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Abstract. We consider the Cauchy problem of a third-order in time nonlinear equation
known as the Jordan–Moore–Gibson–Thompson (JMGT) equation arising in acoustics as
an alternative model to the well-known Kuznetsov equation. We show a local existence
result in appropriate function spaces, and, using the energy method together with a
bootstrap argument, we prove a global existence result for small data, without using the
linear decay. Finally, polynomial decay rates in time for a norm related to the solution
will be obtained.

1. Introduction

In this paper, we consider the nonlinear Jordan–Moore–Gibson–Thompson equation:

(1.1a) τuttt + utt − c2∆u− β∆ut =
∂

∂t

(
1

c2
B

2A
(ut)

2 + |∇u|2
)
,

where x ∈ R3 (Cauchy problem in 3D), and t > 0, and where τ > 0 is a time relaxation
parameter, the unknown u = u(x, t) is the acoustic velocity potential, c is the speed of
sound, β is the parameter of diffusivity and A and B are the constants of nonlinearity.
We consider the initial conditions

(1.1b) u(t = 0) = u0, ut(t = 0) = u1 utt(t = 0) = u2.

Equation (1.1a) appears as a generalization of the Kuznetsov equation (see equation
(1.3) below). Both equations are used as models in what is called nonlinear acoustics that
deals with finite-amplitude wave propagation in fluids and solids and related phenomena,
see the books of Beyer [1] or Rudenko and Soluyan [31]. In particular, the JMGT equation
arises from modeling high-frequency ultra sound waves, see [24] for more details.

The derivation of equation (1.1a) (see [14] and [33]) can be obtained from the general
equations of fluid mechanics by means of some asymptotic expansions in powers of small
parameters, cf. Appendix B for the derivation.

In the derivation of (1.1a), the Cattaneo (or Maxwell–Cattaneo) law was used which
accounts for finite speed of propagation of the heat transfer and eliminates the paradox
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of infinite speed of propagation for pure heat conduction associated with the Fourier law
(i.e., τ = 0). Here τ is a small relaxation parameter. If we use in (B.1) the Fourier law

(1.2) q = −K∇θ,

then we can derive the Kuznetsov equation

(1.3) utt − c2∆u− β∆ut =
∂

∂t

(
1

c2
B

2A
(ut)

2 + |∇u|2
)
,

which is a well-known model and widely used in nonlinear acoustics, see the derivation
of (1.3) in [17] and [10]. Hence equation (1.1a) can be seen as a “hyperbolic” version of
(1.3). Equation (1.3) is written in terms of the acoustic velocity potential v = −∇u. It
can be also expressed in terms of the acoustic pressure fluctuation p̃ as

1

c2
p̃tt −∆p̃− β

c2
∆p̃t = ∂tt

(
1

%0c4
B

2A
p̃2 +

%0
c2

(v · v)

)
(1.4)

such that the identity

%0vt = −∆p̃

holds. Assuming that the local nonlinear effects can be neglected, that is making the
replacement v · v = ( 1

%0c
p̃)2 on the right-hand side of (1.4), we arrive at the so-called

Westervelt equation:

1

c2
p̃tt −∆p̃− β

c2
∆p̃t = ∂tt

(
1

%0c4

(
1 +

B

2A

)
p̃2
)

(1.5)

or in terms of u through the relation %ut = p as

(1.6) utt − c2∆u− β∆ut =
∂

∂t

(
1

c2

(
1 +

B

2A

)
(ut)

2

)
.

Analogously to the above reduction of the Kuznetsov equation to the Westervelt equation,
we can reduce equation (1.1a) to

(1.7) τuttt + utt − c2∆u− β∆ut =
∂

∂t

(
1

c2

(
1 +

B

2A

)
(ut)

2

)
.

1.1. Previous work. The starting point of the nonlinear analysis lies in the results for
the linearization, often referred to as the Moore–Gibson–Thompson (MGT) equation:

(1.8) τuttt + αutt − c2∆u− β∆ut = 0.

Equation (1.8) has been extensively studied lately; see, for example [4, 5, 6, 23, 28, 29]
and the references therein. As we will see from the results of previous works, even at the
linear level, the mathematical analysis raises nontrivial issues.

In [14] (see also [15]), the authors considered the linear equation in bounded domains

(1.9) τuttt + αutt + c2Au+ βAut = 0,
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where A is a positive self-adjoint operator, and showed that by neglecting diffusivity of
the sound coefficient (β = 0) there arises a lack of existence of a semigroup associated
with the linear dynamics. On the other hand, they proved that when the diffusivity of
the sound is strictly positive (β > 0), the linear dynamics is described by a strongly
continuous semigroup, which is exponentially stable provided the dissipativity condition
γ := α − τc2/β > 0 is fulfilled, which is, for our equation (1.1a), equivalent to (since
without loss of generality, we are assuming the damping parameter α = 1)

(1.10) β − τc2 > 0.

This condition (1.10) will be assumed throughout the paper.
For γ = 0 the energy is conserved (the same type of results are obtained in [3] using

energy methods, or in [23] using the analysis of the spectrum of the operator). The
exponential decay rate results in [23] are completed in [29], where an explicit scalar product
when the operator is normal allows the authors to obtain the optimal exponential decay
rate of the solutions. Finally, in [9], the authors showed the chaotic behavior of the system
when γ < 0. Equation (1.9) with a viscoelastic damping of a memory type has been also
considered in [20] and [19], where exponential stability results have been obtained.

The dissipativity condition (1.10) can also be understood in looking at the zeros zj, j =

1, 2, 3, of the characteristic polynomial associated to our equation (1.1a) after having
applied the Fourier transform Fx→ξ to the linearized part:

(1.11) τz3 + z2 + β|ξ|2z + c2|ξ|2 = 0.

Computing the associated Hurwitz matrix (see [21, p. 459])

H3 :=

 1 τ 0

c2|ξ|2 β|ξ|2 1

0 0 c2|ξ|2

 ,

and the determinants dj of the minors Dj = ((H3)km)k,m=1,...,j, we have

d1 = 1, d2 = |ξ|2(β − τc2), d3 = c2|ξ|2d2.

Thus, Re(zj) < 0, j = 1, 2, 3, holds if and only if the dissipativity condition (1.10) holds.
Hence, the assumption (1.10) seems also a necessary condition for the stability of (1.8).
Equation (1.7) (which is called Jordan-Moore-Gibson-Thompson-Westervelt) has been

investigated in [15] and its linear form in [14]. The authors in [15] used the estimates of the
higher-level energies obtained for the linear model in [14] to establish global well-posedness
and decay rates of solutions to the initial and boundary value problem associated to
(1.7). Of course (1.7) is simpler compared to (1.1a), due to the absence of the gradient
nonlinearity ∇u∇ut in (1.7). Such a nonlinearity renders the mathematical analysis more
difficult.
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The MGT and JMGT equations have been studied recently from various points of view.
The study of the controllability properties of the MGT type equations can be found for
instance in [4, 22]. The MGT equation in RN with a power source nonlinearity of the
form |u|p has been considered in [7] where some blow up results have been shown for the
critical case τc2 = β. The MGT and JMGT equations with a memory term have been
also investigated recently. For the MGT with memory, the reader is refereed to [2, 8, 11]
and to [18, 25, 26] for the JMGT with memory. In particular in [11] (for bounded domain)
and in [2] (in the whole space RN), and due to the presence of the memory damping term,
the stability condition (1.10) has been pushed to the critical case τc2 = β.

The singular limit problem when τ → 0 has been rigorously justified in [16]. The
authors in [16] showed that the limit of (1.1a) as τ → 0 leads to the Kuznetsov equation
(1.3). We also refer to [15, 16] for the analysis of (1.7) in smoothly bounded domains.

In this paper, we consider the Jordan–Moore–Gibson–Thompson equation in its full
generality (i.e., (1.1a)) for the Cauchy problem x ∈ R3. Under the assumption 0 <

τc2 < β: first, by using the contraction mapping theorem in appropriately chosen spaces,
we show a local existence result in some appropriate functional spaces, second by using
some energy-type estimates we prove a global existence result for small initial data by
constructing an appropriate energy norm and show that this norm remains uniformly
bounded with respect to time, without using the linear decay which is a standard way
to proving small data existence for non-linear evolution equations, cf. [30]. If we want to
use the linear decay, then we need to control a complicated time-weighted energy norms,
which requires integrability in time to some norms of the solutions, which is not always
the case. In addition, a good understanding of the linear problem is necessary. Here our
method is based on the structure of the equation.

We rewrite the right-hand side of equation (1.1a) in the form

∂

∂t

(
1

c2
B

2A
(ut)

2 + |∇u|2
)

=
1

c2
B

A
ututt + 2∇u∇ut,

and introduce the new variables

v = ut and w = utt,

Without loss of generality, we assume from now on

c = 1.

Then equation (1.1a) can be rewritten as the following first order system

(1.12)


ut = v,

vt = w,

τwt = ∆u+ β∆v − w +
B

A
vw + 2∇u∇v,
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with the initial data

(1.13) u(t = 0) = u0, v(t = 0) = v0, w(t = 0) = w0.

Understanding the asymptotic behavior of the linearized problem is critical for proving
the decay rate of the nonlinear problem. The first result (for x ∈ R3) in this direction has
been presented in the recent paper [28], where the authors used the energy method in the
Fourier space to show that under the assumption β > τ the energy norm of the solution
‖V (t)‖L2 = ‖(τutt + ut,∇(τut + u),∇ut)(t)‖L2 decays in Rn with the rate (1 + t)−n/4.
They also proved that this decay rate is optimal, by using the eigenvalues expansion
method. Some other decay rates for ‖u(t)‖L2 were also presented in [28] by using the
explicit formula of the Fourier image of the solution.

1.2. Main results. In this section, we state the main results of this paper. The global
existence result is summarized in the following theorem, the proof of which is given in
Section 2 and constitutes the major contribution of this work.

Theorem 1.1. Assume that 0 < τ < β and let s > 5
2
. Assume that u0, v0, w0 ∈ Hs(R3).

Then there exists a small positive constant δ, such that if

E2s (0) = ‖(v0 + τw0)‖2Hs+1 + ‖∆v0‖2Hs + ‖∇v0‖2Hs

+ ‖∆(u0 + τv0)‖2Hs + ‖∇(u0 + τv0)‖2Hs + ‖w0‖2Hs ≤ δ,

then the local solution u to (1.1) given in Theorem 1.2 exists globally in time.

