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Abstract

Typhoid fever is a disease caused by a salmonella bacterium (Salmonella typhi)
and transmitted by ingestion of water and/or food contaminated with faeces (stool).
In this paper, we derive and analyse a model for the control of typhoid fever which
takes into account an imperfect vaccine combined with some other control measures
already studied in the literature. We begin by analysing the model without control.
We compute the basic reproduction numberR0 and prove the local and global stabil-
ity of the disease–free equilibrium whenever R0 is less than one through Lyapunov’s
theory. When R0 is greater than one, we prove the local asymptotic stability of
the unique endemic equilibrium through the Centre Manifold Theory and we find
that the model exhibits a forward bifurcation. Then, we extend the model by re-
formulating it as an optimal control problem, with the use of three time dependent
controls, to assess the impact of vaccination combined with protection/environment
sanitation and treatment on the spread of the disease in human population. By
using optimal control theory, we establish conditions under which the spread of the
disease can be stopped, and we examine the impact of combined control tools on
the transmission dynamic of the disease. Pontryagin’s maximum principle is used
to characterize the optimal control. Numerical simulations and efficiency analysis
show that, if we want to reduce significantly the spread of typhoid fever, treatment
must be taken into account in all control strategies.

Key words: Typhoid fever, Asymptotic stability, Centre Manifold Theory, Optimal
control, Pontryagin’s maximum principle (PMP), Efficiency analysis.

AMS Classification: 49J15, 92D30.

1 Introduction

Typhoid fever is a disease caused by a salmonella bacterium (Salmonella typhi) and
transmitted by ingestion of water and/or food contaminated with faeces (stool). Typhoid
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fever is prevalent in areas of the world where hygiene is precarious [42, 43]. The disease is
mainly manifested by a fever that gradually rises to 40◦C, headaches, insomnia, fatigue
and anorexia. Fever may be accompanied by digestive signs (stomach ache, diarrhoea
or constipation, vomiting). The symptoms can last several weeks. In some cases, the
infected host is asymptomatic but participates in the transmission of the disease. In
severe forms without treatment, evolution can be fatal in 10% of cases. The treatment
of typhoid fever is based on antibiotic medication. There are 11 to 21 million estimated
cases of typhoid fever and approximately 128,000 to 161,000 deaths annually, compared
to an estimated 6 million cases of paratyphoid fever and 54,000 annual deaths [20, 42, 43].

Although some progress has been made in the fight against typhoid fever, such as
antibiotic treatments, vaccination and environmental sanitation as a means of prevention,
typhoid fever is still a public health problem in developing countries. There are two
available vaccines to prevent typhoid fever. Although their price in the market of vaccine
has become affordable, access in some developing countries remains a problem [43]. Thus,
the authorities of the areas where this disease occurs must choose between treatment
and/or prevention means.

To better understand the transmission dynamics of some diseases and appropriate
control methods, mathematical models have been developed. So, many mathematical
models reflecting the transmission dynamics of typhoid fever have emerged (see for ex-
ample [6, 10, 13, 16, 21, 23, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39]. But, only few of
these works have been conducted to explore control strategies for typhoid fever (see
[16, 23, 29, 33, 34, 38, 39]).

In this paper we formulate a mathematical model for the transmission dynamics of ty-
phoid fever in human populations, which takes into account incubation period, imperfect
vaccine combined with protection or environment sanitation and treatment as control
mechanisms. We begin by the formulation of the autonomous model which take only
constant vaccination as control strategy. We compute the basic reproduction number
R0 and investigate the existence and stability of equilibria. Through Lyapunov’s theory,
we prove that the disease–free equilibrium is globally asymptotically stable whenever R0

is less than one. We use the Center Manifold Theory to prove that our model exhibits
a forward bifurcation when R0 is equal to one, and the unique endemic equilibrium is
locally asymptotically stable. So, the phenomenon of backward bifurcation not occurs,
which means that the condition R0 < 1 is sufficient for going out of the disease in human
populations.

Then, we extend our autonomous model by adding density dependent death rate of
humans and three times-dependent controls (vaccination, protection/environment sani-
tation and treatment of symptomatic infectious). Optimal control theory is used to es-
tablish conditions under which the spread of typhoid fever can be stopped and examine
the impact of a possible combination of these three controls on the disease transmission.
The characterization of the optimal control is obtained by the application of Pontryagin’s
maximum principle. We use numerical simulations and efficiency analysis to determine
the best combination of these controls, in terms of efficacy.

We organize the paper as follows. In Section 2, we present the typhoid fever transmis-
sion dynamics model and carry out some analysis by determining the basic reproduction
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number R0 , and different equilibria of the model. We then demonstrate the stability
of equilibria and examine the non-existence of the backward bifurcation in the model.
Optimal control problem and its mathematical analysis are presented in Section 3. We
devoted Section 4 for numerical simulations and efficiency analysis.

2 Model formulation and its analysis

We subdivide the human population into six compartments: susceptible humans (S),
vaccinated (V ), infected humans in latent period (E), asymptomatic infectious humans
or carriers (C), symptomatic infectious humans (I) and recovered humans (R). Unlike
the proposed models in literature, we take into account the latent period. The loss of
immunity of recovered humans is also taken into account. Following Mutua et al. [30],
we assume in this work that direct transmission of typhoid through person to person is
negligible1. We add a compartment, B, which represents bacteria in the environment.

We assume, like some compartment models with imperfect vaccine, that the im-
munity obtained by the vaccination process, is temporary. So, we denote the waning
rate of vaccine by θ. The recruitment in human population is at the constant rate Λh,
and newly recruited individuals enter the susceptible compartment S. In each human
compartment, individuals go out from the dynamics at natural mortality rates µh. The
human susceptible population is decreased following by (1) infection, which can be ac-
quired via effective contact with bacteria through contaminated food or water, at a mass
action incidence rate νBS, (2) by vaccination at a vaccination rate ξ. Latent humans E
become asymptomatic infectious (carriers) C at a rate qγ1 where q represents the prob-
ability of a latent to become carrier, or symptomatic infectious (I) at a rate (1 − q)γ1.
carrier humans becomes recoveries at rate pγ2 where p represents the probability of an
asymptomatic to becomes symptomatic, or moves to symptomatic infectious class at a
rate (1 − p)γ2. Symptomatic infectious humans recover at a constant rate, σ or die as
consequence of infection, at a disease-induced death rate δ. After infection, recovered
humans loose their immunity at a rate α. For bacteria compartment, we assume that
bacteria population increases up only through excretion of symptomatic infectious at a
rate pi or carriers at a rate pc, and decreases at a rate µb.

The above assumptions lead to the following nonlinear system of ordinary differential

1http://www.vdh.Virginia.gov/epidemiology/factsheets/Typhoid_Fever.htm
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equations,

Ṡ(t) = Λh + αR(t) + θV (t)− (νB(t) + k1)S(t), (1a)

V̇ (t) = ξS(t)− [(1− ε)νB(t) + k2]V (t), (1b)

Ė(t) = νB(t) [S(t) + πV (t)]− k3E(t), (1c)

Ċ(t) = qγ1E(t)− k4C(t), (1d)

İ(t) = q1γ1E(t) + p1γ2C(t)− [k5 + σ] I(t), (1e)

Ṙ(t) = pγ2C(t) + σI(t)− k6R(t), (1f)

Ḃ(t) = pcC(t) + piI(t)− µbB(t) (1g)

subject to the initial conditions S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, C(0) ≥ 0, I(0) ≥ 0,
R(0) ≥ 0 and B(0) ≥ 0. For a better readability, we set k1 = ξ + µh, k2 = θ + µh,
k3 = γ1 + µh, k4 = µh + γ2, k5 = δ + µh, k6 = µh + α, π = 1− ε, q1 = 1− q, p1 = 1− p
and k1k2 − θξ = µh(k2 + ξ) > 0.

