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Abstract

We investigate different and new thermoelastic Timoshenko systems with or without his-
tory, and with Fourier or Cattaneo law for heat conduction, with respect to (non-)exponential
stability. Results are obtained that shed a new light on the role of history terms and that
of the heat conduction law. Improvements of previous results of earlier work [12] are pre-
sented, clarifying open questions, as well as results contrasting [14]. The sensitivity of the
Timoshenko system with respect to heat conduction laws and history terms is illustrated.
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1 Introduction

The classical conservative Timoshenko system! from [29],

—E(py+)e =0 in (0,L) x R+,
{plSDtt (pz + 1) in (0, L) x a1

pabit — bbze + k(pz +1) =0 in (0,L) x RT,

for the vertical displacement ¢ and the rotation angle v modeling a beam of length L > 0, has
been studied intensively concerning possible damping mechanisms. Two damping terms, one in
each equation, of frictional type ¢; resp. ¢, are easily seen to lead to an exponentially stable
system, of course here and in the sequel with added initial and boundary conditions. Only one
damping v, in the second equation of (1.1) is sufficient for exponential stability if and only if
the condition of equality of the wave speeds (EWS), given by

k b
—_=—, (1.2)
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is assumed to hold?, cf. [27].
Damping through a memory term, replacing the second equation in (1.1),

prow — k(e + 1) =0 in (0,L) x RY,

¢
P2t — bbye + k(e + ) + / g(t — 8)geds =0 in (0,L) x RT, (1.3)
0

with an exponentially decaying positive kernel g, also leads to exponential stability if and only
if the EWS condition (1.2) is satisfied, see [6].

Another type of damping consists in taking into account thermal effects — as will be later
one main aspect of our paper — having been studied first in [22],

p1ew — k(pz +1)e =0 in (0,L) x R,
P2yt — Woy + k(g + 1) + 00, =0 in (0,L) x RT, (1.4)
P30t — BOzz + 0zt =0 in (0, L) X R+,

where 6 denotes the temperature (difference to a fixed constant reference temperature). Again,
exponential stability is given if and only if the EWS condition (1.2) is satisfied. For more recent
results related to (1.4) we quote [2] and the references therein.

A third type of damping effect is given by a history term, similar to the memory term in
(1.3), resulting in the system

p1ew — k(pz +1)e =0 in (0,L) x RT,

P2t — bibyy + k(pp + ) + /OOO g(t — 8)eds =0 in (0,L) x RT, (1.5)

with an exponentially decaying positive kernel g, also becoming exponentially stable if and only

if the EWS condition (1.2) is satisfied, see [14, 21]. A short survey of references containing more

recent generalized results concerning the models (1.3) and (1.5) can be found in [3].
Combining history and thermal effects, in [14], the thermo-(visco-)elastic system

P11 — k(pz +1)e =0 in (0,L) x RY,

p2it — bzy + k(pz + ) + / g(t — 8)pgeds + 06, =0 in (0,L) x RT, (1.6)
0

p39t — BOzz + 0y =0 in (O,L) X R+,

was considered and once more, for exponentially decaying kernels g, the exponential stability of
the system was obtained if and only if the EWS condition (1.2) is satisfied.

A final aspect in the above mentioned system with temperature and history concerns the
behavior, if one replaces the Fourier type heat conduction law

q+ 50, =0 (1.7)
for the heat flux g, leading to the classical heat equation visible in its main part
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2The EWS condition is physically never satisfied but demonstrates already the sensitivity of the Timoshenko
systems.




above, by the Cattaneo (Maxwell) law

Tqt + q = — P, (1.8)

with a positive relaxation parameter 7 > 0 (7 = 0 corresponds to the Fourier law (1.7), combined
with the conservation law
P30t + Gz + 0y = 0.

Here the interesting effect appears that the Cattaneo law leads to non-exponential stability for
the system

;

1ot — k(pz + 1) =0 in (0,L) x R,
p2ut — bbry + k(pz + ) + /Ooo g(t — 8)zzds + a0, =0 in (0,L) x RT, L9)
P30t + qo + 0y = 0 in (0,L) x RT,
Tq +q = — [0y, in (0,L) x R,

\

even if the EWS condition (1.2) is satisfied, see again [14]. We also refer to [11] where a new
stability number involving the coefficients, based on the development for Cattaneo’s system
without history [25], is still regarded in the uniform stabilization of (1.9).

Thus one has the surprising fact that the Timoshenko system plus history but without
thermal effect, i.e. system (1.5), is exponentially stable under the EWS condition, it remains
exponentially stable as expected if we add the (dissipative) effect of heat conduction under
the Fourier law in system (1.6), but it loses the exponential stability when adding the (still
dissipative?) thermal effect in form of the Cattaneo law in system (1.9). In other words,
Cattaneo may destroy exponential stability, while Fourier preserves it. See [14] for detailed (and
precise) results on these statements.

In all the thermoelastic models above, the thermal damping is assumed in the bending mo-
ment by leading to the couplings in (1.4), (1.6), (1.9).

Here, we shall consider a coupling in the shear moment leading partially to new results with
respect to the EWS condition (1.2) — this condition can be avoided under history terms —. In
particular, we will have an unexpected very different result (cf. Theorem 4.1), where now we
obtain an exponential stability result also under the Cattaneo law.

The thermal damping in the shear force — possibly combined with history in the bending
moment — leads to the following thermo-(visco-)elastic system

([ p1pi — k(pe + ) + 00, = 0 in (0,L) x R*,
P2Vt — gy + k(g + ) — oz/oOo 9(8)zz(s)ds — o0 =0 in (0,L) x R, 110)
P30t + @z + o (pz + 1) =0 in (0,L) x RY,

| 7t + B89+ 6, =0 in (0,L) x R,

where we have a = 0 (without history) or & = 1 (with history), and 7 = 0 (Fourier law) or

7 > 0 (Cattaneo law). For the derivation of these possible dissipative hybrid models generated by

(1.10), we refer to [2, 3] where physical justifications are provided on thermo-(visco-)elasticity.
The remaining constants are assumed to be positive constants,

p17p27p37k707b7/8>07 (111)



and further conditions on the exponentially decaying kernel g will be specified later on.
The case a = 0, 7 = 0, meaning without history and with Fourier’s law, i.e.

prow — k(pe +1)g + 00, =0 in (0,L) x R,
P2¢tt — bwmz + k((pm + w) —00=0 in (0, L) X R+, (112)
p30; — B0z + 0 (pz + ) = in (0,L) x R,
with initial-boundary conditions
0z(0,t) = vz (L, t) = (0,t) = (L,t) = 60(0,t) =0(L,t) =0, t>0, (1.13)
and
30(1:’ 0) = 900(1‘), @t(xa O) = 801($)>¢($7 0) = wO(:U)al/}t(:Ea 0) = 1/}1(51")7 9(1:’ 0) = ‘90($)7 WS (Oa L)v

(1.14)
has already been addressed in the literature, cp. [1, 4, 5]. Accordingly, it is known that (1.12)-
(1.14) is exponentially stable if and only if the mathematical assumption EWS (1.2) is taken
into account, and polynomially stable with optimal decay rate t~1/2 ([4, Sect. 4]). This re-
sult corresponds to the one for system (1.4) (coupling with bending moment, without history,
Fourier’s law).
Here, we first show in Section 2 the exponential stability if additionally a history term is
present, i.e. (1.10) with 7 = 0 (Fourier law) but a =1,

p1o1 — k(pe +1)e + 00, =0 in (0,L) x R,

P2t — bibgy + k(0z + ) — / 9(8)Yze(s)ds — o0 =0 in (0,L) x R, (1.15)
0

p3bt — Bbzz + 0 (pz + 1) = 0 in (0,L) x RT,

without assuming EWS (1.2), see e.g. Theorem 2.2. This result provides the correct stabilization
for (1.15); and essentially improves [12, 28], where the case of non-EWS remained open. It also
brings up a different result when compared to (1.6) (thermal coupling on the bending moment)
where the EWS condition (1.2) must be regarded for its exponential stabilization. In Section 2
we also provide more precise details on improvements in this case.

