HYPERBOLIC COMPRESSIBLE NAVIER-STOKES EQUATIONS

YUXI HU AND REINHARD RACKE

ABSTRACT. We consider the non-isentropic compressible Navier-Stokes equations with hyper-
bolic heat conduction and a law for the stress tensor which is modified correspondingly by
Maxwell’s law. These two relaxations, turning the whole system into a hyperbolic one, are not
only treated simultaneously, but are also considered in a version having Galilean invariance.
For this more complicated relaxed system, the global well-posedness is proved for small data.
Moreover, for vanishing relaxation parameters the solutions are shown to converge to solutions
of the classical system.
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1. INTRODUCTION

We consider the system of non-isentropic compressible Navier-Stokes equations in R x [0, 00) in
the following hyperbolic form:

pe+ (pu)e =0,
pus + puty + pr = Sg, (1.1)
per + puey + pua + gz = Sug,
with
T1(q +uqy) + ¢+ k0, =0 (1.2)
and
T2(St +uSz) + 5 = puy. (1.3)

Here, p, u, p, S, e, 6 and g represent fluid density, velocity, pressure, stress tensor, specific internal
energy per unit mass, temperature and heat flux, respectively. The equations (1.1) are the conse-
quence of conservation of mass, momentum and energy, respectively. «, i, A are positive constants
as well as the relaxation parameters 7y and 7».

We investigate the Cauchy problem for the functions

(p,u,0,q,8) :Rx[0,4+00) 2 Ry xRxRy xRxR
with initial condition

(p(x, 0)7 U(I7 O)a 0(9:7 O)a Q(:L 0)7 S(Ia 0)) = (POa Ug, 007 q0, SO) (14)

For 71 = 75 = 0 we recover the classical non-isentropic compressible Navier-Stokes equations.
Neglecting the quadratic nonlinear terms ug, and uS, in (1.2) resp. (1.3), the case 72 = 0,
71 > 0 (Cattaneo law) has been studied in R™, n > 1, in our paper [15]. The case 74 = 0,
79 > 0 (Maxwell’s law) in R™, n = 2,3, was treated in [16]. In the latter a splitted version
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of the relaxation law involving two relaxation for different parts of the stress tensor, which was
first proposed and treated by Yong [37] for the isentropic case, was considered. A similar revised
Maxwell model was considered by Chakraborty & Sader [1] for a compressible viscoelastic fluid
(isentropic case), where one relaxation counts for the shear relaxation time, and the other counts
for the compressional relaxation time. The importance of this model for describing high frequency
limits is underlined together with the presentation of numerical experiments. The authors conclude
that it provides a general formalism with which to characterize the fluid-structure interaction of
nanoscale mechanical devices vibrating in simple liquids.

Now, here, we have as main new contributions:

* Taking into account the two nonlinear terms in (1.2), (1.3). This is motivated from requiring
Galilean invariance of the system as suggested by Christov & Jordan [5].

* Discussion the two relaxations — for heat and stress — simultaneously.

* Deriving a global well-posedness result for small data as well as the rigorous limit as 7 := 71 =
79 — 0, i.e. the convergence to the classical Navier-Stokes equations, giving convergence rates in
terms of powers of the relaxation parameter 7.

For 7 = 0, the relaxed system (1.1)—(1.3) turns into the classical Newtonian compressible Navier-
Stokes system. For the latter, because of its physical importance and mathematical challenges, the
well-posedness has been widely studied, see [3, 4, 10, 11, 12, 17, 18, 19, 21, 22, 23, 24, 25, 31, 35].
In particular, the local existence and uniqueness of smooth solutions was established by Serrin [31]
and Nash [25] for initial data far away from vacuum. Later, Matsumura and Nishida [23] got global
smooth solutions for small initial data without vacuum. For large data, Xin [35], Cho and Jin [3]
showed that smooth solutions must blow up in finite time if the initial data has a vacuum state.

One should note that it is not obvious that the results which hold for the classical systems also
hold for the relaxed system. Indeed, and for example, Hu and Wang [14] showed that, for the
one-dimensional isentropic compressible Navier-Stokes system, classical solutions exist globally for
arbitrary large initial data, while solutions blow up in finite time for some large initial data for
the corresponding relaxed system. A similar qualitative change was observed before for certain
thermoelastic systems, where the non-relaxed system is exponentially stable, while the relaxed one
is not, see Quintanilla and Racke resp. Fernandez Sare and Mufioz Rivera [26, 8] for plates, and
Fernandez Sare and Racke [9] for Timoshenko beams.

For incompressible Navier-Stokes equations the relaxation, without nonlinearity in (1.3), has
been discussed by Racke & Saal [27, 28] and Schéwe [29, 30] proving global well-posedness for
small data and rigorously investigating the singular limit as 7 = 75 — 0.

We assume the internal energy e and pressure p have the following form:

T1 2 T2 52

ve -
= +ff9pq 2pp
and
T1 2 T2 2
=Rpf — —q° — =85
b P 210 20

such that they satisfy the thermodynamic equation erp =p—0Opg.

The dependence on g2 term of the internal energy is indicated in paper [6], where they rigorously
prove that such constitutive equations are consistent with the second law of thermodynamics if and
only if one use the relaxation equation (1.2), see also [2, 7, 33]. Since we also consider a relaxation
for the stress tensor S, it is motivated, naturally, by [6] that the internal energy should also depend
on S in a quadratic form. Indeed, under the above constitutive laws, we have a dissipative entropy
for our system (1.1)-(1.3), see Lemma 3.1, which implies the compatibility with the second law of
thermodynamics.

