Stability of Abstract Thermoelastic Systems with Inertial Terms
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Abstract: We investigate coupled systems of thermoelastic type in a general abstract form both modeling
Fourier and Cattaneo type heat conduction. In particular we take into account a possible inertial term.
A complete picture of the regions of exponential stability resp. non-exponential stability for the arising
parameters (two arising from the type of thermoelastic system, one arising from the inertial term) is
given. The regions of loss of exponential stability, while moving from the Fourier to the Cattaneo law,
are thus clearly recognized and interestingly large. The polynomial stability in regions of non-exponential

stability is also characterized.

1 Introduction

For given parameters p > 0, (o, ) € [0,1] x [0,1] and v € (0,1] and A a self-adjoint, positive
definite operator on a Hilbert space H, we first consider the abstract thermoelastic system given
by

pu + /LA’YUtt + ocAu — mA*0 = 0, (11)
By + kAP + mAu; = 0, (1.2)

with initial conditions
u(0) =up, wu(0) =wur, 6(0)= 6o, (1.3)

with given constants p,o, ¢,k > 0 and m # 0. We are interested in describing the asymptotic
behavior of solutions u,6 : [0,00) — H as t — oo, in particulary describing the parameter
regions for (a, 3,7) where exponential, non-exponential or polynomial stability is given.

The case v = 0 (equivalently: p = 0) has been studied in detail in [12, 13] and the references
therein, e.g. [4]. Here we add the feature of an abstract inertial term given by pAYuy. The case
v=p=1/2 and a < 3/4 was discussed in [6].

Second, we look at the Cattaneo version of the abstract system which is given by

prug(t) + pA uy(t) + o Au(t) — mA“0(t) = 0, (1.4)
p20:(t) + B1q(t) + mA“u(t) = 0, (1.5)
Tq(t) +q(t) + B2O(t) = 0, (1.6)

with the relaxation parameter 7 > 0, and with densely defined, close operators By, By satisfying

—BlBg = I{AB. (17)
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Here, again u, 0 : [0,00) — H, and ¢q : [0,00) — (H)" for some r € N. The operator By maps its
domain in H into (H)",
B : D(Bg) CcC H— (H)T,

and
By : D(Bl) C (H)T — H.

The relation (1.6) represents for 7 > 0 the Cattaneo law of heat conduction. For 7 = 0 we have
Fourier’s law, and we recover system (1.1), (1.2).

The thermoelastic plate model from Example 1 below, with the Cattaneo law, is contained
choosing realizations of the divergence operator “div” for Bi, and of the gradient operator “V”
for By, and m = n in R".

We will demonstrate that the change from Fourier to Cattaneo leads to a loss of exponen-
tial stability in most coupled systems, i.e. the early examples of Timoshenko or the classical
thermoelastic plate are not exotic but rather common; the exotic one is, maybe, second-order
thermoelasticity. Here one should also know that there are thermoelastic systems — with second-
order elasticity — which behave very much the same, no matter if 7 = 0 or if 7 > 0, see [28, 29];
this is true even on a quantitative level, see [14].

The abstract systems (1.1), (1.2) and (1.4)—(1.6) cover a variety of examples as there are
(for 7 = 0 see [25]):

FEzample 1. Takinga ==~ = % we have the linear thermoelastic plate equation with inertial

term in H = L%*(Q) with domain D(A%) = H?(Q) N H(Q), Q a bounded domain in R", and
1

Az2v = —Awv:

Ut — ,uAutt + A2’LL — AH = 0,
Ht—A6+AUt = O,

where u denotes the deflection of the plate and 6 the temperature difference. For bounded
domains and the Fourier model 7 = 0, there are many results in particular on exponential
stability, in particular for pu = 0, see for example [2, 15, 17, 18, 19, 20, 22, 24, 25] For results for
the Cauchy problem or in general exterior domains see for example [7, 8, 9, 24, 25].

The corresponding Cattaneo model with 7 > 0

utt+A2u—A9 = 0,
Gt + ddi + Aut = 0,
th+q+V9 =0

looses the property of exponential stability for u = 0, see [27] (for © > 0 the exponential stability
is always given [10]).

The Cauchy problem (2 = R™) has been discussed for 7 > 0 and p > 0 in [31].

We remark that nonlinear versions of these equations have been studied recently, for bounded

domains see [21] with 7 = 0 and p = 0, and [16] for x> 0. The Cauchy problem was investigated



in [32].

Ezxzample 2. Taking a = %, 8 =0, u =0 we get the equations of linear viscoelasticity of the
following type:

t
ug + 2Au — / g(t — r)Au(r)dr =0,
0

with the exponential kernel
T

g(r)=e".

FEzample 3. The equations of linear second-order thermoelasticity in one space dimension:

Ut + Ugg + 0 = 0,
et - 6:(::(: + Uy = 07
u=0,=0 on 012,

where Q = (0,1). This system corresponds to the case o = %, B =1, u =0 with respect to the
analysis of the asymptotic behavior, (but not formally since the gradient is not the root of the
Laplacean), cp. [25].

The classical model for pure heat conduction using Fourier’s law for the relation between the
heat flux and the gradient of the temperature qualitatively yields exponentially stable systems
for bounded reference configurations. This kind of stability remains the same if one replaces
Fourier’s law by Cattaneo’s (Maxwell’s, Vernotte’s, ... ) law. Considering thermal and, simulta-
neously, elastic effects, this similarity with respect to exponential stability remains the same for
classical second-order thermoelastic systems, Example 3 above, one (Fourier) being a hyperbolic-
parabolic coupling, the other one (Cattaneo) being a fully hyperbolic system. The similarities
even extend to the asymptotical behavior of solutions to corresponding nonlinear systems. But
for thermoelastic plates, Example 1 above, the picture changes drastically, i.e., this thermoelas-
tic system changes its behavior from an exponentially stable to a non-exponentially stable one,
while changing Fourier’s law to Cattaneo’s law. This raises the question of the “right” modeling.

This effect is also known for Timoshenko beams. In models for beams of Timoshenko type,
a given exponentially stability triggered by a typical memory (history) term, is preserved by
adding heat conduction in form of the Fourier model, but is lost — hence “destroyed” — by the

Cattaneo model. The four differential equations in the model are given by
P1Ptt — k(@x + T;Z)m)x = 0,
P2y — b)ze + /e_swmm(t -5, )ds + k(@m + ¢) +4d0, = 0,
0

P30 + qp + 0, = 0,
T +q+0; = 0.

Here, the functions ¢ and ¢ model the transverse displacement of a beam with reference config-

uration (0, 1) respectively the rotation angle of a filament. 6 and ¢ denote again the temperature



difference and the heat flux, respectively. The material constants p1, p2, k, b, 9, p3 are positive,

as well as the relaxation parameter 7. The last differential equation represents the Cattaneo
o

law (and the Fourier law for 7 = 0). The term [ e iy,(t — s,-)ds models the additional
0

consideration of the history.
Assuming the (academic, in general physically not satisfied) condition
pL_ P2
k b’
which corresponds to the equality of the wave speeds for ¢ and v, we have the following picture:

For § = 0, it is a hyperbolic system with history term for (¢,1), and exponential stability
is given. For the coupled system with § # 0 and 7 = 0 (Fourier), the exponential stability is
preserved. But for 6 # 0, 7 > 0 (Cattaneo), the exponential stability is lost [11]. Again the
question of an appropriate modeling comes up.

The stability analysis below will be made first for the Fourier system (1.1), (1.2) using
semigroup techniques.

Here, as well as for the Cattaneo system, the analysis of the well-posedness is a non-trivial
issue. The difficulty arises from the point of regularity of solutions visible in the regularity of wu;
if o is large, or in that of 4 if « is large compared to 5. This problem is solved in the larger, most
interesting part of the parameter region by factorizing the operators and defining the domains
appropriately depending on o < 1/2 or @ > 1/2. The regularity properties have to be taken
into account also in the proofs of (non-)exponential stability.

The non-exponential stability for Cattaneo systems will be proved in constructing slowly
decaying solutions with the Hurwitz criterion. For this part we will assume that A has a
countable system of eigenfunctions (¢;); with corresponding increasing eigenvalues 0 < A; — 0o
as j — oo. This is, e.g., satisfied for Examples 1 given above in bounded domains.
Summarizing, we

— present a detailed analysis of the impact of the inertial term giving a precise description
of parameter regions of (non-)exponential stability, and

— demonstrate that the change from Fourier to Cattaneo leads to a loss of exponential
stability in “most” coupled systems.

The paper is organized as follows: In Section 2 we present well-posedness results and we
describe the region of parameters, where exponential stability is given for the Fourier model
(1.1), (1.2). The region of non-exponential stability is characterized in Section 3. The loss of
exponential stability for the bigger part of the parameter regions is proved in Section 4, also
including the well-posedness issue in Section 4.3. Section 5 provides the regions of polynomial
stability within regions of non-exponential stability.

The symbols (-,-) and || - || are used to denote the inner product and norm in H or multiple

copies [H]", respectively.



