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Abstract: We consider different models of thermoelastic plates in a bounded reference configu-
ration: with Fourier heat conduction or with the Cattaneo model, and with or without inertial
term. Some models exhibit exponential stability, others are not exponential stable. In the cases
of exponential stability, we give an explicit estimate for the rate of decay in terms of the es-
sential parameters appearing (delay τ ≥ 0, inertial constant µ ≥ 0). This is first done using
multiplier methods directly in L2-spaces, then, second, with eigenfunction expansions imitating
Fourier transform techniques used for related Cauchy problems. The explicit estimates allow for
a comparison. The singular limits τ → 0, and µ → 0 are also investigated in order to understand
the mutual relevance for the (non-) exponential stability of the models. Numerical simulations
underline the results obtained analytically, and exhibit interesting coincidences of analytical and
numerical estimates, respectively.

1 Introduction

We consider the following system of thermoelastic plate equations,

ρ1utt − µ∆utt + α∆2u+ β∆θ = 0, (1.1)

ρ2θt + κ div q − β∆ut = 0, (1.2)

τqt + κ0q + κ1∇θ = 0. (1.3)

Here u, θ : [0,∞) × Ω −→ R are the displacement and the temperature (difference to a
fixed reference temperature), respectively, and q : [0,∞) × Ω −→ Rn, n = 1, 2, 3, is the
heat flux vector. Ω is assumed to be a smoothly bounded domain in Rn. The constants
ρ1, α, β, ρ2, κ, κ0, κ1 are positive, while the constants τ and µ, representing the delay and
the inertial part, respectively, satisfy τ, µ ≥ 0.

The system is completed by initial conditions,

u(0, ·) = u0, ut(0, ·) = u1, θ(0, ·) = θ0, τq(0, ·) = τq0, (1.4)
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and by the following boundary conditions on [0,∞)× ∂Ω,

u = ∆u = θ = 0. (1.5)

We remark that the hinged boundary conditions for u in (1.5) will allow in the sequel
some calculations in Section 5 that do not follow this way for the Dirichlet boundary
conditions

u = ∂νu = 0, (1.6)

where ∂νu denotes the normal derivative on ∂Ω. But the results on exponential stability
and on the singular limit are expected to be qualitatively the same for both sets of bound-
ary conditions. Hence our study provides the characteristic picture already in working
with (1.5).

This system may represent different models for Kirchhoff type thermoelastic plate
equations, with (µ > 0) or without (µ = 0) inertial term, either with Fourier’s law
(τ = 0) of heat conduction or with Cattaneo’s law (τ > 0). We find the Schrödinger type
part in (1.1), read mainly as equation for u, if µ = 0, a wave equation type if µ > 0,
a parabolic equation in (1.2), (1.3) if τ = 0, resp. a hyperbolic system if τ > 0. This
variety is reflected also in the different asymptotic behavior of the associated semigroups.
We have

τ = 0, µ ≥ 0 : exponential stability,

τ > 0, µ = 0 : no exponential stability,

τ > 0, µ > 0 : exponential stability.

The aim is to prove the exponential stability results in a way that allows to give estimates
on the expected stability constant γ > 0 in the estimate

E(t) ≤ Ke−γtE(0),

where E stands for the usual associated energy term. For example, the case τ > 0, µ > 0

was investigated in [3] with abstract semigroup theory, while we shall use an appropriate
multiplier technique.

As a consequence, we shall obtain the dependence of the decay rate on τ and/or µ,
and we shall be able to compare the different models and to study the (singular) limits
µ → 0 and τ → 0, respectively. The questions that we will address and answer are:

• How are the different parameters τ and µ reflected in the decay rates?

• Which models exhibit stronger/weaker decay?
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• How is the (singular) transition between the different models reflected in the esti-
mates for the decay rates?

• How sharp are the analytical estimates obtained by energy (multiplier) methods
(comparison with numerical results)?

The thermoelastic plate models provide interesting examples where, for µ = 0, exponential
stability is lost when the Fourier law (τ = 0) is replaced by the Cattaneo law (τ > 0),
see Quintanilla & Racke [17] or Fernández Sare & Muñoz Rivera [3]. A similar effect is
know for certain Timoshenko systems, see Fernández Sare & Racke [4], and these might
not be isolated situations, see Racke [18]. On the other hand, as soon as the inertial term
(−µ∆utt) is presented, exponential stability is given ([3]).

References for the exponential stability in the most explored case τ = µ = 0 are, for
example, Kim [6], Muñoz Rivera & Racke [13, 14], Liu & Zheng [12], Avalos & Lasiecka [1],
Lasiecka & Triggiani [7, 8, 9, 10], for various boundary conditions and for the analyticity
of the semigroups; see also [5] for a related system with memory term, and [2, 11, 16] for
maximal regularity.

For the subsequent discussions we may assume w.l.o.g. for all constants different from
τ and µ, appearing in the differential equations,

ρ1 = α = β = ρ2 = κ = κ0 = κ1 = 1.

The paper is organized as follows. In Section 2, we shall recall the exponential stability
for the case τ = 0, µ = 0 by the multiplier method in L2, with estimates on the decay
rate. Section 3 presents the exponential stability for the case τ > 0, µ > 0, again with the
multiplier method and with an estimate for the decay rate. In Section 4, we analyze the
decay rates with respect to the singular limits µ → 0 and τ → 0. A second approach to
obtain exponential stability and estimates for the decay rate is presented in Section 5. Here
we use an eigenfunction expansion (Fourier series) and exploit ideas from [19], where the
corresponding Cauchy problem (Ω = Rn) was investigated and where “energy” estimates
were proved using the Fourier transform. In Section 6, an extended analysis of the singular
limits is presented. Finally, in Section 7, we present a numerical analysis underlining the
results obtained analytically in the previous sections. In particular, the numerical results
perfectly correspond to the analytical estimates, demonstrating the sharpness of the latter.
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2 Case τ = 0, µ = 0, multiplier method in L2

In this case with Fourier’s law of heat conduction, and without inertial term, the differ-
ential equations (1.1)–(1.3) reduce to

utt +∆2u+∆θ = 0, (2.1)

θt −∆θ −∆ut = 0. (2.2)

Defining the energy E in this case of Fourier’s law,

E(t) :=
1

2

∫
Ω

|ut|2 + |∆u|2 + |θ|2 dx,

and denoting dt :=
d
dt

, we have

dtE(t) = −
∫
Ω

|∇θ|2 dx. (2.3)

Standard multipliers are used. Multiplying (2.1) by u, assuming w.l.o.g. real-valued
functions, and denoting by εj > 0, j ∈ N, small constants to be chosen later, we obtain

dtε1

∫
Ω

utu dx ≤ ε1

∫
Ω

|ut|2 dx

−(ε1 − c1ε1ε2)

∫
Ω

|∆u|2 dx

+
ε1
4ε2

∫
Ω

|∇θ|2 dx, (2.4)

where cj > 0, j ∈ N, will denote constants not depending εj. Multiplying (2.2) by ut, we
get

dt

(
−ε3

∫
Ω

θut dx

)
≤ −ε3

∫
Ω

θutt dx− ε3
2

∫
Ω

|∇ut|2 dx+
ε3
2

∫
Ω

|∇θ|2 dx

≤ −ε3

∫
Ω

θutt dx− ε3
4

∫
Ω

|∇ut|2 dx− ε3cp
4

∫
Ω

|ut|2 dx

+
ε3
2

∫
Ω

|∇θ|2 dx, (2.5)

where here, and similarly in the sequel, cp denotes the constant appearing in the Poincaré
estimate. Since ∫

