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Abstract: We investigate coupled systems of thermoelastic type in a general abstract form both modeling

Fourier and Cattaneo type heat conduction. In particular we take into account a possible inertial term.

A complete picture of the regions of exponential stability resp. non-exponential stability for the arising

parameters (two arising from the type of thermoelastic system, one arising from the inertial term) is

given. The regions of loss of exponential stability, while moving from the Fourier to the Cattaneo law,

are thus clearly recognized and interestingly large. The polynomial stability in regions of non-exponential

stability is also characterized.

1 Introduction

For given parameters µ > 0, (α, β) ∈ [0, 1] × [0, 1] and γ ∈ (0, 1] and A a self-adjoint, positive

definite operator on a Hilbert space H, we first consider the abstract thermoelastic system given

by

ρutt + µAγutt + σAu−mAαθ = 0, (1.1)

cθt + kAβθ +mAαut = 0, (1.2)

with initial conditions

u(0) = u0 , ut(0) = u1 , θ(0) = θ0, (1.3)

with given constants ρ, σ, c, k > 0 and m 6= 0. We are interested in describing the asymptotic

behavior of solutions u, θ : [0,∞) → H as t → ∞, in particulary describing the parameter

regions for (α, β, γ) where exponential, non-exponential or polynomial stability is given.

The case γ = 0 (equivalently: µ = 0) has been studied in detail in [12, 13] and the references

therein, e.g. [4]. Here we add the feature of an abstract inertial term given by µAγutt. The case

γ = β = 1/2 and α ≤ 3/4 was discussed in [6].

Second, we look at the Cattaneo version of the abstract system which is given by

ρ1utt(t) + µAγutt(t) + σAu(t)−mAαθ(t) = 0, (1.4)

ρ2θt(t) +B1q(t) +mAαut(t) = 0, (1.5)

τqt(t) + q(t) +B2θ(t) = 0, (1.6)

with the relaxation parameter τ > 0, and with densely defined, close operators B1, B2 satisfying

−B1B2 = κAβ . (1.7)
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Here, again u, θ : [0,∞) → H, and q : [0,∞) → (H)r for some r ∈ N. The operator B2 maps its

domain in H into (H)r,

B2 : D(B2) ⊂ H → (H)r,

and

B1 : D(B1) ⊂ (H)r → H.

The relation (1.6) represents for τ > 0 the Cattaneo law of heat conduction. For τ = 0 we have

Fourier’s law, and we recover system (1.1), (1.2).

The thermoelastic plate model from Example 1 below, with the Cattaneo law, is contained

choosing realizations of the divergence operator “div” for B1, and of the gradient operator “∇”

for B2, and m = n in R
n.

We will demonstrate that the change from Fourier to Cattaneo leads to a loss of exponen-

tial stability in most coupled systems, i.e. the early examples of Timoshenko or the classical

thermoelastic plate are not exotic but rather common; the exotic one is, maybe, second-order

thermoelasticity. Here one should also know that there are thermoelastic systems – with second-

order elasticity – which behave very much the same, no matter if τ = 0 or if τ > 0, see [28, 29];

this is true even on a quantitative level, see [14].

The abstract systems (1.1), (1.2) and (1.4)–(1.6) cover a variety of examples as there are

(for τ = 0 see [25]):

Example 1. Taking α = β = γ = 1
2 we have the linear thermoelastic plate equation with inertial

term in H = L2(Ω) with domain D(A
1
2 ) = H2(Ω) ∩ H1

0 (Ω), Ω a bounded domain in R
n, and

A
1
2 v = −∆v:

utt − µ∆utt +∆2u−∆θ = 0,

θt −∆θ +∆ut = 0,

where u denotes the deflection of the plate and θ the temperature difference. For bounded

domains and the Fourier model τ = 0, there are many results in particular on exponential

stability, in particular for µ = 0, see for example [2, 15, 17, 18, 19, 20, 22, 24, 25] For results for

the Cauchy problem or in general exterior domains see for example [7, 8, 9, 24, 25].

The corresponding Cattaneo model with τ > 0

utt +∆2u−∆θ = 0,

θt + div q +∆ut = 0,

τqt + q +∇θ = 0

looses the property of exponential stability for µ = 0, see [27] (for µ > 0 the exponential stability

is always given [10]).

The Cauchy problem (Ω = R
n) has been discussed for τ ≥ 0 and µ ≥ 0 in [31].

We remark that nonlinear versions of these equations have been studied recently, for bounded

domains see [21] with τ = 0 and µ = 0, and [16] for µ > 0. The Cauchy problem was investigated

2



in [32].

Example 2. Taking α = 1
2 , β = 0, µ = 0 we get the equations of linear viscoelasticity of the

following type:

utt + 2Au−

∫ t

0
g(t− r)Au(r)dr = 0,

with the exponential kernel

g(r) = e−r.

Example 3. The equations of linear second-order thermoelasticity in one space dimension:

utt + uxx + θx = 0,

θt − θxx + utx = 0,

u = θx = 0 on ∂Ω,

where Ω = (0, 1). This system corresponds to the case α = 1
2 , β = 1, µ = 0 with respect to the

analysis of the asymptotic behavior, (but not formally since the gradient is not the root of the

Laplacean), cp. [25].

The classical model for pure heat conduction using Fourier’s law for the relation between the

heat flux and the gradient of the temperature qualitatively yields exponentially stable systems

for bounded reference configurations. This kind of stability remains the same if one replaces

Fourier’s law by Cattaneo’s (Maxwell’s, Vernotte’s, . . . ) law. Considering thermal and, simulta-

neously, elastic effects, this similarity with respect to exponential stability remains the same for

classical second-order thermoelastic systems, Example 3 above, one (Fourier) being a hyperbolic-

parabolic coupling, the other one (Cattaneo) being a fully hyperbolic system. The similarities

even extend to the asymptotical behavior of solutions to corresponding nonlinear systems. But

for thermoelastic plates, Example 1 above, the picture changes drastically, i.e., this thermoelas-

tic system changes its behavior from an exponentially stable to a non-exponentially stable one,

while changing Fourier’s law to Cattaneo’s law. This raises the question of the “right” modeling.

This effect is also known for Timoshenko beams. In models for beams of Timoshenko type,

a given exponentially stability triggered by a typical memory (history) term, is preserved by

adding heat conduction in form of the Fourier model, but is lost – hence “destroyed” – by the

Cattaneo model. The four differential equations in the model are given by

ρ1ϕtt − k(ϕx + ψx)x = 0,

ρ2ψtt − bψxx +

∞∫

0

e−sψxx(t− s, ·)ds+ k(ϕx + ψ) + δθx = 0,

ρ3θt + qx + δψtx = 0,

τqt + q + θx = 0.

Here, the functions φ and ψ model the transverse displacement of a beam with reference config-

uration (0, 1) respectively the rotation angle of a filament. θ and q denote again the temperature
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difference and the heat flux, respectively. The material constants ρ1, ρ2, k, b, δ, ρ3 are positive,

as well as the relaxation parameter τ . The last differential equation represents the Cattaneo

law (and the Fourier law for τ = 0). The term
∞∫
0

e−sψxx(t − s, ·)ds models the additional

consideration of the history.

Assuming the (academic, in general physically not satisfied) condition

ρ1
k

=
ρ2
b
,

which corresponds to the equality of the wave speeds for φ and ψ, we have the following picture:

For δ = 0, it is a hyperbolic system with history term for (φ,ψ), and exponential stability

is given. For the coupled system with δ 6= 0 and τ = 0 (Fourier), the exponential stability is

preserved. But for δ 6= 0, τ > 0 (Cattaneo), the exponential stability is lost [11]. Again the

question of an appropriate modeling comes up.

The stability analysis below will be made first for the Fourier system (1.1), (1.2) using

semigroup techniques.

Here, as well as for the Cattaneo system, the analysis of the well-posedness is a non-trivial

issue. The difficulty arises from the point of regularity of solutions visible in the regularity of ut

if α is large, or in that of θ if α is large compared to β. This problem is solved in the larger, most

interesting part of the parameter region by factorizing the operators and defining the domains

appropriately depending on α ≤ 1/2 or α > 1/2. The regularity properties have to be taken

into account also in the proofs of (non-)exponential stability.

The non-exponential stability for Cattaneo systems will be proved in constructing slowly

decaying solutions with the Hurwitz criterion. For this part we will assume that A has a

countable system of eigenfunctions (φj)j with corresponding increasing eigenvalues 0 < λj → ∞

as j → ∞. This is, e.g., satisfied for Examples 1 given above in bounded domains.

Summarizing, we

– present a detailed analysis of the impact of the inertial term giving a precise description

of parameter regions of (non-)exponential stability, and

– demonstrate that the change from Fourier to Cattaneo leads to a loss of exponential

stability in “most” coupled systems.

The paper is organized as follows: In Section 2 we present well-posedness results and we

describe the region of parameters, where exponential stability is given for the Fourier model

(1.1), (1.2). The region of non-exponential stability is characterized in Section 3. The loss of

exponential stability for the bigger part of the parameter regions is proved in Section 4, also

including the well-posedness issue in Section 4.3. Section 5 provides the regions of polynomial

stability within regions of non-exponential stability.

The symbols (·, ·) and || · || are used to denote the inner product and norm in H or multiple

copies [H]r, respectively.
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2 Exponential stability region for the Fourier law

Here we look at the Fourier model (1.1), (1.2), and we will describe the region of parameters

where exponential stability is given.

We obtain for a regular solution in multiplying (1.1) by ut, and (1.2) by θ the equality

1

2

d

dt

[
ρ‖ut‖

2 + µ‖Aγ/2ut‖
2 + σ‖A1/2u‖2 + c‖θ‖2

]
+ k‖Aβ/2θ‖2 = 0 (2.1)

This motivates the choice of the Hilbert space

H = D(A1/2)×D(Aγ/2)×H

with inner product defined for Uj = (uj , vj , θj)
T ∈ H, j = 1, 2, as

〈U1, U2〉H = σ(A1/2u1, A
1/2u2) + µ(Aγ/2v1, A

γ/2v2) + ρ(v1, v2) + c(θ1, θ2).

Now, system (1.1)-(1.3) can be written as an evolution equation on H given by





dU

dt
= Aα,β,γU,

U(0) = U0,
(2.2)

where U0 = (u0, v0, θ0)
T , and the operator Aα,β,γ : D(Aα,β,γ) ⊂ H → H is defined for α ≤ 1/2

by

Aα,β,γ




u

v

θ


 =




v

−(I +
µ

ρ
Aγ)−1Aα

{
σ

ρ
A1−αu−

m

ρ
θ

}

−
m

c
Aαv −

k

c
Aβθ




(2.3)

with domain

D(Aα,β,γ) =
{
(u, v, θ)T ∈ H | v ∈ D(A1/2), θ ∈ D(Aβ), u ∈ D(A1−α), σA1−αu−mθ ∈ D(Aα−γ/2)

}
.

For α > 1/2 it is defined by

Aα,β,γ




u

v

θ


 =




v

−(I +
µ

ρ
Aγ)−1Aα

{
σ

ρ
A1−αu−

m

ρ
θ

}

−Aα−1/2

{
m

c
A1/2v +

k

c
Aβ−(α−1/2)θ

}




(2.4)

with domain

D(Aα,β,γ) =
{
(u, v, θ)T ∈ H | v ∈ D(A1/2), σA1−αu−mθ ∈ D(Aα−γ/2),

Aβ−(α−1/2)θ ∈ H, Aα−1/2
[
mA1/2v + kAβ−(α−1/2)θ

]
∈ H

}
.
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Note that Aα,β,γ is dissipative, cf. (2.1), and the density of D(Aα,β,γ) in H is a consequence of

the density of D(A) in H. Therefore, it is sufficient to prove that 0 ∈ ρ(Aα,β,γ). We will do this

in detail for the parameter region where

β ≥ 2α− 1.