The main results are the following. First, we have global existence for small data.
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Theorem 1.1. There exists € > 0 such that if
1(po — 1,u0,00 — 1, qo, Sol| 32 < € (1.5)
Po , Uo, Vo 540, 00| g2 g, .

there exists a globally defined solution (p,u,0,q,S)(x,t) € CL([0,+00) x R) to the initial value
problem (1.1)-(1.4) satisfying

| Ot

> < suplp(a, 1) 00z, 1)) <
t
and

S[up ||(P - 1,u,9 - 1,q, S)”?LI2 < CH(PO - 17“'0760 - 1,(]07SO||?{2 < 0527 (16)
t€[0,00)

where C' is a constant which is independent of €. Moreover, the solution converges, uniformly in
x € R to the constant state (1,0,1,0,0) as t = oo. Namely,

||(p_17ua9_17an)HL‘>°+||(pIauI70Z7QIaSJJ)||L2_>O as t— oo.

Second, we have a description of the singular limit 7 — 0 where we assume for simplicity
71 = 19 =: 7. We also assume the compatibility condition on the initial data,

So = p(u0)z, g0 = —#(00)s-
Let (p7,u"™, 67,47, ST) be solutions given by Theorem 1.1. Define
T, =sup{T > 0;(p” — 1,u™,0" —1,4",87) € C([0,T], H?),p” > 0,0" > 0,¥(z,t) € R™ x [0,T]}.
Then we have

Theorem 1.2. Let (p,u, 8) be smooth solution to the classical compressible Navier-Stokes equations
with (p(l'v O)a u(xa O)a 9(;5, 0)) = (va Uo, 00) satz'sfying inf(ac,t)EIRx[O,T*] (P(x, t)v 0(1'7 t)) >0 and
(p—1)€C([0,T.], H ) nC' ([0, T.], HY),
(U7 0 — 1) € C([Oa T*]a H5) N Cl([()? T*]7 H3)7

with Ty, > 0 be finite. Then, there exist constants 19 and C such that for T < 19,
(o™, u™, 07)(t, ) = (p,u, O) (¢, )| g < O, (1.7)
and
(g™ + Kb, ST — prug)|| 2 < O, (1.8)
for all t € (0,min(T,T;)), and the constant C is independent of T.

The H°-regularity is needed to estimate some terms in the proof of Theorem 1.2, e.g. the terms
F; there, see below.

The paper is organized as follows. In Section 2 we prove the local well-posedness, the global
existence result Theorem 1.1 is proved in Section 3. The singular limit as 7 — 0 is subject of
Section 4, where Theorem 1.2 is proved.

Finally, we introduce some notation. W™P? = W™P(R"), 0 < m < oo, 1 < p < 00, denotes the
usual Sobolev space with norm || - ||yym.», H™ and LP stand for W™2(§2) resp. WP (Q).
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2. LocAL EXISTENCE THEOREM

In this part, we establish the local existence theorem for system (1.1)—(1.4). We rewrite the
system (1.1) as follows:

Pt + (pu)JC = 07
put + putly + Pppr + Poby + Pedz + (ps — 1)Se =0,
2 2
pegbi + (pueg — 3)0, + Opgu, + g = 25 + -, (2.1)

T1(q + ugz) + g+ Kby =0,
T2(St + uSz) + S = puy.

For the derivation of equation (2.1),, we calculate

per = pegly + pe,ps + peqqs + pesSt

27'1 T2
= pegby + peppr + p——qqr + p—55;
KBp wp

2 S
= pegby + pe,pi + Eq(—ﬁquc —q—KO,)+ ﬁ(—Tgqu — S+ puy)

2

2 2 2 S
= pegly — —qGI + peppr — iuqqm - = - T—QuSSx — — + Suy,
0 K0 K0 I I
while
271 S8
pues = pu(egly + €ppz + €94z + €55z) = puegly + pue,p, + pu%qqx + pUES:m

So, combining the above equalities, we derive
2q 2 52
?)Q‘L + pe/)(pt + upw) o qu - ? + Sug.
On the other hand, by the thermodynamic equation, we have pu, = (0pg + p*e,)us = Opou, +
pZepuz. Combining these calculations and using the mass equation (1.1);, we derive equation
(2.1),.

Note that the system (2.1) is non-symmetric. In order to give a local existence theorem, we will
require p, to be small enough such that the system is, for small initial data, a strictly hyperbolic
system.

Lemma 2.1. There exists § such that if |(p — 1,0 — 1,4, 5)| < 8, then the system (2.1) is strictly
hyperbolic.

per + puey, = pegby + (puey —

Proof. First, we choose a d; small enough such that |(p — 1,6 — 1,¢,S)| < §; implying

0<p<p<p0<f<6<, (2.2)
1
0<&<p,,<@,0<@<p9<ﬁ,0<@<eg<@,\p5|<§. (2.3)
Now, we transform the system (2.1) into a first-order system for V := (p, u, 0, ¢, S)’,
Vi+A(V)0,V +B(V)V =F(V), (2.4)
where

uop 0 0 0 X 000 0 O

Feu Lo Po Bems 000 0 0
AV)y=| 0 2 oy 2o ] B(V)=|000 0 0 (2.5)

