
THE CAUCHY PROBLEM FOR THERMOELASTIC PLATES
WITH TWO TEMPERATURES

REINHARD RACKE AND YOSHIHIRO UEDA

Abstract. We consider the decay rates of solutions to thermoelastic systems in

materials where, in contrast to classical thermoelastic models for Kirchhoff type

plates, two temperatures are involved, related by an elliptic equation. The arising

initial value problems deal with systems of partial differential equations involving

Schrödinger like equations, hyperbolic and elliptic equations. Depending on the

model – with Fourier or with Cattaneo type heat conduction – we obtain poly-

nomial decay rates without or with regularity loss. This way we obtain another

example where the loss of regularity in the Cauchy problem corresponds to the loss

of exponential stability in bounded domains. The well-posedness is done using semi-

group theory in appropriate space reflecting the different regularity compared to the

classical single temperature case, and the (optimal) decay estimates are obtained

with sophisticated pointwise estimates in Fourier space.
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1. Introduction

Classical thermoelastic plates of Kirchhoff type modeled by

(1.1)

utt + b∆2u+ d∆θ = 0,

θt + div q − d∆ut = 0,

τqt + q + κ∇θ = 0,

for (u, θ, q) = (u, θ, q)(t, x) denoting the displacement, the temperature and heat flux
for x ∈ Rn, t ≥ 0, with b, d, κ > 0, τ ≥ 0, have been discussed in recent years with
respect to well-posedness and asymptotic behavior in time (also for bounded and
unbounded domains with boundaries, and both for τ = 0 and for τ > 0.

So-called non-simple materials are modeled by two temperatures, the thermody-
namic temperature θ and the conductive temperature ψ, related to each other in the
following way, see [2, 3, 4, 36],

(1.2) θ = ψ − a∆ψ

with a constant a ≥ 0. The corresponding extension of the classical thermoelastic
plate model (1.1) then reads as

(1.3)

utt + b∆2u+ d∆θ = 0,

θt + div q − d∆ut = 0,

τqt + q + κ∇ψ = 0,
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with (1.2). Especially, for τ = 0, (1.3) is rewritten as

(1.4)
utt + b∆2u+ d∆θ = 0,

θt − κ∆ψ − d∆ut = 0,

which represents Fourier type heat conduction.
For a = 0 in (1.2) we recover (1.1). This case was investigated in [31] cf. Said-

Houari for the one-dimensional case [33]. A regularity loss in the description of
polynomial decay of solutions was proved reflecting the loss of exponential stability
in bounded domains known. In this case it is known that one has, for appropriate
boundary conditions, exponential stability for the Fourier type heat conduction given
by τ = 0, while it is not exponentially stable for the Cattaneo (Maxwell) type given
for a positive relaxation constant τ > 0, see [26, 27, 8].

Here, we shall investigate initial value problems for the case a > 0. We are first
interested in the well-posedness both for τ = 0 and for τ > 0, which is more delicate in
comparison to the case a = 0, since there will be no regularity gain in the temperature
triggered by the differential equations. The main topic will be to investigate the
asymptotic behavior as time tends to infinity in terms of polynomial decay rates.
The rates will be shown to be optimal, and a loss of regularity will be observed while
turning from the Fourier to the Cattaneo model. This way we also contribute a
further example where the different heat conduction models, one by Fourier (τ = 0),
one by Cattaneo (τ > 0) predict different qualitative behavior. Similar effects are
known for the thermoelastic Timoshenko system in one space dimensions. Here, we
also have that the system with the Fourier model for heat conduction may show
exponential stability in bounded domains (in the case of equal wave speeds of the
two wave equations involved), while this property is lost with the Cattaneo model,
see Fernańdez Sare & Racke [9]. Moreover, for the Cauchy problem in R1, one has
the same effect, i.e., a regularity-loss phenomenon when changing from Fourier’s to
Cattaneo’s law, see Ide & Kawashima [12], Ide & Haramoto & Kawashima [11], Ueda
& Duan & Kawashima [35], Said-Houari & Kasimov [34].

Some further related papers are given as follows:
Case a = 0: For bounded domains and for τ = 0, there are many results in particular
on exponential stability, see for example [1, 13, 15, 16, 17, 18, 21, 22, 23]. For results
for the Cauchy problem or in general exterior domains see for example [5, 6, 7, 22,
23, 31]. For τ > 0, exponential stability in bounded domains is lost [26, 27, 8], for
the Cauchy problem we encounter a regularity loss [31].
Case a > 0: As mentioned above, in [28], the bounded domain case was studied,
and the exponential stablity was proved for τ = 0, while it was shown not to be
exponentially stable for τ > 0.

The second-order system

utt − buxx + dθx = 0,

θt + qx + dutx = 0,

τqt + q + κψx = 0,

θ − ψ + aψxx = 0,
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in one space dimension in a bounded interval has been studied with respect to ex-
ponential stability for a = 0 [25], the well-posedness was obtained in any space
dimension [24]. The non-exponential stability for τ > 0 was proved in in [20].

We remark that related nonlinear problems have been discussed in [10, 14, 19, 32].
Our main new contributions are

• First discussion of the fourth-order thermoelastic plate system with two tem-
peratures in all of Rn.
• Proof of well-posedness for rather weak regular solutions, both for τ = 0 and

for τ > 0.
• Proof of optimal decay rates for both cases (τ = 0) and (τ > 0)
• Demonstration of the loss of regularity while turning from the Fourier model

to the Cattaneo one, this way yielding another example for the general pic-
ture of the correspondence between “loss of exponential stability in bounded
domains” and “loss of regularity for the Cauchy problem”.
• Clarification of the role of the heat conduction parameter κ in the decay

estimates.

The methods used will be essentially sophisticated pointwise estimates of the solutions
in Fourier space, and semigroup theory for the well-posedness.

The paper is organized as follows: We start in section 2 proving the well-posedness
based on semigroup theory both for τ = 0 and for τ > 0. In section 3, we treat the
case τ = 0 and derive the decay estimates using the Fourier transform. Section 4
discusses the decay estimates for the case τ > 0.

Throughout the paper, we use standard notation, in particular the Sobolev spaces
Lp = Lp(Rn), p ≥ 1, and Hs = W s,2(Rn), s ∈ N0, with their associated norms ‖ · ‖Lp ,
with abbreviation ‖ · ‖ := ‖ · ‖L2 , respectively ‖ · ‖Hs . For the inner product in L2 we
use the notation 〈·, ·〉. Furthermore, we use the Sobolev norm ‖ ·‖Hs

a
with parameters

τ and a as follows. Let τ ≥ 0 and a ≥ 0 be real numbers, then

‖u‖H1
a

:= ‖(1 + a|ξ|2)1/2û‖L2 ,

‖u‖H3+s
τ,a

:= ‖(1 + τ |ξ|2)(1 + a|ξ|2)(1+s)/2û‖L2 ,

with s = 0, 1, where û denotes the Fourier transform of u and ξ ∈ Rn is the Fourier
variable. We observe that ‖ · ‖Hs

0
= ‖ · ‖H3+s

0,0
= ‖ · ‖L2 .

2. Well-posedness for τ ≥ 0

To discuss the decay estimate of the global solutions in time, we first consider the
well-posedness of the systems, both for τ = 0 and for τ > 0, based on semigroup
arguments. Especially, this argument is useful for the system with τ > 0 to con-
struct the global solution in time. Regarding the well-posedness of the systems under
consideration, we point out, that due to the effects of the two temperatures in the
model, the regularity for the temperature(s) is different from that for the case with
a single temperature. In the heat equation instead of the Laplace operator, now,
a bounded operator appears not triggering the regularity seemingly needed for the
main elastic equation for the displacement. As a consequence, a connected regularity
is considered.
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We modify the work on the bounded domain case given in our recent paper [28]
for the Cauchy problem considered here, and we present the details for the reader’s
convenience.