The region β < 2α − 1 (corresponding to region S3 in Figure 2.1) is left open, cf. [1, 5] for

regions where 0 might not belong to the resolvent set. We now solve the problem

Aα,β,γU = F ≡ (f, g, h)T in H.

First, let α ≤ 1/2: Then, defining

v := f, θ := −A−β
( c
k
h+

m

k
Aαf

)
, u := A−(1−α)

(
m

σ
θ +

1

σ
A−(α−γ/2)(ρA−γ/2g + µAγ/2g)

)
,

(2.5)

we have (u, v, θ)T ∈ D(Aα,β,γ) and

‖v‖D(Aγ/2) ≤ c1‖f‖D(A1/2), ‖θ‖ ≤ c1(‖h‖ + ‖A1/2f‖, (2.6)

‖u‖D(A1/2) ≤ c1‖A
−(1/2−α)θ‖+ c1‖ρA

−γ/2g + µAγ/2g‖ ≤ c1(‖θ‖+ ‖g‖D(Aγ/2)), (2.7)

where we used α ≤ 1/2, and where c1 denotes a generic constant. Hence we have U ∈ D(Aα,β,γ),

Aα,β,γU = F and ‖U‖H ≤ c1‖F‖H.

Now, let α > 1/2: Then, defining

v := f, θ := −A−(β−(α−1/2))
( c
k
A−(α−1/2)h+

m

k
A1/2f

)
, (2.8)

u := A−(1−α)

(
m

σ
θ +

1

σ
A−(α−γ/2)(ρA−γ/2g + µAγ/2g)

)
, (2.9)

we have (u, v, θ)T ∈ D(Aα,β,γ) and

‖v‖D(Aγ/2) ≤ c1‖f‖D(A1/2), ‖θ‖ ≤ c1(‖A
β−(α−1/2)θ‖ ≤ c1‖F‖H, (2.10)

and the estimate for u is obtained by

‖u‖D(A1/2) ≤ c1‖A
−(β−(2α−1))‖H→H‖Aβ−(α−1/2)θ‖+ c1‖F‖H

≤ c1‖F‖H, (2.11)

where we used the assumption β ≥ 2α − 1. Hence we have again U ∈ D(Aα,β,γ), Aα,β,γU = F

and ‖U‖H ≤ c1‖F‖H.

Consequently, Aα,β,γ generates a C0-semigroup {eAα,β,γt}t≥0 of contractions on H. Then U ,

given by

U(t) = eAα,β,γtU0,

is the solution to (2.2) with

U ∈ C1 ([0,∞);H) ∩C0 ([0,∞);D(Aα,β,γ)) .
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Remark 2.1. In order to simplify our notation, let Vδ denote the space D(Aδ). For example,

using this notation, the Hilbert space H is given by

H = V1/2 × Vγ/2 ×H.

In order to prove the exponential stability, it is useful to recall the following known result

(see for example [26]):

Theorem 2.2. Let {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert space H. Then the

semigroup is exponentially stable if and only if iR ∈ ρ(A) (resolvent set) and

lim sup
λ∈R,|λ|→∞

||(iλI −A)−1||L(H) <∞. (2.12)

It will allow us to prove

Theorem 2.3. Let α, β, γ ∈ S where S is given by

S =

{
(α, β) ∈ [0, 1] × [0, 1], 0 < γ ≤ 1 :

1

2
≤ α+

β

2
,

γ

2
≤ α−

β

2
≤

1

2

}
. (2.13)

Then the semigroup {eAα,β,γ t}t≥0 is exponentially stable.

In Section 3 we will demonstrate the optimality of this result in the sense that for parameters

outside the set S, the non-exponential stability will be proved.

A typical region S is given for small positive γ by Figure 2.1

α

β

α− β
2 = 1

2

γ
2 = α− β

2

α+ β
2 = 1

2

1

2

1

1

2
1

S

S3

Figure 2.1: Region S.

Proof. We prove condition (2.12) considering the resolvent equation

iλU −Aα,β,γU = F, in H, (2.14)
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where U = (u, v, θ)T and F = (f, g, h)T , we have:

iλu− v = f, in V1/2,

iλv + (I +
µ

ρ
Aγ)−1Aα

(
σ

ρ
A1−αu−

m

ρ
θ

)
= g, in Vγ/2,

iλθ +
T1
c

= h, in H,

where

T1 :=





kAβθ +mcAαv, for α ≤ 1/2,

Aα−1/2
(
mA1/2v + kAβ−(α−1/2)θ

)
, for α > 1/2.

(2.15)

Now, using v ∈ V1/2 ⊂ Vγ/2 and (I +
µ

ρ
Aγ) : Vγ/2 → V ′

γ/2 being an isomorphism, we have

iλu− v = f, in V1/2, (2.16)

iλρv + iλµAγv +Aα
(
σA1−αu−mθ

)
= ρg + µAγg, in V ′

γ/2, (2.17)

iλcθ + T1 = ch, in H. (2.18)

Now, multiplying the resolvent equation (2.14) by U ∈ D(Aα,β,γ) ⊂ H, we deduce

−Re(Aα,β,γU,U)H = Re(U,F )H (2.19)

where

−(Aα,β,γU,U)H = −σ(A1/2v,A1/2u) +
〈
Aα
(
σA1−αu−mθ

)
, v
〉
V ′

γ/2
×Vγ/2

+ (T1, θ).

Here, by the definition of D(Aα,β,γ) for α ≤ 1/2, we have u ∈ V1−α, v ∈ V1/2 ⊂ Vα, and

(σA1−αu−mθ) ∈ Vα−γ/2 ⊂ H, because α ≥
γ

2
in S.

So we obtain for α ≤ 1/2

−(Aα,β,γU,U)H = −(Aαv, σA1−αu−mθ) +
〈
Aα
(
σA1−αu−mθ

)
, v
〉
V ′

γ/2
×Vγ/2

+ k||Aβ/2θ||2

= −(Aαv, σA1−αu−mθ) +
(
σA1−αu−mθ,Aαv

)
+ k||Aβ/2θ||2,

which implies

−Re(Aα,β,γU,U)H = k||Aβ/2θ||2, for α ≤
1

2
. (2.20)

On the other hand, for α > 1/2, we have

mA1/2v + kAβ−(α−1/2)θ ∈ Vα−1/2 ⊂ H

and

θ ∈ Vβ−(α−1/2) ⊂ Vβ−1/2 ⊂ Vα−1/2 ⊂ H, because α−
1

2
≤
β

2
in S.
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Then we have

−(Aα,β,γU,U)H = −σ(A1/2v,A1/2u) +
〈
Aα
(
σA1−αu−mθ

)
, v
〉
V ′

γ/2
×Vγ/2

+
(
mA1/2v + kAβ−(α−1/2)θ,Aα−1/2θ

)

= −
(
A1/2v,Aα−1/2

(
σA1−αu−mθ

))
+
(
Aα−1/2

(
σA1−αu−mθ

)
, A1/2v

)

+k||Aβ/2θ||2,

which implies

−Re(Aα,β,γU,U)H = k||Aβ/2θ||2, for α >
1

2
. (2.21)

Then, using (2.20)-(2.21) in (2.19) we obtain the first inequality (corresponding to (2.1))

k||Aβ/2θ||2 ≤ C||U ||H||F ||H. (2.22)

Here and in the sequel C,C1, . . . will denote positive constants, in particular being independent

of λ.

Now, using equation (2.17) in u ∈ V1/2 →֒ Vγ/2, 0 < γ ≤ 1, we have

〈iλρv + iλµAγv, u〉V ′

γ/2
×Vγ/2

+
〈
Aα
(
σA1−αu−mθ

)
, v
〉
V ′

γ/2
×Vγ/2

= ρ 〈g + µAγg, u〉V ′

γ/2
×Vγ/2

.

Then, using equation (2.16), we have

〈ρv + µAγv,−v − f〉V ′

γ/2
×Vγ/2

+
〈
Aα
(
σA1−αu−mθ

)
, v
〉
V ′

γ/2
×Vγ/2

= ρ〈g + µAγg, u〉V ′

γ/2
×Vγ/2

which implies, for v ∈ V1/2 →֒ Vγ/2,

〈
Aα
(
σA1−αu−mθ

)
, u
〉
V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:I3

= ρ(v, f) + µ||Aγ/2v||2 + ρ||v||2 + µ〈Aγv, f〉V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:I1

+ ρ〈g + µAγg, u〉V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:I2

. (2.23)

Note that

|I1| = µ|(Aγ/2v,Aγ/2f)| ≤ C||Aγ/2v|| ||Aγ/2f || ≤ C1||A
γ/2v|| ||A1/2f || ≤ C||U ||H||F ||H, (2.24)

because V1/2 →֒ Vγ/2. Similarly we have

|I2| ≤ ρ|(g, u)| + ρµ|(Aγ/2g,Aγ/2u)| ≤ C||U ||H||F ||H + C||Aγ/2g|| ||Aγ/2u||

≤ C||U ||H||F ||H + C1||A
γ/2g|| ||A1/2u||

≤ C||U ||H||F ||H. (2.25)

For the term I3, in the case α ≤ 1/2 we have u ∈ V1/2 ⊂ Vα and u ∈ V1−α. Consequently

I3 =
(
σA1−αu−mθ,Aαu

)
= σ(A1−αu,Aαu)−m(θ,Aαu).
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So, using that 0 ≤ α−
β

2
≤

1

2
in S, we deduce

I3 = σ||A1/2u||2 −m(Aβ/2θ,Aα−β/2u), for α ≤
1

2
. (2.26)

In the case α > 1/2, using that 0 < α−
1

2
≤ β in S, we obtain

I3 = (Aα−1/2
(
σA1−αu−mθ

)
, A1/2u) = σ||A1/2u||2 −m(Aα−1/2θ,A1/2u) (2.27)

Therefore, using (2.24)-(2.27) in (2.23) we obtain

σ||A1/2u||2 ≤ C||U ||H||F ||H + ρ||v||2 + µ||Aγ/2v||2 +m|T2| (2.28)

where

T2 :=





(Aβ/2θ,Aα−β/2u), for α ≤ 1/2,

(Aα−1/2θ,A1/2u), for α > 1/2.

Note that, using the definition of S, we have 0 ≤ α− β
2 ≤ 1

2 for α ≤ 1/2, and 0 < α− 1
2 ≤ β

2 for

α > 1/2, which implies

|T2| ≤ C||Aβ/2θ|| ||A1/2u||, for all 0 ≤ α ≤ 1.