0 0 =0 w0 000 % 0

0 & 0 0w 000 0 =

T2
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!/
and F(V) := (0, 0,22 4 %2, 0, ()) . We need to show the eigenvalues of matrix A(V') are real and

) KO

distinct. The characteristic polynomial for A(V) is
det (A(V) —X) = (u—N)glu—A), (2.6)

where

2¢ - 0p3 1-—
g(z) :224 q Zd _ <K + Po + ,LL( pS) +pp) 22

 plhes T peg pT2
0 1-— 2 1-—
N (,; PoPy <M( ps) +p,,) . Tq )Z+ (7“( Ps) +pp> B (2.7)
1p%€g pT2 pveq P72 it
Note that g(+o00) = 400 and g(0) = (M%SS) -HUp) -5 >0
Let
1—ps
PR I Gt £ 28)
P72
then
o <0< py (2.9)
and
9p§ KBOpg
. =4 0, 2.10
g(pt) = p (p269 e F o mePa) S Q (2.10)
which implies
O
Q> ==1>0 (2.11)
2p%ey
if
T1Po
Pl < = =1 (2:12)

which is satisfied if [(v — 1,0 —1,¢,5)| < d2 for some 3 > 0. Therefore, there exists a d > 0 such
that for [(p — 1,0 — 1,4, 5)| < 02, we derive

9(pt) <O0. (2.13)

Hence, g has 4 different real zeros z; < zo < 0 < 23 < z4. Altogether we conclude that there exists
a § = min{dy,d2} > 0 such that if |(p — 1,6 — 1,¢,5)|L~ < 0, the matrix A(V) has 5 different
eigenvalues A\g := u, A\ :=u — 2, k = 1,2,3,4. Thus the system is strictly hyperbolic. O

The strict hyperbolicity of (2.1) now implies the local well-posedness, see e.g. [34], it also implies
that (2.1) is symmetrizable. Thus, we get

Theorem 2.2. Let s > 2. Then there is § > 0 such that for (po — 1,ug,00 — 1,qo, So) € W*2(R)
with ||(po — 1, w0, 60 — 1,40, S0)||s,2 < 8, there exists a unique local solution (p,u,0,q,S) to (2.1) ,
(1.4) in some time interval [0,T] with

(p—1,u,0 —1,q,5) € C°([0,T], H*(R)) n C ([0, T], H*~*(R)). (2.14)
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3. GLOBAL WELL-POSEDNESS: PROOF OF THEOREM 1.1

In this part, we establish the a priori estimates and prove the global existence of strong solutions
by usual continuation methods. First, we introduce the following energy functional

E(t) ‘= sup ”(p - 17’U,,9 - 1»(175)(37 )H?—I2 + sup ”(pt?uhetuqhst)‘ﬁ{l
0<s<t 0<s<t

t
+/ ”(pma ptvuzvutvemaetv 4z, 4t, 4, Szv Sta S)(S, )H%Ilds (31)
0

The following lemma gives the lower energy estimates.

Lemma 3.1. We have the following equality

1.7 5 1 To

A _ 1 T2 2
[cvp(ﬁ nf—1)+ R(plnp—p+1)+ (1 — 20) 50 +pu +2MS t
1
+[puc, (0 — ln9—1)—|—u(1—@)1q2+;—;u52+Rpulnp—Rpu—a—l— pu® 4+ pu + q — Sul,
2 2
¢ ST
R92+9u_0'

(3.2)
Moreover, if E(t) < 16, we get the following L?-energy estimate with a positive constant C > 0,
t
/ (p— 12+ +(0—1) +¢*+5) da + / /(q2 b $2)dedt < CE(0).  (3.3)
R o Jr
Remark 3.1. When 7 = 12 = 0, the equality (3.2) reduce to the energy inequality for classical

compressible Navier-Stokes equaions, see [20]. In this regards, (3.2) can be regarded as an extension
to the relazed system (1.1)-(1.3). Moreover, if we denote, for U = (p,u,0,q,5),

1 1
nU) =cyp(@ —Inf — 1)+ R(plnp—p+ 1)+ (1—@) Hq +5pu +—S2 (3.4)
and
1.1 » 9 qg 1
q(U) = puc, (6 — 1n9—1)+u(1—@)—0q +2 uS*® + Rpulnp — Rpu—g—i—zpu + pu + q — Su,
(3.5)

we have n(U); + q(U)z <0 by (3.2). So, (n(U),q(U)) can be regards as a convex entropy pair for
system (1.1)-(1.3). Then Lemma 3.1 imply that there exists a dissipative entropy which is crucial
to get the global existence of solutions, see [13, 36].

Proof. First, we have the energy equality:

1 1 .
(pe + ipUQ)t + (pue + ipus)x + (pu)e + gz = (Su)s (3.6)