In Section 3, we look at Cattaneo’s law without history, o = 0 and 7 > 0,

proee — k(e + )z + 00, =0 in (0,L) x R,
poyt — bbgy + k(pr + ) —00 =0 in (0,L) x RT, 16
P30t + @z + o (pz +10)e =0 in (0,L) x RY, (1.16)
Tq+Bq+ 6, =0 in (0,L) x R*.

It will be proved (cf. Theorem 3.1) that there is no exponential stability no matter if EWS (1.2)
is true or not. This result is new and corresponds to the known result for the case of damping
in the bending moment given in [14].
Finally, we discuss in Section 4 the situation of Cattaneo’s law with history, a = 1, 7 > 0,
namely,
p

prose — k(pe + )z + 06, =0 in (0,L) x RT,
P20t — bgs + k(pp + 1) — /000 9(8)ze(s)ds —c0 =0 in (0,L) x R, .17
P30t + @z + 0 (pz + ) =0 in (0,L) x RT,
Tq + Bq+ 0, =0 in (0,L) x RT



It will be proved that (1.17) is exponentially stable without needing the EWS condition (1.2) on
the coefficients, see Theorem 4.1. Unlike the previous case, this is a strong contrast and, maybe,
unexpected in comparison to the result for the bending moment damping mentioned above with
respect to (1.9), where we lose exponential stability going from the Fourier to the Cattaneo
model, as presented in [14]. Sections 3 and 4 will bring all specific and concrete proofs.

As a consequence for the quite different results obtained (in comparison to bending moment
damping), quite new sequences of a priori estimates will have to be provided.

Summarizing our contributions, we present:

e a first discussion of several thermoelastic Timoshenko systems involving history terms and
both Fourier and Cattaneo models (main Theorems 2.2, 3.1, 4.1);

e new insight into possible roles of history and heat conduction models strongly contrasting
expectations from earlier works, in particular Theorems 2.2, 4.1, also answering an open
question from [12, 28];

e combination of methods requiring new sequences of a priori estimates not given before,
under less assumptions on the kernel g as e.g. in [14] (no lower bound required).

We denote by L? L', H!, H} (mainly on the domain (0, L)) the usual Sobolev spaces, and by
{-,-)o and || - ||2 the inner product resp. the norm in L2. Unless otherwise specified, the letter C
will denote a generic positive constant.

2 Fourier and history: exponential stability

We start by considering the thermoelastic Fourier case with history (1.15). Introducing as usual
(cf. [14]) for the history setting

n(x,t,s) == P(z,t) —P(z,t —s), t,s >0, (2.1)

we consider the following system

prow — k(pz + )y +00, =0 in (0,L) x R,
- o0
P2t — bibe + k(pe +1) — / 9(8)Nea(s)ds —of =0 in (0,L) x R¥, (2.2
0 .
[ s — =0 in (0,L) x RT x RT,
where -
b:=b— / g(s) ds,
0
with initial-boundary conditions
0z(0,t) = wi (L, t) = (0,t) = (L,t) = 0(0,t) = (L, t) =0, (2.3)
n(0,t,s) =n(L,t,s) =0, t,s>0, .
and
(,0(.'13'70) = @O(x)v th(x70) = @1(1’), ¢($70) = 1/)0(‘%.)7 wt(‘rvo) = 1/11(33)7 (2 4)
0(x,0) = bp(z), n(z,0,s) =no(z,s), n(x,t,0) =0, x€(0,L),t s>0. '

The assumptions on g are given by



Assumption 2.1. We assume that g € L*(RT) N CY(RY) is a positive function satisfying
o
b=1> —/ g(s)ds >0 and ¢'(s) < —kig(s), s € RT, (2.5)
0

for some constant ky > 0.

We remark that we do not require any lower bound of type —kog(s) < ¢'(s) or a bound
on second derivatives like |¢”(s)| < ko for some ko, k2 > 0 as in [14]. Instead of using these
additional assumptions, we can give an improvement using a technique from [16], see below.

Without the history term it corresponds to system (1.12), where the EWS condition (1.2)
is still crucial, see the comments above following (1.12). Now, with history, we will be able to
remove this condition and still get exponential stability. This is improves [12, 28] answering
an open question, and it is in contrast to the corresponding result for systems with thermal
damping in the bending moment as in [14], where the EWS condition was also necessary for
exponential stability.

To address problem (2.2)-(2.4), we first consider the phase (Hilbert) space

Hp = H(0,L) x L}(0,L) x Hy(0,L) x L*(0, L) x L*(0, L) x Ly(R*, Hy (0, L)),

where
L
L0, L) := {w € L*(0,L) | / w(z)de =0},  H!:= HY0,L)NL30,L),
0

Lg(R+’H&(07L)) = {w | \/gw € LQ(R+7H(%(O’ L))}v

endowed with the norm
U1, = p1ll @115 + p2ll ¥ 3 + Ellow + 1l + bllball3 + psll6ll3 + /0 9(s)Ina(s)ll3ds  (2.6)

and corresponding inner product (-,-)y,, for all U = (¢, ®,¢,V,0,n) € Hp. Thus, denoting
® := ¢, and U := 9y, we can transform problem (2.2)-(2.4) into the first-order system

U, = .AFU, t >0,
(2.7)
U(0) = (w0, ¢1, %0, %1, 00,m0) =: Vo,
where Ap : D(Ar) C Hr — Hp is given by
_ o i
o
P1
)\
ApU = | 1 /5 0 2.8
T (b R a(ems)ds) | = (o) + 20 2
By - (@, + )
p3 p
L \II —Ns i

with domain

D(Ap) := {U €Hp| ® € H(0,L),¢,,V,0 € Hy(0,L),ns € L (R, Hy (0, L)),

©,0,bp + /OOO g(s)n(s)ds € H*(0,L),n(-,0) = 0}.



It is not difficult to prove that 0 € p(Ap), with the arguments in [14]. Moreover, Ap is
dissipative with

1 [,
Re(Arl. Upee = ~Bl6sI3+5 [ o(6)lna(o) s, (2.9

This identity would follow easily assuming —kog(s) < ¢’(s) as in [14]. But without this assump-
tion, we can guarantee (2.9) as follows, using arguments given in [16]. The only point to justify
is the integration by parts in

—Re /Ooog(s)<775x(s)v77w($)>2 ds = ;/OOO g/(S)an(s)H%d& (2.10)

Using 7, (+,0) = 0 and denoting by the finite number Z the left-hand side of (2.10), we have

1/y
Z = lim —g(l/y)\nz(l/y)H%Jr/ g'(s)|Inx(s)|3 ds
y—0 y
=:f1(y)

=:f2(y)

Since the integrand in fo(y) is negative, limg<y—o f2(y) exists and is either a finite negative
number or —oco. But the latter is excluded since fi(y) cannot compensate this to a finite
number because it is also negative. Hence f1(y) also converges to a finite number which must
be zero, otherwise U = (...,n) would not belong to the domain of Ap. Altogether we have
Z = limg<y—o f2(y) proving (2.10) and hence (2.9).