The necessary local existence theorem is proved in Section 3 and given by

Theorem 1.2. Assume that 0 < τ < β and let s > 5
2
. Let U0 = (u0, v0, w0)

T be such that

E2s (0) = ‖(v0 + τw0)‖2Hs+1 + ‖∆v0‖2Hs + ‖∇v0‖2Hs

+ ‖∆(u0 + τv0)‖2Hs + ‖∇(u0 + τv0)‖2Hs + ‖w0‖2Hs ≤ δ̃0(1.14)

for some δ̃0 > 0. Then, there exists a small time T = T (Es(0)) > 0 such that problem
(1.1) has a unique solution u on [0, T )× R3 satisfying

E2s (T ) +D2
s(T ) ≤ Cδ̃0 ,

where E2s (T ) and D2
s(T ) are given in (2.3), determining the regularity of u, and Cδ̃0 is a

positive constant depending on δ̃0.

In the next theorem, we state the decay rate of the solution. Its proof is given in
Section 4.

Theorem 1.3. Assume that 0 < τ < β and s > 5/2. Let u be the global solution of
(1.1). Let v0 = ut(t = 0), v1 = utt(t = 0) and v2 = uttt(t = 0) satisfying v0, v1, v2 ∈
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L1(R3) ∩ Hs(R3) and (v1, v2) ∈ L1,1(R3) with
∫
R3 vi(x)dx = 0, i = 1, 2. Assume that

‖V0‖Hs∩L1 is small enough. Then, the following decay estimates hold:

‖∇jV(t)‖L2 + ‖∇jut(t)‖L2 ≤ C
(
‖V0‖L1 + ‖∇jV0‖L2

)
(1 + t)−3/4−j/2,

for all 0 ≤ j ≤ s, where C is a constant independent of t and the initial data.

The remaining part of this paper is organized as follows: In Section 2, we prove the
global existence of solutions for small data. We employ the energy method together with
some commutator estimates to prove a global existence result for small initial data in
appropriate Sobolev spaces. We should mention that the method we used to prove the
global existence does not depend on decay estimates for the linearized equation. As a
result, the global existence is proved under the same regularity assumption required for
the local existence which is proved in Section 3, where we apply the contraction mapping
theorem to show the local well-posedness of (1.1). Finally, Section 4 is devoted to the
decay estimate for the norm ‖(ut + τutt,∇(u+ τut),∇ut)‖L2 . In fact, based on the decay
estimates obtained in [28], for the linearized problem, we prove that the same decay result
holds for the nonlinear problem.

In Appendix A we collect some useful lemmas as well as results on the decay for the
linearized problem that we will use in the proof of the main results. In Appendix B we
present a derivation of equation (1.1a).

We introduce some notations that will be used throughout the paper. Let ‖.‖Lq and
‖.‖H` stand for the Lq(R3)-norm (2 ≤ q ≤ ∞) resp. the H`(R3)-norm. We define the
weighted function space, L1,1(R3) as follows: u ∈ L1,1(R3) iffu ∈ L1 (R3) and

‖u‖L1,1 :=

∫
R3

(1 + |x|)|u(x)|dx <∞.

The symbol [A,B] = AB − BA denotes the commutator. The constant C denotes a
generic positive constant that appears in various inequalities and may change its value in
different occurrences.

2. Global existence– Proof of Theorem 1.1

In this section we prove the global existence for the nonlinear problem (1.1) resp. its
first-order version (1.12). The proof of Theorem 1.1 will be given through several lemmas.
Our goal is to control the solution of (1.12) uniformly in a suitable norm as t → ∞. In
order to state our main result, we introduce the energy norm, Ek(t), and the corresponding
dissipation norm, Dk(t), as follows:

E2k (t) = sup
0≤σ≤t

(∥∥∇k(v + τw)(σ)
∥∥2
H1 +

∥∥∆∇kv(σ)
∥∥2
L2 +

∥∥∇k+1v(σ)
∥∥2
L2

+
∥∥∆∇k(u+ τv)(σ)

∥∥2
L2 +

∥∥∇k+1(u+ τv)(σ)
∥∥2
L2 + ‖∇kw(σ)‖2L2

)
,(2.1)
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and

D2
k(t) =

∫ t

0

(∥∥∇k+1v(σ)
∥∥2
L2 +

∥∥∆∇kv(σ)
∥∥2
L2 + ‖∇kw(σ)‖2L2

+
∥∥∆∇k (u+ τv) (σ)

∥∥2
L2 +

∥∥∇k+1(v + τw)(σ)
∥∥2
L2

)
dσ.(2.2)

For some positive integer s ≥ 1 that will be fixed later on, we define

E2s (t) =
s∑

k=0

E2k (t) and D2
s(t) =

s∑
k=0

D2
k(t).(2.3)

We also define

Ys(t) := E2s (t) +D2
s(t).

The main goal is to prove by a continuity argument that for s large enough, Ys(t) is
uniformly bounded for all time if the initial energy E2s (0) = Ys(0) is sufficiently small.
Due to the presence of the term −β∆tu in (1.1a) and the special nonlinearity, the global
existence is proved without using the decay of the linearized problem.

Proposition 2.1. Assume that 0 < τ < β and let s > 5
2
, then the following estimate

holds for t in an interval [0, T ] of local existence:

Ys(t) ≤ CYs(0) + CY 3/2
s (t),(2.4)

where C is a positive constant that does not depend on t, T .

The main step towards the proof of (2.4) is to show the estimate (2.5) below. With
this estimate in hand, the proof of Proposition 2.1 is a direct consequence of Proposition
2.2. We omit the details.

Proof of Theorem 1.1. From (2.4), we conclude in a standard way that there is α > 0

small enough such that if Ys(0) = Es(0) ≤ α, then there is K > 0, independent of T , such
that

Ys(t) ≤ K,

for all t ∈ [0, T ]. This uniform estimate allows to continue the local solution to T = ∞
as usual.

Now, it remains to prove Proposition 2.2. �

Proposition 2.2. Assume that 0 < τ < β and let s > 5
2
. Then, the following estimate

holds:

E2s (t) +D2
s(t) ≤ CE2s (0) + CEs(t)D2

s(t).(2.5)

The proof of Proposition 2.2 will be given in several steps and constitutes the majority
of Section 2. The main idea is to use energy estimates. The most difficult part in the
proof is to control “in a nice way” the nonlinear terms. This will be done by a repeated
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use of some functional inequalities such as: Gagliardo–Nirenberg interpolation inequality
and Sobolev embedding theorems.

2.1. First order energy estimates.

Lemma 2.3. The energy functional associated to system (1.12) is

E1(t) :=
1

2

∫
R3

(
|v + τw|2 + τ(β − τ)|∇v|2 + |∇(u+ τv)|2

)
dx

and satisfies, for all t ≥ 0, the identity

(2.6)
d

dt
E1(t) + (β − τ) ‖∇v‖2L2 = R1,

where

R1 :=

∫
R3

(
B

A
vw + 2∇u∇v

)
(v + τw) dx.

Proof. Summing up the second and the third equation in (1.12), we get

(2.7) (v + τw)t = ∆u+ β∆v +
B

A
vw + 2∇u∇v.

Multiplying (2.7) by v + τw and integrating by parts over R3, we obtain

1

2

d

dt

∫
R3

|v + τw|2dx+ β

∫
R3

|∇v|2dx

= −
∫
R3

∇u (∇v + τ∇w) dx− βτ
∫
R3

∇v∇wdx

+

∫
R3

(
B

A
vw + 2∇u∇v

)
(v + τw) dx.(2.8)

We have

(2.9)
1

2
τ(β − τ)

d

dt

∫
R3

|∇v|2dx = τ(β − τ)

∫
R3

(∇w∇v)dx.

and
1

2

d

dt

∫
R3

|∇(u+ τv)|2dx

= τ

∫
R3

∇w∇udx+ τ 2
∫
R3

∇w∇vdx+

∫
R3

∇v∇udx+ τ

∫
R3

|∇v|2dx.(2.10)

Summing up (2.8), (2.9) and (2.10), then (2.6) holds. This finishes the proof of Lemma
2.3. �

Next, we define the energy of second order

E2(t) :=
1

2

∫
R3

(
|∇(v + τw)|2 + τ(β − τ)|∆v|2 + |∆(u+ τv)|2

)
dx.

The following lemma is proved analogously.
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Lemma 2.4. The energy functional E2(t) satisfies, for all t ≥ 0, the identity

(2.11)
d

dt
E2(t) + (β − τ) ‖∆v‖2L2 = R2,

where

R2 := −
∫
R3

(
B

A
vw + 2∇u∇v

)
∆(v + τw)dx.

Now, we define
E(t) := E1(t) + E2(t).

Then, we have from (2.6) and (2.11)
d

dt
E(t) + (β − τ)(‖∇v‖2L2 + ‖∆v‖2L2) = R1 + R2.(2.12)

Now, multiplying the third equation in (1.12) by w and integrating over R3, we get
1

2

d

dt

∫
R3

τ |w|2 dx+

∫
R3

|w|2dx =

∫
R3

(∆u+ β∆v)wdx

+

∫
R3

(B
A
vw + 2∇u∇v

)
wdx

≤ C(‖∆u‖L2 + ‖∆v‖L2)‖w‖L2 + |R̃1|

≤ C(‖∆(u+ τv)L2 + ‖∆v‖L2)‖w‖L2 + |R̃1|

with

R̃1 :=

∫
R3

(B
A
vw + 2∇u∇v

)
wdx.

Applying Young’s inequality, we obtain
1

2

d

dt

∫
R3

τ |w|2 dx+
1

2

∫
R3

|w|2dx ≤ C(‖∆(u+ τv)2L2 + ‖∆v‖2L2) + |R̃1|.(2.13)

Collecting (2.12) + 2ε0(2.13), we get
d

dt
(E(t) + ε0τ‖w‖L2) + (β − τ)(‖∇v‖2L2 + ‖∆v‖2L2) + ε0‖w‖2L2

≤ 2Cε0(‖∆(u+ τv)2L2 + ‖∆v‖2L2) + |R1|+ |R2|+ 2ε0|R̃1|.(2.14)

Now, we define the functional F1(t) as

F1(t) :=

∫
R3

∇(u+ τv)∇(v + τw)dx.