2 Exponential stability region for the Fourier law

Here we look at the Fourier model (1.1), (1.2), and we will describe the region of parameters
where exponential stability is given.

We obtain for a regular solution in multiplying (1.1) by wu;, and (1.2) by 0 the equality

1d
37 plluel® + pl A7) + o AYul* + CH9||2] + kAP0 = 0 (2.1)
This motivates the choice of the Hilbert space
H = D(AY?) x D(A/?) x H
with inner product defined for U; = (uj, vy, Hj)T eH,j=1,2 as
(Uy,Usg)yy = O’(Al/2u1, A1/2UQ) + ,U(AFY/201, A'Y/2’l)2) + p(v1,v2) + c(61,62).
Now, system (1.1)-(1.3) can be written as an evolution equation on #H given by
dUu
— = Aup~U,
dt o (2.2)
U(0) = Uy,

where Uy = (ug, vg, 00)T, and the operator Aa g~ D(Aapy) CH — H is defined for a < 1/2
by

v
u
B 140l da m
Aa,ﬁ,'y v = —(I + ;AW) IA {;Al u — ;9} (23)
0 LYYy
& &

with domain
D(Aqp,) = {(u,v,@)T €M |ve DAY?), 6 € D(AP), u e D(A™), 0 AU —mf ¢ D(AO‘_V/2)} :

For a > 1/2 it is defined by

v
u
Byt ga [ O g1ea, ™
Aoy | 0 | = |~ Ban e {Z e 2o (2.4)
0 _Aa—1/2{ﬂA1/2U+ EAB—(a—lﬂ)e}
C C

with domain

D(Aap,) = {(u,v, )T € H | v e D(AY?), 0 AV — mf € D(A*V/?),

AP=(a=1/2)g ¢ g ga-1/2 [mAl/% + kAB—@“—l/?)e} e H} .



Note that A, g is dissipative, cf. (2.1), and the density of D(A, ) in H is a consequence of
the density of D(A) in H. Therefore, it is sufficient to prove that 0 € p(Aq 5,,). We will do this

in detail for the parameter region where
B >2a—1.

The region § < 2« — 1 (corresponding to region S3 in Figure 2.1) is left open, cf. [1, 5] for

regions where 0 might not belong to the resolvent set. We now solve the problem
AavBﬁU =F= (f7g7 h)T in H.

First, let a < 1/2: Then, defining

1
vi=f, 0:=—A"" (Eh + @Aaf) . oui=A"07 (@9 + Z A (a=7/2) (pA—'Y/2g + MAW/29)> :

k k o o
(2.5)
we have (u,v,0)T € D(An5,) and
1ol pavrzy < el flpearzy, 101 < (k] + 1A £, (2.6)
lull parrzy < erA=2790] + erllpA™2g + pA P gl < e (10] + gl pearray); (2.7)

where we used a < 1/2, and where ¢; denotes a generic constant. Hence we have U € D(Aq 8.+),
AU = F and [|U|[y < cof|[Fllp-
Now, let o > 1/2: Then, defining

vi=f, 6#:=—A"F-(a"1/2) (%A_(O‘_l/mh + %Alﬂf) ) (2.8)

wi=A—01-2) (%9 + %A‘(Q‘V/” (pA™2g + umﬂg)) , (2.9)
we have (u,v,0)T € D(A, 35,) and
1ol peasrzy < etll fllpeavzy, 10 < e(JAPC20)] < e[| F |, (2.10)
and the estimate for u is obtained by

[ull pearzy < e AZEEmD ) g ]| AT OT29) 4| Fly,
< allFlu, (2.11)
where we used the assumption 3 > 2o — 1. Hence we have again U € D(Aqg4), Aap U = F
and [[Ully < 1| F 3.
Consequently, A, g~ generates a Cp-semigroup {eAaﬁwt}tzo of contractions on H. Then U,

given by
U(t) = elestly,

is the solution to (2.2) with

U e C'([0,00); H) N C°([0,00); D(Aa,p,4)) -
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Remark 2.1. In order to simplify our notation, let Vs denote the space D(A®). For example,
using this notation, the Hilbert space H is given by

H:VVQXV,Y/QXH.

In order to prove the exponential stability, it is useful to recall the following known result
(see for example [26]):

Theorem 2.2. Let {eAt}tZO be a Co-semigroup of contractions on a Hilbert space H. Then the
semigroup is exponentially stable if and only if iR € p(A) (resolvent set) and

limsup |[(¢A] — A)_IHE(H) < 0. (2.12)
AER, || =00

It will allow us to prove

Theorem 2.3. Let o, 3,y € S where S is given by

<o+

IA
=
|

S = {(Ox,ﬁ)é[o,l]x[o,l], O0<y=1: g’

o2
| ™
IN
N =
H/_/

(2.13)

N

Then the semigroup {e?8+'},5¢ is exponentially stable.

In Section 3 we will demonstrate the optimality of this result in the sense that for parameters
outside the set .S, the non-exponential stability will be proved.

A typical region S is given for small positive v by Figure 2.1

B
_ B
3=a—3
Lr
B _ 1
%7272
, 'S
1 R
2 5
y S,
arg=t} |\
y g «@
i 1
Figure 2.1: Region S.
Proof. We prove condition (2.12) considering the resolvent equation
iNU —Aap,U=F, in H, (2.14)



where U = (u,v,0)" and F = (f,g,h)T, we have:

iMu—v=Ff, in Vip,
iz + (I + %A“/)_lAO‘ <%A1_au - %9) =g, in V.,

T
i+ 2L =h, in H,
C

where
kABO + mcA®v, for a < 1/2,
T1 =
A2 (A2 4 kAP (12)9) | for o> 1/2.

Now, using v € Vi /5 CV, /o and (I + HA'Y) Ve — VV’ /2 being an isomorphism, we have
p

(2.15)

“ Vo
iMu—v=Ff in Vip, (2.16)
iApv + iApA 0 + A% (0 A% — mb) = pg+ pAdg, in V., (2.17)
ixcd +T) =ch, in H. (2.18)
Now, multiplying the resolvent equation (2.14) by U € D(Ay,5,,) C H, we deduce
—Re(Aq3,U,U)y =Re(U, F)y (2.19)
where
~(Aa,p U, U)y = —a (A0, AY2u) 4+ (A (0 AY=%u — m0) ,U>V’;/2XVW2 + (11,0).
Here, by the definition of D(Aa,p,) for a <1/2, we have u € Vi_q, v € V)9 C Vi, and
(0 A% —m#) € Vo—yj2 C H, because o> % in S.
So we obtain for a < 1/2
~(Aap U U = —(A%,0 A% —mb) + (A% (0 A% — m0) ,ru>v7,/2xv7/2 + K[| AB/29)?
= —(A%,0A'" % —mb) + (aAl_au —mb, A%) + k|| AP/20] 2,
which implies
“Re(Aas U U)y = KIAP20|P, for a< % (2.20)
On the other hand, for o > 1/2, we have
mAY 2y + kAP eV, H
and
0 € Vg_(a—1/2) C Va_1/2 C Vo1/2 C H, because « — % < g in S.



Then we have

B _ 1/2 1/2 o l-a,,
(Aap U Uy = —o(AY%0, AY2u) + (A% (cA' 7719),1)>VW,/2X‘/W2

+ (mAl/% + kAP (@172 Aa—1/29)
= = (4120, 40712 (GAT 0w = mp) ) + (47 (o410 u — mo) , AV20)
+k||A7/%0) %,

which implies
1
~Re(An s U, U)y = k||AP20])2, for o> 5 (2.21)
Then, using (2.20)-(2.21) in (2.19) we obtain the first inequality (corresponding to (2.1))
KIIAP20112 < Cl U 3| F) - (2.22)

Here and in the sequel C, (4, ... will denote positive constants, in particular being independent
of A.
Now, using equation (2.17) in u € V5 = V, 5, 0 < <1, we have

. . 5 « l—a,, — Y
(iApv + iApA ”7U>V4/2wi/2 + (A% (c A" *u — m#) ,U>V7,/2Xv7/2 =p(g+ pA g’u>Vw’/2wa2 .
Then, using equation (2.16), we have
1- _
{pv 4+ pA v, —v — f>V§/2XVw/2 + <A06 (O—A Qg — m@) ’U>VW’/2XVW/2 =plg+ ,uAVg,u>VW//2XvV/2

which implies, for v € V} 5 = V9,

(A% (e AU —m) ’U>VVI/2XVW2 = p(v, ) + pll A2l 2 + pllol P + @A, s v,
=1y =1
+plg+pAg,wvr v, - (2.23)
T
Note that

11| = ul (A0, A2 F)| < CLA ol |JAR | < CLIA 0| |AV2£I| < CIU [Pl (2:24)
because Vi < V, /5. Similarly we have
|| < pl(g,w)] + pul(A72g, A2u)| - < CNUIuIE |3 + CllA2g]| | A7l
< CONU|Inl|F[l + CillAg]| [|A"u|
< ClUIl|Fll3- (2.25)

For the term I3, in the case v < 1/2 we have u € V1/2 C V, and u € V_,. Consequently

Iy = (0 A" — mf, A%) = o (A" %u, A%u) — m(6, Au).