Now using Assumption 2.1 we obtain

1 oo
Re(ArU Uy = =BI0clB+5 [ o/(s)lna(o) B
k o
< <Al - g [ oe)nillBds
< 0, YUED(Ap). (2.11)

Therefore, by using the Lumer&Phillips Theorem, Ap is the infinitesimal generator of a
Co-semigroup of contractions {Sr(t)}i>0 = {eAr t14>0 on Hp, and the existence and uniqueness
the solution U (t) = e“AFUy, t > 0, to problem (2.7) follows in the class

U € CY([0,00), Hp) N C([0,00), D(AF)).

As main result we have that the semigroup is exponentially stable no matter whether the
EWS condition (1.2) is satisfied or not:

Theorem 2.2. Under the Assumption 2.1, there exist constants C,vy > 0, being independent of
Uop € HF, such that for allt >0

IT® e < ClUol3ee e (2.12)

In other words, the thermo-viscoelastic Timoshenko system under the Fourier law (2.2)-(2.4) is
exponentially stable independent of any relation between the coefficients.

To prove Theorem 2.2 we use the well-known characterization of exponential stability for
Co-semigroups established in [15, 17, 26], cf. [18].



Theorem 2.3. Let {T'(t)}1>0 = {eAt}tZO be a Cy-semigroup of contractions on a Hilbert space
H. Then, the semigroup is exponentially if and only if

iR C o(A) (resolvent set) (2.13)

and
limsup ||(iMg — A) 7! < oo. (operator norm) (2.14)

[A| =00

The conditions (2.13) and (2.14) will be shown in the next subsections.

2.1 Verifying (2.13): The resolvent set o(Ar) contains the imaginary axis

Let us prove that
iR C o(Ap). (2.15)

For this purpose we argue by contradiction, and we suppose that iR ¢ o(Ap). Then, there
exist a constant w > 0, w.l.o.g., and a sequence A\, € R, with 0 < A\, — w from below and
iAn € 0(AF), and a sequence of functions

Un = (‘Pnaq)nawm \I/mgmnn) S D(AF) with HUnHHF = 17 (2-16)

such that
iU — AU, — 0 in Hp. (2.17)

Using the expression for Ap given in (2.8), then (2.17) can be rewritten in terms of its compo-
nents

[ iApon — @, — 0 in H!0,L),
iMp1®Pn — k(Pnz + Vn)e +00n e — 0 in L2(0,L),
iMn — Py — 0 in  H0,L),
Anp2¥n + k(pne +n) (2.18)
- <l~)¢n + /0 g(s)nn(s)ds> N — 06, =0 in L?*0,L),
iAp3bn — B0n e + (P gz + U,) = 0 in L%0,L),
iIAnln + s — Uy — 0 in  L2(RT, H(0,L)).

Lemma 2.4. Under the assumptions of Theorem 2.2 we have:

0nzl3 — 0, as n— oo, (2.19)
o
| g Gma(o)ds 0. as 0 oc, (2:20)
OOO
/ 9(8) 1. (8)|I3ds — 0, as n — oco. (2.21)
0
Proof. This is an immediate consequence of (2.11) and (2.17). O



Observing Lemma 2.4, the convergence in (2.18) turns into

iApn — Py — 0 in H}(0,L), (2.22a)

A1 P — k(P + Vn)z — 0 in L2(0, L), (2.22b)

iAo — U, — 0 in H3(0, L), (2.22¢)

iIMp2VUp + k(ong + n) — <B¢n + / g(s)nn(s)ds> — 0 in L?(0,L), (2.22d)
0 Tx

LiAnTin + Tn,s — Wy — 0 in L2(R*, Hy(0,L)). (2.22e)

Lemma 2.5. Under the assumptions of Theorem 2.2 we have:
Wnzll2, [[Ynzlle =0, as n— oc. (2.23)
Proof. First, from (2.22c¢) one gets
iAn(Yna, a2 = [Unal3 — 0. (2.24)
Using Cauchy-Schwarz and Young inequalities, we get
195,213 < 2|idn(¥nzs Cnad2 = 1Cnal3| + X5 llton,z 3 (2.25)

Combining (2.24)-(2.25), and since and |[¢p 4
bounded.
On the other hand, since n,, € LE(RJ“,H&(O, L)), we have g||n,.(-)||3 € L*(R*), and

2 < %HUHH%F, it follows that (||¥y z|[2)nen is

lim g(2)||nn.z(2)|3 =0, (2.26)

Z—00
as explained in deriving (2.10).
Now, the mapping s +— ﬁ\lfn € L;(RﬂH&(O,L}) for all n € N. Taking the multiplier
)\%g(s)@n in (2.22e) and taking into account (2.21), we have
fooo 9(s)
2

ds
E(ﬁn,& Wn) 12(r+ B2 (0.L) — 2 [ 2ll5 — 0. (2.27)

=P,

Integrating P,, by parts with respect to s, using Lemma 2.4 (see (2.20)), the fact that (V,),en
is bounded in H{ (0,1), we infer

)\LQ /OOO g(s)<nn,sa}(5), \I’n,m>)2d8

1 o0
2 | IO () Wl ds
n JO

/ " () (3)ds
0 2

< w ([ [—g'(s)}ds)% ([ [—g'(s)]|rnn,gc<s>||%ds)é [@all2 = 0.

Thus, (2.27) and Lemma 2.4 imply ¥, — 0 in H}(0, L) and, consequently, (2.22¢) yields 1, — 0
in H(0, L) as well. Therefore, the proof of (2.23) is completed. O

|Pn| =

1
< E”‘I’n,r\b




Lemma 2.6. Under the assumptions of Theorem 2.2 and the above notations, we have:
lona + Unll2, |Prllz2 =0, as n — oo. (2.28)

Proof. We start by taking the multiplier k(,, , + t,,) in (2.22d) to get

iAnp2k(Vy, Pz + V) — < <ﬁ¢n + /O g(S)Un(S)dS) ,k‘(gpn@ + @Z}n)>

+k2||90n,r + QﬁnH% — 0.

2

Performing integration by parts, using (2.21), (2.23), the boundeness of (¢p, 4+ )nen in L2(0, L)
and regarding boundary condition, we obtain

kz”%‘)n,x + @Z)an + <61/’n,x + /0 g(S)Wn,x(S)d& k(SOn,x + wn)x> — 0. (2.29)

2

On the other hand, taking the multiplier Sz + [ 9(8)7n.x(s)ds in (2.22b), we have

ip1>\n </61/}n7x + /0 g(8)77n7x(5)d8, (I)n> - </B¢n,x + /0 Q(S)Un,x(s)d& k(@n,x + wn)x> — 0.

2 2

Using that (|| ®,]/2)nen is bounded and ||B¢n.z + [3° g(s)nn@(s)alsH2 — 0, we conclude from the
previous limit that

- <5wn,x [ s s K + wn>x> o, (2.30)

2

Combining (2.29) and (2.30), we conclude the first converge in (2.28).
Now, taking the multipliers p1®, in (2.22a) and @, in (2.22b) and adding the resulting
expressions, we have

ipl)\n[<()0n7 q)n>2 + <q)na Spn>2] - pl”q)n”g - k<(§0n,$ + wn)m 90n>2 — 0.

Integrating by parts and taking the real part, we get

— p1[|®nll3 + kRe (Pn.z + Pn, Pna)2 — 0. (2.31)

On the other hand, taking the multiplier po¥,, in (2.22¢) and v, in (2.22d), and adding the
resulting expressions, we obtain

ipadn (W, U)o + (U 1hn)a]  — <<51/Jn +/OOO Q(S)Un(s)d5>mv¢n>2

+ k<90n,a: + ¢n7¢n>2 - P2H‘I’n||§ — 0.