Then, we have

Lemma 2.5. For any ε0 > 0, we have
d

dt
F1(t) + (1− ε0)

∫
R3

|∆ (u+ τv) |2dx

≤
∫
R3

|∇(v + τw)|2dx+ C(ε0)

∫
R3

|∆v|2dx+ |R̃2|(2.15)
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with

R̃2 = −
∫
R3

(
B

A
vw + 2∇u∇v

)
∆ (u+ τv) dx.

Proof. Multiplying equation (2.7) by −∆ (u+ τv) and (ut + τvt) by −∆ (v + τw) we get,
respectively,

−
∫
R3

(v + τw)t∆(u+ τv) = −
∫
R3

(∆u+ β∆v)(∆u+ τ∆v)dx

−
∫
R3

(
B

A
vw + 2∇u∇v

)
∆ (u+ τv) dx

= −
∫
R3

(∆u+ β∆v + τ∆v − τ∆v)(∆u+ τ∆v)dx

−
∫
R3

(
B

A
vw + 2∇u∇v

)
∆ (u+ τv) dx

and

−
∫
R3

(u+ τv)t∆(v + τw)dx = −
∫
R3

(τw + v)∆(v + τw)dx.

Integrating by parts and summing up the above two equations, we obtain

d

dt
F1(t) +

∫
R3

|∆(u+ τv)|2dx−
∫
R3

|∇(v + τw)|2dx

= (τ − β)

∫
R3

(∆v(∆u+ τ∆v))dx−
∫
R3

(
B

A
vw + 2∇u∇v

)
∆ (u+ τv) dx.

Applying Young’s inequality for any ε0 > 0, we obtain (2.15). This finishes the proof of
Lemma 2.5. �

Next, we define the functional F2(t) as

F2(t) := −τ
∫
R3

∇v∇(v + τw)dx.

Next, we define the functional F2(t) as

F2(t) := −τ
∫
R3

∇v∇(v + τw)dx.

Lemma 2.6. For any ε1, ε2 > 0, we have

d

dt
F2(t) + (1− ε1)

∫
R3

|∇(v + τw)|2dx

≤ C(ε1, ε2)

∫
R3

(|∇v|2 + |∆v|2)dx+ ε2

∫
R3

|∆(u+ τv)|2dx+ |R3|,(2.16)

where

R3 = τ

∫
R3

(
B

A
vw + 2∇u∇v

)
∆vdx.
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Proof. Multiplying the second equation in (1.12) by τ∆(v + τw) and (2.7) by τ∆v, and
integrating over R3 we obtain, respectively,

τ

∫
R3

vt∆(v + τw)dx = τ

∫
R3

w∆(v + τw)dx

and

τ

∫
R3

(v + τw)t∆vdx

= τ

∫
R3

(∆u+ β∆v)∆vdx+ τ

∫
R3

(
B

A
vw + 2∇u∇v

)
∆vdx

=

∫
R3

(
τ∆u+ τβ∆v + τ 2∆v − τ 2∆v + (v + τw)− (v + τw)

)
∆vdx

+τ

∫
R3

(
B

A
vw + 2∇u∇v

)
∆vdx.

Using integration by parts, we obtain

d

dt
F2(t) +

∫
R3

|∇(v + τw)|2dx− τ(β − τ)

∫
R3

|∆v|2dx

= τ

∫
R3

∆(u+ τv)∆vdx+

∫
R3

∇(v + τw)∇vdx

+τ

∫
R3

(
B

A
vw + 2∇u∇v

)
∆vdx.

Thus we obtain the estimate (2.16) for any ε1, ε2 > 0. �

Now, let

H(t) := F1(t) + γ1F2(t),

where γ1 > 0 will be determined later. Hence, we have from (2.15) and (2.16) that

d

dt
H(t) + (1− ε0 − γ1ε2) ‖∆ (u+ τv)‖2L2 + (γ1(1− ε1)− 1) ‖∇(v + τw)‖2L2

≤ γ1C(ε1, ε2) ‖∇v‖2L2 + (C(ε0) + γ1C(ε1, ε2)) ‖∆v‖2L2 + |R̃2|+ γ1|R3|.

In the above estimate, we can fix our constants in such a way that the coefficients in front
of the norm terms are positive. This can be achieved as follows: we pick ε0 and ε1 small
enough such that ε0 < 1 and ε1 < 1. After that, we take γ1 large enough such that

γ1 >
1

1− ε1
.

Once γ1 and ε0 are fixed, we select ε2 small enough such that

ε2 <
1− ε0
γ1

.
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Consequently, we deduce that for all t ≥ 0,

d

dt
H(t) +

{
‖∆ (u+ τv)‖2L2 + ‖∇(v + τw)‖2L2

}
≤ C ‖∇v‖2L2 + C ‖∆v‖2L2 + C|R̃2|+ C|R3|.(2.17)

where C here is a generic positive constant that depends on ε0, ε1 and γ1.
We define the Lyapunov functional L(t) as

(2.18) L(t) := γ0(E(t) + ε0τ‖w(t)‖2L2) +H(t),

where γ0 is a large positive constant.
Now, taking the derivative of (2.18) and using (2.14) and (2.17), we find

d

dt
L(t) + (γ0(β − τ)− 2C) ‖∇v‖2L2 + (γ0(β − τ)− 2C − 2Cγ0ε0) ‖∆v‖2L2

+ε0γ0‖w‖2L2

+(1− 2Cγ0ε0) ‖∆ (u+ τv)‖2L2 + ‖∇(v + τw)‖2L2

≤ C(|R1|+ |R̃1|+ |R2|+ |R̃2|+ |R3|).(2.19)

Next, we take γ0 large enough such that γ0 > 4C
β−τ and then we fix ε0 small enough such

that ε0 ≤ 1
2Cγ0

, so we get from (2.19)

d

dt
L(t) + ‖∇v‖2L2 + ‖∆v‖2L2 + ‖w‖2L2 + ‖∆ (u+ τv)‖2L2 + ‖∇(v + τw)‖2L2

≤ C(|R1|+ |R̃1|+ |R2|+ |R̃2|+ |R3|).(2.20)

In the following lemma, we show the equivalence between the functional L(t) and
E(t) + ‖w‖2L2 .

Lemma 2.7. There exist two positive constants c1 and c2 such that for all t ≥ 0

(2.21) c1(E(t) + ‖w‖2L2) ≤ L(t) ≤ c2(E(t) + ‖w‖2L2).

Proof. We have by using Hölder’s inequality

|F1(t) + γ1F2(t)| ≤ C (‖∇v‖L2 + ‖∇ (u+ τv)‖L2) ‖∇(v + τw)‖L2

≤ CE(t) ≤ C(E(t) + ‖w‖2L2).

This gives (2.21) for γ0 large enough. �

Now, integrating (2.20) with respect to t and exploiting (2.21), we obtain

E20 (t) +D2
0(t) ≤ CE20 (0) + C

∫ t

0

(
|R1(σ)|+ |R̃1(σ)|+ |R2(σ)|

+ |R̃2(σ)|+ |R3(σ)|
)
dσ,(2.22)
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where

E20 (t) ≡ sup
0≤σ≤t

(E(σ) + ‖w(σ)‖2L2)

and

D2
0(t) =

∫ t

0

(
‖∇v‖2L2 + ‖∆v‖2L2 + ‖w‖2L2 + ‖∆ (u+ τv)‖2L2 + ‖∇(v + τw)‖2L2

)
ds.

Our goal now is to estimate |R1|, |R2|, . . . in the right-hand side of (2.22). First, we
have

|R1| =

∣∣∣∣∫
R3

(
B

A
vw + 2∇u∇v

)
(v + τw) dx

∣∣∣∣
≤ C

∣∣∣ ∫
R3

vw(v + τw)dx
∣∣∣+ C

∣∣∣ ∫
R3

∇u∇v (v + τw) dx
∣∣∣

≡ I1 + I2.

First, we estimate I1 as follows:

I1 = C
∣∣∣ ∫

R3

vw(v + τw)dx
∣∣∣

≤ C‖w‖L2‖v‖2L4 + C‖v‖L2‖w‖2L4 .

Using the Ladyzhenskaya interpolation inequality in 3D (which is a particular case of
(A.3))

(2.23) ‖f‖L4 ≤ c‖f‖1/4L2 ‖∇f‖3/4L2

we get

‖w‖L2‖v‖2L4 ≤ C‖w‖L2‖v‖1/2L2 ‖∇v‖3/2L2

= C‖v‖1/2L2 ‖∇v‖1/2L2 ‖∇v‖L2‖w‖L2

≤ C(‖v‖L2 + ‖∇v‖L2)‖∇v‖L2‖w‖L2(2.24)

and

‖v‖L2‖w‖2L4 ≤ C‖v‖L2‖w‖1/2L2 ‖∇w‖3/2L2 .(2.25)

We have ∫ t

0

‖v(σ)‖L2‖w(σ)‖1/2L2 ‖∇w(σ)‖3/2L2 dσ

≤ C sup
0≤σ≤t

‖v(σ)‖L2

(∫ t

0

‖w(σ)‖2L2dσ
)1/4(∫ t

0

‖∇w(σ)‖2L2dσ
)3/4

≤ CE0(t)D2
0(t).(2.26)
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Similarly, we have for the term on the right-hand side of (2.24)∫ t

0

(‖v(σ)‖L2 + ‖∇v(σ)‖L2)‖∇v(σ)‖L2‖w(σ)‖L2dσ ≤ CE0(t)D2
0(t).(2.27)

Consequently, collecting (2.26) and (2.27), we obtain, using

‖∇w(t)‖2L2 ≤ ‖∇v(t)‖2L2 + ‖∇(v + τw)(t)‖2L2 ,

that ∫ t

0

I1(σ)dσ ≤ CE0(t)D2
0(t).(2.28)

We can estimate I2 as follows:

I2 =
∣∣∣ ∫

R3

∇u∇v (v + τw) dx
∣∣∣ ≤ ∣∣∣ ∫

R3

v∇u∇vdx
∣∣∣+
∣∣∣ ∫

R3

τw∇u∇vdx
∣∣∣

= J1 + J2.(2.29)

It is clear that

J2 ≤ C‖∇u‖L∞‖∇v‖L2‖w‖L2 .