9



So, using that 0 < o« —

o™

1
< 3 in S, we deduce

Is = o||AY2u)> — m(AP/20, A2=B/2y), for a < % (2.26)
In the case @ > 1/2, using that 0 < o — % < B in S, we obtain
Iy = (A2 (g AV — mB) , AV ) = o|| AV 20> — m(A*7 129, AV 2y) (2.27)
Therefore, using (2.24)-(2.27) in (2.23) we obtain
ol | AV2ul? < CHU Il | Fll3 + pl[oll + ul|A720||* + m|Ty| (2.28)

where
(AB/29, A=PBl2y),  for a<1/2,
T =
(A“=129, AV2y),  for o >1/2.

Note that, using the definition of S, we have 0 < o — g < % fora <1/2,and 0 < a — % < g for
a > 1/2, which implies

ITy| < C||AP20]| ||AY?u]|, forall 0<a<1.
Therefore, from (2.28), using (2.22), we have
ol [ AV 2ul® < ClIU ||| Fll3 + Cr |pllol]* + u!\A”/2v!\2]- (2.29)
Now, let us define further multipliers given by 1 and ¢ as the solutions to the equations
A% =v and A% =20. (2.30)

Since ¢ € Vg, and % <a+ g in S, we have the regularity ¢ € V,,3/5 < V, /5. Then, with
equation (2.17), we have for ¢ € V,

(iApv + iIApA v + A% (0 A% — m#), ¢>V'/2wi/2 = (pg + pA’g, ¢>V4/2wi/27

~

or

Ap(v, 6) + AU A 0, D)yr v, +
=:14

=:I5
(A 0Au—m0).0)y = 0(0.0) +pAT. Gy vy (231)

/2

=:Ig

Using (2.30) and equation (2.18), we get
Iy = iAp(A%), ¢) = irp(h, A%0)
= iAp(¥,0) = p(¢, —iN0)

= p(w7 %Tl - h)7

10



where T was defined in (2.15). Here, for a < 1/2 we have v € V}/ C V. Then

k

L= p(4, =A%+ %A% —h)

k m 1
= L. A%0) + Lol ? — plas,h). for o<, (2.32)

c
Similarly, for o > 1/2, from (2.30) we have 1 € Vi 914 C V412 C H. Then, using equations
(2.18)-(2.15)2, we get again

k
c
k

C

L= pl, AT P4y 4 2 AP 12g) )
C

a— m —(a—
= p(A*T2, — ALy 4 AP OTUDG) — p(y, )

k 1
= L@, 4%0) + Lol — p(4,h), for a> . (2.33)
For I5, using v € V)5 C V, 5 and 6 € Vg_(,_1/2) We have
A% € Va_,y/g CH and A% =0¢ Vﬁ_(a_l/g) C Volé_ﬁ//?
So we can identify

Iy = iM{A7%, A%)y, v

a—vy/2

= (A" Y, —iN0)y, v

a—vy/ a—vy/2

= H(A”’_av,Tl — Ch>V X V!

15 a—y/ af'y/27

which implies, for o < 1/2, that

H —a a
I5 = E<A7 v, k‘AﬁH + mA v — Ch>va7'y/2><vcll7'y/2,
Pk o pm —a
— ?<AV U,A/39>VM/2W(;7W + Ty\m/zv“z = WAy, v - (2:34)
Similarly, for o > 1/2, using that
A% € Vo/z—l/2 C V‘J/f—’Y/2 and 0 & VB—(a—1/2) C H,
we obtain again
H —« a— —(a—
I; = E<A~r v, A2 (mAY2y 4 kAP (@1/2)) Ch>vaﬂ/2xv(;,7/2
B, o pa HE o —a
= T<A7 v, A U>Va,w/2><V(;7,y/2 + 7<A7 UaA59>Va,W/2><V;7W2 — (A" Uyh>va,7/2xv(;ﬂ/2
Pk o pm —a
— 7<Av U,Affe)‘,w/zxvéﬂ/z + T||Av/2v||2 = AT Ry, vy (2.35)
Finally, using that o > % in S, we have (¢ A'™%u — m#) € Va—y/2 C H. Then we have
Is = (0 A% — mf, A%¢) = o(A ™, 0) — m||0||?, (2.36)

11



where the last equality is valid because u € Vi_,.
Therefore, inserting (2.32)-(2.36) into (2.31) we deduce

kp ra— - HE o
pllol[* + pl|A720|* = CHHHQ—E(A V2, AP 1/2)9)—E<A7 v, A0, v,

_E(Al u, 9) + E(T/)’ h) + E(A’y v, h>Va,W/2><V(;7W2
pc Jite
+E(g7 qb) + E(A’YEL ¢>V_;/2XV7/2‘ (237)

Finally we will analyze the remaining terms in equation (2.37). In fact, in S we have 8 < 2a,

or f—a< g, which implies, using (2.30) again,
(A2, AP (A%, AP)] = (0, 470)
< 14772 |lol| < C||AP26]| [Jo]l. (2.38)
Since in S we have o + g > %, we get

(AT, 0)] = |(AT70 020, APRG)| < || AT 2| | A )|

IN

Ch|AY2ul| || A7729)]. (2.39)

Also by (2.13) we have

N2

IN

o

|

™
™

INA
o2

= v—-—a+

implying

(A7, A69>Va,“,/2 <V

a—vy/2

| = ,(A'y—aw/%,Aﬁ/?g)‘
< ||ATTOrB ||| AP2g)| < Cy||AY20]| || AP20)|. (2.40)

Now, using % < «, we have

(A0, By, vy 1 < GHl[AT 0[][R] < Cl[A7Po|| (1] < CUIU |l [Pl (2.41)
Also we get
(b, B)] < @] [R]] < Cul|A%@[] [[R]| = Col|v[[ [[RI] < CLllU ][ F ]2, (2.42)
and
(g, 0)] < CLJA2g|| [|A*2g]| < CuJA 2| [16]] < CLl|U 3] | F - (2.43)

Finally, using again % < a and (2.30) we obtain

(A9, 8)vs vl = (479, A%6)] = |(Ag,0)]

C1llA2g || 116]] < CLIIUI ] 3. (2.44)

IN
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Therefore, using the inequalities (2.38)—(2.44) in (2.37) and using (2.22) we deduce
pllol[* + pl[ A0l < CLlIU [l + Cal| AP726]| || A2l (2.45)
Combining (2.22), (2.29), (2.45) we obtain
Ul < CIIF |,
which proves Theorem 2.3. ]

Remark 2.4. Let us give some examples of S-regions.

B
_1
Y=1 l=a-§
1F
B _1
%7372
/8
1 SV R
2
.l/ S3
Oé+§:% /// :
y : «
1 1 1
Example a. 8 2
B
_1
1F
8 _1
27 2
1
2
a—i-g:%

Example b.
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_|_ﬁ_l ; S
Ty =y — | 3
i 1

Ezxample c.

3 Region of non-exponential stability for the Fourier law

In order to complete the result given in Theorem 2.3 and to demonstrate its optimality, we will
prove that the region of non-exponential stability is the complement of S, that is Sy U S3 (see

next figure). In fact, without loss of generality we assume

B
f=2a—7vy
1
4 B=2a-1
,-"// S //
2 SZ_ (\ //
SN/ S
,B = —2a-+1 4
\\ // 8]
i 1

Figure 3.1: Region of non exponential stability for Fourier.

p=p=0c=m=c=kK=1.
We make the ansatz of separation of variables via the eigenfunctions (¢;); of A,
uj(t) = a;(t)d;, 0;(t) = b;(t)d;, (3.1)

for arbitrary j to find solutions with decay contradicting exponential stability. Then, solving

(1.1), (1.2) is equivalent to solving the following system of ODEs for the coefficient functions

14



(aj,b;),

a;-' + )\;-’a;-' + )\jaj - )\?bj = 0, (3.2)

W+ Albj+ A% = 0. (3.3)

System (3.2), (3.3) is equivalent to a first-order system for the column vector V; := (a;, a}, b;),

o 1 0
A AY

vi=| @ 0 & |Vi=4v (3.4)
R et

We are looking for solutions to (3.4) of type
Vi(t) = VY.

Le., w; has to be an eigenvalue of A; with eigenvector Vj0 as initial data.