Figure 1: Schematic of the typhoid model.
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A synoptic table of the state variables and the description of model parameters
are given in Tables 1 and 2, respectively. Figure 1 depicts the flow exchange between
compartments of the model. All variables and parameters are nonnegative.

Table 1: Description of state variables of the mosquito-borne epidemic model (1)

State variable Description

S Number of susceptible humans
V Number of vaccinated humans
E Number of exposed humans
C Number of infectious humans without clinical signs (carriers)
I Number of infectious humans with clinical signs
R Number of recovered humans with partial immunity
B Number of bacteria concentration

Table 2: Description and values of model parameters(1).

Parameter Description Baseline value Source

Λh Recruitment rate of humans 467 humans day−1 [30]
µh Natural mortality rate in humans (1/(65×365)) day−1 [2]
γ1 Rate of progression to carriers 1/8 day−1 Assumed
γ2 Recovery rate from carriers 0.000315 day−1 [30]
δ Typhoid-induced death rate 0.002 day−1 [30]
ν Infection rate of typhoid 1.37x10E-9 day−1 [30]
σ Recovery rate from infectious 0.0657 day−1 [30]
µb Bacterial decay rate 0.0645 day−1 [30]
ε Vaccine efficacy 0.48-0.956 [18, 34]
ξ Vaccination rate 0.5Varied [0,1]
θ Waning rate of vaccination effect 9.041x 10E-04day−1 [27]
α Removal rate from recovered subclass 0.000904day−1 [5]

to susceptible subclass
pc Bacteria excretion (carriers) 1 [30]
pi Bacteria excretion (infectious) 10 [30]
q Probability of exposed E to become carriers C 0.3 Assumed
p Probability of carriers C to become removed R 0.7 Assumed

2.1 Nonnegativity and boundedness of solutions

Using [37, Theorem 5.2.1], it then follow that for any (S0, V0, E0, C0, I0, R0, B0) ∈ R7
+,

system (1) has a unique local nonnegative solution (S(t), V (t), E(t), C(t), I(t), R(t), B(t))
through the initial value (S(0), V (0), E(0), C(0), I(0), R(0), B(0)) = (S0, V0, E0, C0, I0, R0, B0).
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Let N(t) := S(t) + V (t) + E(t) + C(t) + I(t) +R(t). Then N(t) satisfies

Ṅ(t) ≤ Λh − µhN − δI

which implies that
Ṅ(t) ≤ Λh − µhN,

and hence

lim sup
t−→∞

N(t) ≤ Λh

µh
.

So N(t) is bounded.
Using this last inequality, we obtain from the last equation of (1) that

Ḃ(t) ≤ (pi + pc)Λh

µh
− µbB.

Solving the above equation gives

B(t) ≤ (pi + pc)Λh

µhµb
+K exp(−µbt),

which implies the nonnegativity of B. So, taking the limit of above equation, we obtain

lim sup
t−→∞

B(t) ≤ (pi + pc)Λh

µhµb
.

So B(t) is also bounded. Hence, the above result implies that the solutions of system
(1) are nonnegative and bounded in the region

Ω =

{
(S, V,E,C, I,R,B) ∈ R7

+ : S + V + E + C + I +R ≤ Λh

µh
;B ≤ (pi + pc)Λh

µhµb

}
.

2.2 Basic reproduction number and local stability of the disease–free
equilibrium

The disease free equilibrium point of model system (1) is given byQ0 = (S0, V0, 0, 0, 0, 0, 0)
where S0 = Λhk2/(µh(k2 + ξ)) and V0 = Λhξ/(µh(k2 + ξ)).

The basic reproduction number R0, defined as a number of secondary infections
produced by a single infected individual when introduced to a completely susceptible
population, is a threshold quantity and enables us to calibrate the disease dynamics.
Because it is very important when we want to implement some strategies to control the
disease dynamics, efforts have been made to calculate R0. So, the basic reproduction
number is also defined as the largest eigenvalue of the next generation matrix [40].
The approach developed by van den Driessche & Watmough (2002)[40] is used here to
calculate the basic reproduction number for the typhoid model (1).

Let us denoted by x = (S, V,E,C, I,R,B)t. Then, the model system (1) can be
written as

ẋ = F(x)− V(x)
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where

F(x) =


νB(S + πV )

0
0

pcC + piI


and

V(x) =


−k3E

qγ1E − k4C
q1γ1E + p1γ2C − (k5 + σ)I

−µb


Next, we obtain

F =


0 0 0 ν(S0 + πV0)
0 0 0 0
0 0 0 0
0 pc pi 0


and

V =


k3 0 0 0
−qγ1 k4 0 0
−q1γ1 −p1γ2 (k5 + σ) 0

0 0 0 µb


We obtain FV −1 as

FV −1 =


0 0 0

ν(S0 + πV0)

µb
0 0 0 0
0 0 0 0

pi (γ1k4µbq1 + γ1γ2µbp1q)

k3k4µb (σ + k5)
+
γ1pcq

k3k4

γ2p1pi
k4 (σ + k5)

+
pc
k4

pi
σ + k5

0


Now, the basic reproduction number is defined as the largest eigenvalue (spectral radius)
of the next generation matrix FV −1 and can be obtained as

R0 = ρ(FV −1) =

√
νΛh(k2 + πξ)γ1 [pcq(σ + k5) + pi(k4(1− q) + γ2q(1− p))]

µbµhk3k4(k2 + ξ)(σ + k5)
(2)

We note that,
R0 =

√
R0,I +R0,c,

where

R0,I = ν
Λh(k2 + πξ)

µh(k2 + ξ)

γ1
µh + γ1

pi

(
q1 + q

γ2p1
µh + γ4

)
1

µh + δ + σ

1

µb
,

is the number of expected new cases caused by a symptomatic infectious human. It
equals the product of the rate of infection for single infected individual in a population
of susceptible individual ν(S0+πV0) = νΛh(k2+πξ)/(µh(k2+ξ)), the probability that an
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infected human survives the latent stage and becomes symptomatic infectious pi(γ1/(µh+
γ1)) (q1 + qγ2p1/(µh + γ4)), the duration of the symptomatic state 1/(µh + δ + σ), and
the lifespan of bacteria 1/µb.

R0,C = ν
Λh(k2 + πξ)

µh(k2 + ξ)

γ1
µh + γ1

pcq
1

µh + γ2

1

µb
,

is the number of expected new cases caused by a carrier human. It is equal to the
product of the rate of infection for single infected individual in a population of susceptible
individual ν(S0 + πV0) = νΛh(k2 + πξ)/(µh(k2 + ξ)), the probability that an infected
human survives the latent stage and becomes carrier pcqγ1/(µh +γ1), the duration if the
carrier stage 1/k4 = 1/(µh + γ2), and the lifespan of bacteria 1/µb.

The basic reproduction number is equal to the arithmetic mean of R0,I and R0,C

because infection from human to human goes through ingestion of water or food con-
taminated with the faeces of symptomatic or asymptomatic human.

Now, using [40, Theorem 2], we state the following result pertaining to the local
stability of the disease–free equilibrium Q0. See appendix B for the proof.

Proposition 2.1. The disease–free equilibrium Q0 of the model (1) is locally asymptot-
ically stable if R0 < 1 and unstable if R0 > 1.

2.3 Global stability of the disease–free equilibrium

Theorem 2.1. The disease–free equilibrium (DFE) Q0 is globally asymptotically stable
in Ω if R0 < 1.