Then, Hölder’s inequality implies∫ t

0

J2(σ)dσ ≤ C sup
0≤σ≤t

‖∇u(σ)‖L∞D2
0(t).

The difficulty is to estimate the term J1. This is done in the following lemma.

Lemma 2.8. We have the estimate∫ t

0

J1(σ)dσ ≤ CE0(t)D2
0(t).

Proof. First, we have, by Hölder’s inequality

J1 ≤ C‖v‖L6‖∇u‖L3‖∇v‖L2 .(2.30)

Now, applying the interpolation inequality, which holds for n = 3, (see (A.3))

‖f‖L3 ≤ C‖f‖1/2L2 ‖∇f‖1/2L2(2.31)

we obtain

‖∇u‖L3 ≤ C‖∇u‖1/2L2 ‖∇2u‖1/2L2 .(2.32)

Consequently, using the above estimates, (2.30) becomes

J1 ≤ C‖∇u‖1/2L2 ‖∇2u‖1/2L2 ‖∇v‖2L2

≤ C(‖∇u‖L2 + ‖∇2u‖L2)‖∇v‖2L2 .(2.33)

Now, using the fact that

‖∇ku‖L2 ≤ C(‖∇k(u+ τv)‖L2 + ‖∇kv‖L2), k ≥ 1,
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together with (2.33), we obtain∫ t

0

J1(σ)dσ ≤ sup
0≤σ≤t

(‖∇u(σ)‖L2 + ‖∇2u(σ)‖L2)

∫ t

0

‖∇v(σ)‖2L2dσ

≤ CE0(t)D2
0(t),

where we have used the fact that ‖∇2u‖L2 = ‖∆u‖L2 This completes the proof of Lemma
2.8. �

Consequently, we deduce from above that∫ t

0

|R1(σ)|dσ ≤ CE0(t)D2
0(t).(2.34)

Similarly, we have as in the estimate of R1,∫ t

0

|R̃1(σ)|dσ ≤ C sup
0≤σ≤t

‖∇u(σ)‖L∞D2
0(t)≤CE0(t)D2

0(t).(2.35)

Using integration by parts, we have

R2 = −
∫
R3

(
B

A
vw + 2∇u∇v

)
∆(v + τw)dx

=

∫
R3

∇
(
B

τA
v (v + τw − v) + 2∇ (u+ τv − τv)∇v

)
∇(v + τw)dx

=

∫
R3

(
B

τA
v∇ (v + τw) +

B

τA
∇v (v + τw)−∇ |v|2

)
∇(v + τw)dx,

+

∫
R3

(2H(u+ τv)∇v + 2H(v)∇ (u+ τv)− 4τH(v)∇v)∇(v + τw)dx,

whereH(f) = (∂xi∂xjf),1≤i,j≤3 is the Hessian matrix of f . Using the fact that ‖H (f)‖L2 =

‖∆f‖L2 , together with Hölder’s inequality, we get

|R2| ≤ C (‖v‖L∞ (‖∇ (v + τw)‖L2 + ‖∇v‖L2) + ‖v + τw‖L∞ ‖∇v‖L2) ‖∇(v + τw)‖L2

+C (‖∇v‖L∞ (‖∆(u+ τv)‖L2 + ‖∆v‖L2) + ‖∇(u+ τv)‖L∞ ‖∆v‖L2) ‖∇(v + τw)‖L2

This implies that∫ t

0

|R2(σ)|dσ ≤ sup
0≤σ≤t

(
‖v(σ)‖L∞ + ‖∇v(σ)‖L∞

+ ‖(v + τw)(σ)‖L∞ + ‖∇(u+ τv)(σ)‖L∞
)
D2

0(t).(2.36)

For R̃2, we have the estimate

|R̃2| ≤ C‖v‖L∞‖w‖L2‖∆ (u+ τv) ‖L2 + C‖∇u‖L∞‖∇v‖L2‖∆ (u+ τv) ‖L2 .

This implies ∫ t

0

|R̃2(σ)|dσ ≤ C sup
0≤σ≤t

(
‖v(σ)‖L∞ + ‖∇u(σ)‖L∞

)
D2

0(t).(2.37)
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For R3, we have, as in R̃2,∫ t

0

|R3(σ)|dσ ≤ C sup
0≤σ≤t

(
‖v(σ)‖L∞ + ‖∇u(σ)‖L∞

)
D2

0(t).(2.38)

Plugging all the estimates (2.34)–(2.38) into (2.22), we obtain

E20 (t) +D2
0(t) ≤ E20 (0) + CE0(t)D2

0(t) + CΛ0(t)D2
0(t),(2.39)

where

Λ0(t) := sup
0≤s≤t

(
‖v(s)‖L∞ + ‖(v + τw)(s)‖L∞

+ ‖∇(u+ τv)(s)‖L∞ + ‖∇u(s)‖L∞ + ‖∇v(s)‖L∞
)
.

2.2. Higher-order energy estimates. Applying the operator ∇k, k ≥ 1 to (1.12), we
get for U := ∇ku, V := ∇kv and W := ∇kw

(2.40)
∂tU = V,

∂tV = W,

τ∂tW = ∆U + β∆V −W +
B

A
[∇k, v]w +

B

A
vW + 2[∇k,∇u]∇v + 2∇u∇V,

where [A,B] = AB −BA.
We define the first energy of order k as in the case k = 0 by

E
(k)
1 (t) :=

1

2

∫
R3

(
|∇kv + τ∇kw|2 + τ(β − τ)|∇k+1v|2 + |∇k+1u+ τ∇k+1v|2

)
dx

=
1

2

∫
R3

(
|V + τW |2 + τ(β − τ)|∇V |2 + |∇(U + τV )|2

)
dx.

Hence, we have the following estimate.

Lemma 2.9. For all t ≥ 0, it holds

(2.41)
d

dt
E

(k)
1 (t) + (β − τ) ‖∇V ‖2L2 =

∫
R3

R
(k)
1 (t) (V + τW ) dx,

where

(2.42) R
(k)
1 (t) =

B

A
[∇k, v]w +

B

A
vW + 2[∇k,∇u]∇v + 2∇u∇V.

We omit the proof of Lemma 2.9 since it can be done using the same steps as in
Lemma 2.3.

As in the case k = 0, we define the second energy of order k as follows:

E
(k)
2 (t) :=

1

2

∫
R3

(
|∇(V + τW )|2 + τ(β − τ)|∆V |2 + |∆(U + τV )|2

)
dx.

Then, we have the following lemma.
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Lemma 2.10. The energy functional E2(t) satisfies, for all t ≥ 0, the identity

(2.43)
d

dt
E

(k)
2 (t) + (β − τ) ‖∆V ‖2L2 = −

∫
R3

R
(k)
1 ∆(V + τW )dx.

The proof of the above lemma is similar to that of Lemma 2.4. We omit the details.
Now, adding (2.41) to (2.43), we get for

E(k)(t) := E
(k)
1 (t) + E

(k)
2 (t)

d

dt
E(k)(t) + (β − τ)(‖∇V ‖2L2 + ‖∆V ‖2L2)

=

∫
R3

R
(k)
1 (t) (V + τW ) dx+

∫
R3

∇R(k)
1 ∇(V + τW )dx.(2.44)

Now, multiplying the third equation in (2.40) by W and integrating over R3, we get

1

2

d

dt

∫
R3

τ |W |2 dx+

∫
R3

|W |2dx

=

∫
R3

(∆U + β∆V )Wdx+

∫
R3

R
(k)
1 Wdx

≤ C(‖∆U‖L2 + ‖∆V ‖L2)‖W‖L2 +

∫
R3

|R(k)
1 ||W |dx

≤ C(‖∆(U + τV )L2 + ‖∆V ‖L2)‖W‖L2 +

∫
R3

|R(k)
1 ||W |dx.(2.45)

We define now the functional F (k)
1 (t) as

F
(k)
1 (t) :=

∫
R3

∇(U + τV )∇(V + τW )dx.

Then, we have the following estimate, the proof of which can be done following the same
strategy as in Lemma 2.5.

Lemma 2.11. For any ε′0 > 0, we have

d

dt
F

(k)
1 (t) + (1− ε′0)

∫
R3

|∆ (U + τV ) |2dx

≤
∫
R3

|∇(V + τW )|2dx+ C(ε′0)

∫
R3

|∆V |2dx

+

∫
R3

|R(k)
1 ||∆ (U + τV ) |dx(2.46)

As in the case k = 0, we define the functional F (k)
2 (t) as

F
(k)
2 (t) := −τ

∫
R3

∇V∇(V + τW )dx.

Hence, we have the following estimate.
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Lemma 2.12. For any ε′1, ε′2 > 0, we have

d

dt
F

(k)
2 (t) + (1− ε′1)

∫
R3

|∇(V + τW )|2dx

≤ C(ε′1, ε
′
2)

∫
R3

(|∇V |2 + |∆V |2)dx

+ε′2

∫
R3

|∆(U + τV )|2dx+ τ

∫
R3

|R(k)
1 ||∆V |dx.(2.47)

We can prove Lemma 2.12 following the same steps as in the proof of Lemma 2.6, we
omit the details.