It is the aim to demonstrate that, for any given small ¢ > 0, we have some j and some
eigenvalue w; such that the real part Rw; of w; is larger than —e. This will contradict the
exponential stability (being a kind of uniform property over all initial values). Computing the
characteristic polynomial of A; we have

e 1+8
)\? + /\j A

J
7w + 5 = Pj(w).
14X L+ A

det(w —A;) = w4+ /\fw2 +

In order to show that
Ve>0 3j Jwj, Pj(wj) =0: Rw; > —¢,

we introduce, for small € > 0,
z:=w+e, Pj.(2) := Pj(z — ¢),
and we have to show
VO0<e<1 3j 3z, Pic(z)=0: Rz >0. (3.5)
To prove (3.5) we start with computing

Picy = 32" + @22° + 1z + qo

where
qg3 = 1,
q2 = —36-1—)\]@,
AZe 4\
= 322N\ 7
q1 € &?J—i— 1_1_)\;,
A2y A
3 B_2 J J J
= — A — .
qo €+] 1+)\]7 &?—1—14_)\]7

15



We use the Hurwitz criterion [33]: Let

g q3 O
H :=| ¢ o ¢
0 0 qo

denote the Hurwitz matrix associated to the polynomial P;.. Then (3.5) is fulfilled if we find,
for given small € > 0, a (sufficiently large) index j such that one of the principal minors of H/ is
not positive. The principal minors are given by the determinants det D, of the matrices Dfn, for
m = 1,2,3, where D?, denotes the upper left square submatrix of H’ consisting of the elements
B, H.

Assuming w.l.o.g. from now on that for some small g
O0<e<eg <.
Then, for j large enough and for all 5 € [0, 1] we have
det D] = g2 = =32+ A > 0.
Consequently, we need to prove
det D% <0 or det Dg <0,

for sufficiently large j. Moreover, since det D§ = qo det D%, it is sufficient to analyse the signs of
qo and det D} for sufficiently large j.
First, for the sign of qg, note that

1
0 = 7790,

L+ A
where ¢q is given by
do = ()\faz + )\;+BE2 + )\;Jrﬁ) - ()\;’&73 + A?O‘E +Xje +¢€%).

Then, in the following we will analyze the sign of gy distinguishing several cases.

e For the case @ = 8 = 0, we have

Go = NE-)+A(l-e)+ (2 —e—£")>0
for some (sufficiently large) j.
e For the case a =0, 5 > 0, we have
Go = (W2 + NP2 1 A — (W + Nje+e+e%) >0

for some (sufficiently large) j, because v+ 8 > 7.
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e For the case a > 0, § =0, we have
do = )\;’(52 -+ N1 -¢) - )\50‘5 + (€2 = &%).
Then, in this case, the sign of ¢y depends on «, as we get:

— For a € (0, %], we have gy > 0 for sufficiently large j.
— For a € (%, 1], we have gy < 0 for sufficiently large j.

e For the case a > 0, § > 0, we obtain:

1. For a € (0, %], we have 2a <1< 14+ and v <1 < 14 3. Then gy > 0 for sufficiently

large j; the dominant term is )\]1-+6 .

2. For o € (%, 1] the sign of gy depends on the relationship between 1+ 8 and 2a. In

fact:

1+8
i
(b) For 1 + 8 < 2a we have gy < 0 for sufficiently large j; the dominant term is

)2
)\J e.

(a) For 14 > 2a we have gy > 0 for sufficiently large j; the dominant term is A

Therefore, combining all cases we have the regions described in figure 3.2, the regions being

independent of ~.

x

N

Figure 3.2: Region of ¢g < 0.

Second, for the sign of det Dg, note that

where d% is given by
j 2
d = <(6€3 + 252))\5 + (63 + 262))\]7+B + )\jo‘+5)

— (26)\?5 +8°A) + 26)\§B+7 + 26X + 26N + 853).

17



Hence, we will analyze the sign of d% in the same cases as to ¢p.

e For the case a = 8 = 0, we have

dh = —e(2—2e+ 257N — 22X + (1 — (4e + 227 — 26%)) <0

for sufficiently large j, independent of ~.
e For the case a =0, 5 > 0, we have
& = ((1 1667 + 257\ + (67 + 262)A;+5>
- (26)\?5 +8%X] + 26)\?54_7 + 2e)j + (2¢ + 863)> <0
for sufficiently large j, because 28 +~v > v+ 8 > S.
e For the case a > 0, § =0, we have

@ o= (1-20)X3% —2e); — (2c — 27 + 26%)N) — (2 — 26° + 2¢7).

1. For a € (0, %), we have d% < 0 for sufficiently large j.
2. For a € [%, 1], we have d% > 0 for sufficiently large j.

e For the case a > 0, § > 0, the sign of d% depends of the relationship between 2a and .
In fact:

1. For 20 < v and for some (sufficiently large) 7, we have dg < 0 because
B<2a+pB<y+p<28+7,

i.e. the domain term is —25)\564'7.
2. For 2a > v we have two situations:

(a) If 2 + B > max{28 + v,2a,1} we have d% > 0 for sufficiently large j. The

dominant term is )\3(”6 . We have
20— B>~ and 2a+ 5> 1.

(b) If 2a + 8 < max{28 + v,2a,1} we have d% < 0 for sufficiently large j. The

dominant term is —2¢ <)\§6 Ty )\30‘ + )\j). We have

20— <y or 2a+p<1.
Therefore, combining all cases in Subsection 3.2 we have the figure 3.3.
Finally, summarizing all cases, see graphics 3.2 and 3.3, we can deduce that the negative val-

ues of det D% and det Dé (for sufficiently large j), are given in the following figure 3.4. Therefore,

we have proved the following theorem.

Theorem 3.1. The region of non-exponential stability for the Fourier model (1.1), (1.2) is
given by the complement of the set S, see (2.13), which is precisely shown in Figure 3.4.

18



B=2a—x

~

det D} <0

‘ det D% >0

8=1-2«a

8=-2a+1

. J/detD} <0
\\ // «

1
5 1

Figure 3.4: Region of non-exponential stability.

pr=p2=m=k=1.
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4 Loss of exponential stability for the Cattaneo law

The known examples on the loss of exponential stability described above, like the Timoshenko
system or the classical thermoelastic plate corresponding to (a, 3,7) = %(1,1,1) in (1.4)—(1.6)
might have been regarded as exceptions, in view of the pure heat conduction system, or in
view of the classical second-order thermeolastic system, where both for the Fourier and for the
Cattaneo model exponential stability is given. In this section we demonstrate that for a large
class of systems exponential stability is lost when replacing Fourier’s law by Cattaneo’s law, first
without (v = 0) then with inertial term (v > 0).

We start considering both cases simultaneously, i.e. u,~v > 0. Without loss of generality we



As in Section 3 we make the ansatz of separation of variables via the eigenfunctions (¢;); of A,

uj(t) = aj(t)g;, 0;(t) = b;(t)d;, q;(t) = c;(t)B2gy, (4.1)

for arbitrary j (assuming Ba¢; to be not identically zero), to find solutions with decay contra-
dicting exponential stability.

Using (1.7) we observe
Bug;(t) = ¢;(t) B1Bag; = —¢;(t) APy = —X]c; (1) gy,

thus solving (1.4)—(1.6) is equivalent to solving the following system of ODEs for the coefficient

functions (aj, bj,c;), where a prime ’ denotes again differentiation with respect to time ¢,

a;—l + ,U)\;YCL;/ + )\jaj — )\?bj = O, (42)
Wy — Nej+ X% = 0, (4.3)
T +cj+b; = 0. (4.4)

The last equation arises from (1.6) with the ansatz (4.1) using again the natural condition that
Bs¢; is not identically zero.

System (4.2)—(4.4) is equivalent to a first-order system for the column vector V; := (aj, a}, bj, ¢;),

0 1 0 0
—)\; 0 A? 0

Vi=| ey Lnd; Vi = AV (4.5)
A0 N
0 XS N
o 0 - -3

We are looking for solutions to (4.5) of type
Vi(t) = vy,

i.e., w; has to be an eigenvalue of A; with eigenvector Vj0 as initial data.

It is the aim to demonstrate that, for any given small ¢ > 0, we have some j and some
eigenvalue w; such that the real part Rw; of w; is larger than —e. This will contradict the
exponential stability (being a kind of uniform property over all initial values). Computing the

characteristic polynomial of A; we have

1
det(4; —w) = T <[T(1 + ,u)\;-y)} wt + [1 + ,u)\;y] w3+
J
04 a]) 70+ 0] 62 4 [+ 22w AT
1
T+ ) Pj(w).

In order to show that
Ve>0 dj Jdwj, Pj(w]') =0: §ij > —¢,
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we introduce, for small € > 0,
z:=w+e, Pj (z) .= Pj(z — ¢),
and we have to show
VO<e<1 3j 3z, Pj(z)=0: Rz; >0. (4.6)
To prove (4.6) we start with computing

Pio(2) = uz* + 322 + @2 + 1z + qo

where
q4 = T(1+M)‘;Y)7
g3 = (1—A4re)(1+pr)),
gp = 6721+ pX]) = 3e(1+ pX)) + N (1+ pA)) + 7(A; + A3,
@ = —Ar(14pX)) + 32 (14 pX)) — 2 (Af(l + X))+ TN+ A?")) e+ A+ A%,

0 = (14 pA]) =1+ pA)) + (Af(l + X))+ (A + A?”‘)) e — (N + A+ A

As in Section 3 we use the Hurwitz criterion. Let

3 g2 0 0
= a1 42 43 44
0 @ a1 ¢
0 0 0 qo

denote the Hurwitz matrix associated to the polynomial P;.. Then (4.6) is fulfilled if we find,
for given small ¢ > 0, a (sufficiently large) index j such that one of the principal minors of H/
is not positive. The principal minors are given by the determinants det DI, of the matrices Dfn,
for m = 1,2,3,4, where D?, denotes the upper left square submatrix of H’ consisting of the

elements H{l, e ,H%m. We assume w.l.o.g. from now on that
1
O<e<egy < —.
4T
Hence we have in the considered region qq, g3,q2 > 0 for j large enough, implying
det D{ =q3 > 0.