Ω

θutt dx =

∫
Ω

∇θ∇∆u dx+

∫
Ω

∇θ|2 dx,

we have
−ε3

∫
Ω

θutt dx ≤ ε3
4ε4

∫
Ω

|∇θ|2 dx+ ε3ε4

∫
Ω

|∇∆u|2 dx. (2.6)
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Combining (2.5), (2.6), we obtain

dt

(
−ε3

∫
Ω

θut dx

)
≤ ε3

4ε4

∫
Ω

|∇θ|2 dx+ ε3ε4

∫
Ω

|∇∆u|2 dx− ε3
4

∫
Ω

|∇ut|2 dx

−ε3cp
4

∫
Ω

|ut|2 dx+
ε3
2

∫
Ω

|∇θ|2 dx. (2.7)

Finally multiplying (2.1) by ∆u, we get

dt

(
−ε5

∫
Ω

ut∆u dx

)
≤ ε5

∫
Ω

|∇ut|2 dx− ε5
2

∫
Ω

|∇∆u|2 dx+
ε5
2

∫
Ω

|∇θ|2 dx. (2.8)

Defining the Lyapunov function L by

L(t) := ME(t) + ε1

∫
Ω

utu dx− ε3

∫
Ω

θut dx− ε5

∫
Ω

ut∆u dx, (2.9)

with M > 0 to be determined below, we obtain from (2.3), (2.4), (2.7), (2.8)

dtL(t) ≤ −cp

(
M − ε1

4ε2
− ε3

4ε4
− ε3

2
− ε5

2

)∫
Ω

|θ|2 dx−
(ε3cp

4
− ε1

)∫
Ω

|ut|2 dx

−
(ε3
4
− ε5

)∫
Ω

∇ut|2 dx− (ε1 − c1ε1ε2)

∫
Ω

|∆u|2 dx

−
(ε5
2
− ε3ε4

)∫
Ω

|∇∆u|2 dx.

Choosing εj in the following way,

ε3 := 1, ε1 :=
cp
8
, ε5 :=

1

8
, ε2 :=

1

2c1
, ε4 :=

1

32
, (2.10)

and
M ≥ 2M1 ≡ 2

(
ε1
4ε2

+
ε3
4ε4

+
ε3
2
+

ε5
2

)
=

c1 + 548

32
(2.11)

we have

dtL(t) ≤ −cpM1

∫
Ω

|∇θ|2 dx− cp
4

∫
Ω

|ut|2 dx− cp
8

∫
Ω

|∆u|2 dx

≤ −d0E(t), (2.12)

with
d0 := 2cp min{M1,

1

8
}. (2.13)

To assure the equivalence of E(t) and L(t), we compute∣∣∣∣ε1 ∫
Ω

utu dx− ε3

∫
Ω

θut dx− ε5

∫
Ω

ut∆u dx

∣∣∣∣ ≤(
cp + 9

8

)
1

2

∫
Ω

|ut|2 dx+

(
cpc2 + 1

8

)
1

2

∫
Ω

|∆u|2 dx+
1

2

∫
Ω

|θ|2 dx
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≤ max{cp + 9

8
,
cpc2 + 1

8
, 1}E(t) ≡ M2E(t),

where c2 arises from the elliptic estimate∫
Ω

|u|2 dx ≤ c2

∫
Ω

|∆u|2 dx.

This implies, choosing
M ≥ 2M2, (2.14)

the equivalence, for t ≥ 0,
k1E(t) ≤ L(t) ≤ k2E(t), (2.15)

with
k1 := M2, k2 := 3M2. (2.16)

Altogether, we have with
M := max{2M1,M2},

and by (2.12), (2.15),

dtL(t) ≤ −d0
k2

L(t).

Defining

K0 :=
k2
k1

, γ0 :=
d0
k2

, (2.17)

we have the following exponential stability result

Theorem 2.1. The inital-boundary value problem (2.1), (2.2), (1.4), (1.5) is exponen-
tially stable. We have for t ≥ 0 the following estimate for the associated energy,

E(t) ≤ K0e
−γ0tE(0).

The constant γ0 is given explicitly through (2.17), (2.16), (2.13), (2.11), and the type ω0

of the semigroup is hence estimated from above by

ω0 ≤ −γ0.

3 Case τ > 0, µ > 0, multiplier method in L2

In the case of Cattaneo’s law of heat conduction and with intertial term, we shall prove a
similar result on exponential stability as in Theorem 2.1, but now with estimates on the
rate of decay γ = γ(µ, τ). We consider

utt − µ∆utt +∆2u+∆θ = 0, (3.1)

θt + div q −∆ut = 0, (3.2)

τqt + q +∇θ = 0, (3.3)
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together with the initial conditions (1.4) and the boundary conditions (1.5). Let

E1(t) :=
1

2

∫
Ω

|ut|2 + µ|∇ut|2 + |∆u|2 + |θ|2 + τ |q|2 dx

and
E2(t) :=

1

2

∫
Ω

|utt|2 + µ|∇utt|2 + |∆ut|2 + |θt|2 + τ |qt|2 dx

denote the energies of first and of second order, respectively, and let

E(t) := E1(t) + E2(t)

denote the energy, for which we shall prove a result on the exponential decay, in which
we shall be able to observe the dependence of the estimate for the decay rate on the
parameters µ, in particular, as well as on τ . We assume w.l.o.g. τ < 1 (τ ≥ 1 could be
treated similarly). We have

dtE1(t) = −
∫
Ω

|q|2 dx, dtE2(t) = −
∫
Ω

|qt|2 dx,

implying

dtE(t) ≤ − 1

2τ

∫
Ω

τ |q|2 dx−
(
2− τ 2

2τ

)∫
Ω

τ |qt|2 dx− 1

4

∫
Ω

|∇θ|2 dx. (3.4)

Multiplying (3.1) by ∆u, we obtain

dt

(
−δ1

∫
Ω

(ut + µ∆ut)∆u dx

)
≤ −δ1

2

∫
Ω

|∇∆u|2 dx− δ1

∫
Ω

|∆ut|2 dx

+
δ1
2

∫
Ω

|∇θ|2 dx+
δ1
µ
µ

∫
Ω

|∇ut|2 dx, (3.5)

where δj, j ∈ N, will denote positive constants to be chosen later. Multiplying (3.2) by
ut, we get

dt

∫
Ω

θut dx ≤ 1

4δ2

∫
Ω

|∇θ|2 dx+ δ2

∫
Ω

|∇∆u|2 dx+
µ

4δ3

∫
Ω

|∇θ|2 dx

+δ3µ

∫
Ω

|∇utt|2 dx+

∫
Ω

|∇θ|2 dx+
1

2

∫
Ω

|q|2 dx− 1

2

∫
Ω

|∇ut|2 dx,

implying

dt

(
δ4

∫
Ω

θut dx

)
≤

(
δ4
4δ2

+
δ4µ

4δ3
+ δ4

)∫
Ω

|∇θ|2 dx+ δ2δ4

∫
Ω

|∇∆u|2 dx

+δ3δ4µ

∫
Ω

|∇utt|2 dx+
δ4
2τ

∫
Ω

τ |q|2 dx

− δ4
2µ

µ

∫
Ω

|∇ut|2 dx. (3.6)
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In order to to obtain negative terms for utt and ∇utt, we multiply (3.1) by utt and obtain

dt

(
δ5

∫
Ω

∆u∆ut dx

)
≤ −δ5

∫
Ω

|utt|2 dx− δ5µ

2

∫
Ω

|∇utt|2 dx+ δ5

∫
Ω

|∆ut|2 dx

+
δ5
2µ

∫
Ω

|∇θ|2 dx. (3.7)