As in the case k = 0, if we define the functional

H(k)(t) := F
(k)
1 (t) + γ′1F

(k)
2 (t),

and we proceed exactly as in the case k = 0 and fixing γ′1 as we did for γ1 to get the
following estimate, which is similar to (2.17),

d

dt
H(k)(t) + ‖∆ (U + τV )‖2L2 + ‖∇(V + τW )‖2L2

≤ C

((
‖∇V ‖2L2 + ‖∆V ‖2L2

)
+

∫
R3

|∇R(k)
1 ||∇ (U + τV ) |dx+

∫
R3

|∇R(k)
1 ||∇V |dx

)
.(2.48)

Now, we define the Lyapunov functional L(k)(t) as

L(k)(t) := γ′0(E
(k)(t) + τε′0‖W‖2L2) +H(k)(t),

and selecting γ′0 large enough and ε′0 small enough, we obtain as in the case k = 0 (see
inequality (2.20))

d

dt
L(k)(t) + ‖∆ (U + τV )‖2L2 + ‖∇(V + τW )‖2L2 + ‖∇V ‖2L2 + ‖∆V ‖2L2 + ‖W‖2L2

≤ C

∫
R3

|R(k)
1 (t)|| (V + τW ) |dx+ C

∫
R3

|∇R(k)
1 ||∇(V + τW )|dx

+C

∫
R3

|R(k)
1 ||∆ (U + τV ) |dx+ C

∫
R3

|∇R(k)
1 ||∇V |dx+

∫
R3

|R(k)
1 ||W |dx

≡ I
(k)
1 + I

(k)
2 + I

(k)
3 + I

(k)
4 + I

(k)
5 .(2.49)

Now, integrating (2.49) with respect to t and using the fact that

C1(E
(k) + ‖W‖2L2)(t) ≤ L(k)(t) ≤ C2(E

(k)(t) + ‖W‖2L2)

for some constants C1 and C2, cf. Lemma 2.7, we obtain

E2k (t) +D2
k(t) ≤ E2k (0) +

5∑
i=1

∫ t

0

I
(k)
i (σ)dσ.(2.50)
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Our goal now is to estimate the terms
∫ t
0
I
(k)
i (σ)dσ, i = 1, . . . , 5 on the right-hand side

of (2.50). First, we estimate I(k)2 and I(k)4 . We have

I
(k)
2 + I

(k)
4 ≤ ‖∇R(k)

1 ‖L2

(
‖∇ (V + τW ) ‖L2 + ‖∇V ‖L2

)
.(2.51)

In order to estimate the term ‖∇R(k)
1 ‖L2 , we have the following lemma.

Lemma 2.13. For k ≥ 1, it holds

(2.52) ‖∇R(k)
1 ‖L2 ≤ CΛ1 (‖∇V ‖L2 + ‖∇W‖L2 + ‖∆V ‖L2 + ‖∆ (U + τV ) ‖L2)

where

Λ1 = ‖v‖W 1,∞ + ‖w‖L∞ + ‖∇u‖L∞ .

Proof. We have

∇R(k)
1 = ∇k+1

(
B

A
vw + 2∇u∇v

)
.

Thus, applying (A.1), we get

‖∇R(k)
1 ‖L2 ≤ C

(
‖w‖L∞‖∇k+1v‖L2 + ‖v‖L∞‖∇k+1w‖L2

)
+C

(
‖∇u‖L∞‖∇k+2v‖L2 + ‖∇v‖L∞‖∇k+2u‖L2

)
.(2.53)

Now, we estimate

‖∇u‖L∞‖∇k+2v‖L2 + ‖∇v‖L∞‖∇k+2u‖L2

≤ C
(
‖∇u‖L∞‖∆∇kv‖L2 + ‖∇v‖L∞‖∆∇ku‖L2

)
≤ C‖∇u‖L∞‖∆∇kv‖L2 + C‖∇v‖L∞

(
‖∆∇k (u+ τv) ‖L2 + ‖∆∇kv‖L2

)
.

Inserting the above estimates into (2.53), we get (2.52). This completes the proof of
Lemma 2.13 �

Consequently, (2.51) together with (2.52) imply that∫ t

0

(I
(k)
2 (σ) + I

(k)
4 (σ))dσ ≤ C sup

0≤σ≤t
Λ1(σ)D2

k(t).(2.54)

The next step is to provide nice estimates for the terms I(k)1 and I(k)3 . The main difficulty
in controlling these terms is that the dissipation term D2

k(t) does not contain terms like
‖ (V + τW ) ‖L2 and ‖∆ (U + τV ) ‖L2 . First, we have the following lemma.

Lemma 2.14. Assume n = 3. Then, we have the estimate∫ t

0

I
(k)
1 (σ)dσ ≤ C

(
sup
0≤σ≤t

‖∇u(σ)‖L∞ + E0(t) + Ek(t)
)
(D2

0(t) +D2
k(t)).(2.55)
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Proof. First, we have

I
(k)
1 =

∫
R3

|R(k)
1 (t)|| (V + τW ) |dx

≤ C

∫
R3

|[∇k, v]w|| (V + τW ) |dx+ C

∫
R3

|vW || (V + τW ) |dx

+C

∫
R3

|[∇k,∇u]∇v|| (V + τW ) |dx+ C

∫
R3

|∇u∇V || (V + τW ) |dx

≡ T1 + T2 + T3 + T4.(2.56)

Now, we estimate T4 as in (2.29). Indeed, we write

T4 ≤
∣∣∣ ∫

R3

V∇u∇V dx
∣∣∣+
∣∣∣ ∫

R3

τ∇u∇VWdx
∣∣∣

≡ J1 + J2.(2.57)

We estimate J1 and J2 as we did for J1, J2 in the case k = 0, it holds (see Lemma 2.8)∫ t

0

J1(σ)dσ ≤ CE0(t)D2
k(t), .(2.58)

and ∫ t

0

J2(σ)dσ ≤ C sup
0≤σ≤t

‖∇u(σ)‖L∞D2
k(t).(2.59)

Consequently, we deduce from (2.58) and (2.59) that∫ t

0

T4(σ)dσ ≤ C
(

sup
0≤σ≤t

‖∇u(σ)‖L∞ + E0(t)
)
D2
k(t).(2.60)

The next step is to estimate T2. We have

T2 =

∫
R3

|vW || (V + τW ) |dx

≤
∫
R3

|vWV |dx+ τ

∫
R3

|vW 2|dx

≡ J3 + J4.(2.61)

For J4, we have (see (2.25)) As for k = 0 we obtain∫ t

0

J4(σ)dσ ≤ CE0(t)D2
k(t).(2.62)

and ∫ t

0

J3(σ)dσ ≤ C sup
0≤σ≤t

(‖v(σ)‖L2 + ‖∇v(σ)‖L2)

∫ t

0

‖∇V (σ)‖L2‖W (σ)‖L2dσ

≤ CE0(t)D2
k(t).(2.63)

Consequently, from (2.62) and (2.63), we conclude∫ t

0

T2(σ)dσ ≤ CE0(t)D2
k(t).(2.64)
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Now, to estimate T1, we apply the inequality:

(2.65) T1 =

∫
R3

|[∇k, v]w|| (V + τW ) |dx ≤
∥∥[∇k, v]w

∥∥
L6/5 ‖(V + τW )‖L6 .

Applying, the commutator estimate (A.2), we have

(2.66)
∥∥[∇k, v]w

∥∥
L6/5 ≤ C(‖∇v‖L2‖∇k−1w‖L3 + ‖w‖L2‖∇kv‖L3)

To estimate the term ‖∇k−1w‖L3 , we apply (A.3) to find

(2.67) ‖∇k−1w‖L3 ≤ C‖∇kw‖
2k−1
2k

L2 ‖w‖
1
2k

L2 .

Similarly, we have

‖∇kv‖L3 ≤ C‖∇k+1v‖
2k+1
2(k+1)

L2 ‖v‖
1

2(k+1)

L2 .(2.68)

Plugging (2.67) and (2.68) into (2.66), we obtain∥∥[∇k, v]w
∥∥
L6/5 ≤ C‖∇v‖L2‖∇kw‖

2k−1
2k

L2 ‖w‖
1
2k

L2 + C‖w‖L2‖∇k+1v‖
2k+1
2(k+1)

L2 ‖v‖
1

2(k+1)

L2

= C‖∇v‖
2k−1
2k

L2 ‖w‖
1
2k

L2‖∇v‖
1
2k

L2‖∇kw‖
2k−1
2k

L2

+C‖w‖
2k+1
2(k+1)

L2 ‖v‖
1

2(k+1)

L2 ‖∇k+1v‖
2k+1
2(k+1)

L2 ‖w‖
1

2(k+1)

L2 .(2.69)

Plugging (2.69) into (2.65), making use of Sobolev embedding theorem and applying
Young’s inequality, we get∫ t

0

T1(σ)dσ ≤ C sup
0≤σ≤t

(‖∇v(σ)‖L2 + ‖w(σ)‖L2)

×
∫ t

0

‖∇v(σ)‖
1
2k

L2‖∇kw(σ)‖
2k−1
2k

L2 ‖∇(V + τW )‖L2 dσ

+C sup
0≤σ≤t

(‖v(σ)‖L2 + ‖w(σ)‖L2)

×
∫ t

0

‖∇k+1v(σ)‖
2k+1
2(k+1)

L2 ‖w(σ)‖
1

2(k+1)

L2 ‖∇(V + τW )‖L2 dσ.(2.70)

Applying Hölder’s inequality together with Young’s inequality, we obtain∫ t

0

T1(σ)dσ ≤ CE0(t)(D2
0(t) +D2

k(t)).(2.71)

Finally, we treat the term T3. We have as in (2.65)

T3 =

∫
R3

|[∇k,∇u]∇v|| (V + τW ) |dx ≤
∥∥[∇k,∇u]∇v

∥∥
L6/5 ‖(V + τW )‖L6

≤ C
∥∥[∇k,∇u]∇v

∥∥
L6/5 ‖∇ (V + τW )‖L2 .(2.72)

Now, as we have done for the estimate of the commutator in T1, we have by applying
(A.2), ∥∥[∇k,∇u]∇v

∥∥
L6/5 ≤ C(‖∇2u‖L2‖∇kv‖L3 + ‖∇v‖L2‖∇k+1u‖L3).(2.73)
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Applying (A.3), we obtain (see (2.32))

‖∇k+1u‖L3 ≤ C‖∇k+1u‖1/2L2 ‖∇k+2u‖1/2L2 .(2.74)

Hence, (2.74) together with (2.68) lead to∥∥[∇k,∇u]∇v
∥∥
L6/5 ≤ C‖∇2u‖L2‖∇k+1v‖

2k+1
2(k+1)

L2 ‖v‖
1

2(k+1)

L2

+C‖∇v‖L2‖∇k+1u‖1/2L2 ‖∇k+2u‖1/2L2

= C‖∇2u‖
2k+1
2(k+1)

L2 ‖v‖
1

2(k+1)

L2 ‖∇2u‖
1

2(k+1)

L2 ‖∇k+1v‖
2k+1
2(k+1)

L2

+C‖∇v‖1/2L2 ‖∇k+1u‖1/2L2 ‖∇v‖1/2L2 ‖∇k+2u‖1/2L2 .

