GLOBAL EXISTENCE VERSUS BLOW-UP FOR MULTI-D HYPERBOLIZED
COMPRESSIBLE NAVIER-STOKES EQUATIONS
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ABSTRACT. We consider the non-isentropic compressible Navier-Stokes equations in two or three
space dimensions for which the heat conduction of Fourier’s law is replaced by Cattaneo’s law
and the classical Newtonian flow is replaced by a revised Maxwell flow. We show that a physical
entropy exists for this new model. For two special cases, we show the global well-posedness of
solutions with small initial data and the blow-up of solutions in finite time for a class of large
initial data. Moreover, for vanishing relaxation parameters, the solutions (if it exists) are shown
to converge to solutions of the classical system.
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1. INTRODUCTION
The classical compressible Navier-Stokes equations in R™ x R™, n = 2, 3, are given by

Op + div(pu) = 0,
O(pu) + div(pu ® u) + Vp = div(95), (1.1)
poe + pu - Ve + pdivu + divg = S : Vu,

with the constitutive law for a Newtonian fluid,
2
S=pu (Vu + Vul — Zdiv uIn> + Mivul, (1.2)
n

and heat conduction given by Fourier’s law,
qg=—rVo0. (1.3)

Here, the functions p,u,e,p, S, q, 6 denote the fluid density, velocity, specific internal energy per
unit mass, pressure, stress tensor, heat flux and temperature, respectively. I,, denotes the identity
matrix in R™. pu, A are the shear and the bulk viscosity constant, respectively. « is the constant
heat conduction coefficient.

By combining Newton’saw of viscosity and Hooke’s law of elasticity, one obtains the following
constitutive equation

TS+ S=p (Vu + VT — idivu[n> + Adivul,, (1.4)

where S = 8,5 + u - VS, see [38]. The positive parameter 7 is the relaxation time describing the
time lag in the response of the stress tensor to velocity gradient. A fluid obeying equation (1.4) is
called Maxwell flow, see also [26]. We should mention that, even for a simple fluid, the effect of
relaxation can not always be neglected, see [28] with the experiments of high-frequency (20GHZ)
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vibration of nanoscale mechanical devices immersed in water-glycerol mixtures. In 2014, Yong [38]
proposed a new model in which he divided the stress tensor S into S; + S2I,, and did relaxation
for S7 and S5 in the following form

2
190,81 + 81 = pu(Vu + Vul — Edivuln), (1.5)
T30:S9 + So = Adivu. (16)

Note that there is no quadratic term «-V.S; and u-V.Sy in (1.5) resp. (1.6), and and thus does not
have the property of Galilean invariance. The constitutive equations (1.5)-(1.6) are called revised
Maxwell’s law. A similar revised Maxwell model was considered by Chakraborty and Sader [3] for
a compressible viscoelastic fluid, where they show that this model provides a general formalism
with which to characterize the fluid-structure interaction of nanoscale mechanical devices vibrating
in simple liquids.

On the other hand, although Fourier’s law (1.3) plays an important role in experimental and
applied physics, it has the drawbacks of an inherent infinite propagation speed of signals. In order
to overcome this paradox, Cattaneo [2] proposed the following constitutive equation for g,

T10iq + g+ KV =0, (1.7)
which gives rise to heat waves with finite propagation speed. Here 71 > 0 is the relaxation time.
In view of the above considerations, we investigate the following system in R™ x R,
Op + div(pu) =0,
pOyu+ pu - Vu+ Vp = pdiv(Vu + Vul — 2divul,) + VSs,
pdie + pu - Ve + pdivu + divg = p(Vu + (Vu)? — 2divul,,) : Vu + Spdivu, (1.8)
71O+ u-Vq) + g+ rVH =0,
73(8,552 —+u - VSQ) + 55 = Adivu,
where we have taken 7 = 0 in (1.5). That is, we do not consider a relaxation in S;. This case
is mathematically not yet accessible, even locally. We consider a Galilean invariant form of (1.6).
Besides, we consider the Galilean invariance form of Cattaneo’s law (1.8), which is proposed by
Christov and Jordan [6].
We investigate the Cauchy problem to system (1.8) for the functions
(p,u,0,q,52) : R" x [0,400) = Ry x R" xRy x R" xR

with initial condition

(p(l‘, 0)’ u(‘rv 0)7 9(1‘, O)v Q(‘rv 0)7 52(9:7 0)) = (pOa uo, 0o, qo, SQO)- (19)
We are interested in the local and global well-posedness for small data, as well as in a blow-up
for large data, both for the cases p > 0 resp. p = 0. The latter is not only motivated because it
is mathematically accessible with respect to local existence and blow-up, but also with a physical
background. In fact, there are recent studies determining the volume viscosity of a variety of gases
which were found to be much larger (factor 10%) than the corresponding shear viscosities, see [32].
In order to close the system (1.8), the equations for the thermodynamic variables p and e should
be given. In this paper, we assume that

) T3 @2
=0+ — 3 52 1.1
e=C +Kp0q +2/\p52 (1.10)
— _ 2 T3g2
p=Rpb — 554" — 5753, (1.11)

with positive constants C,,, R denoting the heat capacity at constant volume and the gas constant,
respectively, such that they satisfy the thermodynamic equation

pep, =p— Opo.
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The dependence on ¢2 term of the internal energy is indicated in paper [7], where they rigorously
prove that such constitutive equations are consistent with the second law of thermodynamics if
and only if one use the relaxation equation (1.8),, see also [4, 8, 35]. Since we also consider a
relaxation for the stress tensor Ss, it is motivated, naturally, by [7] that the internal energy should
also depend on S5 in a quadratic form. Indeed, under the above constitutive laws, we show in
Section 2 that there exists an entropy for the system (1.8), which implies the compatibility with
the second law of thermodynamics.

For classical compressible Navier-Stokes equations, the case 71 = 73 = 0 in (1.8), there are
lots of results concerning the local and global well-posedness of strong and/or weak solutions
because of its physical importance and mathematical challenges. In particular, the local existence
and uniqueness of smooth solutions was established by Serrin [31] and Nash [27] for initial data
far away from vacuum. Later, Matsumura and Nishida [25] got global smooth solutions for small
initial data without vacuum. For large data, Xin [37], Cho and Jin [5] showed that smooth solutions
must blow up in finite time if the initial data has a vacuum state. See [11, 12, 23, 20, 21, 9] for
global existence of weak solutions.

Neglecting the quadratic nonlinear terms u - Vq and u - V.Sy in (1.8), resp. (1.8);, the cases
71 > 0,70 = 73 = 0 (Cattaneo’s law) and 7, = 0,72 > 0,73 > 0 (revised Maxwell’s law) have been
studied in R™, n > 2, respectively, in our papers [15, 16]. For the one-dimensional case, we had
considered the relaxation both for ¢ and S with Galilean invariance form. In [17], we showed the
global existence of smooth solutions with small initial data and convergence to classical system as
relaxation parameter goes to zero. In our paper with Wang [18], a blow-up result for large data was
shown, hereby also yielding an interesting example, where the relaxed and the non-relaxed system
are close to each other on the linearized level, globally for small data for the nonlinear system, and
on any finite time horizon for the nonlinear one, but differ qualitatively for large data.

However, there are few results by considering both relaxations for ¢ and S in the multi-
dimensional case. The aim of this paper is to solve this problem for two special cases with
71 >0,72 =0,73 >0and g > 0 resp. pu=0.