2.1. Well-posedness for τ = 0. We start proving the well-posedness of the system
(1.4) with τ = 0, i.e. for (1.4) with the initial data

(2.1) u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x)

for x ∈ Rn. We rewrite (1.2) as

ψ = (Id− a∆)−1 θ,

where Id denotes the identity operator. Here (Id− a∆)−1 denotes the homeomor-
phism from L2 onto H2. Then (1.4) with (1.2) can be written as

(2.2)
utt + ∆(b∆u+ dθ) = 0,

θt −Bθ − d∆ut = 0,

where B : L2 → L2 is a bounded operator defined by B := κ∆ (Id− a∆)−1.

Remark 2.1. The second equation of (2.2) for, essentially, θ does not trigger any
regularity for θ, in contrast to the situation where a = 0 (only one temperature θ = ψ).
For a = 0 we would have the classical operator B = κ∆ on its usual domain. On the
other hand, in the first equation of (2.2) one needs, yet formally, ∆θ. This lack of
regularity will be reflected in a lack of separate for regularity for u and θ. We shall
have a connected regularity, see below.

The operator B satisfies for (1.2)

〈Bθ, θ〉 = −κ‖∇ψ‖2 − κa‖∆ψ‖2 ≤ 0.

We transform the system (2.2) into a system of first order in time for U := (v, w, θ)T

with v := ut, w := ∆u, where T denotes the transposed matrix:

Ut =

 0 −b∆ −d∆
∆ 0 0
d∆ 0 B

U =: AfU, U(0, ·) = U0 := (u1,∆u0, θ0)T .

This formal system with the formal differential symbol Af will be considered as an
evolution equation in the associated Hilbert space H := L2 × L2 × L2 with inner
product

〈U,W 〉H := 〈U1,W 1〉+ b 〈U2,W 2〉+ 〈U3,W 3〉,
where U = (U1, U2, U3)T and W = (W 1,W 2,W 3)T . Then our problem is associated
with

(2.3) Ut = AU, U(t = 0) = U0,

where

A : D(A) ⊂ H −→ H, AU := AfU,

for U ∈ D(A) with

D(A) := {U = (v, w, θ)T ∈ H | v ∈ H2, ∆(bw + dθ) ∈ L2 }.
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In the definition of D(A), the problem of the missing (separate) regularity for θ is
reflected. cp. Remark 2.1. One just has the combined regularity ∆(bw + dθ) ∈ L2,
not writing ∆w, ∆θ ∈ L2, and this way AfU has to be interpreted.

As usual, ∆(bw + dθ) ∈ L2 means

(2.4) ∃h ∈ L2, ∀φ ∈ C∞0 : 〈bw + dθ,∆φ〉 = 〈h, φ〉.

We remark that the difference to the bounded domain case considered in [28] lies in
the choice of the transformation by U and the choice of the spaceH. This modification
is necessary essentially because in all of Rn, the set H2 is no longer a Banach space
under the norm ‖∆ · ‖, in contrast to the situation in bounded domains considered
in [28].

We will show that A generates a contraction semigroup.

Lemma 2.2. D(A) is dense in H, and for U ∈ D(A) with (1.2), we have the dissi-
pativity of A that

Re〈AU,U〉H = −κ‖∇ψ‖2 − κa‖∆ψ‖2 ≤ 0.

Proof. (C∞0 )3 ⊂ D(A) is dense in H. Furthermore, the computation

Re〈AU,U〉H = Re (〈−∆(bw + dθ), v〉+ b〈∆v, w〉+ 〈d∆v +Bθ, θ〉)
= 〈Bθ, θ〉 = −κ‖∇ψ‖2 − κa‖∆ψ‖2 ≤ 0

gives the proof. �

Lemma 2.3. The range of Id− A equals H.

Proof. (Id − A)U = F is, for given F = (F 1, F 2, F 3)T ∈ H, equivalent to finding
U ∈ D(A) solving 

U1 + ∆(bU2 + dU3) = F 1,
U2 −∆U1 = F 2,

U3 − d∆U1 −BU3 = F 3.

Here, U2 := ∆U1 + F 2 will be given if we find (U1, U3) satisfying

(2.5)

{
U1 + ∆(b∆U1 + bF 2 + dU3) = F 1,

U3 − d∆U1 −BU3 = F 3,

with U ∈ D(A). For this purpose we consider the sesquilinear form

β : K := H2 × L2 −→ C,

where H2 is equipped with the usual H2-norm, and

β
(
(U1, U3), (W 1,W 3)

)
:= 〈U1,W 1〉+ 〈b∆U1 + dU3,∆W 1〉+ 〈U3,W 3〉

−〈d∆U1,W 3〉 − 〈BU3,W 3〉.

The variational problem associated to (2.5) is to find a (unique) (U1, U3) ∈ K satis-
fying for all (W 1,W 3) ∈ K

β
(
(U1, U3), (W 1,W 3)

)
= 〈F 1,W 1〉+ 〈F 3,W 3〉 − 〈bF 2,∆W 1〉.
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The solvability of the variational problem follows from the theorem of Lax and Mil-
gram, observing∣∣β ((U1, U3), (W 1,W 3)

)∣∣ ≤ C‖(U1, U3)‖K‖(W 1,W 3)‖K

with some positive constant C > 0, and

Re β
(
(U1, U3), (U1, U3)

)
= ‖U1‖2 + b‖∆U1‖2 + ‖U3‖2 − 〈BU3, U3〉
≥ c‖(U1, U3)‖2

K

with some positive constant c > 0, by elliptic regularity. �

By the Lumer-Phillips theorem we conclude the well-posedness:

Theorem 2.4. A generates a contraction semigroup, and, for any U0 ∈ D(A), there
is a unique solution U to (2.3) satisfying

U ∈ C1 ([0,∞),H) ∩ C0 ([0,∞), D(A)) .

2.2. Well-posedness for τ > 0. The model (1.3), (1.2) for thermoelastic plates of
Kirchhoff type with two temperatures under the Cattaneo law will now be shown
to be well-posed. The well-posedness requires the choice of suitable representations
of the solutions and corresponding phase spaces. The regularity issue is even more
complicated due to the fact that the heat flux is not immediately of the same regu-
larity as the gradient of the temperature ψ, as it was in the case of the Fourier model
discussed in the previous section. The issue of only combined regularity for (u, θ, q)
only, in contrast to separate regularity for each of u, θ, q, comes up again requiring
the right spaces and domains of operators.