Proof. The proof is based on using the following Lyapunov function:

L := a1E + a2C + a3I + a4B

where a1 = 1, a2 = k3(k8pc+pip1γ2)/[k4piq1γ1+qγ1(k8pc+pip1γ2)], a3 = k3k4pi/[k4piq1γ1+
qγ1(k8pc + pip1γ2)] and a4 = k3k4k8/[k4piq1γ1 + qγ1(k8pc + pip1γ2)].

Denoting the differentiation with respect to t by a dot, the Lyapunov derivative of L
is given by

L̇ := a1Ė + a2Ċ + a3İ + a4Ḃ

= a1 (νB [S + πV ]− k3E) + a2 (qγ1E − k4C) + a3 (q1γ1E + p1γ2C − k8I)

+ a4 (pcC + piI − µbB)

≤ a1
(
νB
[
S0 + πV 0

]
− k3E

)
+ a2 (qγ1E − k4C) + a3 (q1γ1E + p1γ2C − k8I)

+ a4 (pcC + piI − µbB)

= a1νB
(
S0 + πV 0

)
− a1k3E + a2qγ1E − a2k4C + a3q1γ1E + a3p1γ2C − a3k8I

+ a4pcC + a4piI − a4µbB
= a1νB

(
S0 + πV 0

)
− a4µbB + (a3q1γ1 + a2qγ1 − a1k3)E + (a4pc + a3p1γ2 − a2k4)C

+ (a4pi − a3k8) I

=
µbk3k4(k5 + σ)

piq1γ1k4 + qγ1(p1piγ2 + pc(k5 + σ))

(
R2

0 − 1
)
B.
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Thus L̇ < 0 if and only if R0 < 1 with L̇ = 0 if and only if B = 0 (which implies E = I =
C = 0) or R0 = 1 . Further, the largest compact invariant set in {(S, V,E,C, I,R,B) ∈
Ω : L̇ = 0} is the singleton {Q0}. It follows from the LaSalle Invariance Principle [22,
Chapter 2, Theorem 6.4] that every solution to the equations in (1) with initial condi-
tions in Ω converge to DFE Q0 as t −→ +∞. That is (E(t), C(t), I(t), R(t), B(t)) −→
(0, 0, 0, 0) when t −→ +∞. Substituting E = C = I = R = B = 0 in to the first and the
second equations of the basic model (1) gives S(t) −→ S0 and V (t) −→ V0 as t −→ +∞.
Thus (S(t), V (t), E(t), C(t), I(t), R(t), B(t)) −→ (S0, V0, 0, 0, 0, 0, 0) when t −→ +∞ for
R0 ≤ 1. So, From the LaSalle principle we deduce the attractiveness of Q0, but since Q0

is locally asymptotically stable when R0 < 1, we deduce that it is not only attractive,
but it is also globally asymptotically stable.

2.4 Endemic equilibrium and its stability analysis

2.4.1 Existence of endemic equilibrium

First we introduce the following thresholds

R1 =
γ1α((µhq1 + γ2)σ + γ2k5pq)(πξ + k2)

2

k3k4k6k8µhπ(ξ + k2)
,

R2 =
(k2 + ξπ)(k1π + k2)

µhπ(ξ + k2)
,

Rb =
√
R2 −R1,

(3)

and the following coefficients

a2 = R4
0k

2
3k

2
4k

2
8µ

2
h(ξ + k2)

2π×
× (µhγ1α(k5 + σq) + γ2µhk8(α+ γ1) + γ1γ2α(1− pq)k5 + [µ2h + (α+ γ2 + γ1)µh]µhk8),

a1 = −R2
0k

2
3k

2
4k

2
8µ

2
h(ξ + k2)

2γ1Λhk6π(k4q1 + γ2p1q)(R2
0 −R2

b),

a0 = −γ21µhΛ2
hk3k4k6k8(k4q1 + γ2p1q)

2(πξ + k2)
2(ξ + k2)(R2

0 − 1).

(4)

Then we have the following result concerning the existence of endemic equilibria for the
basic model (1).

Proposition 2.2. The basic model (1) has:

(i) A unique endemic equilibrium if a0 < 0⇐⇒ R0 > 1.

(ii) A unique endemic equilibrium if a1 < 0 and a0 = 0 or a21 − 4a2a0 = 0.

(iii) Two endemic equilibria if a0 > 0 (R0 < 1), a1 < 0 (R0 > Rb) and a21− 4a2a0 > 0.

(iv) No endemic equilibrium otherwise.
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Proof. To find equilibrium points of model system (1), we just set its right-hand side
equal to zero.

Λh + αR+ θV − (νB + k1)S = 0, (5a)

ξS − [(1− ε)νB + k2]V = 0, (5b)

νB [S + πV ]− k3E = 0, (5c)

qγ1E − k4C = 0, (5d)

q1γ1E + p1γ2C − [k5 + σ] I = 0, (5e)

pγ2C + σI − k6R = 0, (5f)

pcC + piI − µbB = 0. (5g)

Solving the four last equations of (5) gives

E =
k4
qγ1

C, (6a)

C =
q

(q1k4 + qp1γ2)
[k5 + σ] I, (6b)

R =
pγ2C + σI

k6
, (6c)

B =
pcC + piI

µb
. (6d)

Solving the two first equations of (5) gives

V =
ξS

[πνB + k2]
, (7a)

S =
(Λh + αR)(πνB + k2)

[(νB + k1)(πνB + k2)− θξ]
. (7b)

Using (6) and (7) in the third equation of system (5) gives that I is a nonnegative solution
of the following equation

I
(
a2I

2 + a1I + a0
)

= 0 (8)

where a2, a1 and a0 are given by (4).
Note that for I = 0, we have the disease-free equilibrium Q0 of which the stability

analysis has been studied in the previous paragraph. Now we consider I 6= 0. Clearly,
a2 > 0, and a0 < 0 (resp.a0 > 0) if and only if R0 > 1 (resp. R0 < 1). Thus Proposition
2.2 is established using Descartes’ rule of signs [41].

Item (iii) of proposition 2.2 indicates the possibility of the occurrence of the backward
bifurcation phenomenon in model (1). This phenomenon occurs when the disease–free
equilibrium coexists with at least two endemic equilibria when the basic reproduction
number is less than unity [1, 4, 7, 9, 11, 40]. In the following paragraph, we will explore
the direction of the bifurcation and prove the local stability of the unique endemic
equilibrium whenever R0 > 1.
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2.4.2 Direction of the bifurcation and local stability of the endemic equilib-
rium

In order to determine the direction of the bifurcation and to prove the stability of the
endemic equilibrium point, we make use of the bifurcation theory approach which is based
on the Center Manifold Theory [8] as described by Theorem 4.1 of Castillo-Chavez and
Song [9] (see Appendix (A)).

Note that the Jacobian matrix of system (1) evaluated at the disease-free equilibrium
at R0 = 1 and bifurcation parameter ν = ν∗ where

ν∗ =
µbµhk3k4(k2 + ξ)(σ + k5)

Λh(k2 + πξ)γ1 [pcq(σ + k5) + pi(k4(1− q) + γ2q(1− p))]
, (9)

has a simple zero eigenvalue and the other eigenvalues are negative, which implies that
the disease-free equilibrium is a non-hyperbolic equilibrium when R0 = 1.

To conduct this analysis, we assume that S = x1, V = x2, E = x3, C = x4, I = x5,
R = x6 and B = x7.