Therefore, from (2.28), using (2.22), we have

σ||A1/2u||2 ≤ C||U ||H||F ||H +C1

[
ρ||v||2 + µ||Aγ/2v||2

]
. (2.29)

Now, let us define further multipliers given by ψ and φ as the solutions to the equations

Aαψ = v and Aαφ = θ. (2.30)

Since θ ∈ Vβ/2 and
γ

2
≤ α + β

2 in S, we have the regularity φ ∈ Vα+β/2 →֒ Vγ/2. Then, with

equation (2.17), we have for φ ∈ Vγ/2

〈iλρv + iλµAγv +Aα(σA1−αu−mθ), φ〉V ′

γ/2
×Vγ/2

= 〈ρg + µAγg, φ〉V ′

γ/2
×Vγ/2

,

or

iλρ(v, φ)︸ ︷︷ ︸
=:I4

+ iλµ〈Aγv, φ〉V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:I5

+

〈
Aα(σA1−αu−mθ), φ

〉
V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:I6

= ρ(g, φ) + µ〈Aγg, φ〉V ′

γ/2
×Vγ/2

. (2.31)

Using (2.30) and equation (2.18), we get

I4 = iλρ(Aαψ, φ) = iλρ(ψ,Aαφ)

= iλρ(ψ, θ) = ρ(ψ,−iλθ)

= ρ(ψ,
1

c
T1 − h),
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where T1 was defined in (2.15). Here, for α ≤ 1/2 we have v ∈ V1/2 ⊂ Vα. Then

I4 = ρ(ψ,
k

c
Aβθ +

m

c
Aαv − h)

=
kρ

c
(ψ,Aβθ) +

mρ

c
||v||2 − ρ(ψ, h), for α ≤

1

2
. (2.32)

Similarly, for α > 1/2, from (2.30) we have ψ ∈ V1/2+α ⊂ Vα−1/2 ⊂ H. Then, using equations

(2.18)-(2.15)2, we get again

I4 = ρ(ψ,Aα−1/2(
m

c
A1/2v +

k

c
Aβ−(α−1/2)θ)− h)

= ρ(Aα−1/2ψ,
m

c
A1/2v +

k

c
Aβ−(α−1/2)θ)− ρ(ψ, h)

=
kρ

c
(ψ,Aβθ) +

mρ

c
||v||2 − ρ(ψ, h), for α >

1

2
. (2.33)

For I5, using v ∈ V1/2 ⊂ Vγ/2 and θ ∈ Vβ−(α−1/2) we have

Aγ−αv ∈ Vα−γ/2 ⊂ H and Aαφ = θ ∈ Vβ−(α−1/2) ⊂ V ′
α−γ/2.

So we can identify

I5 = iλµ〈Aγ−αv,Aαφ〉Vα−γ/2×V ′

α−γ/2
= µ〈Aγ−αv,−iλθ〉Vα−γ/2×V ′

α−γ/2

=
µ

c
〈Aγ−αv, T1 − ch〉Vα−γ/2×V ′

α−γ/2
,

which implies, for α ≤ 1/2, that

I5 =
µ

c
〈Aγ−αv, kAβθ +mAαv − ch〉Vα−γ/2×V ′

α−γ/2
,

=
µk

c
〈Aγ−αv,Aβθ〉Vα−γ/2×V ′

α−γ/2
+
µm

c
||Aγ/2v||2 − µ〈Aγ−αv, h〉Vα−γ/2×V ′

α−γ/2
. (2.34)

Similarly, for α > 1/2, using that

Aαv ∈ V ′
α−1/2 ⊂ V ′

α−γ/2 and θ ∈ Vβ−(α−1/2) ⊂ H,

we obtain again

I5 =
µ

c
〈Aγ−αv,Aα−1/2(mA1/2v + kAβ−(α−1/2)θ)− ch〉Vα−γ/2×V ′

α−γ/2

=
µm

c
〈Aγ−αv,Aαv〉Vα−γ/2×V ′

α−γ/2
+
µk

c
〈Aγ−αv,Aβθ〉Vα−γ/2×V ′

α−γ/2
− µ〈Aγ−αv, h〉Vα−γ/2×V ′

α−γ/2

=
µk

c
〈Aγ−αv,Aβθ〉Vα−γ/2×V ′

α−γ/2
+
µm

c
||Aγ/2v||2 − µ〈Aγ−αv, h〉Vα−γ/2×V ′

α−γ/2
. (2.35)

Finally, using that α ≥
γ

2
in S, we have (σA1−αu−mθ) ∈ Vα−γ/2 ⊂ H. Then we have

I6 = (σA1−αu−mθ,Aαφ) = σ(A1−αu, θ)−m||θ||2, (2.36)
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where the last equality is valid because u ∈ V1−α.

Therefore, inserting (2.32)-(2.36) into (2.31) we deduce

ρ||v||2 + µ||Aγ/2v||2 = c||θ||2 −
kρ

m
(Aα−1/2ψ,Aβ−(α−1/2)θ)−

µk

m
〈Aγ−αv,Aβθ〉Vα−γ/2×V ′

α−γ/2

−
σc

m
(A1−αu, θ) +

ρc

m
(ψ, h) +

µc

m
〈Aγ−αv, h〉Vα−γ/2×V ′

α−γ/2

+
ρc

m
(g, φ) +

µc

m
〈Aγg, φ〉V ′

γ/2
×Vγ/2

. (2.37)

Finally we will analyze the remaining terms in equation (2.37). In fact, in S we have β ≤ 2α,

or β − α ≤ β
2 , which implies, using (2.30) again,

|(Aα−1/2ψ,Aβ−(α−1/2)θ)| = |(Aαψ,Aβ−αθ)| = |(v,Aβ−αθ)|

≤ ||Aβ−αθ|| ||v|| ≤ C||Aβ/2θ|| ||v||. (2.38)

Since in S we have α+ β
2 ≥ 1

2 , we get

|(A1−αu, θ)| = |(A1−α−β/2u,Aβ/2θ)| ≤ ||A1−α−β/2u|| ||Aβ/2θ||

≤ C1||A
1/2u|| ||Aβ/2θ||. (2.39)

Also by (2.13) we have
γ

2
≤ α−

β

2
⇐⇒ γ − α+

β

2
≤
γ

2
,

implying

|〈Aγ−αv,Aβθ〉Vα−γ/2×V ′

α−γ/2
| = |(Aγ−α+β/2v,Aβ/2θ)|

≤ ||Aγ−α+β/2v|| ||Aβ/2θ|| ≤ C1||A
γ/2v|| ||Aβ/2θ||. (2.40)

Now, using
γ

2
≤ α, we have

|〈Aγ−αv, h〉Vα−γ/2×V ′

α−γ/2
| ≤ C1||A

γ−αv|| ||h|| ≤ C1||A
γ/2v|| ||h|| ≤ C1||U ||H||F ||H. (2.41)

Also we get

|(ψ, h)| ≤ ||ψ|| ||h|| ≤ C1||A
αψ|| ||h|| = C1||v|| ||h|| ≤ C1||U ||H||F ||H, (2.42)

and

|(g, φ)| ≤ C1||A
γ/2g|| ||Aα/2φ|| ≤ C1||A

γ/2g|| ||θ|| ≤ C1||U ||H||F ||H. (2.43)

Finally, using again
γ

2
≤ α and (2.30) we obtain

|〈Aγg, φ〉V ′

γ/2
×Vγ/2

| = |(Aγ−αg,Aαφ)| = |(Aγ−αg, θ)|

≤ C1||A
γ/2g|| ||θ|| ≤ C1||U ||H||F ||H. (2.44)

12



Therefore, using the inequalities (2.38)–(2.44) in (2.37) and using (2.22) we deduce

ρ||v||2 + µ||Aγ/2v||2 ≤ C1||U ||H||F ||H + C1||A
β/2θ|| ||A1/2u||. (2.45)

Combining (2.22), (2.29), (2.45) we obtain

||U ||H ≤ C||F ||H,

which proves Theorem 2.3.

Remark 2.4. Let us give some examples of S-regions.

Example a.

α

β
1
8 = α− β

2

S

1

8

γ = 1
4

α− β
2 = 1

2

α+ β
2 = 1

2

1

2

1

1

2
1

S3

Example b.

α

β
1
4 = α− β

2

S

1

4

γ = 1
2

α− β
2 = 1

2

α+ β
2 = 1

2

1

2

1

1

2
1

S3
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Example c.

α

β
3
8 = α− β

2

S

3

8

γ = 3
4

α− β
2 = 1

2

α+ β
2 = 1

2

1

2

1

1

2
1

S3

3 Region of non-exponential stability for the Fourier law

In order to complete the result given in Theorem 2.3 and to demonstrate its optimality, we will

prove that the region of non-exponential stability is the complement of S, that is S2 ∪ S3 (see

next figure). In fact, without loss of generality we assume

β = 2α− 1

β = 2α− γ

β = −2α+ 1

1

2

1

1

2
1

S

S3

S2

α

β

Figure 3.1: Region of non exponential stability for Fourier.

ρ = µ = σ = m = c = κ = 1.

We make the ansatz of separation of variables via the eigenfunctions (φj)j of A,

uj(t) = aj(t)φj , θj(t) = bj(t)φj , (3.1)

for arbitrary j to find solutions with decay contradicting exponential stability. Then, solving

(1.1), (1.2) is equivalent to solving the following system of ODEs for the coefficient functions

14



(aj, bj),

a′′j + λγj a
′′
j + λjaj − λαj bj = 0, (3.2)

b′j + λβj bj + λαj a
′
j = 0. (3.3)

System (3.2), (3.3) is equivalent to a first-order system for the column vector Vj := (aj , a
′
j , bj),

V ′
j =




0 1 0
−λj

1+λγ
j

0
λα
j

1+λγ
j

0 −λαj −λβj


Vj ≡ AjVj. (3.4)

We are looking for solutions to (3.4) of type

Vj(t) = eωjtV 0
j .

I.e., ωj has to be an eigenvalue of Aj with eigenvector V 0
j as initial data.

It is the aim to demonstrate that, for any given small ε > 0, we have some j and some

eigenvalue ωj such that the real part ℜωj of ωj is larger than −ε. This will contradict the

exponential stability (being a kind of uniform property over all initial values). Computing the

characteristic polynomial of Aj we have

det(ω −Aj) = ω3 + λβj ω
2 +

λ2αj + λj

1 + λγj
ω +

λ1+β
j

1 + λγj
=: Pj(ω).

In order to show that

∀ ε > 0 ∃ j ∃ωj, Pj(ωj) = 0 : ℜωj ≥ −ε,

we introduce, for small ε > 0,

z := ω + ε, Pj,ε(z) := Pj(z − ε),

and we have to show

∀ 0 < ε≪ 1 ∃ j ∃ zj, Pj,ε(zj) = 0 : ℜzj ≥ 0. (3.5)

To prove (3.5) we start with computing

Pj,ε(z) = q3z
3 + q2z

2 + q1z + q0

where

q3 = 1,

q2 = −3ε+ λβj ,

q1 = 3ε2 − 2ελβj +
λ2αj + λj

1 + λγj
,

q0 = −ε3 + λβj ε
2 −

λ2αj + λj

1 + λγj
ε+

λ1+β
j

1 + λγj
.
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We use the Hurwitz criterion [33]: Let

H
j :=




q2 q3 0

q0 q1 q2

0 0 q0




denote the Hurwitz matrix associated to the polynomial Pj,ε. Then (3.5) is fulfilled if we find,

for given small ε > 0, a (sufficiently large) index j such that one of the principal minors of Hj is

not positive. The principal minors are given by the determinants detDj
m of the matrices Dj

m, for

m = 1, 2, 3, where Dj
m denotes the upper left square submatrix of Hj consisting of the elements

H
j
11, . . . ,H

j
mm.

Assuming w.l.o.g. from now on that for some small ε0

0 < ε ≤ ε0 < 1.

Then, for j large enough and for all β ∈ [0, 1] we have

detDj
1 = q2 = −3ε+ λβj > 0.

Consequently, we need to prove

detDj
2 ≤ 0 or detDj

3 ≤ 0,

for sufficiently large j. Moreover, since detDj
3 = q0 detD

j
2, it is sufficient to analyse the signs of

q0 and detDj
2 for sufficiently large j.