Integrating by parts, using boundary conditions, and also Lemmas 2.4 and 2.5, we arrive at

kRe (Yo + Un, Yn)2 — 0. (2.32)

Adding the limits in (2.31) and (2.32), we get

~p1|®all3 + kll@na + vull3 =0,

from where (2.28) follows. Thus the proof of Lemma 2.6 is finished. O
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We are finally in the position to give the proof of (2.15). In fact, from (2.19), (2.21), (2.23)
and (2.28), we conclude
1Unll#, =0,

which is a contradiction to (2.16). O

We remark that, in the proof of (2.15) we use an approach similar to [14, Sect. 4]. However,
it is worth mentioning that our refined arguments are different in detail, in particular we do not
require a boundedness of the memory kernel from below.

2.2 Verifying (2.14): Boundedness of (i\[; — Ap)~*
We will prove that there exists a constant C' > 0 independent of A € R such that, as |A| — oo,
1A = Ap) ™M lepte) < C (2.33)
Let T = (f1,..., f¢) € HF be given, and let
iNT — ApU = 71, (2.34)

which in terms of its components is given by

iNg—® = fi, (2.352)

iAp1 P — k(@x + w)x + 00, = p1fe, (2'35b)

i — W = f, (2.35¢)

DAl = Bas = [ g(6)aal)ds + ks + ) — 08 = pa (2.35d)
0

iAp30 — BOpy + (P + V) = p3fs, (2.35¢)

i +ns— V= fg. (2.35f)

To prove (2.33) we have to show that there exists a constant C' > 0, independent of A, such
that, as |A| — oo,
U < CIT - (2.36)

The estimate (2.36) will be proved in different steps estimating the different components.

Lemma 2.7. Under the assumptions of Theorem 2.2, there exists a constant C' > 0 independent
of X such that

||6:c||%,/0 (=9 ($)llIna () 13ds < ClNU e, | Tl (2.37)

In particular, there exists a constant C' > 0, independent of A , such that

p3H9H§+/O 9(8)112(9)[13ds < CNU [l | 134 (2.38)

Proof. Estimate (2.37) follows immediately by taking the inner product of (2.34) with U in Hp
and using (2.11). O

Lemma 2.8. Under the assumptions of Theorem 2.2 and given any € > 0, there exists a constant
C. > 0, independent of \, such that

kllpz + 0l < ellUN3,,. + Cell Tl (2.39)

for |\| > 1 large enough.
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Proof. From the resolvent equations (2.35a), (2.35¢) and (2.35¢), we have
iAp30 — BOuy + iAo (pz +¢) = p3fs + o(fiz + f3)- (2.40)

Multiplying (2.40) by k(p, + ¢) and integrating over (0, L), we infer

L L L
i)\ak/ oz + )2 dx:—ﬂ/ Or[k(pz + V)] d:r+,03k/ OliN(pz + )] dx (2.41)
0 0 0

=R =:Ry

L -
+ k/o p3fs + 0 (frz+ [3)] (pz + V) da.

Let us rewrite the terms R; and R as follows. First, using (2.35b) we get

L L L
Ry = i)\ﬁpl/ 0, dx — Ba/ |(995|2 dx + Bpl/ 0, fo de.
0 0 0

Next, applying (2.35a), (2.35¢), and integration by parts, we obtain

L L L
Ry = —kpg/ 0,P dr + kpg/ OV dx + k:pg/ 0(fi1,z+ f3)dx.
0 0 0

Replacing the above expressions for R; and Ry in (2.41), and denoting by
L L L
R3 = — 50—/ 10, da — k:pg/ 0,® dx + k:pg/ O dx
0 0 0
L L
+ k‘P3/ O(f1,z + f3)dx + Bp / Oz fo dx
0 0
L _
+ k/ [p3fs + o (frz + f3)] (pz +¥) du,
0
it follows that
L —
iNok|pr + 0|3 = i)\ﬁpl/ 0, dx + R3. (2.42)
0

Now, from the estimate (2.37) and Poincaré’s inequality there exists a constant C' > 0 such that
|Rs| < ClUllar [ Tllar + CllON2lUl13e + Clidall2lI T3¢ -

Returning to the identity (2.42), one sees that

Bp1 1
klloe + 9|5 < —, 18zll2l1®{l2 + W\Rsl
C
< C||9x||2H‘1>||2+Wll%llzllUllﬂp (2.43)
C C
+ WHUHHFHTHHF + Wl!@cl!zllTllm-

From (2.43), using again the previous estimate (2.37) and Young’s inequality with € > 0 several
times, we conclude (2.39) for |A| > 1. O
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Lemma 2.9. Under the assumptions of Theorem 2.2 and given any € > 0, there exists a constant
C. > 0, independent of X\, such that

pll@ll3 < ellUN1F, + Cell Ty, (2.44)
for |A| > 1 large enough.

Proof. Multiplying (2.35b) by —@, integrating on (0, L) and observing (2.35a), we get

L L L
pl/ |<I>]2 d:n:k/ ]g0$+¢]2 da:—k/ (or + V)Y dx + Ry, (2.45)
0 0 0

where we have added and subtracted the term k fOL(Lpz + 1)) dx and denoted

i r L
Rim o [ 6004 fydo—p [ (@F + fip)do
0 0
Obviously we have

Ral < 102Ul + 18 ol Tl + ClT e T e

Al [Al
Then, going back to (2.45), using this latter estimate, the resolvent equation (2.35¢) and also
(2.43) along with proper Young inequalities, one has

pLl @z < kllwa +¥l3 + Ellgs + vll2ll¢ll2 + | Ryl

C C
— |0z ]2||U — |0z ]2|T
IAI|| 2| Ul + W” 2]l [l

C
+ CNU o 1Tl + WIIUII%F +ClI T3,

for |A\] > 1 and some constant C' > 0. Using again the estimates (2.43), (2.37), and Young’s
inequality with € > 0 several times, we conclude (2.44) for |A| > 1 large enough. O

< Cllpe + 9|13 +

Lemma 2.10. Under the assumptions of Theorem 2.2 and given any € > 0, there exists a
constant Ce > 0, independent of X\, such that

p2lV3 < ellU3,, + Cell T, (2.46)
for |\| > 1 large enough.

Proof. Multiplying (2.35d) by [ g(s)n(s)ds and integrating over (0, L), we get

—pg// z)\n )]dsdz — U// s)0n(s dsdw—i—b// 1/J$d8d.’L'

+/OL/OOO()% ds dx+k// $)(0a + )0( dsda:—pg// s) fan(s)dsda.