The system (1) can be written as

dx1
dt

= Λh + αx6 + θx2 − (νx7 + k1)x1 ≡ f1, (10a)

dx2
dt

= ξx1 − [πνx7 + k2]x2 ≡ f2, (10b)

dx3
dt

= νx7 [x1 + πx2]− k3x3 ≡ f3, (10c)

dx4
dt

= qγ1x3 − k4x4 ≡ f4, (10d)

dx5
dt

= q1γ1x3 + p1γ2x4 − k8x5 ≡ f5, (10e)

dx6
dt

= pγ2x4 + σx5 − k6x6 ≡ f6, (10f)

dx7
dt

= pcx4 + pix5 − µbx7 ≡ f7 (10g)

The Jacobian of the model system (1) around the disease–free equilibrium point Q0

evaluated at R0 = 1 is

J∗(Q0) =



−k1 θ 0 0 0 α −ν∗S0
ξ −k2 0 0 0 0 −ν∗πV0
0 0 −k3 0 0 0 ν∗(S0 + πV0)
0 0 qγ1 −k4 0 0 0
0 0 q1γ1 p1γ2 −(k5 + σ) 0 0
0 0 0 pγ2 σ −k6 0
0 0 0 pc pi 0 −µb


.

Let u = [u1, u2, u3, u4, u5, u6, u7] denote the left eigenvector and w = [w1, w2, w3, w4, w5, w6, w7]
T

denote the right eigenvector of J∗(Q0) corresponding to the zero eigenvalue. We obtain
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that

u1 = u2 = u6 = 0; u3 =
µb

ν∗(S0 + πV0)
u7, u4 =

1

qγ1
(k3u3 − q1γ1u5) , u5 =

pi
k8
u7, u7 > 0,

w1 = −ν
∗(k2S0 + θπV0)

k1k2 − θξ
w7, w2 = −ν

∗(ξS0 + k1πV0)

k1k2 − θξ
w7, w3 =

ν∗(S0 + πV0)

k3
w7,

w4 =
qγ1
k4

w3, w5 =
1

k8
(q1γ1w3 + p1γ2w4) , w6 =

1

k6
(pγ2w4 + σw5), w7 > 0.

The non-zero partial derivatives associated with the functions fi, i = 1, .., 7 of the system
(10) calculated at R0 = 1 and ν = ν∗ are(

∂2f3
∂x1∂x7

)
Q0

= ν∗,

(
∂2f3
∂x2∂x7

)
Q0

= πν∗,

(
∂2f3
∂x7∂ν∗

)
Q0

= S0 + πV0.

From [9, 40], we obtain the bifurcation constants a and b as given below:

a =
7∑

k,i,j=1

ukwiwj

(
∂2fk
∂xi∂xj

)
Q0

= −2ν∗
µb
µh
u7w

2
7 < 0,

and

b =
7∑

k,i=1

ukwi

(
∂2fk
∂xi∂ν∗

)
Q0

=
µb
ν∗
u7w7 > 0.

Since a < 0 and b > 0, we claim the following result:

Theorem 2.2. The typhoid fever model (1) exhibits a forward bifurcation at R0 = 1,
and the unique endemic equilibrium is locally asymptotically stable whenever R0 > 1.

Using Theorems 2.1 and 2.2, we conclude that the typhoid fever model (1) does
not exhibits the backward bifurcation phenomenon. This coincides with some earlier
results concerning the non-occurrence of the backward bifurcation phenomenon in some
epidemiological models with mass action incidence rates [3, 4, 19, 26]. Figure 2 illustrates
the forward bifurcation phenomenon.
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Figure 2: The forward bifurcation curve for model system 1 in the (R0, I
∗) plane.

3 Optimal control model

We extend the model (1) to include:

1. Density dependent death rates of humans. Generally, most mathematical models of
transmission dynamics of infectious diseases assume that the populations involved
die at constant rates. However, others factors like density increase the death rate
of the populations involved. To be realistic, we include density death rates in
typhoid model (1). Following Chitnis et al. [11, 12], the natural mortality rate
of humans become µh → µ1h + µ2hNh, where µ1h = 1.6 × 10−5 day−1 represents
the density-independent part of the death (and emigration) rate for humans, and
µ2h = 3.0× 10−7 humans−1 × day−1 represents the density-dependent part of the
death (and emigration) rate for humans.

2. Several possible interventions in order to reduce or limit the proliferation of bacteria
population and the explosion of the number of infected humans. In addition of
controls used in [38], we add vaccination as control variable to reduce or even
eradicate the spread of typhoid fever disease. To this aim, we introduce three time
dependent controls as follows:

(a) The first control 0 ≤ ξ(t) ≤ 1 denotes the rate of susceptible individuals that
one decides to vaccinate at time t. We assume that only susceptible humans
receive vaccine.

(b) The second control 0 ≤ u1(t) ≤ 1 represents efforts made to keep the places
clean, and thus prevent contamination of water and food by the bacteria
that cause typhoid fever (sanitation and proper hygiene controls). Thus the

13



infection term is modified as follows:

νB(t)S(t) := (1−u1(t))νB(t)S(t) and πνB(t)V (t) := (1−u1(t))πνB(t)V (t).
(11)

Note also that this control increases the bacterial decay rate. Thus, the bac-
terial decay rate becomes

µb := µb + b1u1(t), (12)

where b1 = 0.3 denotes bacterial mortality rates induced by chemical inter-
vention.

(c) The third control 0 ≤ u2(t) ≤ 1 represents efforts made for treatment, which
consists of all the accompanying measures such as: the patient’s care (use
of ambulances to transport patients, isolating infected patients in hospitals)
and the administration of proper treatment. We assume that the efficacy and
duration of the treatment varies from one person to another (depending of the
immune response of the patient) [2]. Thus we modify the recovery rate such
that σ := σ + b2u2(t), where b2 = 0.7 represents the proportion of effective
treatment for infectious I(t). Unlike models in the literature, we take into
account the fact that treatment permits to decrease the disease induced death
of infected humans with clinical signs of the disease. Then δ := (1−b2u2(t))δ.
Its also permits to decrease the bacteria excretion of infectious humans with
clinical signs. So pi := (1− b2u2(t))pi.

Note that 0 ≤ ξ(t), u1(t), u2(t) ≤ 1 means that when the control is zero there is
no effort invested (i.e. no control) and when it is one, the maximum control effort is
invested.

It follows, after incorporating the above assumptions and extension, that the extended
typhoid fever model, which incorporates density-dependent death rates as well as time-
dependent control terms, consists of the following non-autonomous system of differential
equations.

Ṡ(t) = Λh + αR(t) + θV (t)− ξ(t)S(t)− (1− u1(t))νB(t)S(t) (13a)

− (µ1h + µ2hNh)S(t), (13b)

V̇ (t) = ξ(t)S(t)− (1− u1(t))πνB(t)V (t)− (θ + µ1h + µ2hNh)V (t), (13c)

Ė(t) = (1− u1(t))νB(t) [S(t) + πV (t)]− (γ1 + µ1h + µ2hNh)E(t), (13d)

Ċ(t) = qγ1E(t)− (γ2 + µ1h + µ2hNh)C(t), (13e)

İ(t) = q1γ1E(t) + p1γ2C(t)− (σ + b2u2(t)) I(t)− (1− b2u2(t)) δI(t) (13f)

− (µ1h + µ2hNh) I(t), (13g)

Ṙ(t) = pγ2C(t) + (σ + b2u2(t))I(t)− (α+ µ1h + µ2hNh)R(t), (13h)

Ḃ(t) = pcC(t) + (1− b2u2(t))piI(t)− (µb + b1u1(t))B(t), (13i)

with initial conditions given at t = 0.
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We mention that in the absence of anti-typhoid fever controls, the non-autonomous
system (13) reduces to the autonomous system (1) when ξ(t) := ξ and u1(t) = u2(t) = 0.

Remark 3.1. In the proposed model (13), we take into account the fact that the protec-
tion on the human side can be maximal (u1(t) = 1). On the other hand, the measures
taken to clean up the residential areas must take into account the preservation of the
environment. That is why u1(t) is multiplied by b1 at the level of additional bacterial
mortality due to the spraying of chemical products.