Now we have to distinguish the two cases v =0 and v > 0.

4.1 Case! 7y=0

For the case v = 0 we may also assume w.l.o.g. © = 0. Exponential stability is known for the

Fourier case (7 = 0) in the striped region

Ses(T =0,7= 0) = {(570‘) | 1-28<a<28,a>25— 1}7 (47)

21



W=
ol
P

Figure 4.1: Ses(7 = 0,7 =0).

see Figure 4.1. The pair (o, 5) = (%, 1) is highlighted by a circle since this will be the only pair
for which the exponential stability will remain true if we replace the Fourier law by the Cattaneo
law. In the remaining part of the striped region of exponential stability for 7 = 0, the property

of exponential stability will be lost. We have

Theorem 4.1. The region of exponential stability given for the Fourier model (1 = 0) by
Ses(1=0,7=0) in (4.7) resp. Figure 4.1, is lost for the Cattaneo model (T > 0) in (1.4)—(1.6)
in any point different from the singular point (a, ) = (%, 1), see Figure 4.2.

B
(3:1)
1
Non exponential
stability
o — S —

T
—_

Figure 4.2: Region of non exponential stability for 7 > 0, v =0 (u = 0).

Proof. The exponential stability of system for («, ) = (%, 1) (and 7 > 0 from now on) has

!The results in this subsection have been partially announced in [30]
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been proved for the realization given in Example 3 from the introduction for various boundary
conditions [28].

Then, in order to obtain our result, we will prove that
det D% <0 or det Dg <0,

in [0,1] x [0,1]\(3,1), for some (sufficiently large) j. The set of parameters (c, 3) for which we
have to prove this, will be divided into three subsets, the first one, where 5 < 1, the second,
where f =1 and % < a <1, and the third one, where § =1 and 0 < a < %:

Part I: < 1.
We have
det D) = g3ga — qun
= [1—4re]- [67'52 — 3+ )\? + T()\j + )\?a)] _
rlodre® 4362 = 20 70y + X)e 4y + X))
- _27—25)‘30 - 2725}‘j +(1— 275)/\? —2072e% 4 157¢% — 3¢ (4.8)
implying |
det D} < —27%); + O(X)), (4.9)

where we use the Landau symbol (’)()\f ) to denote a term satisfying
B B
‘O()‘j))‘ < kl)‘j
with a positive constant k; (being independent of j,e,7). Thus we conclude from (4.9)
det D} < 0 (4.10)

for sufficiently large j (depending on ¢, 7) since 8 < 1 and \; — oo by assumption.

Part[]:ﬁzl,%<oz§1.

In this case, from (4.8) we have
det D = —27%eA2® + (1 — 27¢ — 272)\; — 207%% + 157¢? — 3¢

implying
det D} < —27%eX2* + O()\).

Thus we conclude that
det D} < 0 (4.11)

for sufficiently large j (depending on ¢, 7) since 2c¢ > 1 and \; — oo.
Part III' =1,0< a < 3.
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Here, note that
det Dg = ¢q det D% — ngo, (4.12)

Then, computing each term in (4.12) with 5 = 1, we have

det Dj = —27%eA2® 4 [1 — 27e(1 + 7)] \j — 20727 + 157% — 3¢
@ = (1=27e)A3* +[1—2e(1+7)] \j + 36 — dre?
@0 = —<(1- Ta))\?o‘ —e[l—e(l+7)\ + )\? — &% 4 et
g3 = (1—4re),

which implies, using 0 < 2a < 1:

det D = [1—2re(l+7)]\ + O\
@ = [1-2e(1+7)]A+ 0O\
o = A +0()
g3 = (1—4re).

Then, in (4.12) we have
det Df = [(1—2re(1 + 7)) (1 — 25(1 + 7)) — (1 — 47)*] AT + O(AZ*H1),

which implies
det D} = 22(1 = 2re)(1 = 7)2} + O+,

Thus, we conclude that
det D} <0 (4.13)

for sufficiently large j (depending on €, 7) since 2o < 1 and \j — oo.
With (4.10), (4.11) and (4.13) we have proved (4.6) and hence Theorem 4.1. O

4.2 Case v>0

Now we consider the system (1.4)—(1.6) with inertial term, i.e. with p,v > 0. With another

more sophisticated analysis using again the Hurwitz criterion we can prove

Theorem 4.2. The region of exponential stability given for the Fourier model (1.1), (1.2) by S
in (2.13), is lost for the Cattaneo model (1.4)—(1.6) in any point not belonging to the exceptional

set
Seze = { (Oé,ﬁ,’}/) € [07 1]3 |Oé = 1/27 T+ 8= 20[}. (414)

Remark 4.3. In the exceptional set exponential stability is kept in general, see Theorem 4.5.

Remark 4.4. For v = 0 the exceptional set Sey. Teduces to the exceptional singular point

{(a,8) = (1/2,1) }, as known from the previous subsection.
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PROOF of Theorem 4.2:
We first check the positivity of the coeflicients ¢; and ¢y. Since

Q= #)\;/(362 —4e37) + )\3"(1 —2e7) + Aj(1 — 2e7) — Z,us)\f%’ - 25)\5
and
B<B+v< 2

we have
q1 >0

if £ is small enough and j is large enough. Similarly, for
qQo = )\;JFB + 62,u)\;’+6 + 52)\5 — pA] (e —'7) = X3%(e — °7) — \j(e — °7),
since
v < max{l,2a,7+ B} <1+ 5,

we have
qo > 0.

The relation
det DZ = qo det Dg

requires us to show that
det D} <0 or detD} <0

We compute

det D} = @30 — i

= N [pP(1 - 4re)(3e — 627) + pPr (3¢ — 423T)] — NP 2pre]

—)\;7+1[2,u7'6] — X [rp(3e” — 4¢°7) + 2u(1 — 47¢)(3e — 6¢°7)]
—A3%[2re] — Aj[2re] — [(1 — 47e)(3e — 6e°7)]
AN (1 = 27e)] + X7 [20(1 — 27e)] + N [1 — 274, (4.15)

In order to compare the negative and the positive terms, we distinguish the following cases:
Case: 2y+p<1. (4.16)

Then, since
B<y+B8<2y+<1<1l+7y

we have

det D} < —2/;7'5)\;“4-(’)()\]-)
<0 (4.17)
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as j — oo, implying non-exponential stability.

Case II: 2v+08>1, v+ 8 < 2. (4.18)

Then

det D} < —2ureN]™>* +O\H)
< 0 (4.19)
as j — 00.
1

Case III: 2y+3>1, a< 3 (4.20)

Then

det D) < —2ureA]™ + O

< 0 (4.21)
as j — oo. Finally,
Case IV: 29+ 8>1, v+B8=2a, a> % (4.22)
This describes the exceptional set. We remark that in this case one can compute
det Dg >0, det Dé > 0,
indicating exponential stability.
Thus we have proved Theorem 4.2. O

4.3 Exponential stability in Scxc

Here we study the exponential stability of system (1.4)-(1.6) in the exceptional set Sez defined

in (4.14). Together with condition (1.7) we additionally assume the coupling condition
1
Bf = ——B; with D(By) = D(AP/?), (4.23)

implying
[1B29]| = [|A724]|. (4.24)

We obtain for a regular solution, in multiplying (1.1) by wu;, and (1.2) by 6, the equality

1d

T 1
52 [rlluel + A7 2wl + o A2l + pallOl? + Tlal] + ~llal? = 0 (4.25)

This motivates the choice of the Hilbert space

H = D(AY?) x D(A/?) x H x [H]"
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with inner product defined for U; = (u;, vj, 05, qj)T €H,7=1,2 as
.
(U1, Uz)py = (A Pug, AVPug) + (A Py, A205) + py(v1,v2) + pa(61,62) + (a1, 92)m

As in Section 2, system (1.4)-(1.6) can be written as an evolution equation in H given by

au
= -Aa TU7
dt P, (4.26)
U(0) = Uy,
where Uy = (ug,v0,00,q0)", and the operator Aa gyt D(Aagyr) C H — H is defined for
a<1/2 by
v
u
v (I + 2 ary-140 {iAl—au - Ta}
Aaﬁ,’y,r = 1 P1 1 (427)
0 S ey — L
P2 1 1 P2
q ——q— —DByf
T T

with domain
D(Aapns) = {(u,v, 0,9)T € H | ve D(AY?), u e D(A'™), 0 A=y — mh € D(AV/2)
6 € D(By), Biq € H}