1 1
/ <pe + pu2> dx = / <p060 + poug> dz (3.7
R 2 R 2
or equivalently

1 1
o+ L2+ 2524 “pu2)d :/ P00 2 g2 dz. 3.8
/R(CUP + Hq +2,u +2pu x A cupobto + 9 q0+2,u 0—|—2p0u0 (3.8)

which gives
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Next, we multiply the equation (1.1); by %, we get

pu T 2 2
O+ gt g O+ g+ 55,
9(0 + 9/) +2MP )t + 0 (c +/{9pq +2MP )
S Mo, g G Sl
+ Rpu, 2/@92(] Uy QMHS Uy + 0
For the term g(ﬁ%olp(f)t, we have
P2y oy T oy T o
0(/@9pq )t p(ﬁpegq )t + K03
gy, - L, e
= p(ﬁpggq Je =5 (g —a
VI NPT N VR U T194t
—P(iﬁpegq )t 2( 02 )t 102
L S i WSS UL S R
—p(ﬁpegq Je = 5 gm @) — g — 5 — gy
For the term %(%pqz)gj, we get
PUCTL oy o TL Ov 11 o
7 (Hepq )z —pu(npazq o + s —
_ T o 1 1 T
Then, we have
Py P T
_ [ BEESE  E UO S s N B G
= [P(erzq )t+pu(ﬁp92q )m} |:2(m92q )t + (u2l€92q )o K02 q92
IRV 17m o, q> 0
- |:2(I€92q )t+(u2’€92q )w} K,GZ q927
where we used, exploiting (1.1),, the following fact
p(f)e + pulf)e = (pf) + (puf)a
for any function f. On the other hand, we have
Pl T2 2 pu (T2 o2 2
S — =9 —2 5%,
0 <2up )ﬁ 0 (QW >1 20
Ty 7252 S2 T2 oo
—85S; — —uSS, —S5%uy,
O i 2up9p +9,u 2u 9 2 p° "
S 7'252 2
S 82 T2
*S x H 752 x
Hu( +pug) + 5 i 265
s s
O 0"
Therefore, we derive the following equality
q q2 SZ
(pcy In 6 + B) egq )t+(pucvln9+uz 92‘1 ) + Rpu, + (g)z T o =

T2

T2

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Now, we rewrite the equation (1.1); as

Rp(Inp): + Rpu(Inp), + Rpu, = 0. (3.15)

Combining the equations (3.14), (3.15) and (3.6), using the equation (1.1),, we get

1 T1 o 1
w00 —Inf — 1 Inp— 1 =
cop(0 =Inf = 1)+ R(plnp —p+1) + (1 = o5) ¢ +2pu +2S t
+[puc, (0 — ln9—1)—|—u(1—i)l 21 2082+ Rpulnp— R u—f—i—l u® + pu + q — Sul,
puc, 5wt T pulnp = Rpu — o pu’ + pu+ g
2 2
q S
— + —=0.
+/~£92 + O
Note that if F(t) < 1%, using Sobolev imbedding theorem, we have
3 ) 3 5
- <p< - - <0< -, .
1SPsp o 1s0=3 (3.16)
Moreover, using Taylor expansions, we get
0—nf—1— — (6 —1)? (3.17)
—Inf—-1= - .
262 ’
1
plnp—p—kl:%(p—l)Q (3.18)

where £ € (1,0),n € (1, p). Combining the above inequalities, we get the desired result. O

The next two lemmas give the first-order estimates of solutions.

Lemma 3.2. Suppose that E(t) < 0 for 0 <t < T and some sufficiently small 6 > 0, then we

have

/(pi+p§+u§+u§+9§+0§+q§+q§+5§+8§)dx(t)
R

N

+ /t/(qﬁ + ¢ + 82 + S?)dxdt < C(E(0) + E(t)2) (3.19)
0 R

with a positive constant C.

Proof. Taking derivatives of (1.1) with respect to x, we get

Ptz + UPzx + PUps = —2Uzpr =: f1,

Plte + PUlee + DpPoe + Pobes + Pglea — (1 — Ps)See

= —pztt — (pW)atiz — (Pp)zpz — (P0)2bz — (Pg)2dz — (Ps)aSz =1 f2,

peolia + (puey — 2) Ozp + Opotice + Gon (3.20)
—(peo)ste = (pues — 3)abs = Opo)aue + (25) +(5) =i fo,

T1(Qte + UGee) + Qo + KOpe = —T1UGz =1 fa,

T2(Stz + USee) + So — Plge = —ToUz Sz =: f5.

Note that for 1 < j < 5, there exists a constant C such that
(3.21)

|£il < Cl(pas gy ur, 0z, 04, 42y Suv g, S)?
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Multiplying the equations in (3.20) by %px, Uy, %Hm #qm, 1_:’5 Sz, respectively, and integrate

the results over R, we get

d
<p”p§+g 2+
1

T oo T2l —ps) e
e ey il I |
+ 2&9q$+ 244 @ )

PEO o
20 o 0
mng Si) dx+/pqqmuxdx

( Pz f1 +uzf2+ f3+ qgsf4+ S f5>
p K Iz

dt

Lo(p 1 2 (Pt Lo 1o (12(1—ps)
sz( ) tguaret g 9(9)+2%(n9)+25 o))

1 1 pueg  2q u L 1 —ps T2 2
L% > i+ ey + (5 > (). 5+ (5 “)ﬂsﬂ‘)d

N / (<pp>>mpwum+<pe>memui+(;)zqzegﬂ (1- Py, Sou ) (3.22)

2 by using the

The integrals on the right-hand side of the above equation can be estimated by E(¢)
Sobolev embedding inequality
|(Dp, Du, D, DS, Dq)||~ < CE(t)?, (3.23)

where D = (0, 0,).
Now, we deal with one of the highest-order terms, fR DqGzzuzdx, in the following way.