We consider the Cauchy problem (1.3), (1.2) with initial data

(2.6) u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x), q(0, x) = q0(x)

for x ∈ Rn. Defining v := ut, w :=
√
b∆u we obtain from (1.3), (1.2)

vt +
√
b∆w + d∆θ = 0,

wt −
√
b∆v = 0,

θt + div q − d∆v = 0,

τqt +∇B1θ + q = 0,

where B1 denotes the bounded operator B1 : L2 → H2, B1 := κ(Id − a∆)−1. Let
U := (v, w, θ, q)T . Then

(2.7) Ut =


0 −

√
b∆ −d∆ 0√

b∆ 0 0 0
d∆ 0 0 −div
0 0 − 1

τ
∇B1 − 1

τ

U =: A1,fU,

(2.8) U(0, ·) = U0 := (u1,
√
b∆u0, θ0, q0)T .
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System (2.7), (2.8) will be considered as an evolution equation in the associated
Hilbert space H1 := L2 × L2 × L2 ×D, where D := {q ∈ L2 | div q ∈ L2}, with inner
product

〈U,W 〉H1 := 〈U1,W 1〉+ 〈U2,W 2〉+
1

τ
〈U3, B1W

3〉+ 〈U4,W 4〉+ 〈divU4, divW 4〉,

where U = (U1, U2, U3, U4)T and W = (W 1,W 2,W 3,W 4)T . Then we solve

(2.9) Ut = A1U, U(t = 0) = U0,

where
A1 : D(A1) ⊂ H1 −→ H1, A1U := A1,fU,

for U ∈ D(A1) with

D(A1) := {U = (v, w, θ, q)T ∈ H1 | v ∈ H2, ∆(
√
bw + dθ) ∈ L2 }.

In the definition of D(A1), the problem of the missing (separate) regularity is reflected
again, cf. the previous subsection. Again we show that A1 generates a C0-semigroup.
For this purpose we write

A1 =


0 −

√
b∆ −d∆ 0√

b∆ 0 0 0
d∆ 0 0 0
0 0 0 0


︸ ︷︷ ︸

=:A11

+


0 0 0 0
0 0 0 0
0 0 0 −div
0 0 − 1

τ
∇B1 − 1

τ


︸ ︷︷ ︸

=:A12

.

The operator A12 : H1 → H1 is bounded, and for

A11 : D(A11) := D(A1) ⊂ H1 −→ H1

we have the following fact.

Lemma 2.5. (i) D(A11) is dense in H1, and A11 is dissipative,

Re 〈A11U,U〉H1 = 0.

(ii) The range of Id− A11 equals H1.

Proof. (i) is easy again, and to find U = (U1, U2, U3, U4)T ∈ D(A1) satisfying (Id −
A11)U = F , for given F = (F 1, F 2, F 3, F 4)T ∈ H1, we may argue as in the proof
of Lemma 2.3, now eliminating first U2, U3 and U4 as follows. (Id − A11)U = F is
equivalent to 

U1 + ∆(
√
bU2 + dU3) = F 1,

U2 −
√
b∆U1 = F 2,

U3 − d∆U1 = F 3,
U4 = F 4.

After having found the appropriate U1, we may take U2 :=
√
b∆U1 + F 2, U3 :=

d∆U1 + F 3 and U4 := F 4. For U1 we have to solve

U1 + ∆(b∆U1 +
√
bF 2 + dF 3 + d2∆U1) = F 1.

This is equivalent to finding U1 ∈ H2 satisfying for all W 1 ∈ H2

(2.10) 〈U1,W 1〉+ 〈(b+ d2)∆U1 +
√
bF 2 + dF 3,∆W 1〉 = 〈F 1,W 1〉.
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Inspired by this equation, we define the bilinear form β11 : K1 := H2×H2 → C with

β11(U1,W 1) := 〈U1,W 1〉+ 〈(b+ d2)∆U1,∆W 1〉
and F : H2 → C with

F(W 1) := 〈F1,W
1〉 − 〈

√
bF 2 + dF 3,∆W 1〉.

Then (2.10) is described as β11(U1,W 1) = F(W 1). Here, F is a bounded linear
functional on H2. Furthermore, the bilinear form β11 satisfies

|β11(U1,W 1)| ≤ C1‖U1‖H2‖W 1‖H2 ,

β11(U1, U1) = 〈U1, U1〉+ 〈(b+ d2)∆U1,∆U1〉 ≥ c1‖U1‖2
H2 ,

for some positive constants and C1 and c1, so we may use the theorem of Lax and
Milgram to find the solution U1 ∈ H2. �

As a consequence we obtain the well-posedness of (2.9) in the following result.

Theorem 2.6. A1 generates a C0-semigroup, and, for any U0 ∈ D(A1), there is a
unique solution U to (2.9) satisfying

U ∈ C1 ([0,∞),H1) ∩ C0 ([0,∞), D(A1)) .

3. Decay estimates for Fourier type heat conduction

In this section, we consider the case τ = 0, i.e. system (1.4), (1.2), with initial
data (2.1). The purpose of this section is to derive the optimal decay estimates for
the global solutions in time .

3.1. Decay estimates (τ = 0). To derive a representation of the solution and to get

the decay estimates for the solutions, we introduce new functions v := ut, w :=
√
b∆u

for (1.4). Then our problem reads as

(3.1)

vt +
√
b∆w + d∆θ = 0,

wt −
√
b∆v = 0,

θt − κ∆ψ − d∆v = 0.

Furthermore, (3.1) with (1.2) leads to

(3.2) (I − a∆)Ut −∆B1U − (I − a∆)∆B2U = 0,

where U := (v, w, θ)T and

B1 :=

0 0 0

0 0 0

0 0 κ

 , B2 :=

 0 −
√
b −d

√
b 0 0

d 0 0

 .

Applying the Fourier transform to (3.2), we have

(3.3) Ût +
|ξ|2

1 + a|ξ|2
B1Û + |ξ|2B2Û = 0.

The is can be solved, and the solution of (3.3) can be written as

(3.4) Û(t, ξ) = etΦ̂(iξ)Û0(ξ),
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where U0 := (v0, w0, θ0)T with v0 := u1 and w0 := ∆u0, and

(3.5) Φ̂(iξ) := −
(
|ξ|2

1 + a|ξ|2
B1 + |ξ|2B2

)
= −

 0 −
√
b|ξ|2 −d|ξ|2

√
b|ξ|2 0 0

d|ξ|2 0 κ|ξ|2/(1 + a|ξ|2)

 .

Therefore, the semigroup etΦ associated with the system (3.2) is given by the formula

(3.6) etΦϕ := F−1[etΦ̂(iξ)ϕ̂(ξ)].

Now, our purpose is to derive the property of the solution operator etΦ. The result
on the decay estimates for (3.2) is stated as follows.

Theorem 3.1. Let etΦ be the semigroup associated with the system (3.2) defined by
(3.6). Then the following decay estimates hold for 1 ≤ p ≤ 2 and k ≥ 0.

(3.7) ‖∂kxetΦϕ‖L2 ≤ C0(1 + νat)
−n

2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp +
√

3e−
νa
2
t‖∂kxϕ‖L2 ,

where

νa :=
ν

1 + a
, ν :=

bd2κ

12(8(b+ d2)2 + bκ2)
,

and C0 is a certain positive constant depends on only p and k.

The key of the proof of Theorem 3.1 is to get the pointwise estimate of the operator
etΦ in Fourier space, which is stated as follows.

Proposition 3.2. Let Φ̂(iξ) be the matrix defined in (3.5). Then the corresponding

matrix exponential etΦ̂(iξ) satisfies the following pointwise estimate

(3.8) |etΦ̂(iξ)| ≤
√

3e−
1
2
ρ(ξ)t

for t ≥ 0 and ξ ∈ Rn, where

(3.9) ρ(ξ) :=
ν|ξ|2

1 + a|ξ|2
,

and ν is defined in Theorem 3.1.

Proof. We first derive the basic energy equation for the system (3.2). Taking the

inner product (3.2) with Û , and taking real parts in the resulting equality, we have

(3.10)
1

2
(1 + a|ξ|2)

∂

∂t
|Û |2 + κ|ξ|2|θ̂|2 = 0.