For av > 1/2 it is defined by

w v
y (I + Lan-140 {iAl—au - T@}
Ao foy.r — P1 P1 P (4.28)
e 0 _Aa—l/Z ﬁAl/Q,U + iA—((X—l/2)qu}
P2 ] 1P2
q _Zq— Byl
p

with domain

D(Aaprr) = {(u,v,@,q)T €M |ve DAY?), oA — mf € D(A*/2), 0 € D(B,),

A2 B g e H, A2 (TAU% + iA—@“—l/?)qu) € H}
P2 P2
Note that A, g, is dissipative, cf. (4.25), and the density of D(Aq,,,-) in H is a consequence
of the density of D(A) in H. Therefore, it is sufficient to prove that 0 € p(Aq,g,+,-). Analogously
to Section 2, we will do this in detail for the parameter region 5 > 2« — 1. In fact, let us solve

the problem
Aapr:U=F=(f1,fo, f5, f2)7 in H.
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First, let a < 1/2: Then, defining

m T
vimfi, 0= AT <p_/jf3 * ;Aafl) +-ATBify € D(APP),  qi=—Bsf —7fa,

o= A-(1-) <@9 + lA—(a—v/2) (plA‘V/2f2 + MAV/2f2)> 7
g g

we have (u,v,0,q)T € D(Anp-) and, using (4.23), the resolvent equation and the previous

definition of ¢, we have
llall® = [w(8, Big) + 7(fa,@)| < [6(8, mA* 1 + p2f3)| + |7(fa, )| < ClU ||l [ Fl3u
which implies, using again the definition of ¢ and (4.24)
161 < CIIAP20) = C||B26II* < Cllal* + ClI 1> < ClU el |F 1o + ClIfal >
Combining these estimates with

10l pearrzy < exllfill pearrzys

[ull par/zy < et ] A2=90] + er||pA™2 fo 4+ p A2 fol| < cr (101l + 112l praviey)s

we obtain the desired inequality ||U||lx < c1]|F||x.-
Now, let & > 1/2: Then, defining

vi=f1, 0:=—A"(F—(a=1/2)) (&A—<a—1/2>f3 n @Al/zfl) , qi=—-DBaf —1fy,
K K
ey (Mg L a2y a2 /2
u:=A —O+ AT AT o+ p AV f) )

we have (u,v,0,q)" € D(Aq5.~.7), Where § € D(By) = D(AP/?) because 8 > 2a—1. Similarly as
in the previous case, working with the definition of ¢, the resolvent equation and the inequality
B > 2a — 1, we deduce

lall* = | = rs(ACT20, 47"V Big) + (f1, )]
= |s(ACTD0,mAY fy 4 pp ATCTYD )+ (fa, ),
which implies
lal® < CIAY20l1m|[Fll3 + ClIFI3,.
Moreover,
14P726]]* = C[|B20|[* < Cllgl|* + ClIfal* < C|[AP20] ]|l + C|| fal

implying
|AP726] 1 < C||F|[3,.
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Finally, we combine these estimates with

[0l pearrzy < exllfill pearrzy,s

lull prarszy < exl| A= CmD g, g | AP @YD0) + o | Flly < CI|AP26]] + ex| F

where we used the assumption 8 > 2a—1. Hence we have again ||U||y < ¢1||F||3. Consequently,

Aa.g,,7 generates a Co-semigroup {eAaﬁv%Tt}tZO of contractions on H.
Theorem 4.5. In the exceptional set (4.14) exponential stability is kept .
Proof. We prove condition (2.12). Considering the resolvent equation
iNU - A~y U=F in H,
where U = (u,v,0,q)" and F = (f1, f2, f3, f1)T, we have
iMu—v=Ff in Vp,
iAp1v + iApA v + A (0 AT — mB) = pifo + pAY fo, in Vﬂ;/z,
iAp20 + 15 = pafs, in H,
iIANTq+q+ B =7fy, in [H]",
having used v € V5 C V)5 and (I + %AV) 1V — V'y,/2 being an isomorphism, and
Ty = A>1/2 <mA1/2v + A_(O‘_l/2)qu) )

for a > 1/2.
Now, multiplying the resolvent equation by U € D(Aq ,,r) C H, we deduce

_Re(Aa,B,’y,TUy U)’H = RG(U, F)H
where

1/2 1/2 « -«
_(Aaﬂ,’%TU? U)H = _U(A / v, A / u) + <A (UA u— m@) ’U>V«;/2XV’Y/2

1 1
+(T3,0) + EHQW + 2(3297 Q)"

We have for o > 1/2
<mA1/2v + A‘(O“l/2)qu> €Vo1pCH

and, using (4.23),

0 € Vg =Va_y2 CVa_1/2 C H, because g =a—
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(4.29)
(4.30)
(4.31)

(4.32)

(4.33)

(4.34)



Then we have

1/2 1/2 « -«
_(-Aa,ﬁ,'y,TUy U)H = _U(A / v, A / u) + <A (UA U= me) ’U>V,;/2><V,y/2

1 1
+ (mAl/Qv + A_(“_1/2)qu7z4a_1/29) + EHQHQ + 2(329, q)Hr

= - <A1/2v, AX—1/2 (A= — m9)> + (Ao‘_l/Q (0 A= — m#), A1/2v)

1 1 1
__(q7B20)HT' + _||q||2 + _(3207(])11”'7
K K K
which implies
1

~Re(Au U U = llall (435)

Then, using (4.34), (4.35), we obtain the first dissipation inequality (corresponding to (4.25))
lgll* < ClUIl|F I3 (4.36)

Now, let us define further multipliers given by v and ¢ as the solutions to the equations

A’ =0 and APy = Bjq. (4.37)
Since
0cD(Bs)=Vyy CH and BigeW " for a =1/2
— 1n = 9
2 B/2 a 19 Vi 1 for a>1/2
we deduce

¢ e VB CH and 9o € VB—(a—1/2) C V5/2 in Sepe, for a> 1/2.
Then, using equation (4.32) with Ba¢ € [H]", we have

iAT(q, B29®) e + (¢, B2®) myr + (B20, Baod) yr = 7(fa, B2ob) () - (4.38)
=:J4 =:J3 =:J9 =:J7

Using V3 C D(Bs), we have
1] < Ifall - 11B29l| < ClIfall - 11AP28]] < CHU I3l | |3
Using (4.23) we get
Jy = (8, B5Bag) = —w(6, B1Bag) = v°(6. A% %) = w%||6”,

T3] = (g, B2)| < Cllall - [|A%¢]| < [lall - [18]]-

Again, using (4.23), we obtain

i = —iATr{B1q, by

,1/2><Va71/2
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for a > 1/2, because ¢ € Vi C V,,_1/5 in Seze. Consequently, using (4.31) and the regularity of
¢ and v, we obtain

Jy = —Z'ATK/(¢, 0) = Tﬁ(¢7ZA9) = _;_j(¢7T3) + TK,(¢, f3)

Then, using the definition of T3, the regularity ¢ € Vg, and the identity o = 2+ g in Seye, this

results in
TR TRM
Ji = — || AP P = (AP, AV20) T (4 )
p2 P2 —_—
=:J} =:J2 =:Jy
where
TK
i = AR < CllalP,
P2
T3] = C|(AP2y, A20) < Cllql| - [|AY?0]],

|73

IN

ClII -1 f3l] < CNU Nl F'lla¢

which implies
4] < ClIU3lIF 3¢ + Cllall - [|A720]].

Therefore, substituting into (4.38) and using (4.36) we have
1611 < TIP3 + Callgll - [|A7 ] (4.39)
On the other hand, using equation (4.30) and u € V} 5 < V, /5, we have
. . 1- _
(iAp1v +iApAv, u>v4/2><Vﬂ,/2 + <Aa (JA “u— m@) 7u>VW’/2><VW/2 = p1 (f2 + pA7 fa, u>v’;/2><\/—y/2 )
Then, using equation (4.29), we have
<p1U + /’LAﬁfvu —U— f1>V4/2><V,Y/2 + <AO£ (UAl_au - me) ’U>V§/2XV~//2 =P <f2 + MA7f27 u>V,;/2><V,Y/2

which implies, for v € V5 <=V, /9,

1—- _ /2112 2
(A (AT u—mb) u)yy = o)+ AlAR ol 4 A0 fiv
=:J7 =:J5
+oulfo+pd fo,u)yr v, - (4.40)
=:Jg
Note that

| T5| = pl (AP0, A2 )] < C||AP0][ ||JAP fi]] < CLlLAY20|| A2 1] < CU [P |34
(4.41)
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Similarly we have

IN

[Tl < pil(fo, )| + prul (A7 fo, A7) ClUIll|Fll + ClNAY2 fo | ||AY 2|

IN

ClIU 31 F'l13¢- (4.42)