/pqq“cumdl': _/(pq)mqgcumdl'_/pq(hurzdx
R R R

2
pes pueg — 5 1 1
/R(pq) ! ./quq ( Opy ' Ope 6ps ™" " Opy s

_ Pq / (pq ) L,
- = ez dr — @, fadx — —_— — Idx
/R(pq) q /Ramq f3 o) 3

2q

uey — St

+/ pgp quemd —|—/ P \PUC — ) (p99 G)qﬁmdx, (3.24)
R R Po

where we have used the temperature equation (2.1),, while, using the equation (2.1), for ¢, we get
for the second highest-order term

Pqpeo
2 QJ,etldx
R VDo

d / Papeo / (pqpee> / Papeo
at Ju Ops 2\ opg ), . Opg
d [ pepeo / DqpPey

= — 0,dz — 0,d
dr e epe qzUo AT . epe th AT

papey (1 1 K
- / . (f4 — — Gz — 769:‘% — UzGz — U%vw) Hmdx
R T

Ope T1 T1

d [ pgpeo PqPel / (pqpee>
qz0.dx — UGy Opy — 20-dx
Tt r Opo r Do e R\ Ops /, e

Pqpeo Papeo Kpgpeg ) 1 2>
- — =g ) O+ [ L) g0, — (2 262 ) da 3.25
/R< Opo <71f q) < Ope >zq <719P0 )IQ ¢ (329
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Therefore, we obtain

2q
PaPes o g pq(pues — ) _d /pqpea /2qpq
| et TR AT 0
1 1 1
_/ (pqpee (f4—qw) o + (pqpeeu) wbs (qupeO) Lo, (pqpee) qwegﬂ) .
R\ Opo \Ti T bpo ), mibpy ), 2" Ope ),
(3.26)

For the term fR %qwemdx, using the equation for ¢, we have

29p4 2qpy [~ 1
marzd ho Yz x T xYx) — T Yz d
= 02pg 2, 4 Rgzpeq (Qt + UQus + UzGz) Hq T
d [ Tiqpg o / TIqPq \ o
= —— d d
de Jg 592p9qm T r \ K02%py tqm .
2qpqmi L, 2qpg 2T / 2qp4 o
—qs — —uzdx — dz. 3.27
+/R(92peﬁu 2% ) oy T e T | g, T (3.27)
Finally, we derive, integrating (3.22), that
/ ppp2+}pu 4P q2+ﬁ(1—ps)52+pq069q 6, + 1P 2\ g,
R\ 207" 2 20 216 " 241 T fpg T Kkb2pyg

1 1-— 5
+/ / — g2+ —P5624.dt < C(E(0) + BE(1)3). (3.28)
o Jr K0 12

Note that

T1 T1 o T1 9
=——q,eg=C— ——q,pg = R
Pq mﬁq 6 v n&zpq Do P+2H92q

It is not difficult to see that for sufficiently small §, if E(t) < §, then we get from (3.28) the
following estimate

t
/(p§+ui+9§+q§+sg)dx+/ /(q§+53)dxdt§C(E( )+ E(t)?). (3.29)
R 0 R

Using similar methods, we obtain

/R (P} +ui + 67 + q; + 57) dw + /Ot /R(qf + 82)dadt < C(E(0) + E(t)?). (3.30)
Thfe estimates (3.29) and (3.30) prove (3.19).
O
Lemma 3.3. If E(t) <§ for 0 <t <T and some sufficiently small § > 0, we have
/Ot /R(pf +p2 4 +ud 4 602+ 6%)dxdt < C(E(0) + E(t)?). (3.31)
Proof. Using Lemma 3.1 and Lemma 3.2 and the equations , we immediately get
/0 t /R (12 + 02 + 62)dadt < C(E(0) + E()?). (3.32)
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On the other hand, multiplying the momentum equation (1.1), by u; + uu, and integrating over

(0,t) x R, we get

// (us + uuy) dxdt

I s
—/ / ROp, (ur + uuy )dzedt + Z/ / p(us 4 uuy,)*dedt + C(E(0) + E(t)?)
o Jr o Jr

¢ ¢ ¢
< / / Rbpugdzdt — / / Rbpguuydzdt + 1/ / p(us + uuy)?dedt + C(E(0) + B(t )
o Jr o Jr 2Jo Jr

t 1 t 3
_/ / ROu,(pr + upy)dxdt + 3 / / p(us + uu,)*dedt + C(E(0) + E(t)2)
o Jr 0o JR
1/ .
<3 / / p(uy + uuy)?dedt + C(E(0) + E(t)?)
o Jr
which together with (3.32) imply

// 2dzdt < C(E(0) + E(1)?).

Now, using the equations (1.1) again, we get

/ [ 6+ yasa < B0 + B0,
0 R

Next we give the second-order estimates of solutions.