Next, we construct the dissipation terms. System (3.2) gives us

(3.11)

v̂t −
√
b|ξ|2ŵ − d|ξ|2θ̂ = 0,

ŵt +
√
b|ξ|2v̂ = 0,

θ̂t + κ|ξ|2ψ̂ + d|ξ|2v̂ = 0,

with θ̂ = (1 + a|ξ|2)ψ̂. We multiply the first and second equations in (3.11) by − ¯̂w
and −¯̂v, respectively. Then, combining the resulting equations and taking real parts,
we obtain

− ∂

∂t
Re(v̂ ¯̂w) +

√
b|ξ|2(|ŵ|2 − |v̂|2) + d|ξ|2Re(ŵ

¯̂
θ) = 0.
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Especially, using the Hölder inequality, we get

(3.12) −
√
b
∂

∂t
Re(v̂ ¯̂w) +

b

2
|ξ|2|ŵ|2 − b|ξ|2|v̂|2 − d2

2
|ξ|2|θ̂|2 ≤ 0.

Furthermore, we multiply the first and third equations in (3.11) by
¯̂
θ and ¯̂v, respec-

tively. Then we have

∂

∂t
Re(v̂

¯̂
θ) + d|ξ|2(|v̂|2 − |θ̂|2) + κ|ξ|2Re(v̂

¯̂
ψ)−

√
b|ξ|2Re(ŵ

¯̂
θ) = 0.

Similarly as before, we obtain

(3.13) d
∂

∂t
Re(v̂

¯̂
θ) +

d2

2
|ξ|2|v̂|2 − d2|ξ|2|θ̂|2 − κ2

2
|ξ|2|ψ̂|2 − d

√
b|ξ|2Re(ŵ

¯̂
θ) ≤ 0.

Our next step is to combine the above inequalities to construct the energy estimate.
First, computing d2/4× (3.12) + b× (3.13), we get

∂

∂t

{
bdRe(v̂

¯̂
θ)− d2

√
b

4
Re(v̂ ¯̂w)

}
+
bd2

4
|ξ|2
(
|v̂|2 +

1

2
|ŵ|2

)
− d2(b+

d2

8
)|ξ|2|θ̂|2 − bκ2

2
|ξ|2|ψ̂|2 + bd

√
b|ξ|2Re(ŵ

¯̂
θ) ≤ 0.

Here, using

bd
√
b|ŵ||θ̂| ≤ bd2

16
|ŵ|2 + 4b2|θ̂|2,

we obtain

∂

∂t

{
bdRe(v̂

¯̂
θ)− d2

√
b

4
Re(v̂ ¯̂w)

}
+
bd2

4
|ξ|2
(
|v̂|2 +

1

4
|ŵ|2

)
− d2

(
b+

d2

8

)
|ξ|2|θ̂|2 − bκ2

2
|ξ|2|ψ̂|2 − 4b2|ξ|2|θ̂|2 ≤ 0.

Especially, θ̂ = (1 + a|ξ|2)ψ̂ gives us

(3.14) ∂

∂t

{
bdRe(v̂

¯̂
θ)− d2

√
b

4
Re(v̂ ¯̂w)

}
+
bd2

4
|ξ|2
(
|v̂|2 +

1

4
|ŵ|2

)
− 4g0|ξ|2|θ̂|2 ≤ 0,

where

g0 := (b+ d2)2 +
bκ2

8
.

Therefore, calculating g0 × (3.10) + κ/8× (3.14) yields

(3.15)
∂

∂t
E0(t, ξ) +

bd2κ

32
|ξ|2
(
|v̂|2 +

1

4
|ŵ|2

)
+
κ

2
g0|ξ|2|θ̂|2 ≤ 0,

where we define

E0(t, ξ) :=
1

2
g0(1 + a|ξ|2)|Û |2 +

κ

8

(
bdRe(v̂

¯̂
θ)− d2

√
b

4
Re(v̂ ¯̂w)

)
.

Here, we easily obtain from

d2κ
√
b|v̂||ŵ| ≤ 1

2
(bκ2|v̂|2 + d4|ŵ|2), dκ|v̂||θ̂| ≤ d2|v̂|2 +

κ2

4
|θ̂|2

10



the estimate

(3.16)
1

4
g0(1 + a|ξ|2)|Û |2 ≤ E0(t, ξ) ≤ 3

4
g0(1 + a|ξ|2)|Û |2.

Therefore, integrating (3.15) over t and applying (3.16) to the resulting estimate, we
get

|Û(t, ξ)|2 +

∫ t

0

κ|ξ|2

1 + a|ξ|2
{bd2

8g0

(
|v̂(t′, ξ)|2 +

1

4
|ŵ(t′, ξ)|2

)
+ 2|θ̂(t′, ξ)|2

}
dt′ ≤ 3|Û0(ξ)|2,

hence

‖∂kxU(t)‖2
H1
a

+
bd2κ

32g0

∫ t

0

‖∂k+1
x U(t′)‖2

L2dt′ ≤ 3‖∂kxU0‖2
H1
a
,

for k ≥ 0. Furthermore, (3.15) and

bd2κ

32
|ξ|2
(
|v̂|2 +

1

4
|ŵ|2

)
+
κ

2
g0|ξ|2|θ̂|2 ≥

bd2κ

128
|ξ|2|Û |2 ≥ bd2κ

96g0

|ξ|2

1 + a|ξ|2
E0(t, ξ),

which comes from (3.16), gives us

∂

∂t
E0(t, ξ) +

bd2κ

96g0

|ξ|2

1 + a|ξ|2
E0(t, ξ) ≤ 0.

Thus, we obtain E0(t, ξ) ≤ e−ρ(ξ)tE0(0, ξ), where ρ(ξ) is defined in Proposition 3.2.

This means |Û(t, ξ)| ≤
√

3e−ρ(ξ)t/2|Û0(ξ)|, and (3.4) gives the the desired pointwise
estimate (3.8). �

Proof of Theorem 3.1. We use the Hausdorff-Young inequality, ‖f̂‖Lp′ ≤ (2π)n/p
′‖f‖Lp

for 1 ≤ p ≤ 2 and 1/p+ 1/p′ = 1.
By (3.8), we have

‖∂kxetΦϕ‖2 ≤ 3

∫
|ξ|≤1

|ξ|2ke−ρ(ξ)t|ϕ̂(ξ)|2dξ + 3

∫
|ξ|≥1

|ξ|2ke−ρ(ξ)t|ϕ̂(ξ)|2dξ =: I1 + I2.

For the case |ξ| ≤ 1, we compute ρ(ξ) ≥ νa|ξ|2, and then

I1 ≤ 3

∫
|ξ|≤1

|ξ|2ke−νa|ξ|2t|ϕ̂(ξ)|2dξ

≤ 3‖|ξ|2ke−νa|ξ|2t‖Lσ(|ξ|≤1)‖ϕ̂‖2
Lp′ (|ξ|≤1)

≤ C2
0(1 + νat)

−n/(2σ)−k‖ϕ‖2
Lp

for 1/σ+2/p′ = 1, 1/p+1/p′ = 1 and 1 ≤ p ≤ 2, where we used the Hölder inequality
and the Hausdorff-Young inequality. Here we note that 1/σ = 2/p− 1, and we then
arrive at

I1 ≤ C2
0(1 + νat)

−n( 1
p
− 1

2
)−k‖ϕ‖2

Lp

for 1 ≤ p ≤ 2, where C0 is a positive constant depends on only p and k. For the case
|ξ| ≥ 1, we calculate ρ(ξ) ≥ νa and

I2 ≤ 3e−νat
∫
|ξ|≥1

|ξ|2k|ϕ̂(ξ)|2dξ ≤ 3e−νat‖∂kxϕ‖2
L2 .