Let G := Rt x R" x R x R" x R denotes the physical state spaces of the unknowns (p,u, 6, q, Sa).
Let Gog and Gy be any convex compact subset of G such that Go CC Gy CC G. The following
theorem is considered under the assumption g > 0. We have global existence for small data.

Defining the energy term

t
E(t) := S 1(p = 1,0 — 1,4, 82)(, ) |[s +/0 IV, VO F2 + [1(a, S2)I37a + [ Vulla) dt

(1.12)

and

Ey := E(0),
we will prove first a global existence theorem for small data,
Theorem 1.1. Let 7y > 0,75 = 0,73 > 0 and p > 0. Suppose for the initial data
(po — 1,u0,00 — 1,0, Sa0) € H®.

Then, there exists a small constant 6 > 0 such that if Ey < 9, then the initial value problem
(1.8), (1.9) has a unique solution (p,u,8,q,S2) globally in time such that (p — 1,u,0 — 1,q,S2) €
C(0,+o0; H3), (Vp, V) € L?(0,+o00; H?), Vu € L?(0,4+o00; H), (q,S2) € L*(0, +00; H3).

For any t > 0 we have

t
1(p = 1,0 — 1,4, 82) [ +/0 IV, VOZr + IVullFrs + lI(a, S2)ll7s) dt < CEg,  (1.13)
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where C is a constant being independent of t and of the initial data. Moreover, the solution decays
in the sense

IV(p,u,0,q,5)||r2 — 0 ast— co. (1.14)
For p = 0, the system (1.8) is reduced to a purely hyperbolic one with zero-order damping terms

Op + div(pu) =0,

pOu + pu - Vu + Vp = Vs,

poe + pu - Ve + pdivu + divg = Sadivu, (1.15)
T1(0g+u-Vq)+q+rVO =0,

73(0¢S2 + u - VSs) + Sy = Adivu.

The existence of solutions to the system (1.15) with initial data (1.9), even locally, is not
immediately clear, since it is not symmetric nor strictly hyperbolic (nor hyperbolic-parabolic). By
carefully calculating the eigenvalues and eigenvectors of the corresponding matrix in the associated
first-order system, we show that (1.15) is a constantly hyperbolic system, and thus has a local
solution. Furthermore, we show in the following theorem that smooth solutions can not exist

globally for a class of large initial data.
We define some useful averaged quantities, as in [18]:

F(t) := /n x - p(x, t)u(z, t)dz, (1.16)

Glt) = / (E(n.t) — £)da, (1.17)
where &(z,t) := p(e + u?) is the total energy and € := p(é + 1a?) = C,,.

Theorem 1.2. Let (p,u,6,q,S2) be the local solution to (1.15) on [0,Ty) with initial data (1.9)
(given by Theorem 4.1 below). Assume that the initial data (po—1,ug,00—1,qo, S20) are compactly
supported in a ball Bo(M) with radius M > 0. Moreover, we assume that

G(0) > 0, (1.18)
R 5

Then, there exists ug satisfying
12 8./
F(0) > max | 1230 maxpo SYTMAXPo { s (1.20)
35-37) /305 3)

such that the length Ty of the mazimal interval of existence of a smooth solution (p,u,8,q,S2) of
(1.15) is finite, provided the compact support of the initial data is sufficiently large.

Summarizing we present first results for some multi-dimensional hyperbolic compressible Navier-
Stokes equations including local well-posedness, global well-posedness for small data and blow-up
for large data, using a variety of techniques to overcome the technical difficulties.

The paper is organized as follows. In Section 2 we derive an entropy equation for system
(1.8) and present some preliminary lemmas. The global existence result Theorem 1.1 is proved in
Section 3. In Section 4 the local existence and the blow-up result for large data, Theorem 1.2, are
proved. In Section 5 we give a remark on the singular limit as 7 — 0.

We introduce some notation. W™P = W™P(R"™), 0 < m < oo, 1 < p < 0o, denotes the usual
Sobolev space with norm || - ||ym.». H™ and LP stand for W™2(R") resp. WP(R"). For m x d-
matrices B = (bji,), M = (m;y,), we denote A: B = 377", ZZ:I bjk mji, and M? = M : M. For
m € Ny we denote by V™ v derivatives of v of order m.
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2. ENTROPY EQUATION AND SOME PRELIMINARY INEQUALITIES

In this part, we first derive an entropy equation for system (1.8). Defining the entropy

1 2
= . 2.1
7 2075 (2.1)
Similar to [17], we have for a local solution

Lemma 2.1.

2

. - (4) _ 9 S3 St
3t(pn)+dlv(pun)+dlv(9) =2 9/\+2u9 (2.2)
Proof. Dividing equation (1.8), by #, we have
p T
aat(Cve—i—Hop +2)\ 52)+9u V(Cu0 + 0p —|— 52)+delvu
T o T3 dlvq_Sgdlvu M r_ 2. _
5524 divu 2/\052 T =g +0(Vu+Vu ndlvuIn).Vu. (2.3)
For the term ﬂat(mep ¢?), we have
B T1 9y T1 2 718259 9
Ga(ﬁﬁp )= pat(li g2 )+ K63
Ty Lo LT e
=p t(Rpegq ) 5 t(GQ)R
T o9y 1o T o0 Tiq0g
=p t<l€p02q ) 2at(/€92 ) KJ@Q
Ty Lo oo T oo @ q- V0
=p t(npegq) 50 p3d”) — pr e R (2.4)
For the term fu - V(;3-q q?), we get
Lo (Tl ) = T2y YO e
i V(Hepr) P (Hpeg )+ U
_ T N oo T
pu V(H 92q) (2%2 )+H92u Vg. (2.5)
Then we have
Loy + Py v Ty — L 24
08(59 )+ g v(nepQ) Sz VU
2
2 T2 NN B AR A
= [0+ e V)| - [0 + g )| - - O
1m o, 17, q? q-Vo
= —— d — 2.
05 ) + divtug )| - - L (2.6
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On the other hand, we have

P Pu.v(2s2
0875 (2)\ 52) ke V(Q)\ ,5'2) 2)\952dlvu

® 600155 — 152 5,0+ 5 VS, — B854, - T8 gg;
= 3520152 2200 1 g3 52 V5. 2700 2x0 72!
=5 0+ u-V5)) — B2 (0p - V) — 2 S2div
T gy Pl T U VO2)) oy g P TP 2)\0 2GvY
S 7355 .
0)\( So + Adivu) + )\pﬂpdlv 2)\952dlvu
S2  S,divu
9; 29 . (2.7)
Moreover, notice that
2 1 2 S?
T = I R — T — —di I 2 = 71 2
(Vu+ Vu ndlvu n) : Vu 2|Vu+ Vu ndlvu al 2.2 (2.8)

since the matrix Vu + Vu® — %divu[n is symmetric and traceless. Therefore, we derive from (2.3),
(2.6), (2.7), (2.8) the following equality

Ot (Cypln b + 6’2q %) +div(Cppulnbd +u 7192 ¢*) + Rpdivu + div(%)
‘12 SQ 2
= w + 5 + ‘VU + VU — *leI | (29)
Now, we rewrite the equation (1.8); as
Rpd(In p) + RpuV(ln p) + Rpdivu = 0. (2.10)
Combining the equations (2.9) and (2.10), we get the desired result. O

Remark 2.1. In case 11 = 7o = 73 = 0, the entropy n defined in (2.1) is reduced to the quantity
Cy1In6 — Rln p which is the entropy for classical fluid dynamics. Moreover, the entropy equation
(2.2) is reduced to the following classical entropy equation

RVH)_MVG‘P
o’ 6

O(pn) + div(pun) — div( < Vu + Vu” divuIn|2 + )\|divu2> . (2.11)

Combining the equation of conservation of energy
1
O(pe + ipu2) + div(pue + %|u|2) + div(pu) + divg = div(S : u), (2.12)

the mass equation (1.8), and the entropy equation (2.2), we get

Lemma 2.2.

