. The emphasis in this book lies on fully nonlinear systems.
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