Finally we multiply (3.2) by θt and get

dt

(
δ6

∫
Ω

q∇θ dx

)
≤ −δ6

2

∫
Ω

|θt|2 dx+
δ6
2

∫
Ω

|∆ut|2 dx+
1

2τ

∫
Ω

τ |q|2 dx

+
δ6
2

∫
Ω

|∇θ|2 dx. (3.8)

We define the Lyapunov functional L by

L(t) := PE(t)− δ1

∫
Ω

(ut + µ∆ut)∆u dx+ δ4

∫
Ω

θut dx

+δ5

∫
Ω

∆u∆ut dx+ δ6

∫
Ω

q∇θ dx,

where also P > 0 will have to be chosen appropriately later on. The estimates (3.4)–(3.8)
imply

dtL(t) ≤ −
(
P

4
− δ1

2
− δ4µ

4δ2
− δ4µ

4δ3
− δ4 −

δ5
2µ

− δ6
2

)∫
Ω

|∇θ|2 dx

−P

(
2− τ 2

2τ

)∫
Ω

τ |qt|2 dx−
(
P

2τ
− δ4

2τ
− 1

2τ

)∫
Ω

τ |q|2 dx

−
(
δ1
2
− δ2δ4

)∫
Ω

|∇∆u|2 dx−
(
δ1 − δ5 −

δ6
2

)∫
Ω

|∆ut|2 dx

−
(
δ4
2µ

− δ1
µ

)∫
Ω

µ|∇ut|2 dx− δ5

∫
Ω

|utt|2 dx

−
(
δ5
2
− δ3δ4

)∫
Ω

µ|∇utt|2 dx− δ6
2

∫
Ω

|θt|2 dx. (3.9)

Choosing δj in the following way,

δ4 := µ, δ1 :=
µ

4
, δ5 :=

µ

16
, δ6 :=

µ

8
, δ2 :=

1

16
, δ3 :=

1

64
,

and
P ≥ P1 :=

1

4

(
1 + 166µ+ 512µ2

)
, (3.10)
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we conclude

dtL(t) ≤ − 1

32

(
1 + 166µ+ 512µ2

) ∫
Ω

|∇θ|2 dx

−P

(
2− τ 2

2τ

)∫
Ω

τ |qt|2 dx− 1 + µ

2τ

∫
Ω

τ |q|2 dx

− µ

16

∫
Ω

|∇∆u|2 dx− µ

8

∫
Ω

|∆ut|2 dx− 1

4

∫
Ω

µ|∇ut|2 dx

− µ

16

∫
Ω

|utt|2 dx− µ

64

∫
Ω

µ|∇utt|2 dx− µ

16

∫
Ω

|θt|2 dx

≤ − cp
32

(
1 + 166µ+ 512µ2

) ∫
Ω

|θ|2 dx

−P

(
2− τ 2

2τ

)∫
Ω

τ |qt|2 dx− 1 + µ

2τ

∫
Ω

τ |q|2 dx− cpµ

16

∫
Ω

|∆u|2 dx

−µ

8

∫
Ω

|∆ut|2 dx− 1

8

∫
Ω

µ|∇ut|2 dx− cpµ

8

∫
Ω

|ut|2 dx

− µ

16

∫
Ω

|utt|2 dx− µ

64

∫
Ω

µ|∇utt|2 dx− µ

16

∫
Ω

|θt|2 dx

≤ −d E(t), (3.11)

with

d := 2min

{
cp
32

(
1 + 166µ+ 512µ2

)
, P

(
2− τ 2

τ

)
,
1 + µ

τ
,
cpµ

4
,
1

4
,
µ

32
,

}
. (3.12)

The equivalence of L(t) and E(t) is given as follows, using∫
Ω

q∇θ dx =

∫
Ω

(θt −∆ut)θ dx,

∣∣∣∣−δ1

∫
Ω

(ut + µ∆ut)∆u dx+ δ4

∫
Ω

θut dx+ δ5

∫
Ω

∆u∆ut dx+ δ6

∫
Ω

q∇θ dx

∣∣∣∣
≤ 3µ

4

∫
Ω

|ut|2 dx+

(
µ3

8
+

5µ

32

)∫
Ω

|∆ut|2 dx+
5µ

32

∫
Ω

|∆u|2 dx

+
9

16

∫
Ω

|θ|2 dx+
µ

8

∫
Ω

|θt|2 dx

≤ max

{
3µ

2
,
µ3

4
+

5µ

16
,
9

8

}
E(t) ≡ P2E(t). (3.13)

Choosing
P ≥ 2P2, (3.14)

the equivalence, for t ≥ 0,
p1E(t) ≤ L(t) ≤ p2E(t), (3.15)
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is given with
p1 := P2, p2 := 3P2. (3.16)

Choosing
P := max{2P1, P2},

and by (3.11), (3.15), we obtain

dtL(t) ≤ − d

p2
L(t).

Defining

K :=
p2
p1
, γ :=

d

p2
, (3.17)

we have the following exponential stability result:

Theorem 3.1. The inital-boundary value problem (3.1)–(3.3), (1.4), (1.5) is exponen-
tially stable. We have for t ≥ 0 the following estimate for the associated energy,

E(t) ≤ Ke−γtE(0).

The constant γ = γ(µ, τ) is given explicitly, see (3.17), (3.16), (3.14), (3.13), (3.12),
(3.10), and the type ω of the semigroup is hence estimated from above by

ω ≤ −γ.

4 The limits µ → 0 and τ → 0

The rate of exponential stability, γ = γ(µ, τ), given in Theorem 3.1, can now be studied
with respect to the limits µ → 0 and τ → 0, respectively. We have

Theorem 4.1. The rate of exponential stability γ given in Theorem 3.1 satisfies:

1. For fixed τ > 0 we have
lim
µ→0

γ(µ, τ) = 0.

2. For fixed µ > 0 we have
lim
τ→0

γ(µ, τ) = c(µ),

where c(µ) is a positive constant depending on µ.

Proof: The representation for γ is given by (3.10), (3.12), (3.13), (3.16), (3.17),

γ =
d

p2
=

2min
{

cp
32
(1 + 166µ+ 512µ2) , P

(
2−τ2

τ

)
, 1+µ

τ
, cpµ

4
, 1

4
, µ

32
,
}

3max
{

3µ
2
, µ3

4
+ 5µ

16
, 9

8

} .
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Observing that for sufficiently small µ

P =
9

8
,

we immediately conlude assertion 1. The second assertion follows observing that P is
only depending on µ. This completes the proof. �

Theorem 4.1 reflects the facts that for µ → 0, the exponential stability is lost, and that
the limit τ → 0 leads to another exponentially stable system.