First, for the sign of q0, note that

q0 =
1

1 + λγj
q̃0,

where q̃0 is given by

q̃0 =
(
λβj ε

2 + λγ+β
j ε2 + λ1+β

j

)
−
(
λγj ε

3 + λ2αj ε+ λjε+ ε3
)
.

Then, in the following we will analyze the sign of q̃0 distinguishing several cases.

• For the case α = β = 0, we have

q̃0 = λγj (ε
2 − ε3) + λj(1− ε) + (ε2 − ε− ε3) > 0

for some (sufficiently large) j.

• For the case α = 0, β > 0, we have

q̃0 =
(
λβj ε

2 + λγ+β
j ε2 + λ1+β

j

)
−
(
λγj ε

3 + λjε+ ε+ ε3
)
> 0

for some (sufficiently large) j, because γ + β > γ.
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• For the case α > 0, β = 0, we have

q̃0 = λγj (ε
2 − ε3) + λj(1− ε)− λ2αj ε+ (ε2 − ε3).

Then, in this case, the sign of q̃0 depends on α, as we get:

– For α ∈ (0, 12 ], we have q̃0 > 0 for sufficiently large j.

– For α ∈ (12 , 1], we have q̃0 < 0 for sufficiently large j.

• For the case α > 0, β > 0, we obtain:

1. For α ∈ (0, 12 ], we have 2α ≤ 1 < 1+β and γ ≤ 1 < 1+β. Then q̃0 > 0 for sufficiently

large j; the dominant term is λ1+β
j .

2. For α ∈ (12 , 1] the sign of q̃0 depends on the relationship between 1 + β and 2α. In

fact:

(a) For 1+β ≥ 2α we have q̃0 > 0 for sufficiently large j; the dominant term is λ1+β
j .

(b) For 1 + β < 2α we have q̃0 < 0 for sufficiently large j; the dominant term is

−λ2αj ε.

Therefore, combining all cases we have the regions described in figure 3.2, the regions being

independent of γ.

β = 2α− 1

1

2

1

1

2
1

q0 < 0

q0 > 0

α

β

Figure 3.2: Region of q0 < 0.

Second, for the sign of detDj
2, note that

detDj
2 =

1

1 + λγj
dj2,

where dj2 is given by

dj2 =
(
(6ε3 + 2ε2)λβj + (6ε3 + 2ε2)λγ+β

j + λ2α+β
j

)

−
(
2ελ2βj + 8ε3λγj + 2ελ2β+γ

j + 2ελ2αj + 2ελj + 8ε3
)
.
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Hence, we will analyze the sign of dj2 in the same cases as to q0.

• For the case α = β = 0, we have

dj2 = −ε(2 − 2ε+ 2ε2)λγj − 2ελj +
(
1− (4ε + 2ε3 − 2ε2)

)
< 0

for sufficiently large j, independent of γ.

• For the case α = 0, β > 0, we have

dj2 =
(
(1 + 6ε3 + 2ε2)λβj + (6ε3 + 2ε2)λγ+β

j

)

−
(
2ελ2βj + 8ε3λγj + 2ελ2β+γ

j + 2ελj + (2ε + 8ε3)
)
< 0

for sufficiently large j, because 2β + γ > γ + β > β.

• For the case α > 0, β = 0, we have

dj2 = (1− 2ε)λ2αj − 2ελj − (2ε− 2ε2 + 2ε3)λγj − (2ε− 2ε2 + 2ε3).

1. For α ∈ (0, 12), we have dj2 < 0 for sufficiently large j.

2. For α ∈ [12 , 1], we have dj2 > 0 for sufficiently large j.

• For the case α > 0, β > 0, the sign of dj2 depends of the relationship between 2α and γ.

In fact:

1. For 2α < γ and for some (sufficiently large) j, we have dj2 < 0 because

β < 2α+ β < γ + β < 2β + γ,

i.e. the domain term is −2ελ2β+γ
j .

2. For 2α ≥ γ we have two situations:

(a) If 2α + β ≥ max{2β + γ, 2α, 1} we have dj2 > 0 for sufficiently large j. The

dominant term is λ2α+β
j . We have

2α− β ≥ γ and 2α+ β ≥ 1.

(b) If 2α + β < max{2β + γ, 2α, 1} we have dj2 < 0 for sufficiently large j. The

dominant term is −2ε
(
λ2β+γ
j + λ2αj + λj

)
. We have

2α− β < γ or 2α+ β < 1.

Therefore, combining all cases in Subsection 3.2 we have the figure 3.3.

Finally, summarizing all cases, see graphics 3.2 and 3.3, we can deduce that the negative val-

ues of detDj
2 and detDj

3 (for sufficiently large j), are given in the following figure 3.4. Therefore,

we have proved the following theorem.

Theorem 3.1. The region of non-exponential stability for the Fourier model (1.1), (1.2) is

given by the complement of the set S, see (2.13), which is precisely shown in Figure 3.4.
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β = 2α− γ

β = 1− 2α

1

2

1

1

2
1

detDj
2
> 0

detDj
2
<0

α

β

Figure 3.3: Region of detDj
2 > 0.

β = 2α− 1

β = 2α− γ

β = −2α+ 1

1

2

1

1

2
1

S

detDj

3
<0

detDj

2
<0

α

β

Figure 3.4: Region of non-exponential stability.

4 Loss of exponential stability for the Cattaneo law

The known examples on the loss of exponential stability described above, like the Timoshenko

system or the classical thermoelastic plate corresponding to (α, β, γ) = 1
2(1, 1, 1) in (1.4)–(1.6)

might have been regarded as exceptions, in view of the pure heat conduction system, or in

view of the classical second-order thermeolastic system, where both for the Fourier and for the

Cattaneo model exponential stability is given. In this section we demonstrate that for a large

class of systems exponential stability is lost when replacing Fourier’s law by Cattaneo’s law, first

without (γ = 0) then with inertial term (γ > 0).

We start considering both cases simultaneously, i.e. µ, γ ≥ 0. Without loss of generality we

assume

ρ1 = ρ2 = m = κ = 1.
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As in Section 3 we make the ansatz of separation of variables via the eigenfunctions (φj)j of A,

uj(t) = aj(t)φj , θj(t) = bj(t)φj , qj(t) = cj(t)B2φj, (4.1)

for arbitrary j (assuming B2φj to be not identically zero), to find solutions with decay contra-

dicting exponential stability.

Using (1.7) we observe

B1qj(t) = cj(t)B1B2φj = −cj(t)A
βφj = −λβj cj(t)φj ,

thus solving (1.4)–(1.6) is equivalent to solving the following system of ODEs for the coefficient

functions (aj , bj , cj), where a prime ′ denotes again differentiation with respect to time t,

a′′j + µλγj a
′′
j + λjaj − λαj bj = 0, (4.2)

b′j − λβj cj + λαj a
′
j = 0, (4.3)

τc′j + cj + bj = 0. (4.4)

The last equation arises from (1.6) with the ansatz (4.1) using again the natural condition that

B2φj is not identically zero.

System (4.2)–(4.4) is equivalent to a first-order system for the column vector Vj := (aj , a
′
j , bj , cj),

V ′
j =




0 1 0 0
−λj

1+µλγ
j

0
λα
j

1+µλγ
j

0

0 −λαj 0 λβj
0 0 − 1

τ − 1
τ



Vj ≡ AjVj. (4.5)

We are looking for solutions to (4.5) of type

Vj(t) = eωjtV 0
j ,

i.e., ωj has to be an eigenvalue of Aj with eigenvector V 0
j as initial data.

It is the aim to demonstrate that, for any given small ε > 0, we have some j and some

eigenvalue ωj such that the real part ℜωj of ωj is larger than −ε. This will contradict the

exponential stability (being a kind of uniform property over all initial values). Computing the

characteristic polynomial of Aj we have

det(Aj − ω) =
1

τ(1 + µλγj )

([
τ(1 + µλγj )

]
ω4 +

[
1 + µλγj

]
ω3+

[
λβj (1 + µλγj ) + τ(λj + λ2αj )

]
ω2 +

[
λj + λ2αj

]
ω + λ1+β

j

)

≡
1

τ(1 + µλγj )
Pj(ω).

In order to show that

∀ ε > 0 ∃ j ∃ωj, Pj(ωj) = 0 : ℜωj ≥ −ε,
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we introduce, for small ε > 0,

z := ω + ε, Pj,ε(z) := Pj(z − ε),

and we have to show

∀ 0 < ε≪ 1 ∃ j ∃ zj, Pj,ε(zj) = 0 : ℜzj ≥ 0. (4.6)

To prove (4.6) we start with computing

Pj,ε(z) = q4z
4 + q3z

3 + q2z
2 + q1z + q0

where

q4 = τ(1 + µλγj ),

q3 = (1− 4τε)(1 + µλγj ),

q2 = 6τε2(1 + µλγj )− 3ε(1 + µλγj ) + λβj (1 + µλγj ) + τ(λj + λ2αj ),

q1 = −4τε3(1 + µλγj ) + 3ε2(1 + µλγj )− 2
(
λβj (1 + µλγj ) + τ(λj + λ2αj )

)
ε+ λj + λ2αj ,

q0 = τε4(1 + µλγj )− ε3(1 + µλγj ) +
(
λβj (1 + µλγj ) + τ(λj + λ2αj )

)
ε2 − (λj + λ2αj )ε+ λ1+β

j .

As in Section 3 we use the Hurwitz criterion. Let

H
j :=




q3 q4 0 0

q1 q2 q3 q4

0 q0 q1 q2

0 0 0 q0




denote the Hurwitz matrix associated to the polynomial Pj,ε. Then (4.6) is fulfilled if we find,

for given small ε > 0, a (sufficiently large) index j such that one of the principal minors of Hj

is not positive. The principal minors are given by the determinants detDj
m of the matrices Dj

m,

for m = 1, 2, 3, 4, where Dj
m denotes the upper left square submatrix of H

j consisting of the

elements H
j
11, . . . ,H

j
mm. We assume w.l.o.g. from now on that

0 < ε ≤ ε0 <
1

4τ
.

Hence we have in the considered region q4, q3, q2 > 0 for j large enough, implying

detDj
1 = q3 > 0.

Now we have to distinguish the two cases γ = 0 and γ > 0.

4.1 Case1 γ = 0

For the case γ = 0 we may also assume w.l.o.g. µ = 0. Exponential stability is known for the

Fourier case (τ = 0) in the striped region

Ses(τ = 0, γ = 0) := {(β, α) | 1 − 2β ≤ α ≤ 2β, α ≥ 2β − 1}, (4.7)
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α

β
(12 , 1)

1

4

1

2

3

4

1

1

4

1

2

3

4
1

◦

Figure 4.1: Ses(τ = 0, γ = 0).

see Figure 4.1. The pair (α, β) = (12 , 1) is highlighted by a circle since this will be the only pair

for which the exponential stability will remain true if we replace the Fourier law by the Cattaneo

law. In the remaining part of the striped region of exponential stability for τ = 0, the property

of exponential stability will be lost. We have

Theorem 4.1. The region of exponential stability given for the Fourier model (τ = 0) by

Ses(τ = 0, γ = 0) in (4.7) resp. Figure 4.1, is lost for the Cattaneo model (τ > 0) in (1.4)–(1.6)

in any point different from the singular point (α, β) = (12 , 1), see Figure 4.2.

α

β
(12 , 1)

1

2

1

1

2
1

Non exponential

stability

for

τ > 0, γ = 0(µ = 0).

◦

Figure 4.2: Region of non exponential stability for τ > 0, γ = 0 (µ = 0).