Lemma 3.4. If E(t) < for 0 <t <T and some sufficiently 6 > 0, we have

[SI[)

+/ /(Q3z+qt21+5§z+sfx)dxdt§C(E( )+ E(t)?).
0 R

(S

)

(3.33)

(3.34)

(3.35)

(3.36)

Proof. In the following proof, we shall use higher-order derivatives, like piys, Ugzee, to show the
above estimate. Although these higher-order derivatives are not covered by Theorem 1.1, a stan-
dard density argument will eliminate the needs for the extra regularity of local solutions. (cf. the

proof of Theorem 4.1 in [32]).
Taking derivatives of the equations(1.1) with respect to x twice, we get

Ptxx + UPrxx + PUzzry = —UgPrz — PzUzx + (fl)x =401,
PUtza + PUU gz +pppxxw +p99ww1 + Pelzaxx — (1 - pS)waw

= =Pz Uty — (pu)xuaca: - (pp)xpxac - (pe)xexx - (pq)xqgcx - (pS)xSxx + (f2):c =:92,

2
peﬁetam + <PU€9 - eq) ozzm + 0p9uzmz + Qrxx

2
)b = Byt + (e = 05

T1 (qu + Uqgmc;c) + Qoo + KOppa = —T1UGze + (f4):c
TQ(Stxa: + usmzz) + S:vx — HUggpy = _TZUzSa:m + (fS):v =05
Note that for 1 < j < 5, there exists a constant C such that

—(pep) btz — (pueg —

|gj‘ S C|(pza:auza:7utw7 ewx7 0tw7 Qzz, Sma:»p:r; Uy, Ut, ewa 9t7QQ:a Sa:a q, S)

%

(3.37)

(3.38)

(3.39)

(3.40)
(3.41)

(3.42)
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Multiplying the resulting equations by Z o Prxy Uz, %HM, iqm, F%Sm, respectively, and inte-
grating the results over R, we get

d Dp o Pes o T2(1 —ps) o
- e Bop2 + L 2 08 d
/(2 pm,+2 u?, + 59 Uee 5 0 >, + o S2 ) dx

S
qm —p 52 >dx+/pqqmmumdx
R

p Oza 1 1—ps
L pragt + Uzzgo2 + —— g3 + — Quags + ——— 4205 | da
p 0 K0 %

Lo 2 (Peo Lo (my Lo (ma(l-ps)

2“( ) 2”pt+29”(9>+2$w(m9)+2 ( 0 )4

Dp 1 2 puey ﬁ 02 2, 1 —ps 72 o2
1

The integrals on the right-hand side can be estimated by E(t)% by using the Sobolev embedding
inequality

I(Dp, Du, D, DS, Dg)| |~ (t) < CE(t)* (3.44)

where D = (9;,0;). Using similar idea as in the proof of Lemma 3.2, we deal with the term
fR DqQzzatzedr as follows.

/pqqgcxxuxzdx = _/(pq)IQz:cumgdl'_/qummuzzxdx
R R R
2q

peo puey — 5 1 1
- p IQIa:uzzdx - / Pqlzx ———0 Txr 701mx — 7 Qzax + -9 dz
/R( o R ( Opo Opo Opo Opo ™

_ Pq / (pq ) 1,
= — 20z UsrdT — L Qrzg3dT — — | =g .dx
/R(pq) q /Repgq 93 A EL

2q
ueyg — —5-
r Opo R Ope
and
PaP QIletl.de
r Opo
d
/pqpeoqfﬂrgzzdx_ Pque meemxdx_/pqpee qmmgzmdit
dt R 9 yo R 0p
d €
d d L e%caromcdx > GraOzade
t
1
- / Iw <g4 — —qzx — iewzx UQQ::E:E) ewwdx
r Opp \T1 Ty I
d Papco, PqPey / (pqpee>
~dt Jx Ope o Opg 2\ Opo ),

pepeg (1 1 > (pqpeg ) <Hpqpeg) 1, )
- —— | =914 — — oz | Oca + U walpe — | —— | =0 dx. 3.46
/]R < Ope (7'1 “ont bpo ), 4 T10pg ), 2 " (3.46)
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Therefore, we get
2qpq

J

_/ (pqpee
r \ Opo

7) d [ pgpes
. QraOzadr — 02 T —
R V°Do

e Pqlpu€p —
L QQxxotxxdx + q(epee%rxechdx = & e 9109
9p9 t

(3.47)

Opo
r 1 0+ PPy Goalnn — Kpgpeg | 1

Po

T1

For the term [ j;ﬂqmemdx, using the equation for ¢, we have

2 2 —T 1 1
/ gpq qmvezrxwdx = / gpq Qax ;(Qth + UQIa::L’) — —Qxx + —3g4 dx
0?p 02pg K K

d [ Tigpg g u/‘ T14Pq 2
=_—— Ldz d
dt Jg k62%pg k0%pg ), oaC¥
(3.48)

2qpq71 1, 2qpq o
+/< uwym—Rw%%ﬂm-GQ%w4

02pok

Finally, we derive that
1—
PO T o +77'( pS)Sz L Papeo oy TP g,
2u Ope K602pg

pp o 1 Py
—P562 qudt < C(E(0) + E(t)?). (3.49)

//W

Note that
T1 T1 9 T1 o
Pq geo = 92pq » Do P+ 2024

So, there exists a small § such that if E(t) < §, we can derive that

/]R (P2p +uly + 02, + a2+ S2,) da + / / @, + S2,)dzdt < C(E(0) + E(t)?) (3.50)
Using similar methods, we can get
/ (ptm+utl+0m+qm+ dx+/ / (¢, + S2,)dzdt < C(E(0 )+E(t)%) (3.51)
O
Lemma 3.5. If E(t) < for 0 <t <T and some sufficiently small § > 0, we have
/ /pm+pm+um+uM+ﬁ +02,)dadt < C(E(0) + E(1)?). (3.52)
Proof. Using Lemmas 3.1-3.4 and the system (3.20), we can immediately get
3 (3.53)

/ t / (u2, + 02, + 02, )dadt < C(E(0) + E(t)}).
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On the other hand, multiplying the momentum equation (3.20), by u:; + wug, and integrating
over (0,t) x R, we get