The advantage of the multiplier method in L2 is that it can be extended to other
boundary conditions like (1.6), a disadvantage consists in the still coarse estimates leading
to overall too pessimistic values e.g. for c(µ). Since c(µ) → 0 as µ → 0 it does – in the
double limit – not reflect the fact that the system for µ = τ = 0 is exponentially stable.

A sharper analysis, but then only for the hinged boundary conditions, will be given
starting in the next section.

5 Case τ > 0, µ > 0, Fourier expansion

As second approach to obtain exponential stability and estimates on the decay rates, we
make the following Fourier series ansatz. It will give us explicit information on the depen-
dence of the decay rates on the parameters µ and τ , but also on the domain Ω (appearing
in form of the first eigenvalue λ1 of the Dirichlet Laplace operator and depending itself
on the size of the domain).

To justify the special ansatz below for the heat flux q, we assume the compatibility
condition

q0 = −∇θ0, (5.1)

which is satisfied for τ = 0 anyway and, hence, avoids layers in the singular limit τ → 0.
Then q = q(t, ·) is a gradient field for all t ≥ 0 by (1.3).

Let (ϕj)j denote the L2-eigenfunctions of the Dirichlet Laplace operator −∆ in Ω with
eigenvalues (λj)j satisfying

−∆ϕj = λjϕj, ϕj |∂Ω = 0, 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ (j → ∞).

We make the following ansatz which is justified because of the boundary conditions (1.5).

u(t, x) =
∞∑
j=1

aj(t)ϕj(x), θ(t, x) =
∞∑
j=1

bj(t)ϕj(x), q(t, x) =
∞∑
j=1

fj(t)∇ϕj(x). (5.2)
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Plugging this ansatz into the differential equations (1.1)–(1.3), we obtain the following
system of ODEs for the coefficient functions aj, bj, fj:

(1 + µλj) a
′′
j (t) + λ2

jaj(t)− λjbj(t) = 0, (5.3)

b′j(t)− λjfj(t) + λja
′
j(t) = 0, (5.4)

τf ′
j(t) + fj(t) + bj(t) = 0. (5.5)

In order to be able to compare it to the results obtained in the recent paper [19] on the
Cauchy problem, we define

dj(t) := i
√

λjfj(t),

giving
−λjfj(t) = i

√
λjdj(t).

Multiplying the differential equation (5.6) by i
√
λj we thus obtain the following system

of ODEs for aj, bj, dj:

(1 + µλj) a
′′
j (t) + λ2

j aj(t)− λj bj(t) = 0, (5.6)

b′j(t) + i
√

λj dj(t) + λj a
′
j(t) = 0, (5.7)

τ d′j(t) + dj(t) + i
√
λj bj(t) = 0. (5.8)

In [19] the Cauchy problem (Ω = Rn) for the equations (1.1)–(1.3) was analyzed. Using
the Fourier transform (x → ξ), the Fourier transformed functions û, θ̂, q̂, depending on
t, ξ, satisfy

(1 + µ|ξ|2)ûtt + |ξ|4û− |ξ|2θ̂ = 0, (5.9)

θ̂t + iξ · q̂ + |ξ|2ût = 0, (5.10)

τ q̂t + q̂ + iξθ̂ = 0. (5.11)

Identifying – formally – λj with |ξ|2, as well as
√
λj with ξ, the similarities between the

equations (5.6)–(5.8) and (5.9)–(5.11) are obvious. Actually, in one space dimension,
√

λj

and ξ correspond perfectly for what follows.
It turns out that the series of estimates obtained in [19] for the “energy” term

(1 + µ|ξ|2)|ût(t, ξ)|2 + |ξ|4|û(t, ξ)|2 + |θ̂(t, ξ)|2 + τ |q̂(t, ξ)|2

can be carried over to the “energy” term

(1 + µλj) |a′j(t)|2 + λ2
j |aj(t)|2 + |bj(t)|2 + τ |dj(t)|2.

Since we are later on interested in the limit µ → 0 and τ → 0, we assume from now on

τ, µ ≤ 1. (5.12)

So we obtain from the proof of [19, Theorem 4.1]
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Theorem 5.1. There are constants C, c1 > 0 (in particular neither depending on the
parameters µ, τ and j nor on the data) such that for all t ≥ 0 and all j ∈ N the estimate

(1 + µλj) |a′j(t)|2 + λ2
j |aj(t)|2 + |bj(t)|2 + τ |dj(t)|2 ≤

Ce−c1ϱj t
(
(1 + µλj) |a′j(0)|2 + λ2

j |aj(0)|2 + |bj(0)|2 + τ |dj(0)|2
)

(5.13)

holds, where

ϱj ≡ ϱj(µ, τ) :=
λj(1 + τ µ λj)

(1 + τ λj)(1 + (τ + µ)λj)
. (5.14)

The constants C, c1 are given explicitly by

C =
13

11
, c1 =

1

2730
.

For the convenience of the reader, we present a sketch of the Proof, for more details
cp. [19]. We obtain from the differenatial equations (5.6)–(5.8) for

Wj(t) := (1 + µλj)|a′j(t)|2 + λ2
j |aj(t)|2 + |bj(t)|2 + τ |dj(t)|2

that
1

2

d

dt
Wj(t) + |dj(t)|2 = 0. (5.15)

Choosing appropriate multipliers for the equations (5.6)–(5.8), we get

d

dt
E1

j (t) +D1
j (t) = 0, (5.16)

where

E1
j (t) :=

1

2
(1 + τλj)

(
1 + (τ + µ)λj

){
(1 + µλj)|a′j(t)|2 + λ2

j |aj(t)|2 + |bj(t)|2 + τ |dj(t)|2
}

+ α1(1 + τµλj)
{
τ
√

λj · Re(ibj(t)dj(t)) + α2(1 + µλj)
(
Re(a′j(t)bj(t))

+ α3λjRe(a
′
j(t)aj(t))

)}
,

D1
j (t) := α1α2(1− α3)(1 + τµλj)(1 + µλj)λj|aj(t)|2 + α1α2α3(1 + τµλj)λ

3
j |aj(t)|2

+ α1(1− α2)(1 + τµλj)λj|bj(t)|2 + |dj(t)|2 + (2τ + µ)λj|dj(t)|2 − α1τ |
√
λjdj(t)|2

+ τ(τ + µ)λ2
j |dj(t)|2 − α1τ

2µλj|
√

λjdj(t)|2

+ α1α2(1− α3)(1 + τµλj)λ
2
jRe(aj(t)bj(t))

+ α1(1 + τµλj)
√
λjRe(ibj(t)dj(t))

− α1

{
α2 − (τ − α2µ)λj

}
(1 + τµλj)

√
λjRe(iaj(t)tdj(t)).

The positive constants α1, α2, α3 are chosen small enough in the course of the proof. Then
one concludes

D1
j (t) ≥

1

7!
(1 + τµλj)λj

{
(1 + µλj)|a′j(t)|2 + λ2

j |aj(t)|2 + |bj(t)|2
}

+
1

16
(1 + τλj)

(
1 + (τ + µ)λj

)
|dj(t)|2,

(5.17)
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as well as

E1
j (t) ≤

13

24
(1 + τλj)

(
1 + (τ + µ)λj

)
Wj(t),

E1
j (t) ≥

11

24
(1 + τλj)

(
1 + (τ + µ)λj

)
Wj(t).