13



Now, using the identity (2.35f) in Rs and the expressions (2.35a) and (2.35¢) in Rg, results in

=:bg

———
—p2</0 g(s)d >/ || d:c—a/ / s)On(s dsdm—b/ / N2 (8)ppdsda
+p2/ / s) fan(s dsda:+p2/ / 5)V fedsdx

(2.47)
+ R7 + Rg + Ry
where we denote
L 00 2
Ry = —p2/ / [ns(s)]dsdz, Rg := —/ (/ g(s)nx(s)ds) dz,
0 0
and
/ / s)ds®dx + / / ds\I/dx
/ | atenGras( i+ fiydo
We obtain for R7, Rg and Ry
00 1/2
7ol < ol ([ g @l Bs)
Next,
|Rs| < bollnllZz.
remembering the notation HUH%Q = [5° 9(s)|Inz(s)||3ds. Moreover, there exists a constant C' > 0
such that o
| Ro| < o H??HL2H‘I>H2 I HnHLgH‘I’\b + WHWHLngl,x + f3l2-
Using these last three estimates in (2.47) and also (2.38), we arrive at
p2 I3 < Clinllzz8llz + Clinllzz ¥z + ClU el Tl
0o 1/2
sopole ([ g @lnolkas) (2.48)
C C
+igllaglell+ gl vl
for come constant C' > 0 and |A\| > 1. From (2.37) and (2.38) we deduce
9 C
p2l¥Yllz < CllU#p T M3 + Clinllzz[¢ell2 + WHTZHLgH@Hm (2.49)

for come constant C' > 0 and |A| > 1. Finally, from (2.49), using again the estimate (2.38), we
conclude (2.46) for |\| > 1 large enough. O
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Lemma 2.11. Under the assumptions of Theorem 2.2 and given any € > 0, there exists a
constant Ce > 0, independent of X\, such that

bllval3 < ellU 3, + Cell Tl (2.50)
for |\| > 1 large enough.

Proof. Multiplying (2.35d) by ¢ and integrating on (0, L), we have

p2/0 (i )d:c+b/ |1/112dx+// §)Updsda

=:Rio0

L . L o L .
k[ oot whido—o [ Gide = pa [ it

:ZRll

Replacing v given by the resolvent equation (2.35¢) in both Rjg and Rj;, one has

/ 9| ?dx = / / $)nz(s %cdsdx—i— / (o + 1) Wdz
—|—a/ 91/)d(13—|—p2/ ]\I/]2dx+R12, (2.51)
0 0

where
ik [F — L L
Rizi= o / (oo + ) Fodz+ps | fahds + po / U Tydz.
0 0 0

It is easy to see that
[Ri2| < ClU#pel Y20,

for some constant C' > 0, if |[A\| > 1. Thus, using (2.43) and (2.49), we obtain from (2.51)
ball3 < CIUap Tl + Cllnllz U e + CllOzl21U 2 + 1621121134,

for come constant C' > 0 and |A| > 1. Last, observing the useful estimates (2.37)-(2.38), we
finally conclude (2.50) for [A| > 1. O

Finally, taking into account the Lemmas 2.7-2.11 and choosing € > 0 small enough, there
exists a constant C' > 0 independent of A such that (2.36) holds true.
This completes the proof of Theorem 2.2. ]

Remark 2.12. Let us finish this section with some comments as follows.

1. Theorem 2.2 is addressed for the mized Dirichlet-Neumann boundary condition (2.3) only,
but the same result holds true for other different boundary conditions as well, such as the
Dirichlet-Dirichlet ones

o(x,t) = P(x,t) = 0(x,t) = n'(z,8) =0 for x=0,L, t,s>0. (2.52)

Indeed, for the latter and its proper spaces for solutions, we still follow the same spirit
of computations as done in the proof of Theorem 2.2, by noting that the only difference
comes from the (possible) point-wise boundary terms. However, to handle with them we
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can use the same point-wise estimates as provided in [1, 21] or else introduce useful cut-off
functions and work with local estimates instead, as considered e.g. in [4, 5], and then
extend the estimate to the whole range (0,L) by means of an observability analysis for
Timoshenko systems. In conclusion, problem (2.2)-(2.4) is also exponential stable subject
to any other different boundary condition instead of (2.3) where well-posedness is ensured.

2. Theorem 2.2 gives the answer to a question raised in [28, Rem. 3.8] with respect to thermo-
viscoelastic Timoshenko systems under Fourier’s law and memory in a history setting,
improving significantly some results presented in [12] (see Theorems 2.2 and 2.3 therein),
once Theorem 2.2 has revealed that the uniform exponential stability is achieved with no
necessity of the EWS assumption (1.2) nor higher regularity of initial data. Moreover,
even for memory with null history the result on exponential stability keeps unchanged
for (2.2)-(2.4), including boundary condition (2.52), and the proof could be done through
perturbed energy method by combing similar arguments as given in [21, 22] and refining the
computations of [7, 19, 20] in the case where the function & therein is constant. Therefore,
the exponential stability result correspondingly also holds for Timoshenko problems with
null history and Fourier’s law under exponential memory kernels without regarding EWS,
which gives a different view of the stability result in [20, Thm. 2.5] for exponential kernels,
i.e. &(-) = & constant in [20]. It also complements the statements in [7, Rem. 3.4]
since the shear thermal coupling is the responsible for neutralizing the requirement of EWS
assumption, not the Neumann condition considered in [7] (without EWS) in comparison
to the Dirichlet conditions (2.52) in [20] (with EWS).

3 Cattaneo without history: non-exponential stability

In this section we consider the model (1.16), with Cattaneo type heat conduction and without
a history term,

pr1ow — k(pz + ) + 00, =0 in (0,L) x RT,
potst — bbyy + k(pr + 1) —00 =0 in (0,L) x RT, -
p30t+qx+a(<px+1/))t20 in (O,L)XR+, ( ’ )
T+ Bqg+0, =0 in (0,L) x R,
where 7 > 0, and with initial-boundary conditions
0z(0,t) = wu(L,t) = (0,t) = (L, t) = 60(0,t) =0(L,t) =0, t>0, (3.2)
and
90(1"’0) = 900(33)’ (,Dt(l',O) = Sol(z)a ¢($70) = ¢0($)7 wt(:l"?o) = wl(x)a (3 3)
0(x,0) = bo(z), q(x,0) = go(z), z € (0,L). ’

The corresponding system with Fourier type heat conduction (7 = 0) is exponentially stable
if and only if the EWS condition (1.2) is satisfied, as explained in the Introduction. Now we
shall see that the system above is not exponentially stable even if the EWS condition is satisfied.
That means, the system loses the property of being exponentially stable when taking Cattaneo’s
instead of Fourier’s law. This corresponds to the situation of thermal damping in the bending
moment considered in [14], while we have the damping in the shear moment.

To address problem (3.1)-(3.3), we consider the phase (Hilbert) space

Hey = HL(0,L) x L2(0,L) x H}(0,L) x L*(0,L) x L*(0, L) x L*(0, L),
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equipped with the norm
U, = ol @115 + p2l| W3 + Ellpx + 913 + blleall3 + p3l16113 + 7l4ll3. (3.4)

for U = (o, ®,9,¥,60,q) € Hey . Thus, denoting & = ¢, and ¥ = ¢, we can transform problem
(3.1)-(3.3) into the first-order system

U, = .AClU, t >0,
(3.5)

U(O) = (QD[), #1, ¢0a (e 0o, q0> =: U,
where Ac, : D(Ac,) C Hey, — He, is given by

~ ® -
g

k
7(90:10 + @Z))m — —0
P1 P1

with domain
D(Ac,) = {U CHe, | D€ HL, 0, U, 0 c H}, g€ H'  p,¢ € H2}.
It is not difficult to prove that 0 € o(A¢,) and that A¢, is dissipative,
Re(Ac,U,U)ue, = —Bllalls < 0. (3.7)

Therefore, using the Lumer-Phillips Theorem again, A¢, is the infinitesimal generator of a Cp-
semigroup of contractions {Sc, (t)}+>0 = {e¢1t}>0 on H,, and the existence and uniqueness
of solutions to problem (3.5) follows.

We are going to show that the semigroup is not exponentially stable even assuming condition

(1.2).

Theorem 3.1. The Cy-semigroup of contractions {Sc, (t)}t>0 is not exponentially stable. In
other words, the thermoelastic Timoshenko system under the Cattaneo law without history, (3.1)-
(3.3), is not exponentially stable, whether condition (1.2) holds or not.