Proof. The exponential stability of system for (α, β) = (12 , 1) (and τ > 0 from now on) has

1The results in this subsection have been partially announced in [30]
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been proved for the realization given in Example 3 from the introduction for various boundary

conditions [28].

Then, in order to obtain our result, we will prove that

detDj
2 ≤ 0 or detDj

3 ≤ 0,

in [0, 1] × [0, 1]\(12 , 1), for some (sufficiently large) j. The set of parameters (α, β) for which we

have to prove this, will be divided into three subsets, the first one, where β < 1, the second,

where β = 1 and 1
2 < α ≤ 1, and the third one, where β = 1 and 0 ≤ α < 1

2 :

Part I: β < 1.

We have

detDj
2 = q3q2 − q4q1

= [1− 4τε] · [6τε2 − 3ε+ λβj + τ(λj + λ2αj )]−

τ [−4τε3 + 3ε2 − 2(λβj + τ(λj + λ2αj ))ε + λj + λ2αj ]

= −2τ2ελ2αj − 2τ2ελj + (1− 2τε)λβj − 20τ2ε3 + 15τε2 − 3ε (4.8)

implying

detDj
2 ≤ −2τ2ελj +O(λβj ), (4.9)

where we use the Landau symbol O(λβj ) to denote a term satisfying

|O(λβj ))| ≤ k1λ
β
j

with a positive constant k1 (being independent of j, ε, τ). Thus we conclude from (4.9)

detDj
2 < 0 (4.10)

for sufficiently large j (depending on ε, τ) since β < 1 and λj → ∞ by assumption.

Part II: β = 1, 1
2 < α ≤ 1.

In this case, from (4.8) we have

detDj
2 = −2τ2ελ2αj + (1− 2τε− 2τ2)λj − 20τ2ε3 + 15τε2 − 3ε

implying

detDj
2 ≤ −2τ2ελ2αj +O(λj).

Thus we conclude that

detDj
2 < 0 (4.11)

for sufficiently large j (depending on ε, τ) since 2α > 1 and λj → ∞.

Part III: β = 1, 0 ≤ α < 1
2 .
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Here, note that

detDj
3 = q1 detD

j
2 − q23q0, (4.12)

Then, computing each term in (4.12) with β = 1, we have

detDj
2 = −2τ2ελ2αj + [1− 2τε(1 + τ)]λj − 20τ2ε3 + 15τε2 − 3ε

q1 = (1− 2τε)λ2αj + [1− 2ε(1 + τ)]λj + 3ε2 − 4τε3

q0 = −ε(1− τε)λ2αj − ε [1− ε(1 + τ)]λj + λ2j − ε3 + τε4

q3 = (1− 4τε),

which implies, using 0 ≤ 2α < 1:

detDj
2 = [1− 2τε(1 + τ)]λj +O(λ2αj )

q1 = [1− 2ε(1 + τ)]λj +O(λ2αj )

q0 = λ2j +O(λj)

q3 = (1− 4τε).

Then, in (4.12) we have

detDj
3 =

[
(1− 2τε(1 + τ)) (1− 2ε(1 + τ))− (1− 4τε)2

]
λ2j +O(λ2α+1

j ),

which implies

detDj
3 = −2ε(1− 2τε)(1 − τ)2λ2j +O(λ2α+1

j ).

Thus, we conclude that

detDj
3 < 0 (4.13)

for sufficiently large j (depending on ε, τ) since 2α < 1 and λj → ∞.

With (4.10), (4.11) and (4.13) we have proved (4.6) and hence Theorem 4.1.

4.2 Case γ > 0

Now we consider the system (1.4)–(1.6) with inertial term, i.e. with µ, γ > 0. With another

more sophisticated analysis using again the Hurwitz criterion we can prove

Theorem 4.2. The region of exponential stability given for the Fourier model (1.1), (1.2) by S

in (2.13), is lost for the Cattaneo model (1.4)–(1.6) in any point not belonging to the exceptional

set

Sexc := { (α, β, γ) ∈ [0, 1]3 |α ≥ 1/2, γ + β = 2α }. (4.14)

Remark 4.3. In the exceptional set exponential stability is kept in general, see Theorem 4.5.

Remark 4.4. For γ = 0 the exceptional set Sexc reduces to the exceptional singular point

{ (α, β) = (1/2, 1) }, as known from the previous subsection.
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Proof of Theorem 4.2:

We first check the positivity of the coefficients q1 and q0. Since

q1 = µλγj (3ε
2 − 4ε3τ) + λ2αj (1− 2ετ) + λj(1− 2ετ)− 2µελβ+γ

j − 2ελβj

and

β < β + γ ≤ 2α

we have

q1 > 0

if ε is small enough and j is large enough. Similarly, for

q0 = λ1+β
j + ε2µλγ+β

j + ε2λβj − µλγj (ε
3 − ε4τ)− λ2αj (ε− ε2τ)− λj(ε− ε2τ),

since

γ ≤ max{1, 2α, γ + β} ≤ 1 + β,

we have

q0 > 0.

The relation

detDj
4 = q0 detD

j
3

requires us to show that

detDj
2 ≤ 0 or detDj

3 ≤ 0

We compute

detDj
2 = q3q2 − q1q4

= −λ2γj
[
µ2(1− 4τε)(3ε − 6ε2) + µ2τ(3ε2 − 4ε3τ)

]
− λγ+2α

j [2µτε]

−λγ+1
j [2µτε] − λγj

[
τµ(3ε2 − 4ε3τ) + 2µ(1 − 4τε)(3ε − 6ε2τ)

]

−λ2αj [2τε] − λj[2τε] −
[
(1− 4τε)(3ε − 6ε2τ)

]

+λ2γ+β
j

[
µ2(1− 2τε)

]
+ λγ+β

j [2µ(1 − 2τε)] + λβj [1− 2τε]. (4.15)

In order to compare the negative and the positive terms, we distinguish the following cases:

Case I: 2γ + β ≤ 1. (4.16)

Then, since

β < γ + β < 2γ + β ≤ 1 < 1 + γ

we have

detDj
2 ≤ −2µτελγ+1

j +O(λj)

< 0 (4.17)
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as j → ∞, implying non-exponential stability.

Case II: 2γ + β > 1, γ + β < 2α. (4.18)

Then

detDj
2 ≤ −2µτελγ+2α

j +O(λ2γ+β
j )

< 0 (4.19)

as j → ∞.

Case III: 2γ + β > 1, α <
1

2
. (4.20)

Then

detDj
2 ≤ −2µτελγ+1

j +O(λ2γ+β
j )

< 0 (4.21)

as j → ∞. Finally,

Case IV: 2γ + β > 1, γ + β = 2α, α ≥
1

2
. (4.22)

This describes the exceptional set. We remark that in this case one can compute

detDj
2 > 0, detDj

3 > 0,

indicating exponential stability.

Thus we have proved Theorem 4.2. �

4.3 Exponential stability in Sexc

Here we study the exponential stability of system (1.4)-(1.6) in the exceptional set Sexc defined

in (4.14). Together with condition (1.7) we additionally assume the coupling condition

B∗
1 = −

1

κ
B2 with D(B2) = D(Aβ/2), (4.23)

implying

||B2φ|| = ||Aβ/2φ||. (4.24)

We obtain for a regular solution, in multiplying (1.1) by ut, and (1.2) by θ, the equality

1

2

d

dt

[
ρ1‖ut‖

2 + µ‖Aγ/2ut‖
2 + σ‖A1/2u‖2 + ρ2‖θ‖

2 +
τ

κ
‖q‖2

]
+

1

κ
‖q‖2 = 0 (4.25)

This motivates the choice of the Hilbert space

H = D(A1/2)×D(Aγ/2)×H × [H]r
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with inner product defined for Uj = (uj , vj , θj , qj)
T ∈ H, j = 1, 2, as

〈U1, U2〉H = σ(A1/2u1, A
1/2u2) + µ(Aγ/2v1, A

γ/2v2) + ρ1(v1, v2) + ρ2(θ1, θ2) +
τ

κ
(q1, q2)Hr .

As in Section 2, system (1.4)-(1.6) can be written as an evolution equation in H given by





dU

dt
= Aα,β,γ,τU,

U(0) = U0,
(4.26)

where U0 = (u0, v0, θ0, q0)
T , and the operator Aα,β,γ,τ : D(Aα,β,γ,τ ) ⊂ H → H is defined for

α ≤ 1/2 by

Aα,β,γ,τ




u

v

θ

q




=




v

−(I +
µ

ρ1
Aγ)−1Aα

{
σ

ρ1
A1−αu−

m

ρ1
θ

}

−
m

ρ2
Aαv −

1

ρ2
B1q

−
1

τ
q −

1

τ
B2θ




(4.27)

with domain

D(Aα,β,γ,τ ) =
{
(u, v, θ, q)T ∈ H | v ∈ D(A1/2), u ∈ D(A1−α), σA1−αu−mθ ∈ D(Aα−γ/2)

θ ∈ D(B2), B1q ∈ H
}
.

For α > 1/2 it is defined by

Aα,β,γ,τ




u

v

θ

q




=




v

−(I +
µ

ρ1
Aγ)−1Aα

{
σ

ρ1
A1−αu−

m

ρ1
θ

}

−Aα−1/2

{
m

ρ2
A1/2v +

1

ρ2
A−(α−1/2)B1q

}

−
1

τ
q −

1

τ
B2θ




(4.28)

with domain

D(Aα,β,γ,τ ) =
{
(u, v, θ, q)T ∈ H | v ∈ D(A1/2), σA1−αu−mθ ∈ D(Aα−γ/2), θ ∈ D(B2),

A−(α−1/2)B1q ∈ H, A
α−1/2

(
m

ρ2
A1/2v +

1

ρ2
A−(α−1/2)B1q

)
∈ H

}
.

Note that Aα,β,γ,τ is dissipative, cf. (4.25), and the density of D(Aα,β,γ,τ ) in H is a consequence

of the density of D(A) in H. Therefore, it is sufficient to prove that 0 ∈ ρ(Aα,β,γ,τ ). Analogously

to Section 2, we will do this in detail for the parameter region β ≥ 2α− 1. In fact, let us solve

the problem

Aα,β,γ,τU = F ≡ (f1, f2, f3, f4)
T in H.

27



First, let α ≤ 1/2: Then, defining

v := f1, θ := −A−β
(ρ2
κ
f3 +

m

κ
Aαf1

)
+
τ

κ
A−βB1f4 ∈ D(Aβ/2), q := −B2θ − τf4,

u := A−(1−α)

(
m

σ
θ +

1

σ
A−(α−γ/2)(ρ1A

−γ/2f2 + µAγ/2f2)

)
,

we have (u, v, θ, q)T ∈ D(Aα,β,γ,τ ) and, using (4.23), the resolvent equation and the previous

definition of q, we have

||q||2 = |κ(θ,B1q) + τ(f4, q)| ≤ |κ(θ,mAαf1 + ρ2f3)|+ |τ(f4, q)| ≤ C||U ||H||F ||H,

which implies, using again the definition of q and (4.24)

||θ||2 ≤ C||Aβ/2θ||2 = C||B2θ||
2 ≤ C||q||2 +C||f4||

2 ≤ C||U ||H||F ||H + C||f4||
2.

Combining these estimates with

‖v‖D(Aγ/2) ≤ c1‖f1‖D(A1/2),

‖u‖D(A1/2) ≤ c1‖A
−(1/2−α)θ‖+ c1‖ρA

−γ/2f2 + µAγ/2f2‖ ≤ c1(‖θ‖+ ‖f2‖D(Aγ/2)),

we obtain the desired inequality ‖U‖H ≤ c1‖F‖H.