T 1
19612‘1‘* u? +*52

20 27

1
6t[ Cop(0 —In0—1)+ R(plnp—p+1)+(1— =)
1
+div [Cvpu(H—lnG— 1) +u(l— ﬁ>%q2+ EuS’S + Rpulnp — Rpu — % + fpu|u|2
r 2 ¢ | 53
+pu+ g — pu(Vu + Vu —EdivuIn)—Sgu +?+a+f|Vu+Vu —fdlvuI|
(2.13)
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Denoting V := (p,u,,q,S2), and writing (2.13) as

5 d ¢ S5, St
V)+di VI+—+-+-—=0,
t771( ) IV[C( )] 02 O\ 2M0
we have a dissipative relation for the convex entropy pair (71, () with convex 7;.
This equation will later on imply in particular the lower energy estimates of the solutions
which are crucial to get the global existence of solutions for system (1.8). Next, we present some

inequalities which is frequently used in the proof of our main results.

Lemma 2.3. In space dimensions n = 2,3 we have the standard Sobolev imbeddings
i) H? — L°°.

ii) HY < LP, for2<p<6.

The following Moser-type inequalities will be used in subsequent sections and can be found as
a standard tool for example in [24, 30].

Lemma 2.4. (i) Let r,m,n € N1 < p < oo, h € C"(R™), B := ||h] cr (B Lhen there is
a constant C = C(r,m,n,p) > 0 such that for all w = (wy,...,wy) € WHP(R™) N L>®(R™) with

lw||re <1 the inequality

IV"h(w)||L» < CB||V"w| e (2.14)
holds.

(ii) Let m € N. Then there is a constant C = C(m,n) > 0 such that for all f,g € W™2 N L>® and
a € N§, |a| < m, the following inequalities hold:

IVl < CU=IV"gllz + IV fll2llglz=), (2.15)

A

I911(Fg) — £Vlglle < CUV L= F™ " glla + 97 Flla gl )- (2.16)

3. GLOBAL EXISTENCE FOR SMALL DATA: PROOF OF THEOREM 1.1

We first derive the following equation for 6:
2q . : 2 5, e, m r_ 2. 2
pea0if + (puey — ?)VH + Opgdivu + divg = il + st + §|Vu + Vu' — gdlvuln| . (3.1)
Proof of ((3.1). Since
pose = peadil) + pe,0ip + peq0iq + pes,0;Sa,
pu - Ve = pegu - VO + pe,u - Vp + pequ - Vg + pes,u - VS,
we have
pOie + puVe
= peg0il + pegu - VO + pe,(0rp + u - Vp) + peq(0:q + u - Vq) + pes, (0pS2 +u - V.Ss)

1 1 1
= peg0if) + pegu - VO — p*e,divu + pey(——q — iV@) + pes, (——S2 + —Adivu)
1 T1 T3 73

2 1 1 1

= peg0if + pegu - VO — p*e,divu + piq(——q — EVH) + pESQ(——Sg + —Adivu)
Kpb 1 5! Ap T3 T3

_ 2q 2 2 5 1, .

= pegOid + (pequ — ?) -Vl — pe,divu — i XS2 + Sadivu.
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By the valid thermodynamic equation ,026,3 = p — Opp and (2.8), we derive the desired equation
(3.1). m|
So, we have

Op + div(pu) = 0,

pOu+ pu - Vu+ Vp = p(Au+ 2=2Vdivu) + VSs,

pepdil + (pueg — %q)VG + Oppdivu + divg = 2¢* + 153 + 5|Vu + (Vu)” — 2divul,|?,

T1(0q+u-Vq)+qg+rVO =0,

73(04S2 + u - V.S3) + So = Adivu.

(3.2)

We first show the local existence of solutions in the following theorem.

Theorem 3.1. Suppose that the initial data (po—1, ug, o—1, qo, S20) € H® and (po, uo, 0o, qo, S20) €
Go. Then, for each convex open subset Gi1 satisfying Go CC Gy CC G, there exists T =
T ([(po,---,S2)||gs) > 0, such that the system (3.2) has an unique classical solution (p,u,0,q, S2)
satisfying
(p—=1,0—1,¢.82) € C([0,T), H*) N C*([0, T, H?)
ue C([0,T], H)nCY([0,T], H")
and

(pv U;Q,q752) S le V(.T,t) € Rs X [07T]

Proof. First, we write the above system as a hyperbolic-parabolic system:

ALV + 3 4,0,V = F(V, V),
=1

J

A§Ou— 3 Y BijOya,u = g(V,u, VV,Vu),

i=15=1
where V' = (p797Qa SQ) and
1 0 pepy 0 O ~ . 0 pegu-€& &7 0
A() - O O % 0 ) Z]-Ajgj - O f u f O R
0 0 0 . 0 0 0 u-é
pdivu
_ 1 2 2 12 n T 273 2
FV, V) = Opedivu + 5q° + 53 +_2£|Vu + (Vu) =divul,| 7
/\divuﬂ— So
Af = pl,, Z Z B;;&i& = p(I, + - €™,
i=1j=1

gV, u, VV,Vu) = —pu - Vu = p,Vp = pgV0 — pgVq — (ps, — 1)VSs,
for £ € R™ with || = 1. We observe that A}, A% are symmetric and positive definite matrices, A4;
is a symmetric matrix, B;; are symmetric matrices, and Y > B;;§;; is positive definite for all
- i=1j=1 -
¢ € S"~1. For the equilibrium state V = (1,1,0,0), % = 0, we have f(V,0) = 0 and g(V, %, 0,0) = 0.
Then the local existence theorem follows immediately by using the results of Kawashima, see [22]
or the appendix in [30]. O
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For the global existence for small data, we do not use the results of Kawashima [22] by checking
the so-called Kawashima condition. Instead, we use energy estimates and the entropy equation to
get the desired result. Since we have quadratic terms in the equation (3.2),, the Sobolev regularity
in Kawashima [22] in R? is at least H*. Here we obtain H>-estimates; Kawashima’s results do not
apply to our problem.

Proposition 3.2. There is a constant § > 0 such that if E(t) <6, t € [0,T), then fort € [0,T]
E(t) < Cll(po — 1,u0,60 — 1, a0, Soll 32 + CE(1)?, (33)
where C' is a constant being independent of § and of the initial data.

The global existence of solutions for small data follows from Proposition 3.2 and Theorem 3.1
immediately by continuing a local solution, if the initial data are chosen to be sufficiently small.

The following series of Lemmas is devoted to prove Proposition 3.2. First, from Lemma 2.2, we
derive the following lower energy estimates for a given local solution, cp. [17] for similar arguments.