Consequently, we get

‖∂kxetΦϕ‖2 ≤ C2
0(1 + νat)

−n( 1
p
− 1

2
)−k‖ϕ‖2

Lp + 3e−νat‖∂kxϕ‖2
L2 .

and arrive at the desired decay estimate (3.7). �
11



3.2. Optimality of the decay estimates (τ = 0). At the end of this section, we
investigate the optimality of the pointwise estimates in Theorem 3.1. To this end, we
consider the characteristic equation det(λI − Φ̂(iξ)) = 0 for the system (3.2), which
is equivalent to

(3.17) (1 + a|ξ|2)λ3 + κ|ξ|2λ2 + (b+ d2)(1 + a|ξ|2)|ξ|4λ+ bκ|ξ|6 = 0.

We consider the asymptotic expansion of λ = λ(iξ) for |ξ| → 0 and for |ξ| → ∞.
These expansions essentially determine the asymptotic behavior of solutions.

We first consider the asymptotic expansion for |ξ| → 0:

(3.18) λ(iξ) =
∞∑
k=0

αk|ξ|k.

Substituting (3.18) into (3.17), we have identities with respect to the order of |ξ|.
From the zeroth order and third order identities, we obtain α0 = 0 and α1 = 0,
respectively. Furthermore, the sixth order identity gives f(α2) = 0, where

(3.19) f(z) := z3 + κz2 + (b+ d2)z + bκ.

Let zj with j = 1, 2, 3 be solutions for f(z) = 0. Then these solutions satisfy z1 +
z2 + z3 = −κ. Since f(0) = bκ > 0 and f(−κ) = −d2κ < 0, we get Re(zj) < 0 for
j = 1, 2, 3. Thus, we conclude that the solutions for (3.17) satisfy

(3.20) λj(iξ) = zj|ξ|2 +O(|ξ|4)

for j = 1, 2, 3.
Next, we consider the asymptotic expansion for |ξ| → ∞. To this end, we take

λ = |ξ|2ν in (3.17) and obtain

(3.21) (a+ |ξ|−2)ν3 + κ|ξ|−2ν2 + (b+ d2)(a+ |ξ|−2)ν + bκ|ξ|−2 = 0.

We substitute

ν(iξ) =
∞∑
k=0

βk|ξ|−k

into (3.21). Then the zeroth order identity gives β0 = 0,±
√
b+ d2i. Furthermore,

this yields β1 = 0, β3 = 0 and

β2 = − κ(β2
0 + b)

a(3β2
0 + b+ d2)

.

Therefore, we derive

(3.22)

λj(iξ) = ±
√
b+ d2i|ξ|2 − d2κ

2a(b+ d2)
+O(|ξ|−2),

λ3(iξ) = − bκ

a(b+ d2)
+O(|ξ|−2)

for j = 1, 2.
Consequently, the asymptotic expansions (3.20) and (3.22) tell us that the point-

wise estimate (3.8) is optimal.
12



4. Decay estimates for Cattaneo type heat conduction

Now we turn to the Cattaneo case τ > 0, i.e we look at (1.3), (1.2) with initial
data (2.6). Our purpose is also to derive optimal decay estimates for global solutions
in time.

4.1. Decay estimates for τ > 0. Note that we have already studied (1.3), (1.2)
with a = 0 in [31]. Here we try to use similar arguments as in section 2. Introducing

again v := ut, w :=
√
b∆u, our problem (1.3), (1.2) is rewritten as in the previous

section as

(4.1)

vt +
√
b∆w + d∆θ = 0,

wt −
√
b∆v = 0,

θt + div q − d∆v = 0,

τqt + κ∇ψ + q = 0.

Furthermore, (4.1) with (1.2) leads

(4.2)
(
A0

1 + (1− a∆)L
)
Ut +

n∑
j=1

Aj∂xjU −∆BU +
1

τ
(1− a∆)LU = 0,

where U := (
√
κv,
√
κw,
√
κθ,
√
τq)T and

A0
1 :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 ,
n∑
j=1

Ajξj :=

√
κ

τ


0 0 0 0

0 0 0 0

0 0 0 ξ

0 0 ξT 0

 ,

B :=


0 −
√
b −d 0

√
b 0 0 0

d 0 0 0

0 0 0 0

 , L :=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Id

 ,

where ξ = (ξ1, · · · , ξn). Applying the Fourier transform to (4.2), we obtain

(4.3)
(
A0

1 + (1 + a|ξ|2)L
)
Ût + i|ξ|A(ω)Û + |ξ|2BÛ +

1

τ
(1 + a|ξ|2)LÛ = 0,

where A(ω) :=
∑n

j=1A
jωj for ω := ξ/|ξ| ∈ Sn−1 and ω = (ω1, · · · , ωn). Furthermore,

we introduce the new unknown function V̂ := (
√
κv̂,
√
κŵ,
√
κθ̂,
√
τ(1 + a|ξ|2)q̂)T .

Then (4.3) can be rewritten as

(4.4) V̂t +
i|ξ|√

1 + a|ξ|2
A(ω)V̂ + |ξ|2BV̂ +

1

τ
LV̂ = 0.

We observe that A0
1 + L is the identity matrix. The solution of (4.4) can be written

as

(4.5) V̂ (t, ξ) = etΦ̂(iξ)V̂0(ξ),
13



where V̂0 := (
√
κv̂0,
√
κŵ0,

√
κθ̂0,

√
τ(1 + a|ξ|2)q̂0)T with v̂0 = û1 and ŵ0 = −

√
b|ξ|2û0,

and

(4.6) Φ̂(iξ) := −
( i|ξ|√

1 + a|ξ|2
A(ω) + |ξ|2B +

1

τ
L
)
.

Then we define the semigroup etΦ by the formula

(4.7) etΦϕ := F−1[etΦ̂(iξ)ϕ̂(ξ)].

Our main purpose is now to derive the property of the solution operator etΦ.

Theorem 4.1. Let etΦ be the semigroup defined by (4.7). Then the following decay
estimates hold for 1 ≤ p ≤ 2 and k ≥ 0.

(4.8) ‖∂kxetΦϕ‖L2 ≤ C0(1 + ντ,at)
−n

2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp + C1(1 + ντ,at)
− `

4‖∂k+`
x ϕ‖L2 ,

where

ντ,a :=
ν̃

(1 + τ)2(1 + a)
,

ν̃ is a positive constant depending on only b, d and κ, C0 is a positive constant
depending on only p and k, and C1 is a positive constant depending only on `.

From the property of the semigroup operator etΦ, we derive the result on the
following decay estimates for (1.3), (1.2).

Corollary 4.2. Let (v, w, θ, q) be the solution for (1.3), (1.2) with the initial data
(2.6). Then the following decay estimates hold for 1 ≤ p ≤ 2 and k, ` ≥ 0.

(4.9)

√
κ‖∂kx(ut,∆u, θ)‖L2 +

√
τ‖∂kxq‖H1

a

≤
√

2C0(1 + ντ,at)
−n

2
( 1
p
− 1

2
)− k

2
(√

κ‖(u1,∆u0, θ0)‖Lp +
√
τ(1 + a)‖q0‖Lp

)
+
√

2C1(1 + ντ,at)
− `

4 (
√
κ‖∂k+`

x

(
u1,∆u0, θ0)‖L2 +

√
τ(1 + a)‖∂k+`+1

x q0‖L2

)
,

where ντ,a, C0 and C1 appeared in Theorem 4.1.