Now, let α > 1/2: Then, defining

v := f1, θ := −A−(β−(α−1/2))
(ρ2
κ
A−(α−1/2)f3 +

m

κ
A1/2f1

)
, q := −B2θ − τf4,

u := A−(1−α)

(
m

σ
θ +

1

σ
A−(α−γ/2)(ρ1A

−γ/2f2 + µAγ/2f2)

)
,

we have (u, v, θ, q)T ∈ D(Aα,β,γ,τ ), where θ ∈ D(B2) = D(Aβ/2) because β ≥ 2α−1. Similarly as

in the previous case, working with the definition of q, the resolvent equation and the inequality

β ≥ 2α− 1, we deduce

||q||2 = | − κ(A(α−1/2)θ,A−(α−1/2)B1q) + (f4, q)|

= |κ(A(α−1/2)θ,mA1/2f1 + ρ2A
−(α−1/2)f3) + (f4, q)|,

which implies

||q||2 ≤ C||Aβ/2θ||H ||F ||H +C||F ||2H.

Moreover,

||Aβ/2θ||2 = C||B2θ||
2 ≤ C||q||2 + C||f4||

2 ≤ C||Aβ/2θ||H ||F ||H + C||f4||
2,

implying

||Aβ/2θ||2 ≤ C||F ||2H.
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Finally, we combine these estimates with

‖v‖D(Aγ/2) ≤ c1‖f1‖D(A1/2),

‖u‖D(A1/2) ≤ c1‖A
−(β−(2α−1))‖H→H‖Aβ−(α−1/2)θ‖+ c1‖F‖H ≤ C||Aβ/2θ||+ c1‖F‖H

where we used the assumption β ≥ 2α−1. Hence we have again ‖U‖H ≤ c1‖F‖H. Consequently,

Aα,β,γ,τ generates a C0-semigroup {eAα,β,γ,τ t}t≥0 of contractions on H.

Theorem 4.5. In the exceptional set (4.14) exponential stability is kept .

Proof. We prove condition (2.12). Considering the resolvent equation

iλU −Aα,β,γ,τU = F in H,

where U = (u, v, θ, q)T and F = (f1, f2, f3, f4)
T , we have

iλu− v = f, in V1/2, (4.29)

iλρ1v + iλµAγv +Aα(σA1−αu−mθ) = ρ1f2 + µAγf2, in V ′
γ/2, (4.30)

iλρ2θ + T3 = ρ2f3, in H, (4.31)

iλτq + q +B2θ = τf4, in [H]r, (4.32)

having used v ∈ V1/2 ⊂ Vγ/2 and (I +
µ

ρ
Aγ) : Vγ/2 → V ′

γ/2 being an isomorphism, and

T3 := Aα−1/2
(
mA1/2v +A−(α−1/2)B1q

)
, (4.33)

for α ≥ 1/2.

Now, multiplying the resolvent equation by U ∈ D(Aα,β,γ,τ ) ⊂ H, we deduce

−Re(Aα,β,γ,τU,U)H = Re(U,F )H (4.34)

where

−(Aα,β,γ,τU,U)H = −σ(A1/2v,A1/2u) +
〈
Aα
(
σA1−αu−mθ

)
, v
〉
V ′

γ/2
×Vγ/2

+(T3, θ) +
1

κ
||q||2 +

1

κ
(B2θ, q)Hr .

We have for α ≥ 1/2 (
mA1/2v +A−(α−1/2)B1q

)
∈ Vα−1/2 ⊂ H

and, using (4.23),

θ ∈ Vβ/2 = Vα−γ/2 ⊂ Vα−1/2 ⊂ H, because
β

2
= α−

γ

2
in Sexc.
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Then we have

−(Aα,β,γ,τU,U)H = −σ(A1/2v,A1/2u) +
〈
Aα
(
σA1−αu−mθ

)
, v
〉
V ′

γ/2
×Vγ/2

+
(
mA1/2v +A−(α−1/2)B1q,A

α−1/2θ
)
+

1

κ
||q||2 +

1

κ
(B2θ, q)Hr

= −
(
A1/2v,Aα−1/2(σA1−αu−mθ)

)
+
(
Aα−1/2(σA1−αu−mθ), A1/2v

)

−
1

κ
(q,B2θ)Hr +

1

κ
||q||2 +

1

κ
(B2θ, q)Hr ,

which implies

−Re(Aα,β,γ,τU,U)H =
1

κ
||q||2. (4.35)

Then, using (4.34), (4.35), we obtain the first dissipation inequality (corresponding to (4.25))

||q||2 ≤ C||U ||H||F ||H. (4.36)

Now, let us define further multipliers given by ψ and φ as the solutions to the equations

Aβφ = θ and Aβψ = B1q. (4.37)

Since

θ ∈ D(B2) = Vβ/2 ⊂ H and B1q ∈W :=

{
H for α = 1/2

V ′
α−1/2 for α > 1/2

,

we deduce

φ ∈ Vβ ⊂ H and ψ ∈ Vβ−(α−1/2) ⊂ Vβ/2 in Sexc , for α ≥ 1/2.

Then, using equation (4.32) with B2φ ∈ [H]r, we have

iλτ(q,B2φ)[H]r︸ ︷︷ ︸
=:J4

+(q,B2φ)[H]r︸ ︷︷ ︸
=:J3

+(B2θ,B2φ)[H]r︸ ︷︷ ︸
=:J2

= τ(f4, B2φ)[H]r︸ ︷︷ ︸
=:J1

. (4.38)

Using Vβ ⊂ D(B2), we have

|J1| ≤ ||f4|| · ||B2φ|| ≤ C||f4|| · ||A
β/2φ|| ≤ C||U ||H||F ||H.

Using (4.23) we get

J2 = (θ,B∗
2B2φ) = −κ(θ,B1B2φ) = κ2(θ,Aβφ) = κ2||θ||2,

|J3| = |(q,B2φ)| ≤ C||q|| · ||Aβφ|| ≤ ||q|| · ||θ||.

Again, using (4.23), we obtain

J4 = −iλτκ〈B1q, φ〉V ′

α−1/2
×Vα−1/2
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for α ≥ 1/2, because φ ∈ Vβ ⊂ Vα−1/2 in Sexc. Consequently, using (4.31) and the regularity of

φ and ψ, we obtain

J4 = −iλτκ(ψ, θ) = τκ(ψ, iλθ) = −
τκ

ρ2
(ψ, T3) + τκ(ψ, f3).

Then, using the definition of T3, the regularity ψ ∈ Vβ/2 and the identity α = γ
2 +

β
2 in Sexc, this

results in

J4 = −
τκ

ρ2
||Aβ/2ψ||2

︸ ︷︷ ︸
=:J1

4

−
τκm

ρ2
(Aβ/2ψ,Aγ/2v)

︸ ︷︷ ︸
=:J2

4

+ τκ(ψ, f3)︸ ︷︷ ︸
=:J3

4

where

|J1
4 | =

τκ

ρ2
||Aβ/2ψ||2 ≤ C||q||2,

|J2
4 | = C|(Aβ/2ψ,Aγ/2v)| ≤ C||q|| · ||Aγ/2v||,

|J3
4 | ≤ C||ψ|| · ||f3|| ≤ C||U ||H||F ||H,

which implies

|J4| ≤ C||U ||H||F ||H + C||q|| · ||Aγ/2v||.

Therefore, substituting into (4.38) and using (4.36) we have

||θ||2 ≤ C||U ||H||F ||H + C1||q|| · ||A
γ/2v||. (4.39)

On the other hand, using equation (4.30) and u ∈ V1/2 →֒ Vγ/2, we have

〈iλρ1v + iλµAγv, u〉V ′

γ/2
×Vγ/2

+
〈
Aα
(
σA1−αu−mθ

)
, u
〉
V ′

γ/2
×Vγ/2

= ρ1 〈f2 + µAγf2, u〉V ′

γ/2
×Vγ/2

.

Then, using equation (4.29), we have

〈ρ1v+µAγv,−v− f1〉V ′

γ/2
×Vγ/2

+
〈
Aα
(
σA1−αu−mθ

)
, u
〉
V ′

γ/2
×Vγ/2

= ρ1〈f2 +µAγf2, u〉V ′

γ/2
×Vγ/2

which implies, for v ∈ V1/2 →֒ Vγ/2,

〈
Aα
(
σA1−αu−mθ

)
, u
〉
V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:J7

= ρ1(v, f1) + µ||Aγ/2v||2 + ρ1||v||
2 + µ〈Aγv, f1〉V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:J5

+ ρ1〈f2 + µAγf2, u〉V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:J6

. (4.40)

Note that

|J5| = µ|(Aγ/2v,Aγ/2f1)| ≤ C||Aγ/2v|| ||Aγ/2f1|| ≤ C1||A
γ/2v|| ||A1/2f1|| ≤ C||U ||H||F ||H.

(4.41)
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Similarly we have

|J6| ≤ ρ1|(f2, u)|+ ρ1µ|(A
γ/2f2, A

γ/2u)| ≤ C||U ||H||F ||H + C||Aγ/2f2|| ||A
γ/2u||

≤ C||U ||H||F ||H. (4.42)

For α ≥ 1/2, (σA1−αu−mθ) ∈ Vα−γ/2 and using again α =
β

2
+
γ

2
in Sexc, we obtain

J7 = (Aα−γ/2
(
σA1−αu−mθ

)
, Aγ/2u) = σ||A1/2u||2 −m(Aβ/2θ,Aγ/2u). (4.43)

Therefore, using (4.41)-(4.43) in (4.40) we obtain

σ||A1/2u||2 ≤ C||U ||H||F ||H + ρ1||v||
2 + µ||Aγ/2v||2 +m|(Aβ/2θ,Aγ/2u)|. (4.44)

Here, using (4.29) we obtain

m|(Aβ/2θ,Aγ/2u)| = m

∣∣∣∣∣

(
Aβ/2θ,

Aγ/2v +Aγ/2f1
iλ

)∣∣∣∣∣ ≤
m

|λ|
|(Aβ/2θ,Aγ/2v)|+

m

|λ|
|(Aβ/2θ,Aγ/2f1)|,

which implies, using (4.32),

m|(Aβ/2θ,Aγ/2u)| ≤
m

|λ|
||Aβ/2θ|| · ||Aγ/2v||+

m

|λ|
||Aβ/2θ|| · ||Aγ/2f1||

≤
C1

|λ|
||B2θ|| · ||A

γ/2v||+
C2

|λ|
||B2θ|| · ||A

γ/2f1||

≤
C1

|λ|
(|λ|||q|| + ||q||+ ||f4||)

(
||Aγ/2v||+ ||Aγ/2f1||

)

≤ C1||q|| · ||A
γ/2v||+ C1||U ||H||F ||H +

C2

|λ|
||F ||2H,

for |λ| ≥ 1. Therefore substituting this into (4.44) and using (4.36) we obtain

σ||A1/2u||2 ≤ C||U ||H||F ||H +
[
ρ1||v||

2 + µ||Aγ/2v||2
]
+ C1||q|| · ||A

γ/2v||+
C2

|λ|
||F ||2H. (4.45)

Now, in order to estimate ρ1||v||
2 + µ||Aγ/2v||2, let us define new multipliers y and z as the

solutions to the equations

Aαy = θ and Aαz = v. (4.46)

Since

θ ∈ D(B2) ⊂ H and v ∈ V1/2,

we deduce

y ∈ Vα ⊂ H and z ∈ Vα+1/2.