Lemma 3.3.
d

1 1
T <C’up(91n01)+R(plnpp+1) (1-= qu + = pu? +SQ>
R3

29) KO 2

62 OX
Moreover, there exists 8o > 0 such that if E(t) < &g fort € [0,T), we have

2
+/ (‘1 L5 + 2Tt (Vu)” - idivu[n|2) dz = 0.
R3

H(p - 17u79 - 17q752)( HL (34)

»-lkﬁ—‘

and
t
/ (p—1)2+ (0 -1 +u”+¢>+53) (z,t)dx —|—/ / (¢° + S5 + |Vu|* + [divul®) dzdt < CEj.
R3 0 JR3
(3.5)
In the sequel we will assume
E(t) < b9, for t € [0, 7).

Before we concentrate on the higher-order a priori estimates, by using the equations (3.2), we can
prove

Lemma 3.4. There is a small constant 6 > 0 such that if E(t) < 4§, t € [0,T], then fort € [0,T]
t
1(8ep, 040, 0vq, D:S2) |32 + [|Opul| 7 +/ 1(3ep, 040, 024, 0 S2, Opu) |32 dt < CE(t). (3.6)
0

Proof. We only give a short proof for the estimates of 0;u. The other terms can be estimated in a
similar way. From equation (3.2),, we have

18] g1 < || - Ve + p”v + P v9+ pqv + pj? VSs + v52 + p(m+ —levu)HHl

< CEt)? + |5 (Au+ 7levu)||H1

b\t

Since

—2 1
| %(Au + nTVdivu)HLz < Cllul| > < CE(t)%
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and
W n—2_ .
v <(Au + leVU)) |2
p n

1 n—2 1 n—2
S C (”pQVpLSHAU + TVdiVUHLG + ||;||L00||A’LL + anlVU”H1>

< CUIVplallulme + |lullze) < CE@®)*.
Thus, we have
[8ullF < CE(1).
On the other hand, using similar methods as above, we have
[0l g2 < C|[(Vp, Vu, VO,V g, VSs, Au)| me

which implies by the definition of E(t) that

t
/ 9l dt < CE(L).
0
O

Now, for 1 < |a| < 3, taking VV!®I~1 to the equations (3.2),,(3.2)s, (3.2),,(3.2)5 and V/ol~1
to the equation (3.2),, we derive the following system

oVVIM=1p 1y V(VVII=1p) 4+ pVdivVIel—1y = —[VVIel=1(y - Vp) —u- V(VVI—1p)]
— vVt (pdivu) — pVdivVIel=ty] =: f,
pO V11 y — (AVI=1y + 222V divvIel=ly) + p, VVIel=1p 4 pyVViel=1g — yviel-1g,
+VIeI=1(p, Vg + ps, VS2) = —[VII=1(p,Vp) — p,VVIdI=1p] — [VIeI=1(pa V) — pyVVIeI—10]
—[VI= (pdyu) — pd, V11~ 1u) = VI (pu - V) =: fo,
pegd, VY=L + (pueg — 22) - V(VVII=10) + 0py VdivVIel—ty + VdivViel—1g
= —(VVII=1(pegdr0) — pegd, VVII=10) — [VVI1=1 (Opgdivu) — Opa VdivVIel—1y]
+VVlal-t (Z4¢*+553) — (VV'Q‘_l((pueg - %)VG) — (pueg — %q) ~V(VV|“‘_19))
+Lavvil=L (|(Vu+ Vu)T — 2divul,[?) =: fs,
(8, VVIeI=lg 4 u - V(VVIel=1g) + vVlel=1g 4+ gv2Viel-1g
= -1 (VVIe=1(y - Vq) —u-V(VVIeI=1q) = f4,
73(0, VVI*=18y 44 - V(VVI=18,) 4 VVIel-16, — AVdivVIel—1y
= —(VVI—1(y - VSy) —u - V(VVIH-18,y) =: f;.
(3.7)

The following lemma gives the estimates of the right-hand side of the above system.
Lemma 3.5. For any 1 < |a| < 3, we have
|fillze < CE®)I(Vp, Vu)l =,
If2llzz < CE®) IV, VO lmr + [1Vull 2 + |0l 1),
1£sllz2 < CE®) > (1(Vp, Vi, VO, Vg, VSo) |2 + || Vull s + [|060] 122),
|falle < CEE (Ve Vu)laz, |Ifsllze < CE®)= (Y, Vo)l |-
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Proof. By Sobolev’s imbedding theorem and Moser-type inequalities, we have
1fillze < IV - Vp) = e VWV pl| 2 + [V (pdive) — pVdiv Vel
< C (IVull=IVlp 2 + [Vl o |91 2)
< C(E®)*[[(Vp, V)| 12 < CEW®)?[[(Vp, Vu)| 2.
Noting that p, = R0,ps = Rp + ﬁq{ we get for || = 1 that
VI (p,Vp) — p, YV p =0
and for |a| > 2 that
IV (0, V) = p, VY pl| 2 < C[(Vp, VO) || 1= [|(V1*1 7 p, W11710) | 2
< C(E®)* Vo, V0|12
Similarly, we have for |a| > 1 that

V1211 (pgV8) — peVVII=19]| < C(E(8))%]|(Vp, VO, V)| 2.

Now we estimate the term ||VI*I=1(pdu) — pd;VI®I=1u|| 2. For |a| = 1, this term vanishes. For
|a| = 2, we have as a typical term

102, (pDru) = pBry,ull 2 = (D2, p)Bsull 2 < (E(2))?]|Opu| 2.

For |a| = 3, we have as a typical term
||5x10xj (p@tu) - Patax,-axﬂ”m
=[(0x, 02, p)Ostt + (O, p) OOz, t + Oz, pOs; Opul| L2
<C(IV2pllce0vull e + Vol Lo | Opull 11
<OVl 0wl v < CE(®)? Byl 1.

So, for 1 < |a] < 3, we get
V11 (p0hu) = p0: V11l 2 < CE(E)) Ol -
On the other hand,
V1= (pu - V)| 12 < Clpull < VN g2 + C|[ V]| o= [ V117 (pu) | 2
< CEW®) (Vg2 + [ Volla).

Combining the above estimates, we get the estimate for fy. The terms f3, f4, f5 can be estimated
in a similar way, we omit the details. This finishes the proof of Lemma 3.5. O

The next lemma gives the higher-order a priori estimates of the solutions.
Lemma 3.6. For any 0 <t < T, we have

3
2

t
1(Vp, Vu, VO,V q, VSa)||%: +/0 (1(Vq, V)12 + || Vul%s)dt < C(Eo + E(t)2). (3.8)

Proof. Multiply (3.7),, (3.7)5, (3.7)3, (3.7),, (3.7); for [a| > 2 by L2V VIel=1p —AVIel=ty, 2w Viel=1g,
Lyvlel=lg, 1vVIel=16, respectively, - for |a| = 1 take the multipliers %"Vp, —Awu, $V0, 1Vq,
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lVSQ, respectively —, and summing up the results, we get

d pp|vvla\ 1p|2 ‘vv\a|71u|2 P€9|Vv|a\ 19‘2 T1 |Vv‘a|,1q|2
dt 250

+2L§|vvla‘*152|2 dz
—2
+/ (wwvla'lq? + Avvallsﬁ) dz + u/(Av‘aHu + %Vdivv‘alflu)avla‘*ludx