In Collorary 4.2 (and Theorem 4.1), the loss of regularity is clearly visible: to get
certain decay rates one needs more regularity of the initial data on the right-hand
side than can be estimated for the solutions on the left-hand side. This is in contrast
to the situation for τ = 0 stated in Theorem 3.1. The main estimate is the following
pointwise one that will allow as conclude the rates of decay and to describe the effect
of regularity loss.

The key of the proof of Theorem 3.1 is to get the pointwise estimate of the operator
etΦ in Fourier space, which is stated as follows.

Proposition 4.3. Let Φ̂(iξ) be the matrix defined in (4.6). Then the corresponding

matrix exponential etΦ̂(iξ) satisfies the following pointwise estimate

(4.10) |etΦ̂(iξ)| ≤
√

3e−
1
2
η(ξ)t

for t ≥ 0 and ξ ∈ Rn, where

(4.11) η(ξ) :=
ν̃|ξ|2

(1 + τ |ξ|2)2(1 + a|ξ|2)
,

and ν̃ depends only on b, d and κ.
14



The precise estimate clearly describes the role of the parameters τ and a, leading to
regularity loss whenever τ > 0. Formally, we recover the estimate (3.9) from section
3.

Remark 4.4. (i) The estimate (4.10) tells us that it might be better to consider not
only q but also the derivative of q to construct the solution operator. This corresponds
to the fact that we introduced div q in the discussion of the well-posednes in subsec-
tion 3.2.
(ii) We have the explicit value of ν̃ in Proposition 4.3. The details are given in the
proof of Proposition 4.3.

Proof of Proposition 4.3. We first derive the basic energy equality for the system

(4.4) in the Fourier space. Taking the inner product (4.4) with
¯̂
V , and taking the

real parts for the resulting equality, we arrive at the basic energy equality

(4.12)
1

2

∂

∂t
|V̂ |2 + (1 + a|ξ|2)|q̂|2 = 0.

Here we used the symmetry properties of A(ω) and L, and the skew-symmetry of B.
Now we construct the dissipation terms. The system (4.4) is equivalent to

(4.13)

v̂t −
√
b|ξ|2ŵ − d|ξ|2θ̂ = 0,

ŵt +
√
b|ξ|2v̂ = 0,

θ̂t − iξ · q̂ + d|ξ|2v̂ = 0,

τ q̂t + κiξψ̂ + q̂ = 0.

with θ̂ = (1 + a|ξ|2)ψ̂. We multiply the first and second equations in (4.13) by − ¯̂w
and −¯̂v, respectively. Then, combining this two equations and taking real parts, we
obtain

(4.14) − ∂

∂t
Re(v̂ ¯̂w) +

√
b|ξ|2(|ŵ|2 − |v̂|2) + d|ξ|2Re(ŵ

¯̂
θ) = 0.

Furthermore, we multiply the first and the third equation in (4.13) by d
¯̂
θ and d¯̂v,

respectively. Then we have

(4.15) d
∂

∂t
Re(v̂

¯̂
θ) + d2|ξ|2(|v̂|2 − |θ̂|2) + dξ · Re(iv̂ ¯̂q)−

√
bd|ξ|2Re(ŵ

¯̂
θ) = 0.

Similarly we multiply the third equation in (4.13) by τiξ · ¯̂q and we take the inner

product of the third equation in (4.13) with −iξ ¯̂
θ. This yields

τξ · ∂
∂t

Re(iθ̂ ¯̂q) + κ(1 + a|ξ|2)|ξ|2|ψ̂|2 − τ |ξ · q̂|2 + ξ · Re(iθ̂ ¯̂q) + dτ |ξ|2ξ · Re(iv̂ ¯̂q) = 0.

Especially, we obtain

τ(1 + a|ξ|2)ξ · ∂
∂t

Re(iθ̂ ¯̂q) + κ|ξ|2|θ̂|2 − τ(1 + a|ξ|2)|ξ · q̂|2

+ (1 + a|ξ|2)ξ · Re(iθ̂ ¯̂q) + dτ(1 + a|ξ|2)|ξ|2ξ · Re(iv̂ ¯̂q) = 0.
(4.16)

15



Our next step is to combine the above equalities to construct the energy estimate.
First, computing d2/2× (4.14) +

√
b× (4.15), we have

d
∂

∂t

{
− d

2
Re(v̂ ¯̂w) +

√
bRe(v̂

¯̂
θ)
}

+

√
bd2

2
|ξ|2(|v̂|2 + |ŵ|2)−

√
bd2|ξ|2|θ̂|2

+
√
bdξ · Re(iv̂ ¯̂q) + d

(d2

2
− b
)
|ξ|2Re(ŵ

¯̂
θ) = 0.

Here, using the Hölder inequality, we get

(4.17)

d
∂

∂t

{
− d

2
√
b
Re(v̂ ¯̂w) + Re(v̂

¯̂
θ)
}

+
d2

2
|ξ|2|v̂|2 +

d2

4
|ξ|2|ŵ|2

−
{
d2 +

1

b

(d2

2
− b
)2}
|ξ|2|θ̂|2 + dξ · Re(iv̂ ¯̂q) ≤ 0.

On the other hand, from (4.16) we have

(4.18)
τ(1 + a|ξ|2)ξ · ∂

∂t
Re(iθ̂ ¯̂q) +

κ

2
|ξ|2|θ̂|2

−
{
τ |ξ|2 +

1

2κ
(1 + a|ξ|2)

}
(1 + a|ξ|2)|q̂|2 + dτ(1 + a|ξ|2)|ξ|2ξ · Re(iv̂ ¯̂q) ≤ 0.

Then we calculate ε1 × (4.17) + (4.18) and obtain

∂

∂t

{
− ε1

d2

2
√
b
Re(v̂ ¯̂w) + ε1dRe(v̂

¯̂
θ) + τ(1 + a|ξ|2)ξ · Re(iθ̂ ¯̂q)

}
+ ε1

d2

2
|ξ|2|v̂|2 + ε1

d2

4
|ξ|2|ŵ|2 +

{κ
2
− ε1

(
d2 +

1

b

(
b− d2

2

)2)}
|ξ|2|θ̂|2

−
{
τ |ξ|2 +

1

2κ
(1 + a|ξ|2)

}
(1 + a|ξ|2)|q̂|2 + d{τ(1 + a|ξ|2)|ξ|2 + 1}ξ · Re(iv̂ ¯̂q) ≤ 0,

where ε1 is a small positive parameter. Then we put ε1 = κ/(4g), where

g := d2 +
1

b

(
b− d2

2

)2

,

and obtain

∂

∂t

{
− d2κ

8
√
bg

Re(v̂ ¯̂w) +
dκ

4g
Re(v̂

¯̂
θ) + τ(1 + a|ξ|2)ξ · Re(iθ̂ ¯̂q)

}
+
d2κ

8g
|ξ|2|v̂|2 +

d2κ

16g
|ξ|2|ŵ|2 +

κ

4
|ξ|2|θ̂|2

−
(
τ |ξ|2 +

1

2κ
(1 + a|ξ|2)

)
(1 + a|ξ|2)|q̂|2 + d{τ(1 + a|ξ|2)|ξ|2 + 1}ξ · Re(iv̂ ¯̂q) ≤ 0.