Proof. We start by noting that it is relatively simple prove that D(A¢, ) is compactly embedded
into H¢,, and also that the operator iAl; — Ac, is injective for any given A € R. Therefore,
one can conclude that iR C p(Ac,). That is, condition (2.13) in Theorem 2.3 is satisfied.
Consequently, semigroup converges strongly (i.e. for any fixed initial value) to zero, see e.g. [8, 9].
But, as we are going to see below, the second necessary condition for exponential stability (2.14)
is no longer valid. To this end, it is enough to show the existence of a sequence (A\,)nen C R,
with |A,| — oo, and U, € D(Ac, ), n € N, such that

1Unll3, = lim. [(iAnds — Acy) " F |, = oo, (3.8)

lim
n—oo
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for some bounded sequence (F),)neny C He, bounded. Indeed, let us consider

F, :=(0,0,0,sin(a\,x),0,0) with «:= \/%, Ap 1= %, n € N.
«

In order to simplify the notations, let us omit the index n in the sequel. Let U = (¢, ®, ¢, ¥, 0, q)

be the solution of the resolvent equation (iAl; — Ac,)U = F, which in terms of its components
reads
iAp — P =0,

k
1 P1

iMp — W =0,
k

b
AN — — Yy + —
P2 P2

(0o + ) — 20 = sin(a), (39)
P2
1
i+ e+ (B, +T) =0,
P3 P3

1
iAq + éq—l— -0, =0.
T T

From (3.9); and (3.9)3 we get the following reduced system
k o

N - —(pz +¢)s + —0; =0,
P1 P1

—)\2¢ - Ewm + E(QO:E +) — 10 = sin(a\x),
P2 P2 P2
IO

s

(3.10)

1
iNd + P + —(pz +¢) =0,
3

1
irg+ g+ 20, —0.
T
Now, by virtue of the boundary conditions in (3.2), we look for solutions of (3.10) given by
p(x) = Acos(adz), Y(x) = Bsin(adz), 0(x) = Csin(alz), ¢(x) = D cos(alz),

where A = A\, B = B),C = C\,D = D, are to be determined. Thus, to solve problem (3.10)
is equivalent to find A, B, C, D to the following algebraic system:

(—p1 + ka?®)N2A — kaAB + oca)C = 0,
—kadA + ((—p2 + ba®)A2 + k)B — oC = po,

—icaAA +iocB +ip3C — aD =0, (3.11)
alC + (itA+ 5)D = 0.

We can rewrite this system as
p1(\)  —kal ocal A 0
—kaX  pa(A) -0 B|l=|p|. (3.12)
—ica\  ioc p3(N) C 0

/

=M
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where we set
p1(A) = (—p1 + ka®)A?,

p2(A) = (=p2 +ba®)N\* + k, (3.13)
. aZ)
ps(A) = ips o

A simple computation leads to

det M = [p1(\)p2(A) — K2 a®N]p3(A) + i0*a®A? [pa(X) — 2k] + io”pi(N),

and .
B [1(N)ps(N) + io*a®N?]
N det M ’
Here we observe that det M # 0, since
p1kBaP\?
Re det M = “E N #0

Thus, noting that p1(\) = k (8 — 5-) A%, p2(A) = k, we obtain

pak (B2 — BL) A?p3(A) + ipao?a®A?

B —
—p1kX2p3(N) — iko2a2\? + iko? (%2 — %) 2’

from where we obtain that |B| = |B,, | behaves like a constant as n — oo, no matter whether
(1.2) holds or not, that is,
|Bl|~cy>0, as n— oo.

Having in mind that ¥(z) = i\, (z) = iAB),, sin(aA,x), we obtain

L L
. L
HUn”%CI > p2/ |\If(1;)|2 dr = p2|B/\n|2)\121/ Sln2(a)\n$) dr = %|B>\n|2>\i,
0 0
which is enough to reach the desired limit (3.8).
Therefore, the proof of Theorem 3.1 is completed. O

Remark 3.2. This kind of loss of exponential stability when going from Fourier’s to Cattaneo’s
has been observed in [1}] under damping on the bending moment, but also for thermoelastic
plates in [23, 13]. In [24] it was outlined that this phenomenon might be more likely than not
losing the exponential stability.

This loss of exponential stability was also, surprisingly, observed in [14] if, additionally, a
history term is present, meaning an unexpected “destruction” by the Cattaneo heat conduction,
as explained in the Introduction. Now, in the next Section 4 we will add the history term, but,
interestingly, the system remains exponentially stable as in the Fourier case, in contrast to [14].
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4 Cattaneo with history: exponential stability

In this section we study the case of Cattaneo’s heat conduction law with a history term (1.17),

p1os — k(pe + )z + 00, =0 in (0,L) x RT,

P2ttt — Doe + k(pp + 1) — /OO 9(8)Nez(s)ds —o00 =0 in (0,L) x RT,

30 + qu + 0(0r + 1) =0 ’ in (0,L) x RT, (4.1)
Tq + g+ 6, =0 in (0,L) x RT,

Ne+ns— Y =0 in (0,L) x RT x RT,

with initial-boundary conditions

0z(0,t) = @z (L, t) = (0,t) = (L, t) = 6(0,t) = (L, t) = 0, (4.2)
n'(0,s) =n'(L,s) =0, n°(-,0) =0, t>0,s>0, '
and
go(x,()) = (po(x), th(x,O) = g01($), 1/](3370) = 1/}0(1‘), ¢t(x70) = ’(ﬁl(fb), (4 3)
0(x,0) = bg(x), q(z,0) = qo(z), n°(z,s) =no(z,s), =€ (0,L), s> 0. .
The assumption on the kernel g will be again Assumption 2.1, as in Section 2.
To address problem (4.1)-(4.3), we consider the phase (Hilbert) space
He, == H} x L2 x Hy x L* x L* x L* x L(R*, Hy),
equipped with the norm
U113, = oI @13 + o2l W13 + Kllow + 9113+ bllall3 + 316113 + Tllalz + InllZ: (4.4)

for U := (p,®,9,¥,0,q,m) € Hc,. Thus, denoting & = ¢; and ¥ = 1y, we can transform
problem (4.1)-(4.3) into the first-order system

U, = .ACQU, t>0,
(4.5)
U(O) = (SDO’ P1, wﬁa ¢17 ‘907 q0, 770) = U07
where Ac, : D(Ac,) C Hey, — He, is given by
_ o -
k o
P1 P1
)
1 /- 0 k o
ey U= | o (B0 Jy g<51>n<s>ds)m ~ (et )+ 28 o)
pa g e
——q—= 7996
T T
! U= |
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with domain

D(Ac,) = {U € He, | ® € HY 0., V.0 € Hy,ns € L(RT, Hp),

v obi+ [ gsnons € H.0) - o}-

It is not difficult to prove that 0 € o(Ac,) and Ac, is dissipative, with

1 o
Re(AU.Upne, = —Alali+5 [ o/()lna(s)1Bds
k1
< —plall - 2l
< 0, YUeD(Ag), (4.7)

and we have again a unique solution to to problem (4.5) as in Section 2, U(t) = ey, We
shall prove that the semigroup {eAC2t}t20 is exponentially stable.

Theorem 4.1. Under the Assumption 2.1, there exist constants C,~v > 0 independent of Uy €
Hc, such that for allt >0

1T 32e, < Cllolle, e (4.8)
In other words, the thermo-viscoelastic Timoshenko system under the Cattaneo law (4.1)-(4.3)
is exponentially stable independent of any relation between the coefficients.