4 4 5
=Y G+ Hi+Y F+D+L (3.9)
=1 =1 =1

where
/...dm::/ ...dx,
and

1
G = /u-V(vv‘al—lp) Legylel-lpde, Gy = /(pueg — %)-V(vvlal—le) : 5Vv‘wl—ledgc,
p

1 1
Gs ::/Tlu~V(VV|O“_1q)-EVV"I‘_lqu, G4 ::/Tgu-V(vv‘al—lsg)-vala‘—lsgdx,

Hy = Vdivv!el—ly) . Pegylal-1, o gylel-1,. ayla=1y,) 4z,
(o — Py P
0
Hy :—/( —ppVVI*I 710 - AVI*Ty 4 Opp Vdiv VIl - SV VIl 19) dz,
Ho= / (;de'”‘1q~vv'ale+nv2vmle vyl >dx,

Hy = / (vv'a—lsg AVl - AVdiv ey AVVQ|_1S2> da,

Fy ::/fl-VVm‘_lpdx, F ;:—/fz-Avla\—ludx, Fs ::/fg-vv‘al—ladx,

1
Fy = /f4 : *VV‘al_lCJdJ% Fs = /f5 vV Shda,
K

1 1
D= / (at <p”> A N A v T
2 p 2

1
+§6t(p69)|vv|a‘ 1912 — vp~atva|1u-vva|1u> dz,

L:= /—v‘al—l(pqvq + ps, VS, - AV~ 1ydy,
Now we estimate the right hand side of the equation (3.9).

G, = /—div(%u) . %|VV‘O‘|_1p|2dx

< CIV(p, 0, ) 1~ / VY1t p2de < C(E(®)F [Vl Zede,

while G;, 2 <14 < 4 can be estimated similarly. So, we get

ZG < C(E(1)?(Vp, V0, V4,V S) 2. (3.10)
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Integrating by part, we get
H, = /ppvvla‘—lly (Vdivv!el=ty — AVI=1y)dz
= /ppvvla‘—lp SV X V x (Vo) da
— [ (V< VI 10) ¥ s (VO e < OB [Vl [Vl

Here we used the relation
Ay = Vdivu — V x V X u,

which also holds in two space dimensions. There, for a scalar field f the rotation is given as the
vector V X f := (0y, f, —611f)T, resp. for a vector field F' as the scalar V x F' := 0, Fb — 04, F1.
Similarly, we have

Hy = /pgvv‘alfla(Vdivv‘alflu — AV 1y)de

= /pgvv‘alfla LV XV x VI tude < CE@)?(|VE| g2 || Vul| g

On the other hand, we have

H; = /% (Vdivvla‘—lq vVl 4 v2ylel—1g. vv‘al—lq) da

= / évvla‘*la- (Vdivv!el=1g — AvIel=1g)

= /v (;) VIl v x VIl lgde < CE#)2 | V0| 2|V 172

Moreover,
Hy = /v‘al—lvsg(Avla‘—lu — VdivV!* ) da
= —/V'“‘—lvs2 SV x V x Ve =lydz = 0.

So, we derive that

4
> Hi < C(E(1))(Vp, Vu, V0, V). (3.11)
i=1
Using Lemma 3.5, we get
5 1
> F < CE®)? ([(Vp, Vu, V0,Vq, V)32 + |Vullzs + [0wull3 + 10:60]71) - (3.12)
i=1

For the last terms D and L on the right-hand side of (3.9), we have

D< ||<Pt79t7qu(SZ)tavp)HLOO / (|VV|°‘|‘1p|2 + |vv\a|—1u|2 + |vvla\—19|2 + |V‘a|_1ut\2) dz

< CE() (|(Vp, Vu, VO,Vq) |32 + ur| %) da.
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To estimate L, we first take |a| = 1, typically

L= /(quq + ps, VS2)Audx

< Cll(pq; ps.) o= /(|V4\2 +[VS [ + | Auf?)de

< CE)(|(Vg, VS2) |2 + [lul}2),

where we have used the fact that p, = —T5q, ps, = —5 .52, while for 2 < |af < 3,

L=— / VI=1(p, Vg + ps, VS2) AV ~ludz

SC||(pq,Vq,psz,V5'2)HLoo/(|VV|“‘_1q|2+\V'O‘l_lq\2+|V‘a|_19|2+|VV|C‘|_1SQ\2
FIVIel1s, 2 + |Avla‘—1u|2) da

< CE®)*(||(Vq, V0, VS) |42 + |Vl %s).

For the last term on the left hand side of (3.9), we observe that

/Vdivvml_lu AV dy
:/VdivV“"'_lu- (Vdivv!® =ty — ¥V x V x VI*I=1y)da

2
:/ ‘Vdivv‘alflu‘

dz,
which gives

-2
u/(AVlal*lu + LVdivVM*lu)Avla‘*ludx
n

_ 2
:u/mvlal*lmuu Vdivv!*=ty| dz (3.13)
n

Summing |¢| from 1 to 3 and integrating the inequality (3.9) over (0, ), using the elliptic inequality
lu)l gz < Cl|Au|| L2 as well as Lemma 3.4, we get the desired estimates (3.8), which proves Lemma
3.6. ]

Now, we use the ideas from Kawashima [22] , see also [36, 33], to estimate the missing last two
terms: fot [Vpl|%2dt and fot [VO]|%,2dt.

We first write the system (3.2) in symmetric hyperbolic-parabolic form. Let U := (p, u,0,q, S2)
and U = (p,u,0,q,S2) :=(1,0,1,0,0), then we have

AU, + En: AU, + i En: BN Uy, + LU)U = F(U,VU,8,U), (3.14)
J=1

j=1k=1
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where
p, 0 0 0 0 0 pT 0 0 0
o I, 0 0 O n P 0 peé 0 =€
A= 0 0 e 0 0 [YAVOLEG=] 0 p" 0 ¢ 0 |,
00 0 L 0 | =2 0 0 ¢ 0 0
o 0 0 0 = 0o T 0 0 0
0 0 000 0000 O
n o n 0 pl,+22pE€" 0 0 0 000 0 O
SS BFGE = 0 0 000 |,LO)=|0000 0],
j=1k=1 0 0 000 000 % 0
0 0 000 000 0 %

= (&, &) € S" land F(U,VU,U,) = (Fy, Fy, F3, Fy, F5) where
Fy:=p,(—u-Vp—(p—1)divu)

Fy:=—(p—1)0u— (p, — Dp)Vp — (po — Do) VO — psVq — ps,VSa,
2q

0
Fy = SV Vq, F5:= LIS V.S,
K A

2 1 2
)V — (Opy — po)divu + —q* + ~S2 + g|Vu + Vvl — Edivu|2,

F5 := —(pey — €9)0:0 — (puey — v 3
F is etimated in the following lemma.
Lemma 3.7. For 1 < |a| < 3, there exists a constant C such that
VI B2 < CE@®)2 (Y, V)l e,
IV By 2 < CE@)? (I(Vp, V0, Va, VSs) |2 + |9l s2)
IV By 2 < CE() (1(V0, 040, V)l + I(a, S2)l =)
IV a2 < CE@®)? (IVallz + [ Vullm).
VI Fyll e < CE@)2 (IV Sl + 1Vull o)
Proof. For |a| =1, we have
1P|z < [I(u, p = Dl (1Vpllz2 + [Vl z2) < CE®)? (|(Vp, V)| 72).-
For 2 < |a| < 3, we have
IV B2 < Cll(w, Vo, p = 1, V)| o= (|[(V1p, V101, W1y, 01911 p)) )
< CE(t)*|[(Vp, Vu) 2.