Young’s inequality yields∥∥[∇k,∇u]∇v
∥∥
L6/5 ≤ C

(
‖∇2u‖L2 + ‖v‖L2

)(
‖∇2u‖L2 + ‖∇k+1v‖L2

)
+C
(
‖∇v‖L2 + ‖∇k+1u‖L2

)(
‖∇v‖L2 + ‖∇k+2u‖L2

)
.(2.75)

Consequently, we get from (2.72) and (2.75)∫ t

0

T3(σ)dσ ≤ C(E0(t) + Ek(t))(D2
0(t) +D2

k(t)).(2.76)

This completes the proof of Lemma 2.14, by (2.60), (2.64), (2.71) and (2.75). �

In the following lemma, we estimate I(k)5 .

Lemma 2.15. We have the estimate∫ t

0

I
(k)
5 (σ)dσ ≤ C

(
sup
0≤σ≤t

‖∇u(σ)‖L∞ + E0(t) + Ek(t)
)
(D2

0(t) +D2
k(t)).(2.77)

The proof of Lemma 2.15 can be done exactly as the one of Lemma 2.14. We omit the
details.

Let us now focus on the estimate of I(k)3 .

Lemma 2.16. We have for k ≥ 1∫ t

0

I
(k)
3 (σ)dσ ≤ CΛ2(t)(D2

k−1(t) +D2
k(t))(2.78)

with
Λ2(t) := (‖∇v‖L∞ + ‖w‖L∞ + ‖∇2u‖L∞)(t).

To prove Lemma 2.16, we first give the proof of the following lemma.

Lemma 2.17. For k ≥ 1, it holds

‖R(k)
1 ‖L2 ≤ CΛ2(t)

(
‖∇k−1w‖L2 + ‖∇V ‖L2

+ ‖∇k−1∇v‖L2 + ‖∇k−1∆ (u+ τv) ‖L2

)
.(2.79)
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Proof. We have from (2.42),

‖R(k)
1 ‖L2 ≤ C

(
‖[∇k, v]w‖L2 + C‖v‖L∞‖W‖L2

)
+C

(
‖[∇k,∇u]∇v‖L2 + ‖∇u‖L∞‖∇V ‖L2

)
.(2.80)

Now applying the commutator estimate in Lemma A.1, we get

‖[∇k, v]w‖L2 ≤ C(‖∇v‖L∞‖∇k−1w‖L2 + ‖w‖L∞‖∇kv‖L2).

Similarly,

‖[∇k,∇u]∇v‖L2 ≤ C(‖∇v‖L∞‖∇k+1u‖L2 + ‖∇2u‖L∞‖∇kv‖L2)

≤ C(‖∇v‖L∞
(
‖∇k+1 (u+ τv) ‖L2 + ‖∇k+1v‖L2

)
+ ‖∇2u‖L∞‖∇kv‖L2).

Plugging the last two estimates into (2.80), then (2.79) holds. �

Proof of Lemma 2.16. We have

I
(k)
3 ≤ C

∫
R3

|R(k)
1 ||∆ (U + τV ) |dx

≤ C‖R(k)
1 ‖L2‖∆ (U + τV ) ‖L2 .

Applying (2.79) together with Young’s inequality yield (2.78). This completes the proof
of Lemma 2.16. �

Proof of Proposition 2.2. Let

Λ3(t) = (‖v‖W 1,∞ + ‖w‖L∞ + ‖∇u‖L∞ + ‖∇2u‖L∞)(t).

Using the estimates (2.54), (2.55), (2.77), (2.78), and using the fact that Λi(t) ≤
CΛ3(t), i = 1, 2, then (2.50) becomes, for any 1 ≤ k ≤ s,

E2k (t) +D2
k(t) ≤ E2k (0) + C(Λ3(t) + E0(t) + Ek(t))(D2

0(t) +D2
k−1(t) +D2

k(t))

≤ E2k (0) + C(Λ3(t) + Es(t))(D2
0(t) +D2

k−1(t) +D2
k(t)).(2.81)

Summing up (2.81) over k = 1, . . . , s, adding the result to (2.39) (k = 0) and using the
fact that Λ0(t) ≤ CΛ3(t), we find

E2s (t) +D2
s(t) ≤ E2k (0) + C(Λ3(t) + Es(t))D2

s(t).(2.82)

Now, we need to estimate Λ3(t) by Es(t) by using Sobolev embeddings. Due to the
embedding Hs(R3) ↪→ W 1,∞(R3) for s > 5/2 we have

Λ3(t) ≤ CEs(t).(2.83)

Plugging (2.83) into (2.82), we conclude that (2.5) holds true. This completes the proof
of Proposition 2.2. �
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3. A local existence theorem – Proof of Theorem 1.2

In this section, we use the contraction mapping theorem to show Theorem 1.2.

Proof. First, we write problem (1.1) as a first-order evolution equation of the form

(3.1)


d

dt
U(t) = AU(t) + F(U,∇U), t > 0

U(0) = U0,

where U(t) = (u, v, w)T = (u, ut, utt)
T , U0 = (u0, u1, u2)

T and A is the following linear
operator which generates a semigroup (see [28]):

A

 u

v

w

 =


v

w
1

τ
∆(u+ βv)− 1

τ
w


and F is the nonlinear term

F(U,∇U) =


0

0
1

τ

B

A
vw +

2

τ
∇u∇v

 .

If U is a smooth solution of (1.1), then

(3.2) U (t) = Φ(U)(t) = etAU0 +

∫ t

0

e(t−r)AF(U,∇U)(r)dr.

We define for s > s0 = 5
2
,

X :=
{
U = (u, v, w) | ∇u,∆u ∈ C0([0, T ], Hs), u ∈ W, v ∈ C0([0, T ], Hs+2),

w ∈ C0(0, T ], Hs+1), ‖U‖2X ≡ E2s (T ) <∞
}
,

where W is the completion of C∞0 under the seminorm ‖∇ · ‖L2 , and where T > 0 will be
chosen small enough later on. It is clear that X is a Banach space.

We also define

Y :=
{
U | ‖U‖2Y ≡ D2

s(T ) <∞
}
,

where Es(T ) and Ds(T ) are defined in (2.3). It is clear that

‖U‖Y ≤ CT‖U‖X ,

for some C > 0. Hence, X ↪→ Y , therefore, X ∩Y is a Banach space. Define the complete
metric space

Z := {U ∈ X ∩ Y ;U(x, 0) = U0(x)} .

Hence, from the above computation, especially the estimate (2.5) (see also see (3.5) and
(3.6) below)
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we deduce that Φ(U) is well defined and it maps Z into X ∩ Y . We define the ball DR

as:

DR =
{
U ∈ Z : ‖U‖X∩Y ≤ R

}
.

It is clear that DR is a closed subset of the space Z and non-empty for all R > R0 with
R0 = Es(0).

Our goal is to show that:

(1) Φ maps the ball DR into itself,
(2) Φ is a contraction in DR.

As we will, see properties (1) and (2) are valid for R large enough, depending on the
initial data, and for T sufficiently small, and its choice is given later. Once the properties
(1)-(2) are verified, the application of the contraction mapping theorem gives the existence
of a unique solution of (3.1).

For a given U we write
Φ(U) = U0 + G(U),

where U0 and G(U) are given by

U0 = etAU0 and G(U) =

∫ t

0

e(t−r)AF(U,∇U)(r)dr.

U0 satisfies the linear equation

(3.3) U0
t −AU0 = 0, U0 (x) = U0 (x) ,

and G(U) satisfies the nonlinear equation with zero initial data, that is

(3.4) ∂tG(U)−AG(U) = F(U,∇U), G (U) (x, 0) = 0.

As in the proof of Theorem 1.1, we have for all t ∈ [0, T ),

‖U0(t)‖2X + ‖U0(t)‖2Y ≤ CE2s (0).(3.5)

Now, to bound G in DR, we have by imitating once again the proof of Theorem 1.1,
(especially the estimate (2.5)) for all 0 ≤ t ≤ T ,

‖G(U(t))‖2X + ‖G(U(t))‖2Y ≤ CtE3/2s (t).(3.6)

Hence, (3.6) yields

‖G(U(t))‖2X + ‖G(U(t))‖2Y ≤ CT‖U(t)‖3/2X

≤ TCR3/2.(3.7)

Collecting (3.5) and (3.7), we obtain

‖Φ(U)‖2X∩Y ≤ CE2s (0) + CTR3/2.

Choosing R sufficiently large and T sufficiently small such that

CE2s (0) + TCR3/2 ≤ R2,
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which can be achieved by choosing R2 > CE2s (0) and

T ≤ R2 − CE2s (0)

CR3/2
,

we obtain
‖Φ(U)‖X∩Y ≤ R.

Hence, we have prove that Φ (DR) ⊂ DR.
Now, we need to prove that Φ is contractive. We have, as above for U and V in DR,

G(U) and G(V) solve the equation, hence, we obtain (3.4)

∂t

(
G(U)− G(V)

)
−A

(
G(U)− G(V)

)
= F(U,∇U)−F(V,∇V),

G(U) (t = 0) = G(V) (t = 0) = 0.(3.8)

We put W(t) = G(U(t))− G(V(t)). Then, we obtain{
∂tW −A(W) = F(U,∇U)−F(V,∇V),

W(t = 0) = 0.
(3.9)

Let U = (u, v, w)T and V = (ū, v̄, w̄)T , then we have

F(U,∇U)−F(V,∇V)

=


0

0
1

τ

B

A
(vw − v̄ w̄) +

2

τ
(∇u∇v −∇ū∇v̄)



=


0

0
1

τ

B

A

(
(v − v̄)w̄ + v(w − w̄)

)
+

2

τ

(
(∇u−∇ū)∇v̄ +∇u(∇v −∇v̄)

)
 .

Lemma 3.1. For all 0 ≤ t ≤ T , we get

E2s (W)(t) +D2
s(W)(t)

≤ CT
(
Es(U)(t) + Es(V)(t)

)
Es(W)(t)Es(U−V)(t).(3.10)

It is clear that (3.10) yields

‖W‖X∩Y ≤ CT‖U−V‖X (‖U‖X + ‖V‖X) ,

which in turns implies

‖G(U(t))− G(V(t))‖X∩Y ≤ 2CRT‖U−V‖X∩Y .