For a > 1/2, (c A'=%u — m#) € Vi—y/2 and using again o = g + % in Seze, we obtain

Jr = (A2 (0 AU — mB) , AV %) = of|[AY2ul|> — m(AP/29, A7) (4.43)
Therefore, using (4.41)-(4.43) in (4.40) we obtain
ol|AV2ul[* < ClU el [E[3¢ + pul[ol|* + ul| AV 20l 2 + m| (A/20, A72u)]. (4.44)

Here, using (4.29) we obtain

A2y 4 Av/2f1
AB/2
< % i\

m

< (A5/20,A“’/2v)|—|—|)\|

m|(AP20, A7) = m <

(AP720, 472 £y,

which implies, using (4.32),

m
Al
C
ol
G
A

m|(AP20, APu)| - < ||A5/29||'||A7/2v||+%llx45/29ll'IIAWflII

Co

Bt - (147720l + 15

||B26]] - [|A2 fu]

IN

< ELNIlall + llall + 1l (11472l + 14772 1))

Gy
R
for |A\] > 1. Therefore substituting this into (4.44) and using (4.36) we obtain

Gy
Al

< Cillgll - 1A20]| + CLllU || [F 1 + = 11115

UHA”QUWSCHUHHHFHH+[leszJruHA”/szz +Cillall - [1A0]| + I I (4.45)

Now, in order to estimate pi||v]|?> + u||A?/?v]|?, let us define new multipliers y and z as the

solutions to the equations
A% =6 and A%z =w. (4.46)

Since
0 € D(By) CH and wveVp,

we deduce
yeEVa CH and z€ V.

Then, with equation (4.30), we have for y € V, =V, )5

’L)\pl (U, y) + i)\/L(A'yU, y>VW’/2><V.Y/2 +
=:Jg

=:Jg
(A (A u = mb)y)yr v = (o) A s v, e (447)
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Using (4.46) and equation (4.31), we get
Js = iAp1(A%2,y) = iAp1(z, A%)
= iAp1(z,0) = p1(z, —iA0)

p—;(Z,Ts — paf3),

which implies, for « > 1/2, using the regularity of z,

Jg = &(z, A2 (mAY 2y 4 A7V B g) — pofs)

P2

- %(Ao“l/?z, mA?y + A=V Byg) — py(z, f3)
m

= el = e (Boza) = (e o)

Consequently
P1 mpi
JS = _—(B2Z7q) + —||U||2 - pl(z7f3)‘
p2R P2

Moreover, using v € V5 and equations (4.46), (4.31) we have
Jy = (AP0, AV2y) = p(AVFF0 2 —idAY2y) = (A2, —irg)

= %(AWZ,T?, — p2f3)

which implies, for o > 1/2,

Jog = pﬂ(/ﬂz, ATV (A2 4+ A=Y B ) — pafs)
2
_ ﬁ(A'YJm_l/zz,mAl/% + AU (A2, fy)
P2

m _ (a—
= DA 4 D (AT 2 AT Bg) — (A2, ).
Then, substituting this into (4.47) yields
m
~ L (Baz.q) + T2 0l? - pr(z, £5) + STy ER AP~ (AT, ) +
p2k p2 p2

HA AT u—mb), y)vr v, = p1(f2y) + A Fa Yy kv, (448)

where
Ty = (AT 12, A=@=12 B 1g) for a>

NI)—t

Here, using g < «, and condition (4.23) we get

|(Baz, )| < ||A°722[|q]| < C|IA%2]l|ql| = Cllv]llql].
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Using again v + § = 2a we deduce, for o > 1/2

(T3] = (ATF 2 AT Bg) = (4720, AT Bg)] = < [(By AV AV, )

IN

C||Bo A2~ A7 20| - ||q]| < C||APPPH2= 47| | g]]

Cl|AT2v|| -||q]|.
Also

[(A72, f3)] < (A0 400, f3)] < JJATPRPAP|| -1 £l < CLA 20l - 1 f31] < ClIU el |3,

and, using o >

1
27
(A% (@AY u —mb), y) v

v/2

vyl = (@A —mb, A%y)|

< Ol Al - 10]] + mll0]?

IN

C[|AY2ul] -1[01] +m]|6]*,

and, using - < «,

N2

A forwdur sl < AT ol (A7 2
< CIAPfol| - [|A%Y|l < CIA2 fol| - 116]] < CHU sl | |34
Inserting all into (4.48) we obtain
prllol? + [ AV20]2 < CU Nl Flly + ClLAY2a] - 0]+ CllOIE. (4.49)

Finally, we combine all the results to get exponential stability. In fact, taking 2x(4.49)+
(4.45) and using (4.36) we have

&)

1
5 |11l + palol 2 + ull 47201 2] < CHU Il +

for |[A\| > 1. Now, taking 2Cjx(4.39)+(4.50) and using (4.36) yields
Cy

1

3 [AY2u 4 ol + el A7) + ol < OOl Flle+ TP (@51
So, combining (4.51) with (4.36) we deduce

2 o2
U3 < ClUwl|F [l + WIIFIIH,
which implies
Ul < ClIF|n,

with C being independent of A, which proves Theorem 4.5. O
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5 Polynomial stability

In this section, we will study the polynomial stability of the semigroup {eA«s2t},5¢ for (o, 3,7),
case T = 0, 0 < v < 1, in the subset S9, see Figure 5.1. In the region S3 or for v = 1 in Sy,
purely imaginary points are expected in the spectrum, see the remarks at the end.

Define

/ B=2a—1

[N
I\/
05
Lo
IR
~
Doo
\\
<

=z S /S

and
Sog := {(a,ﬁ,y) €0,1] x[0,1] x (0,1):0<a<——,0<8< —} (5.2)

Our tool is the following frequency domain characterization of polynomial stability by Borichev

and Tomilov [3].

Theorem 5.1. Let ‘H be a Hilbert space and let A generate a bounded Cy-semigroup in H.

Assume that
iR C p(A), (5.3)

1
limsup ——||(i8 — A) |z < oo, for somep > 0. (5.4)

AR, [A[>1 AP
Then, there exists a positive constant C' > 0 such that for all t > 0 we have
1.1
le T < C () IUollpay, (5.5)
for all Uy € D(A).

The polynomial decay in the region Ss is described in the following theorem.
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Theorem 5.2. (i). For («,3,7) € Sa1, there exists a constant C > 0 such that

C
leAemt || < ——=—Usllpa,. »..)
+2(B—2a+7)

for allt >0 and for all Uy € D(Aq,p,y)-

(i1). For (o, B,7) € Saa,g there exists a constant C' > 0 such that

C
le?2" T || < ——=—UslIp(a, 5.-)
1+2(0—=2a=5)

for allt >0 and for all Uy € D(Aq5,).

We shall prove this theorem by verifying conditions (5.3), (5.4) in the following three lemmas.

2B=2247)  Tphen

Lemma 5.3. Let p:= T—

. 1 .,. _
limsup +—||(iA — Aag~) 1H£(7—l) < 00 (5.6)

AER, |A|—oo | M|
for (o, B,7) € Sa1.

Proof: Assume that (5.6) is false. Then, there exist a sequence \, — oo (+o00 w.l.o.g.) and a
unit sequence U, = (un,vn,0,) € D(Aq g~) such that X, (iA, I — AU, = F, = (fn1, fn2s fn3)
and

Ml @AT = A)Un|ln = ([ Falli = o(1), (5.7)
i.e.,
A%(Z}\nun - Un) == fln == 0(1), n ‘/1/2, (58)
AP (idn (pon, + pAvy) + 0 Auy, — mA©0,) = pfon + pA” for, = 0o(1), in Vﬂ;/z, (5.9)
NP (idpcly, + AT YV2 [ AP~ g L mAY20,)) = efsn = o(1), in H. (5.10)

We are going to show ||Up,||% = o(1) which is a contradiction. It follows from
R(Aa s Un, Un)os = —k[| 26, (5.11)

and (5.7) that
P
AZ[|A206, = o(1) = [|6n]] = o(1). (5.12)

Note that p > 0 in S9; since o < B% Acting the bounded operator AP rA"2 on (5.9) yields
ipA”Zv, +ipAT v, + A LAY 2 (0 A YUy, — mby,) = o(1), in H. (5.13)
The first two terms in (5.13) are bounded in H. Thus,

[ATA 2 (0 A%, — mby)|| = O(1). (5.14)
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_p
Next, acting the bounded operator A, 2A=% on (5.10) yields, using (5.12),
p p
ix2teA 20, +ing T ' mAY 5w, = o(1) in H, (5.15)

where the third term is removed due to (5.12) and o — 5 < g in S9. v, in the second term
is replaced by A,u, validated by (5.8) and the property a — g < 7 in Sy;. Taking the inner
product of (5.15) with A- 1A%~ 3 (¢ A'~%u,, — mb,,) in H, we have
p P
o(l) = (c)\,%HA"H +mA2+1Aa—é Uny ATLAYT 3 (A, — mb,,))
b
= (cAZA"339, mAL A2 2un, o A%, —mb,,)
L 1-2-58 2a— 'v B 2 P 9
= ca()\ﬁAz Op, A2 )—cmH)\“A 6, H + mo|| A A U |
m2(A20=3 =8y, A2 A%0,). (5.16)