The other terms in F;, 2 < i < 5 can be estimated in a similar way as above except the first term
?—(p—1)u,” in Fy since ||Jug||p is not bounded by E()z. In the following, we only estimate this
term. Note that for |a| =1,

I(p = D)osullz2 < [lp— 1| |Opul| 2 < CE(t)? | Opul| 2.
For |a| = 2,
102 [(p — 1)Osu] | 2
Ox, 01 + (p — 1)01 0y, u|
< Ol(Vp,p— 1)z l10cull g < CE()? |8ul 1.
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For |a| = 3,
1020, [(p — 1) Oy >
= [|0z, 0, pOstt + Op, 0102 ;u + Oy, O30z, u + (p — 1)04 0, 0x |
< IV2plles|0vull Lo + IV pll = VOl 2 + [|p — Ll = || Opul| 2
< CE(t)? |0yl 2.
This finishes the proof of Lemma 3.7. O
Now, we introduce a matrix K7 for j = 1,2,--- ,n as follows,
0 ppt 0 0 0
n £ 0 0 0 0
S Kigg=e|l 0 0 0 =m0 |, (3.15)
j=1 0 0 *%5 0 %f
0 0 0 —f—lﬁT 0
where € > 0 and N > 0 is yet arbitrary. Then, we calculate
0 pT 0 0 0
o B 00 0 0
S KIANU)E =€ 0 0 0 N¢Too (3.16)
j=1 0 0 —N¢ 0 ¢
0 0 0 T 0

which is an anti-symmetric matrix and

M=% %" <; (KTATE;€ + (K ATE6)T) + B”fjﬁi) +L

j=1i=1

G(ﬁp)g 0 5DpPo 0 —5Dp
0 pho+(32p—ep)ee” 0 -5 (N4 2)e” o

= 5DpDe 0 e% 0 —ex
0 —s(EeR)et 0 gn-get o
—5Pp 0 —€3m 0 3

is symmetric and positive definite for some large N and sufficiently small e. In fact, let n =
(n1,m2,m3,M4,m5)7 € R x R" x R x R” x R be any vector, then

0" Mn = (n1,m3,05)" M1(n1,n3,m5) + (n2,m2) " Ma(n2,m4),

where
= )2 [ €5 _
«(Bo)" 3PPy 3D pho+ (220 - epp)ee” —5 (BN 4 2 ) g
M1 = §p6p]_70 GTIH —612? 7M2 = e (peN + N ffT l[ _ ﬂfET
7§pl’ 76% by 2 €p T3 KT €p

So, the positive definiteness of M is equivalent to that of M; and Mj. Let d; denote the j-th
principle minor of the matrix M, then d; = €(p,)? > 0 and

o (KN 1 _ .,
dy = €(pp) <7_1 - Z(Pe) ) :
We can choose N independent of € such that
N 1
MY 2
T1 4
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implying ds > 0. Now, N is fixed. For small €, we observe that

1 kN 1
i =50 (= L) @0, e,

T1

which gives d3 > 0 by choosing e sufficiently small. Thus, M; is a positive definite matrix.
Furthermore, we observe that Ms is a small symmetric perturbation of a positive definite matrix,
which implies that My is also positive definite for sufficiently small e. From now on € is fixed.

Applying K*VI*=1 to the system (3.14), multiplying by V‘O‘|_1Umi in L2, and taking the sum
over i = 1,...,n, we obtain

> < KAV, v, >+ 0N < KAV 0V, Ve, >

i=1 j=1

+ <Y KDY BNV, ., + LO)VT T | VT, >

i=1 j=1k=1

=Y < K'VeRlRw VU, Ve, > (3.17)

=1

Here < -,- > means the L? inner product. Now, we estimate each term of (3.17) as follows.

Z < K'AY(O)vleI-1y,, viel—ty,, >

— il KZAO Ja]—1 |a]—1 ‘
Z2dt< (O)yvlel=ty viel-1y, >

where the we use the fact K?A° is an anti-symmetric matrix. On the other hand, using the fact
that M defined above is a positive definite matrix, we derive that

zn:zn:«r(w Wty v, >

=1 j=1
=<> ( (K'AY(U) 4 (K' AT (O)T) + B”(U)) + LUV, vy, >
=1 j=1
—< ZZ BY(U)+ L(U)) V" ~U,,, VeI —tU,, >
i=1 j=1

> BIVIIU(E: = CI(V*u, V1*lq, ¥1°15,) |72,

where 8 = B(M) is some positive constant. The positivity of M can be exploited using the Fourier
transform. Meanwhile, we have

n n

< K S pEO)E, L, + L)V | v, s
i=1 Jj=1k=1

< C(IVullys + llallzs + 11S2l13)-

Integrating the equation (3.17) over (0,t) , combing the above estimates, using Lemmas 3.6 and
3.7, we get the following result.
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Lemma 3.8. There exists a constant C' > 0 such that
/Ot 1(Vp, V0)||32dt < C(Eo + E(t)?). (3.18)
Combining Lemmas 3.6 and 3.8, we get

Lemma 3.9. There exists a constant C > 0 such that

t
(Vp, Vu, VO,V q,VSs)|| g2 + / (I(Vp,V0,Vq, VS2)|[ 52 + | Vul}s)dt < C(Eg + E(t)?).
0
(3.19)

Thus, the proof of Proposition 3.2 is finished by combining Lemmas 3.3 and 3.9. Moreover,
looking at the local existence Theorem 3.1 and the dependence on the norms of the initial data
that determine the length of the existence interval, this allows to continue a local solution to a
global one. Moreover, from inequality (1.13) and Lemma 3.4, we have

t
/ I(py 1,0, 0, 52) ot < C
0

[

which implies the decay estimate (1.14) immediately and thus proves Theorem 1.1. O

and

d
&||V(p7u797q752)”[,2 dt < C7

4. BLOW-UP RESULT: PROOF OF THEOREM 1.2

In this part, we consider the local existence and the blow-up of solutions for system (1.15). To
this end, we need the following assumption.
Assumption. There exists § > 0, sufficiently small, such that

)
i < —. .
min (po(),60(x)) > 0, max(lao(a)],[Sa0(@)]) < 3 (41)
We remark that for the local solution then will hold
1
i t >0 t < =. 4.2
g}g(pp,pe,eo)( ;) max [ps, (t,2)| < 5 (4.2)

Replacing the equation (1.15), by the equation for the temperature 6 given in (3.1), we have

Orp + div(pu) = 0,

posu + pu - Vu + Vp = V.Ss,

pep0il + (puey — %)VG + Opodivu + divg = 2 ¢* + 153, (4.3)
T1(0rg +u-Vq) + g+ VO =0,

Tg(atSQ +u- VSQ) + S5 = Adivu.