To the proof of Theorem 4.1, we still use Theorem 2.3. It will follow as a consequence of the
following steps.

4.1 Verifying (2.13): The resolvent set o(Ar) contains the imaginary axis

In order to prove that
iR C Q(A02)7 (49)

let us argue again by contradiction argument. We assume that iR ¢ o(A¢,) and conclude the
existence of a constant w > 0, w.l.o.g., and a sequence A, € R, with 0 < A, — w from below
and i)\, € o(Ar), and a sequence of functions

Un = (s @, W, O s ) € D(Ay) with [T, = 1, (4.10)
such that
iMUn — Ac,Up — 0 in He,. (4.11)
In view of A, defined in (4.6), the limit (4.11) yields
i — Pp — 0 in H!0,L),
iIMp1Pr — k(Pne +Un)a +00n — 0 in L2(0,L),
Mt — U, — 0 in  H0,L),

— <l~)¢n + / g(s)nn(s)ds> — 06, =0 in L?*0,L), (4.12)
0 T
iMp3ln + o+ 0(Ppp+Vy,) =0 in L%0,L),
iMTGn + Bgn +On g — 0 in L?(0,L),
iMTn + s — P — 0 in  L2(R*, H{(0,L)).
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Lemma 4.2. Under the assumptions of Theorem 4.1 we have, as n — 0o:

lgnll2 — 0, (4.13)
/0 =g/ ()] Imma(s)]12ds = 0, (4.14)
7nllz2 = 0, (4.15)
105,22 = 0. (4.16)

Proof. The limits (4.13)-(4.15) arise directly from (4.7) and (4.11). Additionally, (4.16) is a
consequence of (4.13) and (4.12). O

From the limits the of Lemma 4.2, (4.12) can be reduced to the following
idpn — @, — 0 in HX0,L),
iAp1®Pp — k(onz +Un)e — 0 in L2(0,L),
iAo — W, — 0 in H0, L),
PAnp2 W + k(@n + n) = (B + 5 g(s)m(s)ds) —0 in L2(0,L),
AT + s — Vo — 0 in L2(RT, Hg (0, L)),

which are precisely the same limits as given in (2.22a)-(2.22¢). Therefore, in what follows, the
arguments are the same as presented previously.

Lemma 4.3. Under the assumptions of Theorem 4.1 we have:
”\Ijn,:cng’ Hi/}n,xll%» len,e + Qpn”%u H‘I)nug —0, as n — oo. (4.17)
Proof. 1t follows verbatim with the same arguments as in the proofs of Lemmas 2.5 and 2.6. [

Therefore, combining (4.13), (4.15), (4.16) and (4.17), we conclude that
1Unll3c, =0,
yielding the desired contradiction with (4.10). This finishes the proof of (4.9). O

4.2 Verifying (2.14): Boundedness of (i\[; — Ap)™!

Let us prove that there exists a constant C' > 0, independent of A, such that, as |A\| = oo,
1(iMa = Acy) " Hlze,) < C- (4.18)
To this end, let Y = (f1,..., f7) € Hc, be given, and let U € D(A¢,) be the solution of

iU — A, U =T, (4.19)
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which in terms of its components reads

z')\go - o= f1, (4.20&)
i)\p1<I> - k(gpm + Qb)a: + 0'933 = p1f2> (4'20b)
i) — U = f3, (4.20¢)
IAp ¥ — szm — / 9($)Nzz(s)ds + k(py + ) — 00 = pafa, (4.20d)
0
iAp30 + gz + (P + V) = p3fs, (4.20e)
IATq+ Bqg+ 0, = Tfg, (4.20f)
im+ns — V¥ = fr. (4.20g)

We have to show that there exists a constant C' > 0, independent of A, such that, as |A\| — oo,

1Ul#c, < ClT e, (4.21)

Lemma 4.4. Under the assumptions of Theorem 4.1, there exists a constant C' > 0, independent
of A\, such that

o0
ol [ (= Nn)3ds < N, T, (4.22)
In particular, there exists a constant C' > 0, independent of A, such that
InlZ2 < CllU N3, 1T 3¢c, - (4.23)
Proof. As before in Section 2, this follows promptly from the dissipativity (4.7). O

Lemma 4.5. Under the assumptions of Theorem 4.1, there exists a constant C > 0, independent
of A, such that
p3)l6ll3 < CU e, I X3, + Clall2l|@llz + Cllall2 ] ¥]l2. (4.24)

In particular, given any € > 0, there exists a constant C. > 0, independent of X\, such that
2 2 2
p3)l0llz < elUll5, + Cell T3, - (4.25)

Proof. Integrating (4.20f) over (0,7) C (0,L) and taking the multiplier # in the resulting ex-
pression, we get

/OLW]de = / / y) dy (iX0(x)) dz — ﬁ/ / 0(x) dx +
//ﬁs ) dy 0(x) (4.26)

From (4.20e) we can rewrite S; as follows

/ g/ dm—— *( )+a®(L))/qu:c

+E q@d:z:—/ / dx+7'/ / y) dy f5(x
P3
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Replacing this in (4.26) we obtain

p3/ de—T/ !q\de—ps/B/ / y) dy0(z) dz — 7 (q(L) + oc®(L)) /Oqu:c

+ 7o /0 ¢®dz — 0 / / y)dy ¥ (z (4.27)
+P37'// y) dy f5(x d:c-l—,OsT//fﬁ ) dy 0(z) dz.

In what follows we are going to estimate S;. Indeed, integrating (4.20e) on (x, L), taking the
multiplier fOL gdzx in the resulting expression and then rearranging the terms, we obtain

L L L L
lg(L) + oW (L)] /0 gdz = p3 / fo(s)ds /0 7(2)dz + [g(z) + 0B (z)] /0 g(2)dz  (4.28)

+ p3 / " o(s)ds /0 ) (2)ds —o /x " W(s)ds /O " a(de.

=:53

Now, using the identity (4.20f) in S3 and noting that § € H}(0,L), we can rewrite (4.28) as
follows.

=S

L L L L
o)+ 0¥ [ )z = [ fr(s)as [ Az + la@) +o0(@)] [ atz)a:

03 L L L
—l—— H(S)ds/ (Tf6 —Bq)(z)dz—a/ ‘Ii(s)ds/ q(z)dz,
T 0 T 0
and integrating this expression with respect to x on (0, L), we easily deduce by (4.22)
92| < ClUlne, 1T lne, + Cllall2l®ll2 + Cllgll2l[¥l2 + Cllgll2]l0]]2, (4.29)
for some constant C' > 0. Thus, going back to (4.27) we arrive at
p3ll0113 < CllU e, 1T llse, + Cliall2ll@ll2 + Cllall2ll ]2 + Cllall2]|6]l2,

for some constant C' > 0. Therefore, using (4.22), we conclude that (4.24) holds true and,
consequently, (4.25). O

Lemma 4.6. Under the assumptions of Theorem 4.1 and given any € > 0, there exists a constant
C. > 0, independent of \, such that

Kllps + 013 < U3, + CITI,. (4.30
for |\ > 1.
Proof. Substituting the resolvent equations (4.20a) and (4.20c) in (4.20e), we have

iAp30 + gz + iAo (pz + ) = p3fs + 0(frz + f3). (4.31)
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Multiplying (4.31) by k(. + ¢) and integrating over (0, L), we get
L

L L
i)\ak/o |0z + |? da :/0 qlk(oz + 1)g] dx —i)\pgk/o 0(pz + ) dx (4.32)

~~

=:54

L
+ k/o [p3f5 + 0(fra + f3)] (0 + V) da.