¢
//p(um—kuum)Qdmdt
o Jr

¢ 1t
- / / ROpgs (g + wtigy )dzdt + 1 / / p(tig + Uy, )?dadt + C(E(0) + E(t)
o Jr o Jr

wjw

)

3
2

t t 1t
< / / ROp uyppdadt — / / ROpp utydxdt + f/ / p(Uie + Uty )?dadt + C(E(0) + E(t)?)
o Jr o Jr 2Jo Jr
t 1 t 3
o Jr o Jr

1/t 9 3
< 5/0 /Rp(um—i-uum) dadt + C(E(0) + E(t)?) (3.54)

which together with (3.53) imply

/0 t /R u? dzdt < C(E(0) + E(t)

Now, use the equations (3.20) again, we get

Nl

). (3.55)

jw

/ t [0+ ptodadt < CBO) + E@)), (3.56)
0 R

O

With the Lemmas 3.1-3.5 we have the necessary a priori estimates to continue, as usual for small
data, the local solution from Theorem 2.2 to a global one. This proves Theorem 1.1.

4. RELAXATION LIMIT

In this section we prove Theorem 1.2, i.e. we show the uniform convergence of the relaxed system
(1.1) to the classical compressible Navier-Stokes equations (corresponding to 7 =71 = 79 = 0).

Proof. Let p? TT_’), ul = v= gl = 9;—‘9, q° , 81 = TT_S, = —kb, and
S = puy. It Sufﬁces to show that for small 7 and ¢t < mln{T*, T},

(%, u, 6tz < C [VT(a?, 8N (¢ )= < C, (4.1)
where C' > 0 will denote constants which do not depend on 7.

We define
E:= sup ([[(p—1,u,0—1)[lms + [|[(ur, 0) ]| r2),
0<t<T

and

E? = sup ||(p%,u?,0% VT, VTS || b2

0<t<T

Note that, by assumption, £ < C and

(" — L, u™, 07 —1)||g= < C+ TE4, g™, ST)||g= < C + VTE®.
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The equations for the difference (p?, u?, 8¢, ¢%, S?) have the following form:
pl +uTpl + pTul = —puy —ulp, = fi,

T 1
ut—i-uTud—i- +p99d+p—§§§+7(ps )S;j
pT

T Pz p‘r
d T, T T
U u” — pu P, — P Ph — Do q S
:7p thp Tp Uy — P TP . — 6 - ozi szZI—f szg:: f27
p T T ™ T T
29" 07 1
o (7 - Lyt + Tl
pTeyt” pTep pTep
A Peo, pruTe) — puey , 07 pg — Opo 2q™ o ST+ S si . f,
TpTep ¢ TP ey * TpTep * KOTpTep upTeg ’
T(gf +uqg) + ¢ + kG = —Tgeu — (q; + ugy) =: fa,
7(S¢ +u" S + 8% — pul = —7S,u — (S; + uS,) =: fs.
Taking 0% (0 < a < 2) to the above system, multiplying by i—é@;‘pd, pTO%u, p;—fgagad, —=05q d

(

and %@agsd, respectively, and integrating the result with respect to x, we obtain

4 i”‘d P79y pe@ apd o d Mad2
dt R<2p7'(amp) (3 )2+ Ve (020%)2 + P HT(am )+ o (8252 ) da

+/ ( (a;qd)2+(1_ps)(agsd)2> dx+/ag (pquf> pT0Cudz
r \ K0T 7 pT

EZ +ZK +ZM *ZFH (4.2)

1 1 T ,T

T = / L p(@cud)dz, Ty = / (%) (920%)2dx,
R 2 w2\ 0 ),

T( 1 7(1 - p%)

Ty = - o d 2d T :/ S a qd 2d
3 = /]R (/197) (axq ) Z, 4 & ( 2'u . (aacs ) xz,
Ky, = /6‘0‘ u” p?) %3§pddm,K2 = / 2% (uTud) - (pT0%ut)dx,
R

297 4\ rep d
K; = b T — oS | - >0°d
3 /Rax ((u pTegﬂf) I) o 05 6%z,

where

Ky = / 02 (w7 qf) - —=—0%qtdz, K= / roe (u58) - 28 o gy,
R K07 R 1%

oz ) o+ 0z (Pt ) o ) a,
P P
pged) pfa;xud + a;y (eTpg Ug) P 69 8a9d>
p'reg 97

(G
M; = / (ag (pS - 15§> o o0t — o2yt L P5 a;;sd> de,
R pT M
(= =

pe& apnd apnd a d
qx> o 050% + k03 0 graz )
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F= [oen-Roppan = [ ooz,
R

ng/a§f3 r 69 8°04dz, F4_/60‘f4 —a ¢ldz, Fs = /aaf5 Mpsa“sddx
R
For 1 <i <4, we have

Tl < Cll((p ) (7)1, 7(ST)e) Lo (BD)? < C((E)? + 7(EY)? + 72(EY)Y).

By using Moser type inequality and Sobolev imbedding theorem, we can get

Ta T

.
u
K, = /]R (8§(u7pi) — ufag‘ﬂpd) . %3;‘pddx +/ %782+1pda§pd

o, T (6% T (o3 p
< C (lloguT [l zallpgll o + 105 Nl 2 ll0suT ||z ) - pIILwlla e +|( ’;

) o 102 25
x

< (C+7ENH? (EDH? + (C+7EY)(EY? < C’((Ed) +7(EY3 + r2(EY)Y).