(5.18)

Applying the estimates (5.17) and (5.18) to (5.16) we get

d

dt
E1

j (t) +
1

2730

(1 + τµλj)|ξ|2

(1 + τλj)
(
1 + (τ + µ)λj

)E1
j (t) ≤ 0.

This gives

Wj(t) ≤
13

11
e
− 1

2730

(1+τµλj)λj
(1+τλj)(1+(τ+µ)λj)

t
Wj(0),

which is the desired estimate. �
As a consequence we obtain, after the usual summation over j (Fourier series), the fol-
lowing energy estimate for the energy term

Eµ,τ (t) := ∥(ut, µ∇ut, ∆u, θ, τq)(t, ·)∥2L2(Ω).

Theorem 5.2. There is a constant C > 0 (in particular not depending on the parameters
µ, τ nor on the data), and a constant k(µ, τ) ≥ 0, at most depending on µ, τ , such that
for all t ≥ 0 the estimate

Eµ,τ (t) ≤ C e−c1k(µ,τ) t Eµ,τ (0) (5.19)

holds, where
k(µ, τ) := inf {ϱj(µ, τ) | j ∈ N} (5.20)

and
c1 :=

1

2370
.

The value of c1k(µ, τ) is the estimate for the rate of exponential decay (if not zero)
that we aimed at. We already mention the interesting fact that this analytical estimate
is rather sharp, as a comparison with the numerical results from Section 7 will show.

Before we start determining k(µ, τ) in more detail for µ, τ > 0, we recall some known
results for ϱj for the limiting cases, see [19], then implying immediately the estimate for
k(µ, τ) in Table 5.1.
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case µ, τ ϱj k(µ, τ) exp. stability y/n

1: µ = τ = 0 λj λ1 yes

2: µ = 0, τ > 0
λj

(1+τλj)2
0 no

3: µ > 0, τ = 0
λj

1+µλj

λ1

1+µλ1
yes

Table 5.1

The last column both describes the known facts on exponential stability of the associated
semigroups, and the conclusion we draw from computing k(µ, τ). In all cases 1–3 these
two things completely fit together.
We also observe the following facts on two singular limits and the ratio of exponential
decay rates for the system with resp. without inertia term.

Remark 5.3. 1. The values k(0, τ) = 0 do not converge to k(0, 0) = λ1 > 0, as τ → 0.

2. The values k(µ, 0) = λ1

1+µλ1
converge to k(0, 0) = λ1, as µ → 0.

3. If µ > 0, then

k(µ, 0) =
λ1

1 + µλ1

< λ1 = k(0, 0),

i.e., the rate of decay is smaller for the system (with Fourier’s law) with inertial
term compared to that of the system without inertia term. The inertia term causes
a slight deceleration (though both systems are exponentially stable).

Now we determine the value of k(µ, τ) for µ, τ > 0. Let

g(x) :=
x(1 + τ µ x)

(1 + τ x)(1 + (τ + µ)x)
, x ≥ λ1.

Remark 5.4. Depending on Ω, λ1 = λ1(Ω) can be close to zero or very large, cp. Ω =

(0, L) ⊂ R1 : λ1 =
π2

L2 →

{
0

∞

}
as L →

{
∞
0

}
.
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The positive function g satisfies

lim
x→∞

g(x) =
µ

(τ + µ)
∈ (0, 1). (5.21)

To determine the infimum/minimum of g, we compute

g′(x) =

{
1

((1 + τ x)(1 + (τ + µ) x))2

}{
[τ(2τµ+ µ2 − τ − µ]x2 + 2τµ x+ 1

}
≡ {g1(x)}{g2(x)}.

The coefficient [. . . ] in front of x2 in g2 can be zero (e.g. τ = 1
4
, µ = 1+

√
5

4
≈ 0.81), positive

(e.g. τ = 1
4
, µ = 0.9), or negative (e.g. τ = 1

4
, µ = 0.8), depending on τ, µ.

Case I: 2τµ+ µ2 ≥ τ + µ.
Then g2 and thus g′ are strictly positive, hence g attains its minimum in x = λ1, and we
have

k(µ, τ) = g(λ1) =
λ1(1 + τ µ λ1)

(1 + τ λ1)(1 + (τ + µ)λ1)
. (5.22)

We remark already here, that for the limit µ, τ → 0 this will not be the relevant case
because of the quadratic nonlinearities becoming smaller than the linear ones.

Case II: 2τµ+ µ2 < τ + µ.
In this case we have a zero x0 = xµ,τ

0 of g2 resp. g′ at

xµ,τ
0 =

τµ+
√

τ 2µ2 + τ(τ + µ− 2τµ− µ2)

τ(τ + µ− 2τµ− µ2)
. (5.23)

Since, regarding g on (0,∞) for a moment, g′(x) > 0 if x < xµ,τ
0 , and g′(x) < 0 if x > xµ,τ

0 ,
we have a local maximum of g in xµ,τ

0 . So we have to distinguish the cases: xµ,τ
0 < λ1 or

xµ,τ
0 ≥ λ1. Both cases can happen since xµ,τ

0 only depends on µ, τ , while λ1 may take any
value in (0,∞), depending on the domain Ω, cp. Remark 5.4.

Case II.1: xµ,τ
0 < λ1.

In this case g is strictly monotone decreasing on [λ1,∞), thus the infimum of g is attained
at infinity, therefore

k(µ, τ) = lim
x→∞

g(x) =
µ

τ + µ
. (5.24)

Case II.2: xµ,τ
0 ≥ λ1.

This case splits up into two final possible cases:

Case II.2.a: g(λ1) < limx→∞ g(x).
Then

k(µ, τ) = g(λ1) =
λ1(1 + τ µ λ1)

(1 + τ λ1)(1 + (τ + µ)λ1)
. (5.25)
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Case II.2.b: g(λ1) ≥ limx→∞ g(x).
Then

k(µ, τ) = lim
x→∞

g(x) =
µ

τ + µ
. (5.26)

Since we have the equivalencies

g(λ1) ≤ lim
x→∞

g(x)

⇐⇒
λ1(1 + τ µ λ1)

(1 + τ λ1)(1 + (τ + µ)λ1)
≤ µ

τ + µ
⇐⇒

λ1 ≤ µ

τ + µ− 2τµ− µ2
=: xµ,τ

1 , (5.27)

we can summarize the characterization of the decay rates k(µ, τ) given in (5.22)–(5.26) in
the following theorem.

Theorem 5.5. The estimates for k(µ, τ), for µ, τ > 0, are given in Table 5.2, where xµ,τ
0

is given in (5.23), and xµ,τ
1 is given in (5.27).

In the cases I and II.2.a, for fixed µ, τ , the estimate on the decay rate shows a depen-
dence on the first, the smallest eigenvalues λ1, an effect that is known for the classical
heat equation, and also showed up in Table 5.1 in the cases 2 and 3. This is an effect
of the notion of exponential stability which tries to be uniform over all initial values. Of
course, if one has initial data taking values in subspaces not being spanned by the first
eigenfunctions φ1, . . . , φk (in other words: the expansions in (5.2) start at j = k), then
λ1 can be exchanged by λk in these estimates.
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case k(µ, τ)

I: 2τµ+ µ2 ≥ τ + µ λ1(1+τ µ λ1)
(1+τ λ1)(1+(τ+µ)λ1)

II.1: 2τµ+ µ2 < τ + µ, λ1 > xµ,τ
0

µ
τ+µ

II.2.a: 2τµ+ µ2 < τ + µ, λ1 ≤ min{xµ,τ
0 , xµ,τ

1 } λ1(1+τ µ λ1)
(1+τ λ1)(1+(τ+µ)λ1)

II.2.b: 2τµ+ µ2 < τ + µ, xµ,τ
1 < λ1 ≤ xµ,τ

0
µ

τ+µ

Table 5.2

Zones of each case

Case I

Case II.1

Case II.2.b

Case II.2.a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.1: Estimate for the rate of exponential decay, and the 4 different cases zones of
the Table 5.2 (L = 1).