This estimate gives

∂

∂t

{
− d2κ

8
√
bg

Re(v̂ ¯̂w) +
dκ

4g
Re(v̂

¯̂
θ) + τ(1 + a|ξ|2)ξ · Re(iθ̂ ¯̂q)

}
+
d2κ

16g
|ξ|2(|v̂|2 + |ŵ|2) +

κ

4
|ξ|2|θ̂|2 −G(|ξ|)|q̂|2 ≤ 0.
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Here, we calculate

G(|ξ|) :=
(
τ |ξ|2 +

1

2κ
(1 + a|ξ|2)

)
(1 + a|ξ|2) +

4g

κ
(τ(1 + a|ξ|2)|ξ|2 + 1)2

=
4g

κ
+

1

κ
(κ+ 8g)τ |ξ|2(1 + a|ξ|2) +

1

2κ
(1 + 8gτ 2|ξ|4)(1 + a|ξ|2)2

≤ 1

2κ
(1 + 8g + 2(κ+ 8g)τ |ξ|2 + 8gτ 2|ξ|4)(1 + a|ξ|2)2

≤ 1 + κ+ 8g

2κ
(1 + τ |ξ|2)2(1 + a|ξ|2)2.

This yields

(4.19)

∂

∂t

{
− d2κ

8
√
bg

Re(v̂ ¯̂w) +
dκ

4g
Re(v̂

¯̂
θ) + τ(1 + a|ξ|2)ξ · Re(iθ̂ ¯̂q)

}
+
κ

4
|ξ|2|θ̂|2

+
d2κ

16g
|ξ|2(|v̂|2 + |ŵ|2)− 1 + κ+ 8g

2κ
(1 + τ |ξ|2)2(1 + a|ξ|2)2|q̂|2 ≤ 0.

Therefore, calculating (1 + τ |ξ|2)2(1 + a|ξ|2)× (4.12) + ε0 × (4.19) leads to

(4.20)

∂

∂t
E(t, ξ) + ε0

d2κ

16g
|ξ|2(|v̂|2 + |ŵ|2) + ε0

κ

4
|ξ|2|θ̂|2

+
(

1− ε0
1 + κ+ 8g

2κ

)
(1 + τ |ξ|2)2(1 + a|ξ|2)2|q̂|2 ≤ 0.

where the energy E(t, ξ) is defined by

E(t, ξ) :=
1

2
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2

)
+ ε0

(
− d2κ

8
√
bg

Re(v̂ ¯̂w) +
dκ

4g
Re(v̂

¯̂
θ) + τ(1 + a|ξ|2)ξ · Re(iθ̂ ¯̂q)

)
.

Finally, we choose the positive parameter ε0 suitably. We compute

E(t, ξ) ≥ 1

2
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2

)
− ε0

2

(dκ
4g

(
1 +

d

2
√
b

)
|v̂|2 +

d2κ

8
√
bg
|ŵ|2 +

(
1 +

dκ

4g

)
|θ̂|2 + τ 2|ξ|2(1 + a|ξ|2)2|q̂|2

)
≥ 1

2
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2

)
− ε0

2

(
1 +

dκ

4g

(
1 +

d

2
√
b

))(
|v̂|2 + |ŵ|2 + |θ̂|2 + τ 2|ξ|2(1 + a|ξ|2)2|q̂|2

)
.

Thus, choosing ε0 such that

κ− ε0

(
1 +

dκ

4g

(
1 +

d

2
√
b

))
≥ κ

2
, 1− ε0

(
1 +

dκ

4g

(
1 +

d

2
√
b

))
≥ 1

2
,

we can obtain

E(t, ξ) ≥ 1

4
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2

)
.
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Here, ε0 should satisfy

(4.21) ε0 ≤
κ

2

(
1 +

dκ

4g

(
1 +

d

2
√
b

))−1

, ε0 ≤
1

2

(
1 +

dκ

4g

(
1 +

d

2
√
b

))−1

.

Similarly, we also compute

E(t, ξ) ≤ 1

2
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2

)
+
ε0

2

(
1 +

dκ

4g

(
1 +

d

2
√
b

))(
|v̂|2 + |ŵ|2 + |θ̂|2 + τ 2|ξ|2(1 + a|ξ|2)2|q̂|2

)
≤ 3

4
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2

)
for suitably small ε0 which satisfy (4.21). Consequently, because of (4.20), we set
ε0 = c∗ with

c∗ := min
{ κ

1 + κ+ 8g
,
κ

2

(
1 +

dκ

4g

(
1 +

d

2
√
b

))−1

,
1

2

(
1 +

dκ

4g

(
1 +

d

2
√
b

))−1}
to obtain

(4.22)

∂

∂t
E(t, ξ) + c∗

d2κ

16g
|ξ|2(|v̂|2 + |ŵ|2) + c∗

κ

4
|ξ|2|θ̂|2

+
1

2
(1 + τ |ξ|2)2(1 + a|ξ|2)2|q̂|2 ≤ 0

and

(4.23)

1

4
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2

)
≤ E(t, ξ) ≤ 3

4
(1 + τ |ξ|2)2(1 + a|ξ|2)

(
κ(|v̂|2 + |ŵ|2 + |θ̂|2)+ τ(1 + a|ξ|2)|q̂|2

)
.

By using (4.22) and (4.23), we arrive at (4.10) and the energy estimate. Indeed,
integrating (4.22) over t and applying (4.23) to the resulting estimate, we obtain

|V̂ (t, ξ)|2 +

∫ t

0

c∗κ|ξ|2

(1 + τ |ξ|2)2(1 + a|ξ|2)

{d2

4g
(|v̂(t′, ξ)|2 + |ŵ(t′, ξ)|2) + |θ̂(t′, ξ)|2

}
dt′

+

∫ t

0

2(1 + a|ξ|2)|q̂(t′, ξ)|2dt′ ≤ 3|V̂0(ξ)|2.

This gives

κ‖∂kx(v, w, θ)(t)‖2
H3
τ,a

+ τ‖∂kxq(t)‖2
H4
τ,a

+
c∗d

2κ

4g

∫ t

0

‖∂k+1
x (v, w, θ)(t′)‖2

L2dt′

+ 2

∫ t

0

‖∂kxq(t′)‖2
H4
τ,a
dt′ ≤ 3(κ‖∂kx(v0, w0, θ0)‖2

H3
τ,a

+ τ‖∂kxq0‖2
H4
τ,a

)

for k ≥ 0. On the other hand, (4.22) gives

∂

∂t
E(t, ξ) +

c∗d
2

16g
|ξ|2{κ(|v̂|2 + |ŵ|2 + |θ̂|2) + τ(1 + a|ξ|2)|q̂|2} ≤ 0.
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Moreover, (4.23) and the above estimate lead

∂

∂t
E(t, ξ) +

c∗d
2

12g

|ξ|2

(1 + τ |ξ|2)2(1 + a|ξ|2)
E(t, ξ) ≤ 0.

This yields E(t, ξ) ≤ e−η(ξ)tE(0, ξ), and hence |V̂ (t, ξ)| ≤
√

3e−η(ξ)t/2|V̂0(ξ)|, where
η(ξ) is defined in (4.11) with ν̃ := c∗d

2/(12g). Consequently, this estimate together
with (4.5) gives (4.10). �

As an easy consequence of Proposition 4.3, we can obtain the decay estimate for
the solutions in Theorem 4.1 and Collorary 4.2.
Proof of Theorem 4.1 and Collorary 4.2. First, we prove Theorem 4.1. Because
of (4.10) we have

(4.24)
‖∂kxetΦϕ‖2

L2 ≤ 3

∫
|ξ|≤1

|ξ|2ke−2c0η(ξ)t|ϕ̂(ξ)|2dξ + 3

∫
|ξ|≥1

|ξ|2ke−2c0η(ξ)t|ϕ̂(ξ)|2dξ

=: I1 + I2.