2-f+2a—~
4

Note that in S5, we have

_x_ 1
152 532
2—pB42a—y 1

1 <3

Thus, all the terms in (5.16) are well defined. Since )\4 H

= 0(1) due to (5.12), and

(A2 A58, A173Py,)| < \\A3A§9n|! HA%unu — o(1)
2a0—2-p £ B ) 1
|(A 2 un,)\ﬁA29n)| < |IMV2AzZ6,] ||Azuy| = o(1),

it follows from (5.16) that

M A0, )| = o(1), (5.17)
which further leads to
A AT e g gLy g | = o1), (5.18)
On the other hand, note that
2_54_$—1—|—0z<0z—l<0z—1

4 2 2
because v < 1 and  — 2a + 7y > 0 in S2;. By interpolation (cf. [23]) we obtain

ynll' ™
I [ T P T
= A A By, oAl AR e
= o(1), (5.19)

_1 /J‘+ a—y
[ A% 2y, it

IN

CllA Ry A=

yn”l—a

where vy, = 0 A", — m#,,




and

a_p(l—a)_ f—-20+y  B-2a+7 2 — 2y _0
4 24pB-2a—-7v 21—7) \24+B-2a—-7v)

The last equality in (5.19) is due to (5.14), (5.18), and a < 1. Moreover, (5.19) implies

|AZu, | = o(1) (5.20)
due to a — 3 < g and (5.12).
From (5.8), (5.9) we have
~pllonl® = ull A2 va | + o Az un[* — mR(A G, wn) = o(1). (5:21)
Note that, because o — g < 1<% in S,

[(A%0,,u0)| < ClAZ0,)| A% Zun|| < ClIAZ60,]| A% Z |
B 1
ClIAZ0,] || AZu,|
= o(1). (5.22)

IA

Thus, we obtain from (5.21), using (5.20),

onll, |42 vl = o(1). (5.23)
Combining (5.12), (5.20), and (5.23), we reach the promised contradiction: ||U,|yx =o(1). O
Lemma 5.4. Let p:= 2(1%0;_6) Then

1

lim sup -

smeup 1A = Aas) e (H) < +o0 (5.24)
ER,|A|—00

fO’f’ (Oé,ﬁ,’)/) S 522-

Proof: Assume that (5.24) is false. Then, w.l.o.g. there exist a sequence \,, — oo and a unit
sequence Uy, = (up, Up, 0,) € D(Ay 3) such that A, (iA, ] — A)U,, = F,, and

AT = A)Unll3 = [|Fnllz = o(1), (5.25)
i.e.,

)‘Ir)L(Z)‘nun - Un) = fln = 0(1)7 in V1/27 (526)
N [idn (pvn + A v,) + A% (0 AU, — mb,,)] = pfon + 1A fon, = 0(1), in VV//2’ (5.27)
N2 (Ancby, + mA“ v, + kAPB,) = cfsn = o(1), in H.  (5.28)

We are going to show ||U,|l% = o(1) which is a contradiction. It follows again from
(Ao Un, Un)ot = —k[| 426, (5.29)

and (5.25) that
P
AZ|[AZ60,] = o(1) = [|6n]] = o(1). (5.30)
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Note that p > 0 in Sao, thus (5.14), (5.15) hold again. Since § < 15—7 in Soo, we have
a+ B —3 <a—7. Then, (5.14) implies that

INTLAYTE=3 (g A, — mb,)|| = O(1). (5.31)

Taking the inner product of (5.15) with )\,_LlAO‘JrB_%(UAl_aun —mb,) in H, we have

p 8
2

P ya
o(1) = (C)\T2l+1A_§9n +mA2 T A Ty, AT LAY S (g A0, — mb,))
P ya
= (AZATETI0, £ mAZ AT 2y, gAY, — m,)

P D4 D
= co(A2AZ0,, ATuy) — em|[A2ASTIT10,)12 — m2 (A2 Bu,, A2 A3 6,)

p
+ mo|| M AT |2

P 142a4p

= mo|MAT T u,|*+ o(1). (5.32)

All terms in (5.32) are well defined since in Sao

v _1_p
@ty —5<3
20 +5 -1<1-a
142048 _ 1
T =3
1 1
a 1
(3 tT-153

The last equality in (5.32) follows from (5.12) and the boundedness of HA%unH Therefore, (5.32)
further leads to
A A e (g gl g | = o(1). (5.33)
because W — 14+ a<0in Sos.
In what follows, we consider two cases: § > 0 and 8 = 0, separately. When 8 > 0, noting
that % §%+ﬁ<1—%in522,wehave

1 1 ¥
a—§<a+5—§<a—§.
Hence, by interpolation
28 _ 28
4202y ]| < CJLA® 3yl A% 2y T, (5.34)

where y,, = 0 A" %u,, — m#,,. Since
1 1 1
1A% Ryl < ol Abu, | + m] A% 10, = O(1),

then
_ 2B 28 _ 2B
A 7 AT B g | < CfA T A By, |77 A% 3y, T = 0(1) (5.35)

Furthermore, note that

142 1 1
+++5—1+a<a—§<a+ﬂ—§
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in Sy2. Again by interpolation we get

1 _1
o)+ 43wl = (A Hyal
< CJAHE Ty, o AT ey, (i
2Ba _p(l—a) 243

“Pa — =7 P a+p
= OATTT T | ANy AT AT ey 1

ﬁ «
= Ol ATy | Al AT 1y 1

= o(1), (5.36)
where
 (a=3) (B 14 q) _1-2-8 _,
(a4 B - _14q) 1-2a+33
which leads to
2a _pll-a) __2(1-2%-§) _ 20-2a-§
1—7 4 (1—-y1-2a+38) (1-—7v)(1-2a+3pP) '

The last equality in (5.36) is due to (5.33) and (5.35).
When 8 = 0, we still have (5.33). Since 1+2°‘ —1+a< a— 5 < a— 3 in Sy, by interpolation
we again obtain, using (5.14) and (5.33),

1 1
o(1) + [[A2u,| = (A% 2y,]|
< C|A* Ty, AT

“lrey ||tme

a

_p(—a) _ v D 1424 _
= Cxn T A1A” 2ynH A AT ey, e
_ _a 1+2a _
— O AT g A AR ey, 1

= o(1), (5.37)
where
(a—3) —(HE2 -1+a) 1 -2« <1
a:= = ,
(=3 - (BF2-1+a) 201-7)+(1-20a)
which leads to
p(1—a) 1 -2« 1 -2« 2(1 —7) 0
a— = - =Y.
4 20—+ (1-2a) 2(1—7) 201 —7)+(1-2«)
Finally, using the same argument as in (5.21), (5.22) and the fact that o — g < %, we again
obtain (5.23) leading to the contradiction ||Up||y — 0. O
Lemma 5.5. For («, 3,7) € So1 U Sag,
iR C p(Aas,y)- (5.38)

Proof: Assume that (5.38) is false. Then, there exist i\ € o(Aqyp,,) and a unit sequence
Up = (Un,Vn,0n) € D(Aq ) such that (iA — Ay 5,)U, = F, and

1GAL = Aa s )l = | Eullae = o(1), (5.39)
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ie.,
M (iAgtin — vp) = fin = o(1), inVy 5,  (5.40)
N [idn(pvn + pAV0n) + A% (0 A YUy — mbn)] = pfon + pA” fon = o(1), In V7 5, (5.41)
M (iNpcln + kAPO, + mA“,) = cfs, = o(1), in H.  (5.42)

Again we are going to show ||U,||% = o(1), being a contradiction. It follows, as in the proofs

of the previous lemmas,

]
420, = o(1) = [|0n] = o(1). (5.43)
Case (i): A =0.
It follows directly from (5.40) that ||AZv,|| = o(1). Moreover, using (5.41) we have
|AZu, |2 + m(A%0,, un) = o(1). (5.44)
Since o — % < g in So1 U Sog,
|(A%60, 1) < | AZ0,]] A3 ]| = o(1). (5.45)

Therefore, we obtain HA%unH = o(1), giving the contradiction.
Case (ii): A #0.

We can argue as in the proofs of Lemma 5.3 and Lemma 5.4, now with p = 0. O

Remark 5.6. A preliminary spectral analysis shows that there will be residual points in the
spectrum on the imaginary azis for the cases when (o, B,7) in Sy with v =1 or in Ss. It also
shows that when (o, B,7) 1is in the interior of region S, the real part of the eigenvalues will go
to negative infinity as the imaginary part goes to infinity which is an indication for reqularity
of solutions. Furthermore, it also shows the optimality of the polynomial stability obtained here.
These topics are under investigation.

The interesting case T > 0 also asks for an investigation of polynomial stability that goes beyond

the scope of the present paper and is subject to future research as well.
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