Now, we fix T small enough such that 2CRT = κ < 1. Hence, we deduce that

‖Φ(U)− Φ(V)‖X∩Y ≤ κ‖U−V‖X∩Y .
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Thus, we conclude that Φ is a contraction in DR. The application of the contraction
mapping principle shows that there exists a unique solution U ∈ Z of (1.1). This finishes
the proof of Theorem 1.2. �

Proof of Lemma 3.1. The estimate (3.10) can be obtained following the steps that used
to obtain (2.5). We will just give the proof for the first order energy estimates.

Let W = (u,v,w)T . Then (3.9) can be rewritten as
(3.11)

ut = v,

vt = w,

τwt = ∆u + β∆v −w +
B

A

(
(v − v̄)w̄ + v(w − w̄)

)
+ 2
(
(∇u−∇ū)∇v̄ +∇u(∇v −∇v̄)

)
,

We define

E2k (W)(t) = sup
0≤σ≤t

(∥∥∇k(v + τw)(σ)
∥∥2
H1 +

∥∥∆∇kv(σ)
∥∥2
L2 +

∥∥∇k+1v(σ)
∥∥2
L2

+
∥∥∆∇k(u + τv)(σ)

∥∥2
L2 +

∥∥∇k+1(u + τv)(σ)
∥∥2
L2 + ‖∇kw(σ)‖2L2

)
,(3.12)

and

D2
k(W)(t) =

∫ t

0

(∥∥∇k+1v(σ)
∥∥2
L2 +

∥∥∆∇kv(σ)
∥∥2
L2 + ‖∇kw(σ)‖2L2

+
∥∥∆∇k (u + τv) (σ)

∥∥2
L2 +

∥∥∇k+1(v + τw)(σ)
∥∥2
L2

)
dσ.(3.13)

For the first order energy estimate, we get as in (2.22):

E20 (W)(t) +D2
0(W)(t) ≤ C

∫ t

0

(
|R1(σ)|+ |R̃1(σ)|+ |R2(σ)|

+ |R̃2(σ)|+ |R3(σ)|
)
dσ(3.14)

with for instance (we will estimate just
∫ t
0
|R1(σ)|dσ, the other terms can be estimated

similarly)

|R1| =

∣∣∣∣∫
R3

B

A

(
(v − v̄)w̄ + v(w − w̄)

)
+ 2
(
(∇u−∇ū)∇v̄ +∇u(∇v −∇v̄)

)
(v + τw) dx

∣∣∣∣
≤ C

∣∣∣ ∫
R3

(
(v − v̄)w̄ + v(w − w̄)

)
(v + τw)dx

∣∣∣
+C
∣∣∣ ∫

R3

(
(∇u−∇ū)∇v̄ +∇u(∇v −∇v̄)

)
(v + τw) dx

∣∣∣
≡ I1,1 + I1,2︸ ︷︷ ︸

:=I1

+ I2,1 + I2,2︸ ︷︷ ︸
:=I2

.
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For instance, we have

I1,1 =

∫
R3

(v − v̄)w̄(v + τw)dx

≤ C ‖w̄‖L2 ‖v − v̄‖L4 ‖v‖L4 + ‖v − v̄‖L2 ‖w̄‖L4 ‖w‖L4 .

This gives by using (2.23)

‖w̄‖L2 ‖v − v̄‖L4 ‖v‖L4 ≤ C ‖w̄‖L2 ‖v − v̄‖1/4L2 ‖∇(v − v̄)‖3/4L2 ‖v‖1/4L2 ‖∇v‖3/4L2 .

Consequently, we have∫ t

0

‖w̄‖L2 ‖v − v̄‖L4 ‖v‖L4 dσ ≤ CtE0(V)(t)E0(V −U)(t)E0(W)(t)

≤ CTE0(V)(t)E0(V −U)(t)E0(W)(t).

Similarly, we have

‖v − v̄‖L2 ‖w̄‖L4 ‖w‖L4 ≤ ‖v − v̄‖L2 ‖w̄‖1/4L2 ‖w̄‖3/4L2 ‖w‖1/4L2 ‖∇w‖3/4L2 .

Hence, we have∫ t

0

‖v − v̄‖L2 ‖w̄‖L4 ‖w‖L4 dσ ≤ CTE0(V)(t)E0(V −U)(t)E0(W)(t).

Therefore, we have ∫ t

0

I1,1dσ ≤ CTE0(V)(t)E0(V −U)(t)E0(W)(t).

Similarly, we have ∫ t

0

I1,2dσ ≤ CTE0(U)(t)E0(V −U)(t)E0(W)(t).

Therefore, ∫ t

0

I1dσ ≤ CT (E0(U) + E0(V)) (t)E0(V −U)(t)E0(W)(t).

The estimate for
∫ t
0
I2 can be done similarly. Consequently, we deduce that

E20 (W)(t) +D2
0(W)(t) ≤ CT

(
E0(U)(t) + E0(V)(t)

)
E0(W)(t)E0(U−V)(t).

Higher order energy estimates can be done as before. We omit the details. �
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4. Decay rates – Proof of Theorem 1.3

In this section, we prove decay rates for solutions to (1.1) given in Theorem 1.3. Recall
that

V = (v + τw,∇(u+ τv),∇v)

where u is the global solution according to Theorem 1.1, with v = ut and w = utt. Let

(4.1)
‖(u, v, w)‖2H = τ(β − τ)‖∇v‖2L2(R3) + ‖∇(u+ τv)‖2L2(R3) + ‖v + τw‖2L2(R3).

define a norm in H = H1(R3) × H1(R3) × L2(R3). It is clear that the norm above is
equivalent to the norm ‖V(t)‖2L2 .

Inspired by the decay estimates of the linear problem (see Propositions A.4 and A.5),
we define

M(t) := sup
0≤σ≤t

s∑
j=0

(1 + τ)3/4+j/2(‖∇jV(σ)‖L2 + ‖∇jv(σ)‖L2).

We also define the quantities

M0(t) := sup
0≤σ≤t

(1 + σ)
3
2 (‖V (σ)‖L∞ + ‖v (σ)‖L∞) ,

M1(t) := sup
0≤σ≤t

(1 + σ)2 ‖∇V (σ)‖L∞ ,

M2(t) := sup
0≤σ≤t

(1 + σ)
5
2

∥∥∇2V (σ)
∥∥
L∞

.

Our goal is to show that M(t) is bounded uniformly in t if ‖V0‖Hs∩L1 = ‖V0‖Hs +

‖V0‖L1 is small enough. From (3.2), we have for U = (u, v, w), and for 0 ≤ j ≤ s,

‖∇jU(t)‖H ≤ ‖∇jetAU0‖H +

∫ t

0

∥∥∇je(t−r)AF(U,∇U)(r)
∥∥
H dr

= ‖∇jetAU0‖H +

∫ t/2

0

∥∥∇je(t−r)AF(U,∇U)(r)
∥∥
H dr

+

∫ t

t/2

∥∥∇je(t−r)AF(U,∇U)(r)
∥∥
H dr

≡ ‖∇jetAU0‖H + J1 + J2.

This gives, by using the estimate (A.5),

‖∇jetAU0‖H ≤ C(1 + t)−3/4−j/2
(
‖V0‖L1(R3) + ‖∇jV0‖L2(R3)

)
.
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Now, for J1, we have (also using the estimate (A.5))

J1 ≤ C

∫ t/2

0

(1 + t− r)−3/4−j/2‖F̃(U,∇U)(r)‖L1(R3)dr

+C

∫ t/2

0

e−c(t−r)‖∇jF̃(U,∇U)(r)‖L2(R3)dr

≡ J11 + J12,

where F̃(U,∇U)(t) =
(B
A
vw + 2∇u∇v, 0, 0

)
.

To estimate J1 it is convenient to divide the integral into two parts J11 and J12 corre-
sponding to [0, t/2] and [t/2, t] and then estimate each term separately, cf. Lemma 7.4
in [30]. First, we have by using Hölder’s inequality,

‖F̃(U,∇U)(t)‖L1(R3) ≤ ‖V(t)‖2L2 + ‖v(t)‖2L2 .

Hence, J11 can be estimated as follow:

J11 =

∫ t/2

0

(1 + t− r)−3/4−j/2‖F̃(U,∇U)(r)‖L1(R3)dr

≤ CM2(t)

∫ t/2

0

(1 + t− r)−3/4−j/2(1 + r)−3/2dr

≤ CM2(t)

∫ t/2

0

(1 + t)−3/4−j/2(1 + r)−3/2dr

≤ CM2(t)(1 + t)−3/4−j/2
∫ t/2

0

(1 + r)−3/2dr

≤ CM2(t)(1 + t)−3/4−j/2.

On the other hand,

‖∇jF̃(U,∇U)(r)‖L2 ≤ C
(
‖∇j(vw)‖L2 + ‖∇j(∇u∇v)‖L2

)
≤ C

(
‖∇j(v(v + τw))‖L2 + ‖∇j(v2)‖L2 + ‖∇j(∇u∇v)‖L2

)
.

This gives, by applying (A.1),

‖∇jF̃(U,∇U)(t)‖L2

≤ C‖v‖L∞
(
‖∇j(v + τw)‖L2 + ‖∇jv‖L2

)
+C‖v + τw‖L∞‖∇jv‖L2 + C‖∇v‖L∞‖∇j∇v‖L2

+C‖∇v‖L∞‖∇j∇(u+ τv)‖L2 + C‖∇(u+ τv)‖L∞‖∇j∇v‖L2

≤ C(1 + t)−3/2(1 + t)−3/4−j/2M0(t)M(t)

+C(1 + t)−2(1 + t)−3/4−j/2M1(t)M(t).

Consequently, using these estimates, we deduce that

J12 ≤ C(1 + t)−9/2−j/2(M0(t) +M1(t))M(t).
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Next, J2 is estimated by applying (A.5) with j = 1 and using ∇j−1F̃(U,∇U)(t) instead
of V0, to obtain, for j ≥ 1,

J2 =

∫ t

t/2

∥∥∥∇e(t−r)A∇j−1F̃(U,∇U)(r)
∥∥∥
L2
dr

≤ C

∫ t

t/2

(1 + t− r)−
3
4
− 1

2

∥∥∥∇j−1F̃(U,∇U)(r)
∥∥∥
L1
dr

+C

∫ t

t/2

e−c(t−r)
∥∥∥∇jF̃(U,∇U)(r)

∥∥∥
L2
dr

≡ J21 + J22.