Then, with equation (4.30), we have for y ∈ Vα →֒ Vγ/2

iλρ1(v, y)︸ ︷︷ ︸
=:J8

+ iλµ〈Aγv, y〉V ′

γ/2
×Vγ/2︸ ︷︷ ︸

=:J9

+

〈Aα(σA1−αu−mθ), y〉V ′

γ/2
×Vγ/2

= ρ1(f2, y) + µ〈Aγf2, y〉V ′

γ/2
×Vγ/2

. (4.47)
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Using (4.46) and equation (4.31), we get

J8 = iλρ1(A
αz, y) = iλρ1(z,A

αy)

= iλρ1(z, θ) = ρ1(z,−iλθ)

=
ρ1
ρ2

(z, T3 − ρ2f3),

which implies, for α ≥ 1/2, using the regularity of z,

J8 =
ρ1
ρ2

(z,Aα−1/2(mA1/2v +A−(α−1/2)B1q)− ρ2f3)

=
ρ1
ρ2

(Aα−1/2z,mA1/2v +A−(α−1/2)B1q)− ρ2(z, f3)

=
mρ1
ρ2

||v||2 −
ρ1
ρ2κ

(B2z, q)− ρ1(z, f3).

Consequently

J8 = −
ρ1
ρ2κ

(B2z, q) +
mρ1
ρ2

||v||2 − ρ1(z, f3).

Moreover, using v ∈ Vγ/2 and equations (4.46), (4.31) we have

J9 = iλµ(Aγ/2v,Aγ/2y) = µ(Aγ/2+αz,−iλAγ/2y) = µ(Aγz,−iλθ)

=
µ

ρ2
(Aγz, T3 − ρ2f3)

which implies, for α ≥ 1/2,

J9 =
µ

ρ2
(Aγz,Aα−1/2(mA1/2v +A−(α−1/2)B1q)− ρ2f3)

=
µ

ρ2
(Aγ+α−1/2z,mA1/2v +A−(α−1/2)B1q)− µ(Aγz, f3)

=
µm

ρ2
||Aγ/2v||2 +

µ

ρ2
(Aγ+α−1/2z,A−(α−1/2)B1q)− µ(Aγz, f3).

Then, substituting this into (4.47) yields

−
ρ1
ρ2κ

(B2z, q) +
mρ1
ρ2

||v||2 − ρ1(z, f3) +
µ

ρ2
T4 +

µm

ρ2
||Aγ/2v||2 − µ(Aγz, f3) +

+〈Aα(σA1−αu−mθ), y〉V ′

γ/2
×Vγ/2

= ρ1(f2, y) + µ〈Aγf2, y〉V ′

γ/2
×Vγ/2

, (4.48)

where

T4 := (Aγ+α−1/2z,A−(α−1/2)B1q) for α ≥
1

2
.

Here, using
β

2
≤ α, and condition (4.23) we get

|(B2z, q)| ≤ ||Aβ/2z|||q|| ≤ C||Aαz|||q|| = C||v|||q||.
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Using again γ + β = 2α we deduce, for α ≥ 1/2

|T4| = (Aγ+α−1/2z,A−(α−1/2)B1q) = |(Aγ−1/2v,A−(α−1/2)B1q)| =
1

κ
|(B2A

γ/2−αAγ/2v, q)|

≤ C||B2A
γ/2−αAγ/2v|| · ||q|| ≤ C||Aβ/2+γ/2−αAγ/2v|| · ||q||

= C||Aγ/2v|| · ||q||.

Also

|(Aγz, f3)| ≤ |(Aγ/2−αAγ/2v, f3)| ≤ ||A−β/2Aγ/2v|| · ||f3|| ≤ C||Aγ/2v|| · ||f3|| ≤ C||U ||H||F ||H,

and, using α ≥
1

2
,

|〈Aα(σA1−αu−mθ), y〉V ′

γ/2
×Vγ/2

| = |(σA1−αu−mθ,Aαy)|

≤ C||A1−αu|| · ||θ||+m||θ||2

≤ C||A1/2u|| · ||θ||+m||θ||2,

and, using
γ

2
≤ α,

|〈Aγf2, y〉V ′

γ/2
×Vγ/2

| ≤ C||Aγ/2f2|| · ||A
γ/2y||

≤ C||Aγ/2f2|| · ||A
αy|| ≤ C||Aγ/2f2|| · ||θ|| ≤ C||U ||H||F ||H.

Inserting all into (4.48) we obtain

ρ1||v||
2 + µ||Aγ/2v||2 ≤ C||U ||H||F ||H + C||A1/2u|| · ||θ||+ C||θ||2. (4.49)

Finally, we combine all the results to get exponential stability. In fact, taking 2×(4.49)+

(4.45) and using (4.36) we have

1

2

[
σ||A1/2u||2 + ρ1||v||

2 + µ||Aγ/2v||2
]
≤ C||U ||H||F ||H +

C2

|λ|
||F ||2H + C0||θ||

2, (4.50)

for |λ| ≥ 1. Now, taking 2C0×(4.39)+(4.50) and using (4.36) yields

1

4

[
σ||A1/2u||2 + ρ1||v||

2 + µ||Aγ/2v||2
]
+ C0||θ||

2 ≤ C||U ||H||F ||H +
C2

|λ|
||F ||2H. (4.51)

So, combining (4.51) with (4.36) we deduce

||U ||2H ≤ C||U ||H||F ||H +
C2

|λ|
||F ||2H,

which implies

||U ||H ≤ C||F ||H,

with C being independent of λ, which proves Theorem 4.5.
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5 Polynomial stability

In this section, we will study the polynomial stability of the semigroup {eAα,β,γ t}t≥0 for (α, β, γ),

case τ = 0, 0 < γ < 1, in the subset S2, see Figure 5.1. In the region S3 or for γ = 1 in S2,

purely imaginary points are expected in the spectrum, see the remarks at the end.

Define

β = 2α− 1

β = 2α− γ

β = −2α+ 1

2β = 1− γ

1

2

1

1

2
1

S

S3

S21

S22

α

β

Figure 5.1: Regions of polynomial stability for Fourier.

S21 :=

{
(α, β, γ) ∈ [0, 1] × [0, 1] × (0, 1) : 0 ≤ α <

β + γ

2
,
1− γ

2
≤ β ≤ 1

}
(5.1)

and

S22 :=

{
(α, β, γ) ∈ [0, 1] × [0, 1] × (0, 1) : 0 ≤ α <

1− β

2
, 0 ≤ β <

1− γ

2

}
. (5.2)

Our tool is the following frequency domain characterization of polynomial stability by Borichev

and Tomilov [3].

Theorem 5.1. Let H be a Hilbert space and let A generate a bounded C0-semigroup in H.

Assume that

iR ⊂ ρ(A), (5.3)

lim sup
λ∈R, |λ|>1

1

|λ|p
‖(iβ −A)−1‖L(H) <∞, for some p > 0. (5.4)

Then, there exists a positive constant C > 0 such that for all t > 0 we have

‖eAtU0‖ ≤ C(
1

t
)
1
p ‖U0‖D(A), (5.5)

for all U0 ∈ D(A).

The polynomial decay in the region S2 is described in the following theorem.
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Theorem 5.2. (i). For (α, β, γ) ∈ S21, there exists a constant C > 0 such that

‖eAα,β,γ tU0‖ ≤
C

t
1−γ

2(β−2α+γ)

‖U0‖D(Aα,β,γ)

for all t > 0 and for all U0 ∈ D(Aα,β,γ).

(ii). For (α, β, γ) ∈ S22,g there exists a constant C > 0 such that

‖eAα,β,γ tU0‖ ≤
C

t
1−γ

2(1−2α−β)

‖U0‖D(Aα,β,γ)

for all t > 0 and for all U0 ∈ D(Aα,β,γ).

We shall prove this theorem by verifying conditions (5.3), (5.4) in the following three lemmas.

Lemma 5.3. Let p := 2(β−2α+γ)
1−γ . Then

lim sup
λ∈R, |λ|→∞

1

|λp|
‖(iλ−Aα,β,γ)

−1‖L(H) <∞ (5.6)

for (α, β, γ) ∈ S21.

Proof: Assume that (5.6) is false. Then, there exist a sequence λn → ∞ (+∞ w.l.o.g.) and a

unit sequence Un = (un, vn, θn) ∈ D(Aα,β,γ) such that λpn(iλnI −A)Un = Fn ≡ (fn1, fn2, fn3)

and

λpn‖(iλnI −A)Un‖H = ‖Fn‖H = o(1), (5.7)

i.e.,

λpn(iλnun − vn) = f1n = o(1), inV1/2, (5.8)

λpn(iλn(ρvn + µAγvn) + σAun −mAαθn) = ρf2n + µAγf2n = o(1), inV ′
γ/2, (5.9)

λpn(iλncθn +Aα−1/2[kAβ−(α−1/2)θn +mA1/2vn]) = cf3n = o(1), inH. (5.10)

We are going to show ‖Un‖H = o(1) which is a contradiction. It follows from

ℜ〈Aα,β,γUn, Un〉H = −k‖A
β
2 θn‖

2 (5.11)

and (5.7) that

λ
p
2
n‖A

β
2 θn‖ = o(1) ⇒ ‖θn‖ = o(1). (5.12)

Note that p > 0 in S21 since α < β+γ
2 . Acting the bounded operator λ−p−1

n A− γ
2 on (5.9) yields

iρA− γ
2 vn + iµA

γ
2 vn + λ−1

n Aα− γ
2 (σA1−αun −mθn) = o(1), in H. (5.13)

The first two terms in (5.13) are bounded in H. Thus,

‖λ−1
n Aα− γ

2 (σA1−αun −mθn)‖ = O(1). (5.14)
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Next, acting the bounded operator λ
− p

2
n A−β

2 on (5.10) yields, using (5.12),

iλ
p
2
+1

n cA−β
2 θn + iλ

p
2
+1

n mAα−β
2 un = o(1) in H, (5.15)

where the third term is removed due to (5.12) and α − 1
2 <

β
2 in S21. vn in the second term

is replaced by λnun validated by (5.8) and the property α − β
2 < γ

2 in S21. Taking the inner

product of (5.15) with λ−1
n Aα− γ

2 (σA1−αun −mθn) in H, we have

o(1) = (cλ
p
2
+1

n A−β
2 θn +mλ

p
2
+1

n Aα−β
2 un, λ

−1
n Aα− γ

2 (σA1−αun −mθn))

= (cλ
p
2
nA

α− γ
2
−β

2 θn +mλ
p
2
nA

2α− γ
2
−β

2 un, σA
1−αun −mθn)

= cσ(λ
p
2
nA

β
2 θn, A

1− γ
2
−βun)− cm‖λ

p
4
nA

2α−γ−β
4 θn‖

2 +mσ‖λ
p
4
nA

2−β+2α−γ
4 un‖

2

−m2(A2α− γ
2
−βun, λ

p
2
nA

β
2 θn). (5.16)

Note that in S21, we have 



α− γ
2 − β

2 < 0

2α− γ
2 − β ≤ 1− α

1− γ
2 − β ≤ 1

2
2−β+2α−γ

4 < 1
2

2α− γ
2 − β < 1

2

Thus, all the terms in (5.16) are well defined. Since λ
p
4
n‖A

2α−γ−β
4 θn‖ = o(1) due to (5.12), and

{ ∣∣(λ
p
2
nA

β
2 θn, A

1− γ
2
−βun)

∣∣ ≤ ‖λ
p
2
nA

β
2 θn‖ ‖A

1
2un‖ = o(1)

∣∣(A2α− γ
2
−βun, λ

p
2
nA

β
2 θn)

∣∣ ≤ ‖λ
p
2
nA

β
2 θn‖ ‖A

1
2un‖ = o(1),

it follows from (5.16) that

‖λ
p
4
nA

2−β+2α−γ
4 un‖ = o(1), (5.17)

which further leads to

‖λ
p
4
nA

2−β+2α−γ
4

−1+α(σA1−αun −mθn)‖ = o(1), (5.18)

On the other hand, note that

2− β + 2α− γ

4
− 1 + α < α−

1

2
< α−

γ

2

because γ < 1 and β − 2α+ γ > 0 in S21. By interpolation (cf. [23]) we obtain

‖Aα− 1
2 yn‖ ≤ C‖Aα− γ

2 yn‖
a‖A

2−β+2α−γ
4

−1+αyn‖
1−a

= Cλ
a−

p(1−a)
4

n ‖λ−1
n Aα− γ

2 yn‖
a‖λ

p
4
nA

2−β+2α−γ
4

−1+αyn‖
1−a

= C‖λ−1
n Aα− γ

2 yn‖
a‖λ

p
4
nA

2−β+2α−γ
4

−1+αyn‖
1−a

= o(1), (5.19)

where yn = σA1−αun −mθn,

a :=
(α− 1

2)− (2−β+2α−γ
4 − 1 + α)

(α− γ
2 )− (2−β+2α−γ

4 − 1 + α)
=

β − 2α+ γ

2 + β − 2α− γ
,
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and

a−
p(1− a)

4
=

β − 2α + γ

2 + β − 2α− γ
−
β − 2α+ γ

2(1− γ)

(
2− 2γ

2 + β − 2α− γ

)
= 0.