Now, we transform the above system into a first-order system for V := (p,u, 0, q, S2)T. We have

3
OV +> Aj(V)0y,V +B(V)V = F(V), (4.4)
j=1
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where
u-& p€T 0 0 0
3 B (wegl,  mme Bl P
YA =] 0 2T (- 2y €T o |,
=1 0 0 £¢ (w-&I, 0
0 -2 0 0 u-€

11 2 1 T
B(V) = diag {0,0,0, pt Tg} JE(V) = (0,0, @qQ + A53,0,0) )

n
Since the (2n+3) x (2n+3)-matrix ) A;&; is not symmetric, the system (4.4) is neither symmetric-

j=1
hyperbolic nor strictly hyperbolic. So, the local existence does not follow immediately by the
classical theory of symmetric-hyperbolic or strictly hyperbolic systems. We shall show that the

system (4.4) is a constantly hyperbolic system which also will imply a local existence theorem.
We look only at the three-dimensional case n = 3, analogous arguments apply to the case n = 2.
3

We first prove that the matrix ) A;¢; has nine linearly independent eigenvectors corresponding

j=1
to five different eigenvalues (one eigenvalue is 5-fold). For || = 1 the characteristic polynomial for

3
> A& is given by (also checked by (©)Maple)
j=1

3
P(n,A,€) i=det [ Y A;& — Ay | = (u-&— A)’g(u-€—A), (4.5)
j=1
where
2
g(z) .:2?4—2(]523— <£+ eng +)\(1_p52) +pp) 22
pleg L pZeg P73
k0pe . A(l = ps,) . 2g-¢ Al = ps,) K
+ <T1p2egpq £+ (7’)73 +pp) es ) z+ (7;% tee ) (4.6)

We observe the similarity of the characteristic polynomial P(n, A, £) with the corresponding poly-
nomial in one space dimension (n=1), given in [17], actually we have

P(n,A &) = (u-&— N> tg(u-€—N), forn=1,2,3. (4.7

A similar situation — characteristic polynomial in space dimensions n = 2,3 is given by the corre-
sponding polynomial in space dimension n = 1 times a power of linear polynomials — is observed
in linear thermoelasticity, see [30] or [19].

We first show that there exist five linearly independent eigenvectors corresponding to the eigen-
value A = u-&. Let W = (z1, 2o, 3, T4, Ts5, T, T7, T, Tg) . be an eigenvector corresponding to the
eigenvalue A = u - £. Then we have

x2&1 + x3é + 1483 = 0,

x5 =0,
z6&1 + w782 + 2883 = 0,
Ppr1 + (s, — 1)xg =0,

from which we obtain that there exist two linearly independent eigenvectors of the form W =
(0,2, 3,24,0,0,0,0,0)” with (29,23,74) - € = 0, two of the form W = (0,0,0,0,0, x¢, 7, z3,0)T
with (zg, 7, 25) € = 0, and one of the form W = (z1,0,0,0,0,0,0,0,z9)” with (z1,29) - (p,, ps, —
nT =o0.
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Second, g has four different zeros. Since g is essentially the same as the corresponding one in one
space dimension, we only (easily) transfer the considerations from [17] for the reader’s convenience.

Note that g(+o0) = +00, and g(0) = (M +pp> -5 >0

pT3
Let
AM1l—=0p
pt =% ( 5:) + Pp;

PT2

then
P <0< py
and
9p§ KBOpg _
9(ps) = pi— (p269“ e §)=p-Q,

which implies by assumption (4.1) and (4.2) that

9 2
Q> min YPpH+ >0
(t,z)ERTxR3 2p2ey
if
T1Po M+

el < min —_
[P €|_(t,z)E]R+><R3 k

which is satisfied if |g| < ¢ for some § > 0. Therefore, we derive that
9(px) <0.

Hence, g has four different real zeros z1 < 25 < 0 < z3 < z4. Thus we have demonstrated that our
system is constantly hyperbolic.

The constant hyperbolicity implies the local well-posedness [1]. Constantly hyperbolic system
are much less investigated than symmetric-hyperbolic or strictly hyperbolic ones, causing in general
more difficulties. But we can refer to [1, Thm. 2.3 and Thm. 10.2], and thus have

Theorem 4.1. Let s > 5 + 1 and (po, uo, 6o, qo, S20) : R" — R27*3 be given with
Po — 17“0790 - 17Q07SO € Hsa

wmin (po(a),Oof) > 0, max(lao(x)],[Sa0(x)) < o

Then, there exists a unique local solution (p,u,0,q,S2) to system (4.3) in some time interval [0, 1)
with

(p—1,u,0 —1,q,5) € C°([0,Ty), H*) N C*([0, Tp), H*™1)
and

(p(x’t)76($7t)) >0, (|q(fL’,t>|, |52(x’t)|) <.

min max
(z,t)ER™ % [0,T0) (z,t)ER™ % [0,T)

The following proposition states the finite propagation speed property which is guaranteed by
the hyperbolicity of the system (4.3), see [30, 14].

Proposition 4.2. Assume the initial data (po,uo, 6o, qo, S20) satisfy the assumption given in The-
orem 4.1 and (p,u,0,q,S2) be local solutions to (4.3) on [0,Ty). We further assume that the initial
data (po —1,u0,00 — 1, qo, S20) are compactly supported in a ball By(M) with radius M > 0. Then,
there exists a constant o such that

(p('at)vu(‘vt)a0('7t)7Q('7t)a52('70) = (170717070) = (ﬁvﬂvea@ 52) (48)
on D(t) :={z e R"||z| > M +ot}, 0 <t < Tp.
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In the sequel, without loss of generality, we shall assume that

] _
5<0<29.

We recall the averaged quantities defined in(1.16), (1.17),
F(t)= / x - p(z, t)u(z, t)dz,
Gt = [ (w0 - s,

with &(z,t) = p(e + $u?) and € = p(é + 3u?) = C,,. We mention that these quantities above exist
as finite numbers since the solution (p—1,u,0—1, ¢, S) is zero on the set D(¢) given in Proposition
4.2.

Now, we are ready to prove Theorem 1.2, with an ansatz and with calculations that we have
been using starting in [14], essentially going back to ideas of Sideris [34], and that has also been
used in the one-dimensional situation [18].

Proof. We will present the case n = 3. The case n = 2 is obtained with easy modifications. From
the equations (1.15), 5, we can get the equation for the total energy E:

O F + div(uE 4+ up —uSz +¢q) =0, (4.9)
which implies that G(¢) is constant and
G(t) = G(0) > 0. (4.10)
On the other hand, we have

F’(t):/ O (pu)xda
R3
:/ (—div(pu @ u) — Vp + VSs)zdx
R3

= / puldr + 3/ (p—p)dz—3 | Sada.
RS RS RS

By the constitutive equations (1.10) and (1.11), we have

_ T T =
[ w=pa = [ (Rpo ~ 0 - 223 Ropa

and
TlR 2 TgR

Rpf = It

I o 2
C.PC T gt T o

So, using (4.10), we derive that

_ T 2 T8 g
— > — — _ -
/Rg(p p)dz > /RB ((v Dpe —pe) = —oda" =~ 52) do

1 — 1Y T3
> ) ((E-Zpu®)— E)da— P+ 2182)a
_/RS(’Y )(( 5PU) >f17 /Rg(wq+/\5”z)x

v—1 2 (7'1’7 2, 737 2)
> - dx — —_— ——535)d
- 2 R3 puce /]1%3 K0 -+ P “

where v := Ci + 1. Combining the above estimates and using Holder’s inequality, we get

— 1
F'(t) > b= / putdr — 3/ qudx - 3/ LA Sidx —2m(M +ot)®. (4.11)
2 R3 R3 K0 R3 A 2
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By the definition of F'(t), we conclude

2
F2(t) = </ x - p(at)u(m,t)dx)
R3
§/ xzpdx-/ pu?dz
By By
< (M+Ut)2/ pdx-/ putdz
By By
(M+6t)2/ pdx-/ pudz
Bo By

4
< lmaxpo(M+5t)5/ pu’dz,
3 s

where B, := {x € R3||z| < M + 6t} and & > o can be chosen arbitrarily . For simplicity, we still
denote ¢ by ¢ in the following calculations. Therefore, we get