6 The limits µ → 0 and τ → 0 once more

The characterizations of the decay rates k(µ, τ) easily lead to a consideration of the
singular limits µ, τ → 0. Case I in Table 5.2 does now not play any role for the double
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limit since the quadratic terms in µ, τ will finally be smaller than the linear ones. We
have the following limit behavior.

Theorem 6.1. 1. If τ > 0, then only the cases II.1 and II.2.b are relevant. Here we
obtain

lim
µ→0

k(µ, τ) = 0.

2. If µ > 0, then case II.1 is not relevant. We obtain

lim
τ→0

k(µ, τ) =

{
1 in cases I and II.2.a,

λ1

1+µλ1
= k(µ, 0) in case II.2.b.

3.
lim
τ→0

lim
µ→0

k(µ, τ) = 0 in cases II.1 and II.2.b.

4. For domains Ω with λ1 ≤ 1 we have

lim
µ→0

lim
τ→0

k(µ, τ) = λ1 = k(0, 0) in case II.2.a.

5. For domains Ω with λ1 ≥ 1 we have

lim
µ→0

lim
τ→0

k(µ, τ) = 1 in case II.2.b.

Proof: The limits themselves can easily be obtained from Table 5.2. So we only
comment on the restrictions made in points 1.-4.

1. Case I is not relevant because 2τµ + µ2 ≥ τ + µ, but µ → 0. Case II.2.a is not
relevant because 0 < λ1 ≤ xµ,τ

1 , but limµ→0 x
µ,τ
1 = 0.

2. Case II.1 is not relevant because ∞ > λ1 > xµ,τ
0 , but limτ→0 x

µ,τ
0 = ∞.

4. resp. 5. The restriction λ1 ≤ 1 resp. λ1 ≥ 1 arises from limτ→0 x
µ,τ
1 = 1

1−µ
→ 1, as

µ → 0.
�

Theorem 6.1 shows once more that the function k = k(µ, τ) is not continuous on [0, 1]2 (as
well as xµ,τ

1 ), reflecting the singular behavior, as µ, τ → 0, of the property of exponential
stability.

7 Numerical analysis

In this section, we present numerical results illustrating the asymptotic behavior of the
energy and as well as the relevance of the condition of the Table 5.2 for the exponen-
tial decay. It yields an astonishing coincidence with the analytic estimates obtained in
Theorem 5.1 above and in [19, Theorem 4.1], respectively.
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The applied method of β−Newmark is a second-order method preserving the discrete
energy always when the discrete system of equations of motion is symmetric (i.e. matrices
associated to the system should be symmetric).

7.1 Shape and behavior of the spectrum

In this section, we present some numerical results illustrating the asymptotic behavior of
the energy and as well as the relevance of the condition of the Table 5.2 for the exponential
decay. Here, we study the decay of the energy numerically. For this, we consider the
approximation (5.2) and the systems of ODEs (5.3)–(5.5). This system can be rewritten
as X′

j = AjXj, with Xj = (aj, ȧj, bj, fj)
T , and

Aj =


0 1 0 0

− λ2
j

1+µλj
0

λj

1+µλj
0

0 −λj 0 λj

0 0 −1
τ

−1
τ

 (7.1)

Figure 7.2: Eigenvalues of the system (1.1)–(1.3), with the ansatz (5.2), for different values
of the parameters µ and τ .

In the case of τ = 0, the Cattaneo system becomes the heat equation with the Fourier
law (2.2), and therefore the 4 × 4 matrix of the system (7.1) (with 2 pairs of conjugate
complex eigenvalues), is replaced by a 3 × 3 matrix with a pair of conjugate eigenvalues
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and a negative real value given by

A0
j =


0 1 0

− λ2
j

1+µλj
0

λj

1+µλj

0 −λj −λj

 . (7.2)

The eigenvalues σℓ
j, of the matrix Aj defined in (7.1), with ℓ = 1, . . . , 4, when τ > 0

(respectively A0
j defined in (7.2), with ℓ = 1, 2, 3, when τ = 0), and j = 1, . . . ,∞, charac-

terize all the eigenvalues of the system. In Figure 7.2, the eigenvalues (point spectrum)
is plotted for different values of µ and τ .

We consider the one-dimensional case Ω = (0, L) with L = 1. Then λj = j2π2, and σℓ
j

are the roots of

τσ4 + σ3 +

(
j2π2 + 2τ

j4π4

1 + µj2π2

)
σ2 + 2

j4π4

1 + µj2π2
σ +

j6π6

1 + µj2π2
= 0.

An approximation of the rate of the exponential decay could be computed by

k̃(µ, τ) = min
j=1,...,∞

{
|Re(σℓ

j)|
/
ℓ = 1, . . . , 4 (if τ > 0); ℓ = 1, . . . , 3 (if τ = 0)

}
.

k̃ qualitatively should have the same behavior as the decay rate k defined in (5.20), which
is justified by Figure 7.2. Thus, we truncate j = 1, . . . , N , with N = 10.000, in order
to simulate the spectrum for different values of τ and µ, and we show the graphs for
−106 < Re(σℓ

j) < 0 and −105 < Im(σℓ
j) < 105. The real part of the eigenvalues in Figure

7.2 are plotted on a logarithmic scale so that all eigenvalues for different values of µ and
τ can be drawn in the same graph ranging from −106 to −10−4. In this sense, we observe
that (µ = 0 and τ > 0) is the case where the eigenvalues are closer to the imaginary axis
(taking into account the logarithmic scale), and these values approach the axis as λj → ∞
(green eigenvalues in Figure 7.2). In this last case, the rate of the exponential decay is
zero. In Table 7.1 we compare the values of k(µ, τ) with k̃(µ, τ) for the different plotted
cases in Figure 7.2.

Case τ = 0 / µ = 0 τ = 0 / µ = 0.1 τ = 0.1 / µ = 0.1 τ = 0.1 / µ = 0

k(µ, τ) 1.000 1.000 0.500 0.000
k̃(µ, τ) 2.1228 1.7430 1.3820 1.2665·10−8

Table 7.1: Values of k(µ, τ) and k̃(µ, τ) for the different plotted cases.

The approximation (5.2), suggests us to consider now also numerically Fourier series
with respect to the spatial variable in dimension 1, for an interval Ω = (0, L). On the
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other hand, regarding the approximation in time, we considers the β−Newmark scheme,
which is a second order method preserving the discrete energy always when the discrete
system of equations of motion is symmetric (i.e. matrices associated to the system should
be symmetric).