The rate of change of the total population of humans and bacteria is given by

Ṅh(t) = Λh − (µ1h + µ2hNh(t))Nh(t)− (1− b2u2(t))δI(t)

Ḃ(t) = pcC(t) + (1− b2u2(t))piI(t)− (µb + b1u1(t))B(t)
(14)

Using the same approach as the subsection 2.1, we conclude that Nh and B are bounded.
Since the Lebesgue measurable controls ξ, u1 and u2 are also bounded, it follows from
Lukes [25] that the non-negative bounded solutions to the state system exist.

Let us consider the objective (cost) function given by

J(ξ, u1, u2) =

∫ T

0

(
A1I(t) +A2B(t) +

1

2
D1u

2
1 +

1

2
D2u

2
2 +

1

2
D3u

2
3

)
dt (15)

subject to the state system given by Eq.(13).
The main goal is to minimize the number of infected humans with clinical manifesta-

tions of the disease (I(t)), and keeping our environment on sanitation without bacteria
which causes typhoid fever, while minimizing costs. In (15), A1 and A2 denote, re-
spectively, the weight constants of the infected human with clinical manifestations (Ih)
and the total number of Bacteria B. On the other hand, D1, D2 and D3 are costs
for vaccination, prevention and/or environment sanitation, and treatment, respectively.
For sake of simplicity, we choose quadratic costs to make the problem convex and thus
guarantee that a unique solution exists [2, 24]. Our main goal is to find optimal control
functions (ξ∗, u∗1, u

∗
2) such that J (ξ∗, u∗1, u

∗
2) = min{J (ξ, u1, u2) | (ξ, u1, u2) ∈ Γ} where

Γ = {c = (ξ, u1, u2) |ci(t) is Lebesgue measurable on [0,T], 0 ≤ ci ≤ 1, i = 1, 2, 3} is the
control set.

The next step is to prove the existence of an optimal control for system (13) and
then derive the optimality system.

3.1 Existence of an optimal control

Theorem 3.1. Consider the objective functional J given by Eq. (15) with (ξ, u1, u2) ∈
Γ subject to the constraint state system (13). There exist (ξ∗, u∗1, u

∗
2) ∈ Γ such that

J (ξ∗, u∗1, u
∗
2) = min{J (ξ, u1, u2) | (ξ, u1, u2) ∈ Γ}.

Proof. We observe that the integrand of the objective function given by (15) is convex
on the closed, convex control set Γ. Since the model is linear in the control variables and
is bounded by a linear system in the state variables, then the conditions for the existence
of optimal control are satisfied [17, Theorem 4.1.,page 68].
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3.2 The optimality system

To derive the necessary conditions that the three optimal controls and corresponding
states must satisfy, we use Pontryagin’s maximum principle [36]. To this aim, we define
the Hamiltonian function for the system, where λi, i = 1, .., 7 are the adjoint variables:

H := A1I(t) +A2B(t) +
1

2
D1ξ

2 +
1

2
D2u

2
1 +

1

2
D3u

2
2

+ λ1 [Λh + αR(t) + θV (t)− ξ(t)S(t)− (1− u1(t))νB(t)S(t)− (µ1h + µ2hNh)S(t)]

+ λ2 [ξ(t)S(t)− (1− u1(t))πνB(t)V (t)− (θ + µ1h + µ2hNh)V (t)]

+ λ3 [(1− u1(t))νB(t) (S(t) + πV (t))− (γ1 + µ1h + µ2hNh)E(t)]

+ λ4 [qγ1E(t)− (γ2 + µ1h + µ2hNh)C(t)]

+ λ5 [q1γ1E(t) + p1γ2C(t)− (σ + b2u2(t)) I(t)− (1− b2u2(t)) δI(t)− (µ1h + µ2hNh) I(t)]

+ λ6 [pγ2C(t) + (σ + b2u2(t))I(t)− (α+ µ1h + µ2hNh)R(t)]

+ λ7 [pcC(t) + (1− b2u2(t))piI(t)− (µb + b1u1(t))B(t)] .

(16)

The following result presents the adjoint system and control characterization.

Theorem 3.2. Given an optimal control (ξ∗, u1, u2), and corresponding state solutions
S, V,E,C, I,R,B of the corresponding state system (13), there exists adjoint variables,
λi, i = 1, .., 7, satisfying

λ
′
1 = ξ(λ1 − λ2) + (1− u1)νB(λ1 − λ3) + (µ1h + µ2hNh)λ1

+ µ2h(Sλ1 + V λ2 + Eλ3 + Cλ4 + Iλ5 +Rλ6),

λ
′
2 = θ(λ2 − λ1) + (1− u1)πνB(λ2 − λ3) + (µ1h + µ2hNh)λ2

+ µ2h(Sλ1 + V λ2 + Eλ3 + Cλ4 + Iλ5 +Rλ6),

λ
′
3 = γ1(λ1 − qλ4 − q1λ5) + (µ1h + µ2hNh)λ3

+ µ2h(Sλ1 + V λ2 + Eλ3 + Cλ4 + Iλ5 +Rλ6),

λ
′
4 = γ2(λ4 − p1λ5 − pλ6) + (µ1h + µ2hNh)λ4 − pcλ7

+ µ2h(Sλ1 + V λ2 + Eλ3 + Cλ4 + Iλ5 +Rλ6),

λ
′
5 = −A1 + (µ1h + µ2hNh)λ5 − (1− b2u2)piλ7 + (σ + b2u2)(λ5 − λ6) + (1− b2u2)δλ5

+ µ2h(Sλ1 + V λ2 + Eλ3 + Cλ4 + Iλ5 +Rλ6),

λ
′
6 = α(λ6 − λ1) + (µ1h + µ2hNh)λ6 + µ2h(Sλ1 + V λ2 + Eλ3 + Cλ4 + Iλ5 +Rλ6),

λ
′
7 = −A2 + (1− u1)ν [S(λ1 − λ3) + πV (λ2 − λ3)] + (µb + b1u1)λ7,

with terminal conditions λi(T ) = 0 for i = 1, .., 7.
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Furthermore, the optimal controls ξ∗ ,u∗1, and u∗2 are represented by

ξ∗ = max

{
0,min

{
1,
S(λ1 − λ2)

D1

}}
,

u∗1 = max

{
0,min

{
1,
νB [S(λ3 − λ1) + πV (λ3 − λ2)] + b1Bλ7

D2

}}
,

u∗2 = max

{
0,min

{
1,
b2I [piλ7 + (1− δ)λ5 − λ6]

D3

}}
.

(17)

Proof. The adjoint system results from Pontryagin’s principle [36]

λ
′
1(t) = −∂H

∂S
, λ

′
2(t) = −∂H

∂V
, ... , λ

′
7(t) = −∂H

∂B
,

with zero final time conditions (transversality). The characterization of the optimal
control given by (17) is obtained by solving the equations on the interior of the control
set

∂H
∂ξ

= 0,
∂H
∂u1

= 0,
∂H
∂u2

= 0.

Using the bounds on the controls, we obtain the desired characterization.

So we get the optimality system which consists of the state system (13) with the
initial conditions, the adjoint system with the terminal conditions and the control char-
acterization (17).

4 Numerical simulations and efficiency analysis

4.1 Numerical simulations

The simulations were carried out using the values of Table 2. We use an iterative scheme
to solve the optimality system. We first solve the state equations (13) with a guess for
the controls over the simulated time using fourth order Runge–Kutta scheme. Then, we
use the current iterations solutions of the state equation to solve the adjoint equations by
a backward fourth order Runge–Kutta scheme. Finally, we update the controls by using
a convex combination of the previous controls and the value from the characterizations
(3.2) (see e.g. [2, 24]).

For the weights in the objective functional J (see Eq. (15))), we choose D1 = 30AC2,
D2 = 38533AC [15], and D3 = 60.36AC. Figure 3 shows the optimal control profiles.