3(5 — 37) Ty 2137 + A
F'(t) > F2—3/ — ¢+ =87 | dz — 2n(M + ot). 4.12
()= 8mmax po (M + ot)d R \ KO ¢+ 2 2 | do = 2n(M + ot) (4.12)
Let co := 7, c3 1= %. Assume for the moment
F(t)>e >0 (4.13)
and
C3 2
2m(M + ot)® = 2r M3 (1 + cot)? 7F, 4.14
where ¢y is to be determined later. Under the above a priori assumptions, we immediately get
C3 o 61y 2 6737 + 3\ 2
F'(t) > - — de — —— Ssd
( ) T 2(1 + eot)? KO Jrs e 2 R3 260

Using the assumption (4.13), the above inequality implies that

F'(t) c3 671 Ade 6737 + 3\

- = —-——— S2dx. 4.15
F2(t) - 2(1+62t)5 C%Kje R3 0%2)\ R3 2648 ( )

Now, we recall the dissipative entropy equation (2.13) given in Lemma 2.2, with pu =0,

1 1
at[ Copl0 100~ 1)+ Blplnp—p+ 1) + (1 - 2) g? + Lpu +52]

: [N T3 q
+div [puCU(H—IHQ—l)—i—u(l 20) 9q2 5u5§+Rpulnp—Rpu—§
2 ¢ S3
- - K 4.1
+2puIUI Fputg—Spu| +—m + 5 =0 (4.16)
Let
1.7
WO = /3 (Cvp()(eo —11190 - 1) —l—R(pOlnpo — Po + 1)+(1 - ﬁ)flo 8 SQO)
R

then (4.16) implies

t t 2
e 53 maxpo, o
L gpat 22 4edt < W, .
/0 /w w62 " +/0 /w gy rdt < Wo + —5=|luo[z2
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Therefore, we have
67 6737 + 3\
212/ / dadt + 32% / / S2dzdt < cg + csl|uol| e, (4.17)
1k R3 0 R3
where
3 - 3 = max
Cq 72 [9(87’1’Y+2T3’Y+)\)W0] 5 Cy = sz |:9(8T1’7+2T3’7+)\)7p0
“a 1
Integrating (4.15) over (0, ), using the above estimates, we have
1 1 c3 c3 2
= > B - . 4.18
B F@) = Botont e o4 colull: (4.18)
Now, we assume
16
Fo> —2, (4.19)
c3
C3
cq + eslluolz2 < Tocs’ (4.20)
Then we have from (4.18) and (4.20)
1 1 1 C3 C3
4.21
4 + 1602 ( )

> _
Fy — Fy F(t) - 862(1 + Czt)
which implies that the maximal time of existence T' can not arbitrarily large without contradicting

(4.19).
Now, we first show that the a priori assumption (4.13) holds. Define

402
Cl i=— —,

C3

then
1 1 c3 c3 C3
< — <
F(t) - F() + 802(1 + Cgt)4 1662 - 802(1 + Cgt)4
which implies
862 4

C3
This assures the a priori assumption (4.13) being compatible with (4.19) by noting that Fy > 2¢;
To show the a priori estimates (4.14) hold, by bootstrap methods, we only need to show
C3 2
2rMP (14 cot)® < ———=F(t)*. 4.23

As a first step, we need (4.23) to hold for ¢ = 0, that is
3
F02 > SmM _ 647 max pg (4.24)
c3 3(5—3y)

Using (4.22), (4.23) is equivalent to
52> 36=37) (4.25)
64 max po

which is satisfied naturally since ¢ can be chosen arbitrarily large and then be fixed
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Thus, the proof will be finished if there exists uy such that (4.19), (4.20) and (4.24) hold and
the assumption 1.18 is satisfied. Let (cp. [14, 18])

Lcos(5(r —1)), r € 10,1],

I re(1,M—1],

¥(r) = Leos(m(r—M+1)+%, re(M-1,M], (4.26)
0, r € (M, +00),

where L is a positive constant to be determined later. ¥ is not in H3(R ), but we can think of ©
being smoothed around the singular points r = 1, M — 1, M and put to zero around r = 0, yielding
a function v, with ||v||zz < 2||0]|p2. We choose

uo(z) == v(|w|)|%

Assumption 1.18 can easily be satisfied since it is equivalent to requiring
__ 1,
poeo — pe+ —uy | dxr > 0,
- 2
which is satisfied by choosing pofy > pf = 1. Let M > 5, then
Fo= [ 2 m@uo(e)de = [ pola)olfe])folda
R3 R3
>mingy [ ulfaplelds
Bo (M)

M
> min pg / v(r)r - drr?dr
0

7 1min pg

M—2
> min po/ L-4xridr > LM*
2

We choose L sufficiently large such that

T min pg > ma 647 max pg 12807 max po
_ X .
32 - 36—-3y) " 3(5—3y)

So, (4.19) and (4.24) hold. On the other hand, since |Jug||2. < 4L?4 M3, we choose M such that

2rmax poL? 4 16mo max pg , 4
0(8 2 Wo+ —M° | < ————M".
(871 + 7'27+M)< o+t 3 = 96 -3)

Therefore, (4.20) holds and the proof of Theorem 1.2 is finished. O

5. REMARK ON THE SINGULAR LIMIT

We conclude the paper with a remark and additional result on the singular limit 7 — 0, which
we can describe for the case 71 > 0,79 = 0,73 > 0, u > 0. We assume for simplicity 7 = 13 =: 7.
For 7 > 0 let (p7,u",07,q",S7) denote the local solution to the system (1.8) defined on [0,77),
where

T, =sup{T > 0;(p” — 1,u™, 0" —1,¢",55) € C([0,T), H?), (p",u",07,q7,53) € G}

with initial data (p7,ud, 07, ¢G5, S9) € Go. Then we have
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Theorem 5.1. Let (p,u,0) be the smooth solution to the classical compressible Navier-Stokes
equations with (p(x,0),u(x,0),0(x,0)) = (po,uo, o) satisfying inf , )ersxjo,r,1(p(2,1),0(x,t)) >0
and

(p—1) € C(0,T.], H®) n C* ([0, T.], H),
(u,0 —1) € C([0,T.], H*) n C' ([0, T.], H*),
with finite T, > 0. Moreover, assume that the initial data are well-prepared, i.e.,

(o — po, u§ — o, 05 — 00, VT (qG + £V00), V/T(S30 — Adivuo)) || s < 7.

Then, there exist constants 19 and C > 0 such that for 7 < 79,
(o™, u™,07) (- t) = (p,u, O) (- )| s < C, (5.1)
and
I(q" + kY0, 55 — AVu)| gz < C772, (5.2)
for allt € (0,min(Ty,Ty)), and the constant C is independent of T.

Thus, we have that the solutions for 7 > 0 converge to the solution for 7 = 0 with a certain
order in 7 on any finite interval of common existence.

The (long) proof of Theorem 5.1, which we omit here, can be done in the spirit of corresponding
considerations in [16], overcoming a higher complexity given here by energy estimates similar to
those used in the proof of Theorem 1.1.

Recently, Peng and Zhao [29] studied the 1-d version and obtained in partical a global existence
result which is uniform with respect to 7 as well as a global convergence result in a weak topology.
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