For the case |ξ| ≤ 1, we employ the same argument as in the proof of Theorem 3.1.
More precisely, because of η(ξ) ≥ ντ,a|ξ|2, we get

I1 ≤ 3

∫
|ξ|≤1

|ξ|2ke−ντ,a|ξ|2t|ϕ̂(ξ)|2dξ ≤ C2
0(1 + ντ,at)

−n( 1
p
− 1

2
)−k‖ϕ‖2

Lp

for 1 ≤ p ≤ 2, where C0 is also a positive constant depending only on p and k. On
the other hand, for the case |ξ| ≥ 1, we calculate η(ξ) ≥ ντ,a|ξ|−4 and

I2 ≤ 3

∫
|ξ|≥1

|ξ|2ke−ντ,a|ξ|−4t|ϕ̂(ξ)|2dξ

≤ 3 sup
|ξ|≥1

{|ξ|−2`e−ντ,a|ξ|
−4t}

∫
|ξ|≥1

|ξ|2(k+`)|ϕ̂(ξ)|2dξ

≤ C2
1(1 + ντ,at)

−`/2‖∂k+`
x ϕ‖2

L2

for ` ≥ 0, where C1 is also positive constant depending only on `. Consequently,
substituting the estimates of I1 and I2 into (4.24), we get (4.8) and Theorem 4.1 is
proved.

To prove Corollary 4.2, we modify the proof of Theorem 4.1. The left-hand side of
(4.24) is estimated by

‖∂kxV (t)‖2
L2 ≤ 3

∫
|ξ|≤1

|ξ|2ke−η(ξ)t|V̂0(ξ)|2dξ + 3

∫
|ξ|≥1

|ξ|2ke−η(ξ)t|V̂0(ξ)|2dξ

=: J1 + J2.

For the low frequency part, we estimate

J1 ≤ 3κ

∫
|ξ|≤1

|ξ|2ke−η(ξ)t|(v̂0, ŵ0, θ̂0)(ξ)|2dξ + 3τ

∫
|ξ|≤1

(1 + a|ξ|2)|ξ|2ke−η(ξ)t|q̂0(ξ)|2dξ

≤ 3

∫
|ξ|≤1

|ξ|2ke−ντ,a|ξ|2t
(
κ|(v̂0, ŵ0, θ̂0)(ξ)|2 + τ(1 + a)|q̂0(ξ)|2

)
dξ

≤ C2
0(1 + ντ,at)

−n( 1
p
− 1

2
)−k(κ‖(v0, w0, θ0)‖2

Lq + τ(1 + a)‖q0‖2
Lq

)
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for 1 ≤ q ≤ 2, where C0 is same as before. Similarly, for the high frequency part, we
compute

J2 ≤ 3κ

∫
|ξ|≥1

|ξ|2ke−η(ξ)t|(v̂0, ŵ0, θ̂0)(ξ)|2dξ + 3τ

∫
|ξ|≥1

(1 + a|ξ|2)|ξ|2ke−η(ξ)t|q̂0(ξ)|2dξ

≤ 3

∫
|ξ|≥1

|ξ|2ke−η(ξ)t
(
κ|(v̂0, ŵ0, θ̂0)(ξ)|2 + τ(1 + a)|ξ|2|q̂0(ξ)|2

)
dξ

≤ C2
1(1 + ντ,at)

−`/2(κ‖∂k+`
x (v0, w0, θ0)‖2

L2 + τ(1 + a)‖∂k+`+1
x q0‖2

L2

)
for ` ≥ 0, where C1 is also same as before. Therefore, using

‖∂kxV (t)‖2
L2 = κ‖∂kx(v, w, θ)(t)‖2

L2 + τ‖∂kxq(t)‖2
H1
a
,

we arrive at the desired decay estimate (4.9), and the proof is completed. �

4.2. Optimality of the decay estimates (τ > 0). At the rest of this section, we
investigate the optimality of the estimates in Theorem 4.1 and Corollary 4.2. For
this purpose we consider the characteristic equation for the system (4.1) given by

(4.25)
τ(1 + a|ξ|2)λ4 + (1 + a|ξ|2)λ3 + {τ(b+ d2)(1 + a|ξ|2)|ξ|2 + κ}|ξ|2λ2

+ (b+ d2)(1 + a|ξ|2)|ξ|4λ+ bκ|ξ|6 = 0.

Similarly as before, we consider the asymptotic expansion of λ = λ(|ξ|) for |ξ| → 0
and for |ξ| → ∞. In the low frequency parts, the solutions for (4.25) are expanded
as

λj(|ξ|) = zj|ξ|2 +O(|ξ|4), λ4(|ξ|) = −1

τ
+ κ|ξ|2 +O(|ξ|4)

for j = 1, 2, 3, where the zj are solutions for f(z) = 0 with (3.19). Observe that
Re(zj) < 0 for j = 1, 2, 3. On the other hand, in the high frequency parts, this yields

(4.26) λj(|ξ|) = ±σi|ξ|2 ± d2κi

2σ3aτ
|ξ|−2 − d2κ

2σ4aτ

(1

τ
± σi

a

)
|ξ|−4 +O(|ξ|−6)

for j = 1, 2, and

λj(|ξ|) = − 1

2τ

(
1±

√
1− 4bκτ

σ2a

)
+O(|ξ|−2)

for j = 3, 4, where σ :=
√
b+ d2. Especially, the expansion (4.26) gives us

Re(λj)(|ξ|) = − d2κ

2(b+ d2)2aτ 2
|ξ|−4 +O(|ξ|−6)

for j = 1, 2, and leads to the regularity-loss phenomena. Consequently, these asymp-
totic expansions tell us that the pointwise estimate (4.10) is optimal.
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[30] Racke, R.: Heat conduction in elastic systems: Fourier versus Cattaneo. Proc. International

Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Skukuza, South Africa

(2015), 356–360.

[31] Racke, R., Ueda, Y.: Dissipative structures for thermoelastic plate equations in Rn. Advances.

Differential Equations 21 (2016), 601–630.

[32] Racke, R., Ueda, Y.: Nonlinear thermoelastic plate equations – global existence and decay

rates for the Cauchy problem. J. Differential Equations 263 (2017), 8138–8177.

[33] Said-Houari, B.: Decay properties of linear thermoelastic plates: Cattaneo versus Fourier law.

Applicable Analysis 92 (2013), 424–440.

[34] Said-Houari, B., Kasimov, A.: Decay property of Timoshenko system in thermoelasticity.

Math. Meth. Appl. Sci 35 (2012), 314–333.

[35] Ueda, Y., Duan, R., Kawashima, S.: Decay structure for symmetric hyperbolic systems with

non-symmetric relaxation and its application. Arch. Rational Mech. Anal. 205 (2012), 239–

266.

[36] Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math.

71 (2006), 383–390.

Department of Mathematics and Statistics, University of Konstanz, 78457 Kon-

stanz, Germany

E-mail address: reinhard.racke@uni-konstanz.de

Faculty of Maritime Sciences, Kobe University, Kobe 658-0022, Japan

E-mail address: ueda@maritime.kobe-u.ac.jp

22