2https://www.chu-nantes.fr/cvi-tarif-des-vaccins-53608.kjsp
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Figure 3: Control functions.

Since the purpose of this study is to determine what control strategy to adopt to
considerably reduce the spread of typhoid fever epidemics, we consider different possible
combinations of these controls as follows:

(i) Vaccination only We use vaccination like the only one control strategy (ξ 6=
0, u1 = u2 = 0) to minimise the objective function J , while the other control u1 and u2
are set to zero. On figure 4, we observe that this strategy does not have any effect on
the symptomatic infectious humans (I) either on the bacteria (B).
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Figure 4: Simulation results of optimal control model (13) showing the effect of using
optimal vaccination like the only one control strategy (ξ 6= 0, u1 = u2 = 0).

(ii) Protection only We use protection like the only one control strategy (u1 6= 0,
ξ = u2 = 0) to minimise the objective function J , while the other control ξ and u2 are
set to zero. On figure 5, we observe that this strategy does not have any effect on the
symptomatic infectious humans (I) but, it permits to reduce the number of bacteria.
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Figure 5: Simulation results of optimal control model (13) showing the effect of protection
like the only one control strategy (u1 6= 0, ξ = u2 = 0).

(iii) Treatment only We use treatment like the only one control strategy (u2 6= 0,
ξ = u1 = 0) to minimise the objective function J , while the other control ξ and u1 are
set to zero. On figure 6, we observe that this strategy has a better effect on the decrease
of the total number of symptomatic infectious humans (I), and the reduction of the total
number of bacteria.
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Figure 6: Simulation results of optimal control model (13) showing the effect of treatment
like the only one control strategy (u2 6= 0, ξ = u1 = 0).

(iv) Vaccination combined with protection We use vaccination combined with
protection like the only control strategies (ξ 6= 0, u1 6= 0, u2 = 0) to minimise the
objective function J , while the other control u2 is set to zero. On figure 7, we observe
that this strategy does not have any effect on the symptomatic infectious humans (I)
but it permits to reduce bacteria population (B). This is consistent with the fact that
vaccination and protection, taken individually, have no significant effect on the total
number of human symptomatic infected.
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Figure 7: Simulation results of optimal control model (13) showing the effect of using
optimal vaccination combined with protection like the only control strategies (ξ 6= 0, u1 6=
0, u2 = 0).

(v) Vaccination combined with treatment We use vaccination combined with
treatment like the only control strategies (ξ 6= 0, u2 6= 0, u1 = 0) to minimise the objec-
tive function J , while the other control u1 is set to zero. On figure 8, we observe that this
strategy permits to reduce the number of symptomatic infectious humans (I) and bac-
teria population (B). This is consistent with the fact that treatment taken individually,
is benefit to the reduction of symptomatic infected and bacteria population.
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Figure 8: Simulation results of optimal control model (13) showing the effect of using
optimal vaccination combined with treatment like the only control strategies (ξ 6= 0, u2 6=
0, u1 = 0).

(vi) Protection combined with Treatment We use optimal protection combined
with treatment like the only control strategies (ξ = 0, u1 6= 0, u2 6= 0) to minimise the
objective function J , while the other control uξ is set to zero. On figure 9, we observe
that this strategy permits to reduce the number of symptomatic infectious humans (I)
and bacteria population (B). This is consistent with the fact that treatment taken
individually, is benefit to the reduction of symptomatic infected and bacteria population.
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Figure 9: Simulation results of optimal control model (13) showing the effect of using
optimal protection combined with treatment like the only control strategies (ξ = 0, u1 6=
0, u2 6= 0).

(vii) The combination of all three controls Vaccine combined with protection and
treatment In this strategy, the combination of all the three controls is applied. On figure
10, we observed that combining all three controls give a better result in a decrease in the
number of symptomatic infectious humans (I), as well as, the total number of bacteria
population (B).
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Figure 10: Simulation results of optimal control model (13) showing the effect of using
optimal protection combined with treatment like the only control strategies (ξ 6= 0, u1 6=
0, u2 6= 0).

Since it not possible to use only figures result of simulations to say which is the best
control strategy, because figures 6, 8, 9 and 10 have the same shape, we perform, in the
following paragraph, an efficiency analysis to determine the best strategy in terms of
efficiency.

4.2 Efficiency analysis

To compare different control strategies listed above, we perform an efficiency analysis
which will allow us to determine the best control strategy, without taking into account
the different costs resulting from each control strategy used [2, 14]. Efficiency analysis
consist to compare the effects of possible different strategies on the reduction of the
number of cases (infectious humans Ih in our case) following infection by Salmonella
typhi, by the introduction of the efficiency index, designated by E . Let us define the
the variable A as the area comprised between the curve of the symptomatic infectious
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Table 3: Efficiency index

Strategy Ac
I E(%) Strategy Ac

I E(%)

No control 1,481,700 0 (vi) 96,088 93.5150
(iii) 96,090 93.5148 (vii) 96,088 93.5150
(v) 96,090 93.5148

human (I) population size, for instance, and the time axis during the period of time
from tinit = 0 to Tfinal = 200 days, as

A =

∫ Tfinal

tinit

I(t)dt, (18)

which permits to measure the cumulated number of symptomatic infectious humans
during the time interval [tinit, Tfinal]. We define the efficiency index E by

E =

(
1−
Ac

I

A0
I

)
, (19)

where Ac
I and A0

I are the cumulated number of symptomatic infectious human with and
without the different control mechanisms, respectively. Thus, the one with the biggest
efficiency index will be the best strategy.

Using the above simulation results, we obtain the table of efficiency index (Table 3)
From Table 3, it follows that the combination which permit to reduce the number of
cases is combination of protection with treatment or combination of three controls.

Remark 4.1. It important to note that in the efficiency index table we only consider the
strategies which include treatment, because through numerical simulations we saw that
vaccination and protection do not have a significant impact on the decrease of the total
number of symptomatic humans.

5 Conclusion

In this, paper we formulated a mathematical model for the transmission dynamics of ty-
phoid fever in human populations, which takes into account incubation period, imperfect
vaccine combined with protection or environment sanitation and treatment as control
mechanisms. We have began by focus on the autonomous model which take only con-
stant vaccination as control strategy. We computed the basic reproduction number R0

and investigated the existence and stability of equilibria. Through Lyapunov’s theory,
we proved that the disease–free equilibrium is globally asymptotically stable whenever
the R0 is less than one. When R0 is equal to one, we proved that our model exhibits
a forward bifurcation, which mean that the phenomenon of backward bifurcation not
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occurs. Hence, the condition R0 < 1 is sufficient to go out the disease in human popu-
lations. We proved the local stability of the unique endemic equilibrium whenever the
basic reproduction number is greater than unity through the center manifold theory.

We then extended the autonomous model by adding density dependent death rate of
humans and three times-dependent controls (optimal vaccination, protection/environment
sanitation and treatment of symptomatic infectious). Optimal control theory was used
to establish conditions under which the spread of typhoid fever can be stopped and to
examine the impact of a possible combination of these three controls on the disease trans-
mission. The characterization of the optimal control was obtained by the application of
the Pontryagin’s maximum principle.

We performed numerical studies and the impact of different combination of con-
trols on the reduction of human with symptomatic signs of diseases was investigated
through efficiency analysis. In fact, thanks to the results of the numerical simulations
and efficiency analysis, we conclude that any control strategy must take into account the
treatment of the individuals who present the symptoms of the diseases.

Because of the uncertainties around the parameter values and to the availability of
budget or others resources, this conclusion must be taken with caution. Also, because
of constraints such as financial and material resources limited, sociological and cultural
barriers that sometimes make difficult the task of health workers of developing countries,
the implementation of these controls may be difficult.