The last equality in (5.19) is due to (5.14), (5.18), and a < 1. Moreover, (5.19) implies

‖A
1
2un‖ = o(1) (5.20)

due to α− 1
2 ≤ β

2 and (5.12).

From (5.8), (5.9) we have

−ρ‖vn‖
2 − µ‖A

γ
2 vn‖

2 + σ‖A
1
2un‖

2 −mℜ(Aαθn, un) = o(1). (5.21)

Note that, because α− β
2 ≤ γ

2 ≤ 1
2 in S21,

∣∣(Aαθn, un)
∣∣ ≤ C‖A

β
2 θn‖ ‖A

α−β
2 un‖ ≤ C‖A

β
2 θn‖ ‖A

α−β
2 un‖

≤ C‖A
β
2 θn‖ ‖A

1
2un‖

= o(1). (5.22)

Thus, we obtain from (5.21), using (5.20),

‖vn‖, ‖A
γ
2 vn‖ = o(1). (5.23)

Combining (5.12), (5.20), and (5.23), we reach the promised contradiction: ‖Un‖H = o(1). �

Lemma 5.4. Let p := 2(1−2α−β)
1−γ . Then

lim sup
λ∈R,|λ|→∞

1

λp
‖(iλ −Aα,β,γ)

−1‖L(H) < +∞ (5.24)

for (α, β, γ) ∈ S22.

Proof: Assume that (5.24) is false. Then, w.l.o.g. there exist a sequence λn → ∞ and a unit

sequence Un = (un, vn, θn) ∈ D(Aα,β,γ) such that λpn(iλnI −A)Un = Fn and

λpn‖(iλnI −A)Un‖H = ‖Fn‖H = o(1), (5.25)

i.e.,

λpn(iλnun − vn) = f1n = o(1), inV1/2, (5.26)

λpn[iλn(ρvn + µAγvn) +Aα(σA1−αun −mθn)] = ρf2n + µAγf2n = o(1), inV ′
γ/2, (5.27)

λpn(λncθn +mAαvn + kAβθn) = cf3n = o(1), inH. (5.28)

We are going to show ‖Un‖H = o(1) which is a contradiction. It follows again from

ℜ(Aα,β,γUn, Un)H = −k‖A
β
2 θn‖

2 (5.29)

and (5.25) that

λ
p
2
n‖A

β
2 θn‖ = o(1) ⇒ ‖θn‖ = o(1). (5.30)
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Note that p > 0 in S22, thus (5.14), (5.15) hold again. Since β < 1−γ
2 in S22, we have

α+ β − 1
2 < α− γ

2 . Then, (5.14) implies that

‖λ−1
n Aα+β− 1

2 (σA1−αun −mθn)‖ = O(1). (5.31)

Taking the inner product of (5.15) with λ−1
n Aα+β− 1

2 (σA1−αun −mθn) in H, we have

o(1) = (cλ
p
2
+1

n A−β
2 θn +mλ

p
2
+1

n Aα−β
2 un, λ

−1
n Aα+β− 1

2 (σA1−αun −mθn))

= (cλ
p
2
nA

α+β
2
− 1

2 θn +mλ
p
2
nA

2α+β
2
− 1

2un, σA
1−αun −mθn)

= cσ(λ
p
2
nA

β
2 θn, A

1
2un)− cm‖λ

p
2
nA

α
2
+β

4
− 1

4 θn‖
2 −m2(A2α− 1

2un, λ
p
2
nA

β
2 θn)

+ mσ‖λ
p
4
nA

1+2α+β
4 un‖

2

= mσ‖λ
p
4
nA

1+2α+β
4 un‖

2 + o(1). (5.32)

All terms in (5.32) are well defined since in S22





α+ γ
2 − 1

2 <
β
2

2α + β
2 − 1

2 ≤ 1− α
1+2α+β

4 ≤ 1
2

2α − 1
2 ≤ 1

2
α
2 + β

4 − 1
4 ≤ β

2

The last equality in (5.32) follows from (5.12) and the boundedness of ‖A
1
2un‖. Therefore, (5.32)

further leads to

‖λ
p
4
nA

1+2α+β
4

−1+α(σA1−αun −mθn)‖ = o(1). (5.33)

because 1+2α+β
4 − 1 + α ≤ 0 in S22.

In what follows, we consider two cases: β > 0 and β = 0, separately. When β > 0, noting

that 1
2 ≤ 1

2 + β < 1− γ
2 in S22, we have

α−
1

2
< α+ β −

1

2
< α−

γ

2
.

Hence, by interpolation

‖Aα+β− 1
2 yn‖ ≤ C‖Aα− γ

2 yn‖
2β
1−γ ‖Aα− 1

2 yn‖
1− 2β

1−γ , (5.34)

where yn = σA1−αun −mθn. Since

‖Aα− 1
2 yn‖ ≤ σ‖A

1
2un‖+m‖Aα− 1

2 θn‖ = O(1),

then

‖λ
− 2β

1−γ
n Aα+β− 1

2 yn‖ ≤ C‖λ−1
n Aα− γ

2 yn‖
2β
1−γ ‖Aα− 1

2 yn‖
1− 2β

1−γ = O(1) (5.35)

Furthermore, note that

1 + 2α+ β

4
− 1 + α < α−

1

2
< α+ β −

1

2
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in S22. Again by interpolation we get

o(1) + ‖A
1
2un‖ = ‖Aα− 1

2 yn‖

≤ C‖Aα+β− 1
2 yn‖

a‖A
1+2α+β

4
−1+αyn‖

1−a

= Cλ
2βa
1−γ

−
p(1−a)

4
n ‖λ

− 2β
1−γ

n Aα+β− 1
2 yn‖

a‖λ
p
4
nA

1+2α+β
4

−1+αyn‖
1−a

= C‖λ
− 2βa

1−γ
n Aα+β− 1

2 yn‖
a‖λ

p
4
nA

1+2α+β
4

−1+αyn‖
1−a

= o(1), (5.36)

where

a :=
(α− 1

2 )− (1+2α+β
4 − 1 + α)

(α+ β − 1
2)− (1+2α+β

4 − 1 + α)
=

1− 2α− β

1− 2α+ 3β
< 1.

which leads to

2βa

1− γ
−
p(1− a)

4
=

2β(1 − 2α− β)

(1− γ)(1 − 2α+ 3β)
−

2β(1 − 2α− β)

(1− γ)(1− 2α+ 3β)
= 0.

The last equality in (5.36) is due to (5.33) and (5.35).

When β = 0, we still have (5.33). Since 1+2α
4 −1+α < α− 1

2 < α− γ
2 in S22, by interpolation

we again obtain, using (5.14) and (5.33),

o(1) + ‖A
1
2un‖ = ‖Aα− 1

2 yn‖

≤ C‖Aα− γ
2 yn‖

a‖A
1+2α

4
−1+αyn‖

1−a

= Cλ
a− p(1−a)

4
n ‖λ−1

n Aα− γ
2 yn‖

a‖λ
p
4
nA

1+2α
4

−1+αyn‖
1−a

= C‖λ−1
n Aα− γ

2 yn‖
a‖λ

p
4
nA

1+2α
4

−1+αyn‖
1−a

= o(1), (5.37)

where

a :=
(α− 1

2 )− (1+2α
4 − 1 + α)

(α− γ
2 )− (1+2α

4 − 1 + α)
=

1− 2α

2(1 − γ) + (1− 2α)
< 1,

which leads to

a−
p(1− a)

4
=

1− 2α

2(1 − γ) + (1− 2α)
−

1− 2α

2(1− γ)

2(1− γ)

2(1− γ) + (1− 2α)
= 0.

Finally, using the same argument as in (5.21), (5.22) and the fact that α − β
2 < 1

2 , we again

obtain (5.23) leading to the contradiction ‖Un‖H → 0. �

Lemma 5.5. For (α, β, γ) ∈ S21 ∪ S22,

iR ⊂ ρ(Aα,β,γ). (5.38)

Proof: Assume that (5.38) is false. Then, there exist iλ ∈ σ(Aα,β,γ) and a unit sequence

Un = (un, vn, θn) ∈ D(Aα,β,γ) such that (iλI −Aα,β,γ)Un = Fn and

‖(iλI −Aα,β,γ)Un‖H = ‖Fn‖H = o(1), (5.39)
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i.e.,

λpn(iλnun − vn) = f1n = o(1), inV1/2, (5.40)

λpn[iλn(ρvn + µAγvn) +Aα(σA1−αun −mθn)] = ρf2n + µAγf2n = o(1), inV ′
γ/2, (5.41)

λpn(iλncθn + kAβθn +mAαvn) = cf3n = o(1), inH. (5.42)

Again we are going to show ‖Un‖H = o(1), being a contradiction. It follows, as in the proofs

of the previous lemmas,

‖A
β
2 θn‖ = o(1) ⇒ ‖θn‖ = o(1). (5.43)

Case (i): λ = 0.

It follows directly from (5.40) that ‖A
γ
2 vn‖ = o(1). Moreover, using (5.41) we have

‖A
1
2un‖

2 +m(Aαθn, un) = o(1). (5.44)

Since α− 1
2 ≤ β

2 in S21 ∪ S22,

∣∣(Aαθn, un)
∣∣ ≤ ‖A

β
2 θn‖ ‖‖A

1
2un‖ = o(1). (5.45)

Therefore, we obtain ‖A
1
2un‖ = o(1), giving the contradiction.

Case (ii): λ 6= 0.

We can argue as in the proofs of Lemma 5.3 and Lemma 5.4, now with p = 0. �

Remark 5.6. A preliminary spectral analysis shows that there will be residual points in the

spectrum on the imaginary axis for the cases when (α, β, γ) in S2 with γ = 1 or in S3. It also

shows that when (α, β, γ) is in the interior of region S, the real part of the eigenvalues will go

to negative infinity as the imaginary part goes to infinity which is an indication for regularity

of solutions. Furthermore, it also shows the optimality of the polynomial stability obtained here.

These topics are under investigation.

The interesting case τ > 0 also asks for an investigation of polynomial stability that goes beyond

the scope of the present paper and is subject to future research as well.
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