On the other hand, we have by applying (A.1),

‖∇j−1F̃(U,∇U)(t)‖L1 ≤ C(‖V(t)‖L2 + ‖v(t)‖L2)(‖∇j−1V(t)‖L2 + ‖∇j−1v(t)‖L2)

≤ CM2(t)(1 + t)−
3
2
− j−1

2 .

Thus,

J21 ≤ CM2(t)

∫ t

t/2

(1 + t− r)−
3
4
− 1

2 (1 + r)−
3
2
− j−1

2 dr

≤ CM2(t)(1 + t/2)−
3
2
− j−1

2

∫ t

t/2

(1 + t− r)−
3
4
− 1

2 dr

≤ (1 + t/2)−
3
2
− j−1

2

∫ t/2

0

(1 + r)−
3
4
− 1

2 dr

≤ C(1 + t)−
3
2
− j−1

2 (1 + t)−1/4 + 1

≤ C(1 + t)−
3
4
− j

2 .(4.2)

For J22, we have as in the estimate of J12,

J22 ≤ C(1 + t)−9/2−j/2(M0(t) +M1(t))M(t).

Therefore, collecting the above estimates, we have

‖∇jU(t)‖H ≤ C(1 + t)−3/4−j/2
(
‖V0‖L1 + ‖∇jV0‖L2

)
+CM2(t)(1 + t)−3/4−j/2 + C(1 + t)−3/4−j/2(M0(t) +M1(t))M(t)(4.3)

This yields

M(t) ≤ C
(
‖V0‖L1 + ‖∇jV0‖L2

)
+CM2(t) + C(M0(t) +M1(t))M(t).(4.4)

Applying Lemma A.3 with α = 3
2m
, q = r = 2, j = 0 and p =∞, we get for m > 3

2

‖V‖L∞ ≤ C ‖∇mV‖
3

2m

L2 ‖V‖
1− 3

2m

L2 ,
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and similar estimates can be used for ‖v‖L∞ . This yields

M0(t) ≤ CM(t),

provided that s ≥ m > 3
2
.

Next, to estimate M1(t), we apply Lemma A.3 with α = 5
2m
, q = r = 2, j = 1 and

p =∞, we get for m > 5
2
,

‖∇V‖L∞ ≤ C ‖∇mV‖
5

2m

L2 ‖V‖
1− 5

2m

L2 .

This leads to

M1(t) ≤ CM(t),

provided that s ≥ m > 5
2
. Hence, since M0(t) +M1(t) ≤ CM(t), then (4.4) implies that

M(t) ≤ C
(
‖V0‖L1(R3) + ‖∇jV0‖L2(R3)

)
+ CM2(t).

Consequently, applying Lemma A.2 gives the desired result, provided that ‖V0‖L1(R3) +

‖∇jV0‖L2(R3) is small enough for all 0 ≤ j ≤ s. This finishes the proof of Theorem 1.3.

Acknowledgement: The authors thank Prof. Irena Lasiecka for pointing out a missing
argument in an earlier version of this paper. The authors also thank the reviewers for there
valuable comments and recommendations which allowed for an improvement of the paper.

Appendix A. Useful inequalities and linear decay

In the next three lemmas, we recall without proof some important inequalities which
are very useful in the proof of our results. The following lemma has been proved for
instance in [12, Lemma 4.1].
Lemma A.1. Let 1 ≤ p, q, r ≤ ∞ and 1/p = 1/q + 1/r. Then, we have

(A.1) ‖∇k(uv)‖Lp ≤ C(‖u‖Lq‖∇kv‖Lr + ‖v‖Lq‖∇ku‖Lr), k ≥ 0,

and the commutator estimate

‖[∇k, f ]g‖Lp = ‖∇k(fg)− f∇kg‖Lp

≤ C(‖∇f‖Lq‖∇k−1g‖Lr + ‖g‖Lq‖∇kf‖Lr), k ≥ 1,(A.2)

for some constant C > 0.

The next lemma has been proved in [32, Lemma 3.7].

Lemma A.2. Let M = M(t) be a non-negative continuous function satisfying the in-
equality

M(t) ≤ c1 + c2M(t)κ,
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in some interval containing 0, where c1 and c2 are positive constants and κ > 1. If
M(0) ≤ c1 and

c1c
1/(κ−1)
2 < (1− 1/κ)κ−1/(κ−1),

then in the same interval
M(t) <

c1
1− 1/κ

.

We will use the Gagliardo–Nirenberg interpolation inequality as follows.

Lemma A.3. ([27]) Let 1 ≤ p, q , r ≤ ∞, and let m be a positive integer. Then for any
integer j with 0 ≤ j < m, we have

(A.3)
∥∥∇ju

∥∥
Lp ≤ C ‖∇mu‖αLr ‖u‖1−αLq

where
1

p
=
j

n
+ α

(
1

r
− m

n

)
+

1− α
q

for α satisfying j/m ≤ α ≤ 1 and C is a positive constant depending only on n, m, j, q, r
and α. There are the following exceptional cases:

(1) If j = 0, rm < n and q =∞, then we made the additional assumption that either
u(x)→ 0 as |x| → ∞ or u ∈ Lq′ for some 0 < q′ <∞.

(2) If 1 < r <∞ and m− j − n/r is a nonnegative integer, then (A.3) holds only for
j/m ≤ α < 1.

We also recall the decay estimates of the linearized problem associated to (1.1a)

Proposition A.4. ([28]) Let u be the solution of the linear problem

τuttt + utt − c2∆u− β∆ut = 0.(A.4)

Assume that 0 < τ < β. Let V = (ut + τutt,∇(u + τut),∇ut) and assume in addition
that V0 ∈ L1(Rn) ∩Hs(Rn). Then, for all 0 ≤ j ≤ s, we have

(A.5) ‖∇jV(t)‖L2 ≤ C(1 + t)−n/4−j/2‖V0‖L1 + Ce−ct‖∇jV0‖L2 .

Also, differentiating (A.4) with respect t and following the same steps as in the proof
of [28, Theorem 5.5], we have the following result.

Proposition A.5. Let 0 < τ < β and let v0, v1, v2 ∈ L1(Rn)∩Hs(Rn). Also, let (v1, v2) ∈
L1,1(Rn) with

∫
Rn vi(x)dx = 0, i = 1, 2. Then, for 0 ≤ j ≤ s, the following decay estimate

holds: ∥∥∇jv (t)
∥∥
L2 ≤ C(‖v0‖L1 + ‖v1‖L1,1 + ‖v2‖L1,1)(1 + t)−n/4−j/2

+ C(‖∇jv0‖L2 + ‖∇jv1‖L2 + ‖∇jv2‖L2)e−ct.(A.6)

Here v1 = w0 and v2 = vtt(t = 0).
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Appendix B. Derivation of the model

The motion of a viscous, heat-conducting fluid can be described by four equations: the
conservation of mass (the continuity equation), the conservation of momentum (Newton’s
second law), conservation of energy (first law of thermodynamics or entropy balance) and
an equation of state. Thus, the first three equations: conservation of mass, conservation
of momentum and entropy balance in the model of thermo-viscous flow in compressible
fluid, for the mass density %, the acoustic particle velocity v and the absolute temperature
θ, can be written as

(B.1)


%t +∇ · (%v) = 0,

%(vt + (v · ∇)v) = ∇ · T,
%θ(ηt + (v · ∇)η) = −∇ · q + T : D.

Here, η is the entropy and q is the heat flux vector. Moreover, D is the deformation tensor
given by

D =
1

2
(∇v + (∇v)T ),

anf T is the Cauchy–Poisson stress tensor given by

T = (−p+ λ(∇ · v))I + 2µD

= −pI + 2µ
(
D− 1

3
(∇ · v)I

)
+ σ(∇ · v)I,

where p is the acoustic pressure I is the identity matrix, µ is the shear viscosity (the first
coefficient of viscosity), λ = σ − 2

3
µ, where σ is the second coefficient of viscosity (the

bulk viscosity) and the components of T : D are TijDij where Tij are the components of
the matrix T and Dij are the components of the matrix D. Hence, we can recast (B.1) as

(B.2)


%t +∇ · (%v) = 0,

%(vt + (v · ∇)v) = −∇p+ (λ+ µ)∇(∇ · v) + µ∆u,

%θ(ηt + (v · ∇)η) = −∇ · q + 2µD : D + λ(∇ · v)2.

The equation of state (which describes the relationship between the pressure, the density
and the entropy) is

(B.3) p = p(%, η).

First, we assume that the deviations of %, p, η and θ from their equilibrium values
%0, p0, η0 and θ0 are small.

By taking the Taylor series expansion of (B.3) around values at rest %0 and η0 and
ignoring the higher-order terms, we get

p(%, η) = p(%0, η0)+

(
∂p

∂%
(%0, η0)

)
(%−%0)+

1

2

(
∂2p

∂%2
(%0, η0)

)
(%−%0)2+

(
∂p

∂η
(%0, η0)

)
(η−η0).
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We have

p0 = p(%0, η0), A := %0
∂p

∂%
(%0, η0) = %0c

2, B := %20
∂2p

∂%2
(%0, η0), %0

γ − 1

χ
=
∂p

∂η
(%0, η0),

and the pressure p is given by

(B.4) p(%, η) = p0 + %0c
2

[
%− %0
%0

+
B

2A

(
%− %0
%0

)2

+
γ − 1

χc2
(η − η0)

]
,

where ∇p0 = 0. In the above equations, c is the speed of sound, B/A the parameter of
nonlinearity, χ the coefficient of volume expansion and γ = cp/cv is the ratio of specific
heat, where cp and cv are the specific heat capacities at constant pressure and constant
volume. Assuming that the flow is rotation free, that is ∇ × v = 0, by introducing the
acoustic velocity potential v = −∇u, it has been shown in [13, 24] that equation (1.1a)
can be derived from the above set of equations by assuming the Cattaneo law of heat
conduction

(B.5) τqt + q = −K∇θ,

where K is the thermal conductivity.
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