In this work, factors such as climatic factors and the fact that bacteria in the en-
vironment can develop by a logistic growth rate, had not been taken into account. It
would therefore be better realistic to incorporate its into the model and redo an analysis
of the complete model. This is a perspective to this work.

Acknowledgements: Hamadjam Abboubakar thanks the Zukunftskolleg of the University

of Konstanz-Germany for its financial support through the AAA-Fellowship, which enabled him

to carry out a 3-months research stay at the Department of Mathematics and Statistics.

A useful result

We use the following result to prove the non appearance of the backward bifurcation in
typhoid model (1) when the basic reproduction number R0 is less that one, and the local
stability of the unique endemic equilibrium whenever R0 > 1.

Theorem A.1 (Castillo-Chavez & Song [9]). Consider the following general system of
ordinary differential equations with a parameter φ

dz

dt
= f(z, φ), f : Rn × R −→ R and f ∈ C 2(Rn,R) (20)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and assume

1. A = Dzf(0, 0) =

(
∂fi
∂zj

(0, 0)

)
is the linearization matrix of system (20) around
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the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and other
eigenvalues of A have negative real parts;

2. Matrix A has a right eigenvector u and a left eigenvector v (each corresponding to
the zero eigenvalue).

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkuiuj
∂2fk
∂zi∂zj

(0, 0) and b =
n∑

k,i=1

vkui
∂2fk
∂zi∂φ

(0, 0),

then, the local dynamics of the system around the equilibrium point 0 is totally determined
by the signs of a and b.

1. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable and there
exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and there
exists a negative, locally asymptotically stable equilibrium;

2. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ� 1, 0 is locally
asymptotically stable equilibrium, and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a
positive unstable equilibrium appears;

4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability
from stable to unstable. Correspondingly a negative unstable equilibrium becomes
positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.

B Proof of Proposition 2.1

The Jacobian of the model system (1), around the disease–free equilibrium point Q0 is

J(Q0) =



−k1 θ 0 0 0 α −νS0
ξ −k2 0 0 0 0 −νπV0
0 0 −k3 0 0 0 ν(S0 + πV0)
0 0 qγ1 −k4 0 0 0
0 0 q1γ1 p1γ2 −(k5 + σ) 0 0
0 0 0 pγ2 σ −k6 0
0 0 0 pc pi 0 −µb


.

The eigenvalues of J(Q0) are X = −k6 and those of the sub-matrices

J1 =

(
−k1 θ
ξ −k2

)
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and

J2 =


−k3 0 0 ν(S0 + πV0)
qγ1 −k4 0 0
q1γ1 p1γ2 −(k5 + σ) 0

0 pc pi −µb

 .

The characteristic polynomial of J1 is

PJ1(X) = det(J1 −XI2) = X2 +X(k1 + k2) + k1k2 − θξ

where k7 = k1k2 − θξ = µh(k2 + ξ) > 0. Since all coefficients of PJ1(X) are positive,
J1 has eigenvalues with negative real parts. It remains to shows that J2 has eigenvalues
with negative real parts. The characteristic polynomial of J2 is

det(J2 −XI2) = Ψ(X) := X4 + a1X
3 + a2X

2 + a3X + a4

with k8 = k5 + σ, a1 = k3 + k4 + k8 + µb, a2 = µb(k3 + k4 + k8) + k8(k3 + k4) + k3k4,
a4 = k3k4k8µb(1−R2

0) and

a3 =
1

k4piq1 + (γ2p1pi + k8pc)q

[
(((k4 + (1 −R2

0)k3)k8 + k3k4)µb + k3k4k8)k4piq1

+(((k4 + k3)k8 + k3k4)µb + k3k4k8)γ2qp1pi + (((k4 + k3)k8 + (1 −R2
0)k3k4)µb + k3k4k8)k8pcq

]
Since R0 < 1, it is clear that all coefficients of Ψ(X) are always positive. Now we have

to verify that the Routh–Hurwitz criterion holds for polynomial Ψ(X). To this aim,
setting H1 = a1 > 0, consider

H2 = a1a2 − a3

=
1

k4piq1 + (γ2p1pi + k8pc)q

[
((k4k8 + k24 + k3k4)µ

2
b

+(k4k
2
8 + (2k24 + (R2

0 + 2)k3k4)k8 + k34 + 2k3k
2
4 + k23k4)µb

+(k24 + k3k4)k
2
8 + (k34 + 2k3k

2
4 + k23k4)k8 + k3k

3
4 + k23k

2
4)piq1

+(((γ2k8 + γ2k4 + γ2k3)µ
2
b + (γ2k

2
8 + (2γ2k4 + 2γ2k3)k8 + γ2k

2
4 + 2γ2k3k4 + γ2k

2
3)µb

+(γ2k4 + γ2k3)k
2
8 + (γ2k

2
4 + 2γ2k3k4 + γ2k

2
3)k8 + γ2k3k

2
4 + γ2k

2
3k4)p1pi

+((k28 + (k4 + k3)k8)µ
2
b + (k38 + (2k4 + 2k3)k

2
8 + (k24 + (R2

0 + 2)k3k4 + k23)k8)µb

+(k4 + k3)k
3
8 + (k24 + 2k3k4 + k23)k28 + (k3k

2
4 + k23k4)k8)pc)q

]
,
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H3 = a1a2a3 − a21a4 − a33

=
1

k24p
2
i q

2
1 + (2γ2k4p1p2i + 2k4k8pcpi)qq1 + (γ2

2p
2
1p

2
i + 2γ2k8p1pcpi + k28p

2
c)q2

× ...