Remark 7.1 (Finite Difference Approximation). With respect to an approximation using
Finite Differences in the space variable, or another equivalent scheme (such as Finite
Volumes or the Finite Element method), it is noticed that the eigenvalues undergo for
very high frequencies. For example, if we consider h = L/(J + 1) a spatial subdivision
of the interval (0, L), with xj = jh, and uj(t), θj(t) and qj(t), for all j = 1, 2, . . . , J , the
approximate values of u(jh, t), θ(jh, t) and q(jh, t), respectively for all t > 0. Taking into
account, centered finite differences of second order:

∆hϑj :=
ϑj+1 − 2ϑj + ϑj−1

h2
, ∆2

hϑj :=
ϑj+2 − 4ϑj+1 + 6ϑj − 4ϑj−1 + ϑj−2

h4
,

δhϑj :=
ϑj+1 − ϑj−1

2h
.

then the system (1.1)-(1.3) becomes an approximate system of 4J × 4J ODEs when

real part
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1
Eigenvalues for Finite Difference Approx.

τ=0, µ=0
τ=0, µ=0.1
τ=0.1, µ=0.1
τ=0.1, µ=0

Figure 7.3: Eigenvalues of the Finite Difference system (7.3), for different values of the
parameters µ and τ (J = 2000).

τ > 0 (and a suitable system of 3J × 3J ODEs when τ = 0) Y′ = BY, with Y =

(u1, . . . , uJ , v1, . . . , vJ , θ1, . . . , θJ , q1, . . . , qj)
T when τ > 0 (and a system of 2J × 2J ODEs
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when τ = 0), where

B =


O I O O

−(I− µ∆h)
−1∆2

h O −(I− µ∆h)
−1∆h O

O ∆h O −δh

O O −1
τ
δh

−1
τ
I

 (7.3)

where O is the null matrix, and I is the identity.
We observe in Figure 7.3 that the eigenvalues of the approximate B matrix do not have

precisely the same behavior as the eigenvalues of Figure 7.3. In particular, when τ = 0.1

and µ = 0.1, we observe that the approximate eigenvalues for finite differences adhere to
the imaginary axis from sufficiently high frequencies (black graph in Figure 7.3), despite
the fact that we know theoretically that it is one of the cases of exponential decay (compare
with the equivalent graph in figure 7.2). Obviously, the approach method can be improved
or equivalent formulations can be used for system (1.1)-(1.3), which under approximation,
the eigenvalues are obtained more precisely and do not adhere to the axis Re(λ) = 0.
However, for our numerical examples in dimension 1, the Fourier Series approximation
is sufficiently efficient and accurate, and that is what we will use here.

7.2 Time discretization for the equations of motion

As the time discretization is concerned, it is desirable that the algorithm also has at least
a second-order consistency, and because the spatial discretization used in structural dy-
namics often leads to inclusion of high-frequency modes in the model, it is also desirable
to have unconditional stability. The method consists in updating the displacement, ve-
locity and acceleration vectors from current time tn = nδt to the time tn+1 = (n + 1)δt.
The Newmark algorithm [15] is based on a set of two relations expressing the forward
displacement un+1

δ and velocity u̇n+1
δ in terms of their current values and the forward and

current values of the acceleration. In the case of the variable u(t, x) =
∑∞

j=1 aj(t) sin
jπx

L
,

we have

ȧn+1
j = ȧnj + (1− γ)δt änj + γδt än+1

j (7.4)

an+1
j = anj + δtȧnj +

(
1

2
− β

)
δt2 änj + βδt2 än+1

j (7.5)

where β and γ are parameters of the methods that will be fixed later. Replacing (7.4),
(7.5) in the equation of motion (5.3), we obtain(

1 + µλj + βδt2λ2
j

)
än+1
j − λjb

n+1
j

= −λ2
j

(
anj + δtȧnj +

(
1

2
− β

)
δt2 änj

)
. (7.6)
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7.3 Discretization of the heat equation

The heat equation system (5.2), (5.3) can be approximated by trapezoidal rule

bn+1
j − bnj − λjδtf

n+ 1
2

j + λjδtȧ
n+ 1

2
j = 0, (7.7)

τ(fn+1
j − fn

j ) + δtf
n+ 1

2
j + δtb

n+ 1
2

j = 0, (7.8)

where b
n+ 1

2
j =

bnj + bn+1
j

2
and ȧ

n+ 1
2

j =
ȧnj + ȧn+1

j

2
. Then, replacing (7.4) in (7.7), we obtain

γδt2
λj

2
än+1
j + bn+1

j − λj
δt

2
fn+1
j

= bnj + λj
δt

2
fn
j − λj

(
δtȧnj + (1− γ)

δt2

2
änj

)
(7.9)

The system of equation (7.6),(7.8), (7.9), can be written in matrix form as1 + µλj + βδt2λ2
j −λj 0

γδt2
λj

2
1 −λj

δt
2

0 λj
δt
2

λj

(
τ + δt

2

)

än+1

j

bn+1
j

fn+1
j

 =

An
j

Bn
j

Fn
j

 , (7.10)

where An
j = −λ2

j

(
anj + δtȧnj +

(
1
2
− β

)
δt2 änj

)
, Bn

j = bnj+λj
δt
2
fn
j −λj

(
δtȧnj + (1− γ) δt

2

2
änj

)
,

and Fn
j =

(
τ − δt

2

)
fn
j − λj

δt
2
bnj .

Remark 7.2 (Case τ = 0.). The system of equation (7.6),(7.8), (7.9), is also valid when
τ = 0. However, (7.8) is reduced to f

n+ 1
2

j = −b
n+ 1

2
j and the system (7.10) is simplified to

the 2× 2 system (
1 + µλj + βδt2λ2

j −λj

γδt2
λj

2
1 + λj

δt
2

)(
än+1
j

bn+1
j

)
=

(
An

j

B̂n
j

)
,

where B̂n
j =

(
1− λj

δt
2

)
bnj − λj

(
δtȧnj + (1− γ) δt

2

2
änj

)
.

7.4 Decay of the discrete energy

The eigenfunctions of the Dirichlet Laplace operator −∆ in Ω = (0, L) are given by

ϕj(x) = sin
jπx

L
. Therefore, the discrete energy can be written as

En =
∞∑
j=1

(1 + µλj)|ȧnj (t)|2 + λ2
j |anj |2 + |bnj |2 + τλj|fn

j |2

The decrease of the energy of time tn at time tn+1 can be expressed in terms of the mean
value and the increments of the displacements and the velocity by the following identity

En+1 − En =
∞∑
j=1

[
(1 + µλj)|ȧj(t)|2 + λ2

j |aj|2 + |bj|2 + τλj|fj|2
]n+1

n
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where

1

2

[
(1 + µλj)|ȧj(t)|2 + λ2

j |aj|2 + |bj|2 + τλj|fj|2
]n+1

n

= ȧ
n+ 1

2
j (1 + µλj)∆

nȧj + a
n+ 1

2
j λ2

j∆
naj + b

n+ 1
2

j ∆nbj

+ f
n+ 1

2
j τλj∆

nfj (7.11)

with the notation ∆nu = un+1 − un. Then, expressing the Newmark representation
formulae (7.4), (7.5) in term of increments and mean values

∆nȧj = δtä
n+ 1

2
j +

(
γ − 1

2

)
δt∆näj (7.12)

∆naj = δtȧ
n+ 1

2
j +

(
β − 1

2
γ

)
δt2∆näj (7.13)

and replacing (7.7), (7.8), (7.12) and (7.13), in (7.11), we obtain

1

2

[
(1 + µλj)|ȧj(t)|2 + λ2

j |aj|2 + |bj|2 + τλj|fj|2
]n+1

n

=

(
(1 + µλj)

(
γ − 1

2

)
δtȧ

n+ 1
2

j + λ2
j

(
β − 1

2
γ

)
δt2a

n+ 1
2

j

)
∆näj

− λjδt|f
n+ 1

2
j |2 (7.14)

Then, by choosing γ = 1
2

and β = γ
2
, we deduce

En+1 − En

δt
= −

∞∑
j=1

λj|f
n+ 1

2
j |2 ≤ 0. (7.15)

That is, the energy is decreasing, in coherence with (3.4). We note that, when τ = 0, the
right hand side term of (7.15), must be replaced by −

∑∞
j=1 λj|b

n+ 1
2

j |2, which is consistent
with (2.3).