Similarly, for ¢ = 2, 3,4, we can get that

|Ki| < C((BY)” +7(EY)? +7(EY)Y).
We estimate M, as follows.
M= [ @y - progtiut) - ozt (052t - Peopei ) progutaa

R p" pT o
- / p, (05 u0g p? + 00t plogu) da
R
< (C 4 7B (|00 e 020 12 + e 0297 12) 020 1
pT (6% OtpT (0% T (6% (6%
+(C +7EY) (Ilaxpillmc 105 % | + 1l o5l o= 1105 piHm) 105 u| 22 + 102 || L= |05 u? | 21|05 p|| 2

<(CHTEN? - (B +(C+7EN)(E)? < C((BY)? + r(BY) + 7*(E)").
Using similar methods, we can get also for i = 2,3,4

|M;] < C((B)? + (B + 72(BY)*).

Now we estimate the term F; for ¢ = 1,2, 3,4, where the higher regularity assumptions on the
solution are needed. First, we have

105 fillze < 1102 (p%ua)ll 2 + 105 (upo) | 2
< I, pa) =105 %, 05 u) |22 + [[(p% w1105 (uz, po) || 22 < CEY,

d
102 fallze < l102(5 pallz2

D, — D
)12+ 1102 (2= (o u + up®)|| 2 + 10 i
pT prT

T

(63 ap (63 P
+llog (P2 el 102 L an)lle + 107 (280 s

d d T T T T
P P~ Pp —Pp Py —Do D p
<c (<ut7uz,uumpm,ex,qm,sm>||oo||as<p7,ud7, Po=Pe v —po Py Py

d d T T
p p’ Pp—DPo ph—po Pq P
+ 110 (usy e, Wi, Py Oy oy S| 21| (5 u T S )

< CEYC +7E%)
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where we have used the fact that pq = 5;7 and % = f%. Similarly, we can get

T T T T T Sd
02 alles < 160, o (L0, TR Z 00 Y,
TpT € pTT pwpey
pTey —peg pTuTel — pueg  S¢ > ||
LOO

00,0, 5
e R

2qT ST ) 4 4 2q7 ST d 4
+ ) T Lee ag(q 75 Lz + 62‘ =) T L2 (q 7S ) oo
(g ey ) L2t 592 + 105 (rer o ) sl %)
< C(E'+7(EY? + 72(EY)?).

Note that ¢ = —k0,,S = pu,, so we get

105 (fa, f5)l|2 < C + CTE®.

Based on the above estimates, we conclude

4 5 4 4
DT+ Ki+ Y Mi+ Y F, <C(1+ (EY)? +7(BY)? +7(EY)). (4.3)

i=1 i=1 =1 i=1

Finally, we deal with the last term on the left-hand side of (4.2), the term [, 02 pq qh)pT0%uddz.

/aa pq d Taa dd{E

/ (ag(pq dy _ ijag“qd) pTO%uda + / proctlgtosudde = I + I (4.4)
R R

T iz
Using Moser type inequality and the Sobolev imbedding theorem, we get

h<COW()h%mﬂm+MAdmqh)W&Wm<ﬂ@W+ﬂWW- (4.5)

For the term I3, we use similar methods as in the proof of Lemma 3.2.

I = - /(Pq) 05 q" 05 u ddx—/pgaﬁqd&‘?“uddx

pqp (=] (UT _ 2q )8;quaza+19dx

< [ PaP7% o ageg,pidr + ° L
r 07pp r 07pg preglT
+C((Ed)2 +7_(Evd)3 2(Ed)4 3(Ed)5)
< i pqp 69 aa daaed _ pqp 8a6tqdaa9dd$+/pqp €9 ur _ 2(1 8;:aqdag¢+19dx
dt 07p; r 07D} r 07D] prezoT

+ C((Ed> (B (B 473
d pqp69adad _/2173@7 a doatl dy2 d\3 | _2(mdyd | 3/ pad\b
<G B 07 q%0570%d R(QT)ZpTazq Oy " 0dx + C((EY)" + 7(E®)” + m7(E)" + 7°(E")”)
<< <”;f D oeqtone” + %;’f;p,(a:qdf) dz + C((BY) +7(B)* + (B + 7%(B)").  (4.6)
o
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Combining (4.2)-(4.6), we finally derive that

i 1 a d\2 ﬂ o, d\2 p‘reg and\2 T o d\2 T(l_pg) a gd\2
dt/R(2(6xp) + Ot + 0307 + 5 @24 + = P (02 8)
PaP € oo dnapd ,  Pq9  aa d 2)
+740 O gagdpogt 4 92 (5o dz
by 21 H(97)2p5( )

Lo dye (1 = P55/ na qdy2 - A2 4 L (pA3 4 22 pd)d o 3 (Ed)S
+/R(H97(8wq>+u (6x5)>d < C(L+ (B +7(EY)? + 2(BEY* + 73 (EY)P).

Summing «a from 0 to 2 and noting that p, is sufficiently small if we choose 7 sufficiently small, we
get
d
g(Ed)Q < C(l + (Ed>2 + T(Ed)?’ + TQ(Ed)4 4 TB(Ed)5).

Thus, use the same arguments as in [15, 16], we conclude that there is a small 75 > 0 such that for
0< 1<y,

ET<C.
This proves (4.1) and hence Theorem 1.2. O
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