×
[
(((k34 + (1 −R2

0)k3k
2
4)k28 + (k44 + 2k3k

3
4 + (1 −R2

0)k23k
2
4)k8 + k3k

4
4 + k23k

3
4)µ3

b

+((k34 + (1 −R2
0)k3k

2
4)k38 + (2k44 + (R2

0 + 4)k3k
3
4 + (−R4

0 −R2
0 + 2)k23k

2
4)k28

+(k54 + (R2
0 + 4)k3k

4
4 + (R2

0 + 4)k23k
3
4 + (1 −R2

0)k33k
2
4)k8 + k3k

5
4 + 2k23k

4
4 + k33k

3
4)µ2

b

+((k44 + 2k3k
3
4 + (1 −R2

0)k23k
2
4)k38 + (k54 + (R2

0 + 4)k3k
4
4 + (R2

0 + 4)k23k
3
4 + (1 −R2

0)k33k
2
4)k28

+((R2
0 + 2)k3k

5
4 + (R2

0 + 4)k23k
4
4 + 2k33k

3
4)k8 + k23k

5
4 + k33k

4
4)µb + (k3k

4
4 + k23k

3
4)k38

+(k3k
5
4 + 2k23k

4
4 + k33k

3
4)k28 + (k23k

5
4 + k33k

4
4)k8)p2i q

2
1 + ((((2γ2k

2
4 + (2γ2 − γ2R

2
0)k3k4)k28

+(2γ2k
3
4 + (γ2R

2
0 + 4γ2)k3k

2
4 + (2γ2 − γ2R

2
0)k23k4)k8 + 2γ2k3k

3
4 + 2γ2k

2
3k

2
4)µ3

b

+((2γ2k
2
4 + (2γ2 − γ2R

2
0)k3k4)k38 + (4γ2k

3
4 + (3γ2R

2
0 + 8γ2)k3k

2
4 + (4γ2 − γ2R

2
0)k23k4)k28

+(2γ2k
4
4 + (3γ2R

2
0 + 8γ2)k3k

3
4 + (3γ2R

2
0 + 8γ2)k23k

2
4 + (2γ2 − γ2R

2
0)k33k4)k8

+2γ2k3k
4
4 + 4γ2k

2
3k

3
4 + 2γ2k

3
3k

2
4)µ2

b + ((2γ2k
3
4 + (γ2R

2
0 + 4γ2)k3k

2
4 + (2γ2 − γ2R

2
0)k23k4)k38

+(2γ2k
4
4 + (3γ2R

2
0 + 8γ2)k3k

3
4 + (3γ2R

2
0 + 8γ2)k23k

2
4 + (2γ2 − γ2R

2
0)k33k4)k28

+((2γ2R
2
0 + 4γ2)k3k

4
4 + (3γ2R

2
0 + 8γ2)k23k

3
4 + (γ2R

2
0 + 4γ2)k33k

2
4)k8 + 2γ2k

2
3k

4
4 + 2γ2k

3
3k

3
4)µb

+(2γ2k3k
3
4 + 2γ2k

2
3k

2
4)k38 + (2γ2k3k

4
4 + 4γ2k

2
3k

3
4 + 2γ2k

3
3k

2
4)k28 + (2γ2k

2
3k

4
4 + 2γ2k

3
3k

3
4)k8)p1p

2
i

+(((2k24 + (2 −R2
0)k3k4)k38 + (2k34 + 4k3k

2
4 + (2 −R2

0)k23k4)k28

+((2 −R2
0)k3k

3
4 + (2 −R2

0)k23k
2
4)k8)µ3

b + ((2k24 + (2 −R2
0)k3k4)k48

+(4k34 + (2R2
0 + 8)k3k

2
4 + (4 −R2

0)k23k4)k38 + (2k44 + (2R2
0 + 8)k3k

3
4

+(−2R4
0 + 2R2

0 + 8)k23k
2
4 + (2 −R2

0)k33k4)k28 + ((2 −R2
0)k3k

4
4 + (4 −R2

0)k23k
3
4

+(2 −R2
0)k33k

2
4)k8)µ2

b + ((2k34 + (R2
0 + 4)k3k

2
4 + (2 −R2

0)k23k4)k48 + (2k44 + (2R2
0 + 8)k3k

3
4

+(2R2
0 + 8)k23k

2
4 + (2 −R2

0)k33k4)k38 + ((R2
0 + 4)k3k

4
4 + (2R2

0 + 8)k23k
3
4 + 4k33k

2
4)k28

+((2 −R2
0)k23k

4
4 + (2 −R2

0)k33k
3
4)k8)µb + (2k3k

3
4 + 2k23k

2
4)k48 + (2k3k

4
4 + 4k23k

3
4 + 2k33k

2
4)k38

+(2k23k
4
4 + 2k33k

3
4)k28)pcpi)qq1 + ((((γ2

2k4 + γ2
2k3)k28 + (γ2

2k
2
4 + (γ2

2R
2
0 + 2γ2

2)k3k4 + γ2
2k

2
3)k8

+γ2
2k3k

2
4 + γ2

2k
2
3k4)µ3

b + ((γ2
2k4 + γ2

2k3)k38 + (2γ2
2k

2
4 + (2γ2

2R
2
0 + 4γ2

2)k3k4 + 2γ2
2k

2
3)k28

+(γ2
2k

3
4 + (2γ2

2R
2
0 + 4γ2

2)k3k
2
4 + (2γ2

2R
2
0 + 4γ2

2)k23k4 + γ2
2k

3
3)k8 + γ2

2k3k
3
4 + 2γ2

2k
2
3k

2
4 + γ2

2k
3
3k4)µ2

b + Φ
]
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with

Φ = ((γ2
2k

2
4 + (γ2

2R
2
0 + 2γ2

2)k3k4 + γ2
2k

2
3)k38 + (γ2

2k
3
4 + (2γ2

2R
2
0 + 4γ2

2)k3k
2
4 + (2γ2

2R
2
0 + 4γ2

2)k23k4 + γ2
2k

3
3)k28

+ ((γ2
2R

2
0 + 2γ2

2)k3k
3
4 + (2γ2

2R
2
0 + 4γ2

2)k23k
2
4 + (γ2

2R
2
0 + 2γ2

2)k33k4)k8 + γ2
2k

2
3k

3
4 + γ2

2k
3
3k

2
4)µb

+ (γ2
2k3k

2
4 + γ2

2k
2
3k4)k38 + (γ2

2k3k
3
4 + 2γ2

2k
2
3k

2
4 + γ2

2k
3
3k4)k28 + (γ2

2k
2
3k

3
4 + γ2

2k
3
3k

2
4)k8)p21p

2
i

+ (((2γ2k4 + 2γ2k3)k38 + (2γ2k
2
4 + (γ2R

2
0 + 4γ2)k3k4 + 2γ2k

2
3)k28

+ ((2γ2 − γ2R
2
0)k3k

2
4 + (2γ2 − γ2R

2
0)k23k4)k8)µ3

b + ((2γ2k4 + 2γ2k3)k48 + (4γ2k
2
4 + (3γ2R

2
0 + 8γ2)k3k4

+ 4γ2k
2
3)k38 + (2γ2k

3
4 + (3γ2R

2
0 + 8γ2)k3k

2
4 + (3γ2R

2
0 + 8γ2)k23k4 + 2γ2k

3
3)k28 + ((2γ2 − γ2R

2
0)k3k

3
4

+ (4γ2 − γ2R
2
0)k23k

2
4 + (2γ2 − γ2R

2
0)k33k4)k8)µ2

b + ((2γ2k
2
4 + (2γ2R

2
0 + 4γ2)k3k4 + 2γ2k

2
3)k48

+ (2γ2k
3
4 + (3γ2R

2
0 + 8γ2)k3k

2
4 + (3γ2R

2
0 + 8γ2)k23k4 + 2γ2k

3
3)k38 + ((γ2R

2
0 + 4γ2)k3k

3
4

+ (3γ2R
2
0 + 8γ2)k23k

2
4 + (γ2R

2
0 + 4γ2)k33k4)k28 + ((2γ2 − γ2R

2
0)k23k

3
4 + (2γ2 − γ2R

2
0)k33k

2
4)k8)µb

+ (2γ2k3k
2
4 + 2γ2k

2
3k4)k48 + (2γ2k3k

3
4 + 4γ2k

2
3k

2
4 + 2γ2k

3
3k4)k38 + (2γ2k

2
3k

3
4 + 2γ2k

3
3k

2
4)k28)p1pcpi

+ (((k4 + k3)k48 + (k24 + 2k3k4 + k23)k38 + ((1 −R2
0)k3k

2
4 + (1 −R2

0)k23k4)k28)µ3
b + ((k4 + k3)k58

+ (2k24 + (R2
0 + 4)k3k4 + 2k23)k48 + (k34 + (R2

0 + 4)k3k
2
4 + (R2

0 + 4)k23k4 + k33)k38 + ((1 −R2
0)k3k

3
4

+ (−R4
0 −R2

0 + 2)k23k
2
4 + (1 −R2

0)k33k4)k28)µ2
b + ((k24 + (R2

0 + 2)k3k4 + k23)k58 + (k34 + (R2
0 + 4)k3k

2
4

+ (R2
0 + 4)k23k4 + k33)k48 + (2k3k

3
4 + (R2

0 + 4)k23k
2
4 + 2k33k4)k38 + ((1 −R2

0)k23k
3
4 + (1 −R2

0)k33k
2
4)k28)µb

+ (k3k
2
4 + k23k4)k58 + (k3k

3
4 + 2k23k

2
4 + k33k4)k48 + (k23k

3
4 + k33k

2
4)k38)p2c)q2

and H4 = a4H3.
We always have H1 > 0, H2 > 0, H3 > 0 and H4 > 0 if R0 < 1. Thus, the

disease–free equilibrium Q0 is locally asymptotically stable whenever R0 < 1.
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