7.5 Numerical examples

We consider the following initial condition for u(x, t):

u(x, 0) = u0(x) = 1− 2|x|, ∀0 < x < L, (7.16)

ut(x, 0) = 0, θ(x, 0) = sin πx
L

and q(x, 0) = π
L
cos πx

L
. Then, we make simulation for L = 1,

and we approximate (5.2) by

u(t, x) =
N∑
j=1

aj(t)ϕj(x), θ(t, x) =
N∑
j=1

bj(t)ϕj(x), q(t, x) =
N∑
j=1

fj(t)∇ϕj(x). (7.17)
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Figure 7.4: Energy decay for different values of µ and τ ,

with N = 1000. We compare (µ = 0, τ = 0), (µ > 0, τ = 0), (µ = 0, τ > 0) and
(µ > 0, τ > 0). For this, we make a simulation with a time discretization for T = 1000,
Nt = 100.000 and δt = T/Nt. We observe in Figure 7.3 that the case µ = 0, τ = 0 is
one that decays fastest. On the other hand, the case µ = 0, τ = 1 (the non-exponential
decay case), decays so slowly with respect to the other three cases, at least in this graph
in semilog scale.

Finally, in Figure 7.5 (case µ = 0, τ = 0) and in Figure 7.6 (case µ = 0, τ = 1), we
observe the asymptotic behavior of the different variables u(x, t), ut(x, t), θ(x, t) and q(x, t)

for differente values of µ and τ . For the four cases considered in figure 7.3, we consider the
most extreme cases, namely the one that decays the most rapidly (when µ = 0 and τ = 0),
and the one that does not decay exponentially (when µ = 0 and τ = 1). In addition to
the decay, we can observe that for the non-exponential case (Figure 7.6), the variables
present greater oscillations in time, and in particular, the variable velocity ut(x, t) is that
which decays more slowly.

7.5.1 Comparison between theoretical and numerical rates

Now we may compare some numerical results obtained with those given by the estimate
in Table 5.2. It turns out that there are remarkable coincidences, also demonstrating that
the analytic estimates which prove Theorem 5.1 – going back to the calculations in [19]
for the Cauchy problem – are rather sharp.

We consider two examples:
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Figure 7.5: Asymptotic behavior of u(x, t), ut(x, t) and θ(x, t) for µ = 0 and τ = 0,

1. τ = 0.1; µ = 0.5: Since 2τµ+µ2 < τ+µ, we are in Case II of Table 5.2. Computing

xµ,τ
0 =

τµ+
√
τ 2µ2 + τ(τ + µ− 2τµ− µ2)

τ(τ + µ− 2τµ− µ2)
= 8.6333,

and
xµ,τ
1 =

µ

τ + µ− 2τµ− µ2
= 2.0

we have xµ,τ
1 < π2 = λ1 > xµ,τ

0 . Hence, we are in Case II.1. Thus we get for the
analytical estimate for the decay rate from Table 5.2

ra = c1
µ

τ + µ
= c1

10

12
= 3.0525 · 10−4.

Using linear regression on the last 10 values of energy En (for n = N − 9, . . . , N),
we obtain that E(t) ≈ Cne

−rnt, with

rn = 4.861 · 10−4,

Cn = 0.3008, and with the goodness of fit given by

R2 =

∑N
n=1 (E

n − Cne
−rntn)∑N

n=1

(
En − Ēn

) = 0.99998521.
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Figure 7.6: Asymptotic behavior of u(x, t), ut(x, t), θ(x, t) and q(x, t) for µ = 0 and τ = 1,

On the other hand, we have Ca = E(t)
e−rat = 0.1218, for t = 5000. We compare

both approximations (numerical and thoerical) in Figure 7.7. We have ra ≤ rn

as expected, and in particular ra ≈ rn in an astonishingly (in view of the many
seemingly “coarse” estimates in deriving Theorem 5.1) sharp sense.

2. τ = 0.01, µ = 0.1: Since 2τµ+µ2 < τ+µ, we are in Case II of Table 5.2. Computing

xµ,τ
0 =

τµ+
√

τ 2µ2 + τ(τ + µ− 2τµ− µ2)

τ(τ + µ− 2τµ− µ2)
=

1000

9.8
= 102.04,

and
xµ,τ
1 =

µ

τ + µ− 2τµ− µ2
=

10

9.8
= 1.0204

we have xµ,τ
1 < π2 = λ1 < xµ,τ

0 . Hence, we are in Case II.2.b. Thus we get for the
analytical estimate for the decay rate from Table 5.2

ra = c1
µ

τ + µ
= c1

10

11
= 3.330 · 10−4.
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Figure 7.7: Example 1: asymptotic behavior of the energy for µ = 0.5 and τ = 0.1

compared with negative rate exponential functions f(t) = Cae
−rat (theoretical) and g(t) =

Cne
−rnt (numerical).

The numerically obtained value for the decay rate rn using linear regression on the
last 10 values of energy is

rn = 5.1668 · 10−4,

Cn = 0.0883, and with the goodness of fit given by R2 = 1.000. Again we have
Ca = E(t)

e−rat = 0.0352, for t = 5000. We compare both approximations (numerical
and thoerical) in Figure 7.8. We have that ra ≤ rn as expected, and ra ≈ rn

underlining the analytical estimates.

Rates k(µ, τ) ra k̃(µ, τ) r̃a rn

Example 1 0.83333 3.056 · 10−4 0.9951 3.645 · 10−4 4.861 · 10−4

Example 2 0.90909 3.330 · 10−4 1.949 7.139 · 10−4 5.167 · 10−4

Table 7.2: Different values of the rates for both examples: theoretical ra = c1 · k(µ, τ);
numerical by approximation of the eigenvalues r̃a = c1 · k̃(µ, τ); and numerical by inter-
polation of the slope for the discrete energy rn.

Finally, in Table 7.2, we summarize the different estimates of the rates, theoretical
(ra), numerical (rn), and we also add a rate r̃a = c1 · k̃(µ, τ), calculated using value of k̃
instead of k.

29



time t[sec]
0 1000 2000 3000 4000 5000

E
(t

)

10 -4

10 -2

10 0

10 2

10 4

10 6
Asymptotic behavior of the energy

Energy( τ=1, µ=1)

C
a
e-r

a
 t

C
n
e-r

n
 t

Figure 7.8: Example 2: asymptotic behavior of the energy for µ = 0.1 and τ = 0.01

compared with negative rate exponential functions f(t) = Cae
−rat (analytical) and g(t) =

Cne
−rnt (numerical).
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