Let us rewrite the terms Sy as follows. Using (4.20b) and then (4.20f), we infer
L L L
Sy = —i)\pl/ q<I>dx+U/ qﬁwdac—m/ qfedx
0 0 0
L L L
= —i)\Pl/ q<1>dx+z'Am/ \QI2dfC—BU/ lq|? da
0 0 0

L L
+ 70 / qfedx — p1 / qf2dz.
0 0

Replacing this in (4.32) it follows that

L L
okllgs + I} = — iy [ @~ ixak [ 6Ta T 0 da
0 0
+ (A7 — B)olgl3 + S5, (4.33)

where we denote

L L L
Sy 1= 7'0'/ quda:—m/ qf2d:c+k/ [p3f5 +0(frz + f3)] (0 + V) da.
0 0 0
We have
1S5] < CU e, 1 T2, -

Now, from the identity (4.33), estimates (4.22) and (4.24), Young’s inequality and || > 1, we

obtain
kllga + 915 < Cllgll2ll®ll2 + Cllgll2l®ll2 + ClON2NUl3c, + CIU e, 1 12e, (4.34)

for some constant C' > 0. Finally, from (4.34) and combining again (4.22), (4.24) and Young’s
inequality with € > 0, we conclude (4.30) for || > 1. O

Lemma 4.7. Under the assumptions of Theorem 4.1 and given any € > 0, there exists a constant
C. > 0, independent of X\, such that

o181 < U, + ClIT I, (4.3)
for |A| > 1 large enough.

Proof. Multiplying (4.20b) by —@, integrating on (0, L), using (4.20a), adding and subtracting
k3 (9o + )0 da, we get

L L L
m/ |<1>r2dx=k:/ |gox+w|2dx—k/ (o + 0)7 do
0 0 0

L . L .
vo [;9] @ Rido—p [ (OFi+ fip)de. (436)

:=Sg
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Using (4.20f) for Sg, one has
L L L _
o[NP de =k [ et o ok [ ot 05 do
0 0 0

iB\ [F —
+o <T - )\) / q® dz + 57, (4.37)
0

where

. L . L L
Sr:= 50 [ i@t fydora (r= ) [Cafido - [C@F 4 fip)as

We have
1S5 < ClIU 13, [ Tllee, + ClIYL I, »

for some constant C' > 0 and |A| > 1. Returning to (4.37), using (4.20c) and (4.34), one gets
pil@l3 < Cllall2Ullce, + Clol2)IU e,

C
+ ClU e, 1T, + WHUH%C2 +ClIT I3, »

for |[A| > 1 and some constant C' > 0. Therefore, the conclusion of (4.35) follows analogously as
in the previous lemmas and taking |A| > 1 sufficiently large. O

Lemma 4.8. Under the assumptions of Theorem 4.1 and given any € > 0, there exists a constant
C. > 0, independent of \, such that

P23 < €U i, + Cell Y, (4.38)

for |\| > 1 large enough.

Proof. Multiplying (4.20d) by [~ g(s)n(s)ds and integrating on (0, L), we get

—pg/ / z)\n )]dsdz — 0’/ / s)0n(s dsdx—i—b/ / wggdsdx
8
L
+/ dx + k/ / Yz +)n(s)dsdz = pg/ / n(s)dsdz.
0

/Ooo 9(8)nz(s)ds

Now, using the identity (4.20g) in Sg and the expressions (4.20a) and (4.20c) in Sg, we obtain

=bg

—_—
—p2</0 g(s)d >/ | W] dCIT—U/ / s)0n(s dsdx—b/ / 12(8)hpdsda
+ po / / 8) fan(s)dsdz + pa / / 8 frdsda

(4.39)
+ S10 + S11 + S12,
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where we denote

Sio = —p2/ / [ns(s)]dsdz, Sy = —/OL (/Ooog(s)nx(s)ds>2dx,

S19 1= + / / ds@dx — / / dS\IJd:L’
/ / W(&ds(fue + f3)de

Let us estimate Si9, S11 and Si2 as follows.

00 1/2
\510\§P2bol/2\|‘1’\\2</0 [—g'(snun(s)n%ds) |

|S11] < bo||77||%g,

and

C
[S12| < ||77”L H‘I)||2+’ |||7]||Lg”‘1’||2+W!|77\|L§||f1,x+f3||2~

Al

Uing these last three estimates in (4.39) and using (4.23), we arrive at

I3 < Cllnllza 6l + Cllnlza alls + CNU e, Il
eS) 1/2
s ( /0 [—9'(8)]Ilnx(8)||§d8>

N H77HL2H‘1>H2 MDY lllnlngH‘I’Hz,

(4.40)

for come constant C' > 0 and |A| > 1. Using Young’s inequality once more and the estimates

(4.22)-(4.23) we finally obtain

2113 < ClIU I3, 1T N3, + Clinll ez U3,

(4.41)

for come constant C' > 0 and |A| > 1. Finally, from (4.41), using again the estimate (4.23) and

Young’s inequality with € > 0, we conclude (4.38).

O]

Lemma 4.9. Under the assumptions of Theorem 4.1 and given any € > 0, there exists a constant

C. > 0, independent of X\, such that

bleol3 < U, + Cll Tl
for |A| > 1 large enough.
Proof. Multiplying (4.20d) by v and integrating, we get

—pg/ (i\t)) d:v+b/ |z 2dx+/ / )y dsdx
0
=:513

L L L
T /0 (60 + ) —0 /O 6Fdz = ps /0 fide.

=:514
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Replacing v, given in the component equation (4.20¢), in both Si3 and S14, we have

/wal dr = — // 8)n.(s 1/1xdsdx+/ (pr + 1) Wdz

+0/ 9¢dx+p2/ |U|2d2 + S5, (4.43)
0 0

where
L

ik [F _ L _
Sisimy [ oot 0iFsdotpa [ fiGdot o [ WFid
0 0 0

hence
1S15] < ClU1310, [T ll#e,

for some constant C' > 0 and |[A| > 1. From the latter and in combination with (4.34) and (4.41),
we obtain from (4.43) the estimate

bllvall3 < Clinllz U, + Clall2lUllxe, + CllOl2lUllne, + CIU e, I Tllc,

for come constant C' > 0 and |A| > 1. Finally, applying Young’s inequality several times and
observing the useful estimates (4.22), (4.23) and (4.24), we conclude the estimate (4.42). O

Last, combining the Lemmas 4.4-4.9 and choosing ¢ > 0 small enough, one can easily
conclude (4.21).
This finishes the proof of Theorem 4.1. O

Remark 4.10. Let us finally stress some technical aspects concerning the result provided by
Theorem 4.1 when compared to [14] (see Sections 3 and 4 therein) and [11, Section 3]. Here,
unlike [14, 11], our main result in this section features the exponential stability for (4.1)-(4.3)
independent of any relation between the coefficients. The main technical reason for this achieve-
ment is that we can estimate the shear component (see Lemma 4.6) by means of the shear force
damping, which leads to a new way of getting a priori estimates in comparison to bending mo-
ment damping, see e.g. [14, Lemma 4.4] and [11, Lemma 3.5]. Moreover, the same result
(Theorem /j.1) can probably be extended to other boundary conditions instead of (4.2) so that
the existence of solution is ensured in proper spaces. Although additional computations are nec-
essary to this purpose, they can be done by following similar ideas as given in [21, 25] to control
possible point-wise boundary terms or else we can follow the same lines as [4, 5] by introducing
cut-off functions and get local estimates that could be globally expanded by means of a resolvent
observability.
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