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Abstract

We consider the Cauchy problem related to the JMGT-viscoelastic plate coupled with
a heat equation with two kinds of thermal laws, which are thermoelasticity of type III
and the Gurtin-Pipkin thermal law, respectively. We prove optimal results on decay
rates for both the thermoelasticity type III system and the Gurtin-Pipkin thermal law
system. More precisely, for the type III system, we show that the decay property is not
of regularity-loss type in both the subcritical and critical cases. The result matches with
the system in a bounded domain, where the system is known to be exponentially stable
in the subcritical case. For the Gurtin-Pipkin thermal law system, there is a regularity-
loss phenomenon in the critical case. We also study the asymptotic expansion of the
eigenvalues to prove the optimality of the obtained decay rates for both models.
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Keywords: JMGT equation, viscoelasticity, thermoelasticity of type III, Gurtin-Pipkin ther-
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1 Introduction

The linear Jordan-Moore-Gibson-Thompson equation (JMGT) has the following form

τuttt + δutt + βAut + γAu = 0, (1.1)

where τ, δ, β, γ are strictly positive constants and A is a strictly positive operator defined in
a Hilbert space H. The equation arises as a model for wave propagation in viscous thermally
relaxing fluids and can be regarded as the linearized version of the Jordan-Moore-Gibson-
Thompson equation, which comes from the combination of the usual balance equations, the
equation of state as well as Maxwell-Cattaneo law (cp.[11, 12]). In this application, A = −∆

with appropriate boundary conditions in a bounded domain.
∗Corresponding author, wangdanhuaok@126.com
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There are other interpretations of the same equation. One is that the equation is known
as the standard linear solid model or the standard linear model of viscoelasticity(cp. [9]). The
other one is that the equation is obtained through the introduction of a relaxation parameter
in the Green-Naghdi type III theory (cp. [5, 20]).

Increasing attention was paid to the problem (1.1) in a bounded domain. In [11], the
authors considered the problem (1.1) and obtained a critical parameter

χ = δ − γτ

β
,

which is critical for the stability of this problem. More precisely, they established the ex-
ponential decay result in the subcritical case (χ > 0) and showed that the energy remains
constant in the critical case (χ = 0). Alves et al. [1] studied the standard linear solid model
of viscoelasticity coupled with Fourier law and established an exponential stability result by
using multiplier techniques in the subcritical case. Apalara et al. [3] investigated the stan-
dard linear solid vibrating systems of thermoelasticity of type III in a bounded domain. They
established the well-posedness and the exponential stability result in the subcritical case.

In [4], the authors considered the MGT-viscoelastic plate coupled with the Fourier law
and heat conduction of type III, respectively. They proved the well-posedness and that the
corresponding semigroups are analytic, for both models in the subcritical case.

For the results about the MGT equation with memory in a bounded domain, see [2, 7, 13,
14, 15] and the references therein.

In recent years, the Cauchy problem related to the problem (1.1) in all of Rn has also
become an active area of research. Pellicer and Said-Houari [17] studied the Cauchy problem
for the problem (1.1). The authors obtained well-posedness and the optimal decay rate by
using the energy method in Fourier space in the subcritical case. Recently, they investigated
the standard linear solid model coupled with heat conduction modeled by the Fourier law in
[18] and by the Cattaneo law in [19], respectively. The authors proved the well-posedness
of both models in the subcritical case and in the critical case. They established the optimal
decay rate and found that the decay results of the Cattaneo system exhibit a regularity-loss
phenomenon. We refer the readers to [10, 21, 22, 23, 25] for further results for the Cauchy
problem.

Motivated by the results above, we study the following Cauchy problems for the JMGT-
thermoviscoelastic plate, first with thermoelasticity of type III,{

τρuttt + ρutt = −k∗∆2u− k∆2ut −m∆θ, (x, t) ∈ Rn × R+,

cθt = l∗∆α+ l∆θ +mτ∆utt +m∆ut (x, t) ∈ Rn × R+,
(1.2)

where α represents the time primitive of the empirical temperature θ and has the following
integral form

α(x, t) = α(x, 0) +

∫ t

0
θ(x, s)ds,

with initial data

(u, ut, utt, α, θ)(x, 0) = (u0, u1, u2, α0, θ0)(x), x ∈ Rn, (1.3)
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and, second, the following Cauchy problem for the JMGT-thermoviscoelastic plate with the
Gurtin-Pipkin thermal law,

τρuttt + ρutt = −k∗∆2u− k∆2ut −m∆θ, (x, t) ∈ Rn × R+,

θt −
1

l

∫ ∞

0
g(s)∆θ(t− s)ds−mτ∆utt −m∆ut = 0, (x, t) ∈ Rn × R+,

(1.4)

with initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), utt(x, 0) = u2(x), θ(x, t)|t≤0 = θ0(x, t), x ∈ Rn, (1.5)

where θ0 is a prescribed past history of θ for t ≤ 0 and g(s) is the heat conductivity relaxation
kernel. We want to point out that the corresponding critical parameter is given by

K := k − τk∗.

We have
χ > 0 ⇔ K > 0.

We are interested in the optimal decay rates for both models and whether the decay
properties of both models are of regularity-loss type. To achieve our goals, we use the energy
method in Fourier space with sophisticated functionals to get the decay results for both models
in two cases: the subcritical case K > 0 and the critical case K = 0. We obtain that the
decay property of the type III system is not of regularity-loss type for both the subcritical and
the critical cases. When K = 0, the decay property of the Gurtin-Pipkin thermal law system
shows a regularity-loss phenomenon. Furthermore, we analyse eigenvalues to show that the
decay results are optimal. It is the first time we discuss the optimality of the decay rates for
the Gurtin-Pipkin thermal law system. Summarizing we contribute

• the first discussion of the Cauchy problem of a coupled system of JMGT type with the
heat conduction model of type III and of Gurtin-Pipkin, resprectively,

• the proof of optimal decay rates for these systems,

• the discussion of the relationship to bounded domains in view of a loss of regularity (or
not), and

• the discussion of both the subcritical and the critical case.

The paper is organized as follows. In Section 2, we first prove the optimal decay result
for the type III system in the subcritical case K > 0, and then in the critical case K = 0.
Afterwards we prove the optimality of the decay rates obtained. In Section 3, we study
the system with the Gurtin-Pipkin thermal law. We prove the decay estimates for both
cases, which are the subcritical case K > 0 in Subsection 3.1.1 and the critical case K = 0 in
Subsection 3.1.2. Finally, we discuss the optimality of the decay rates by giving the asymptotic
expansions of the eigenvalues.

Throughout this paper, we denote the Fourier transform f̂ = f̂(ξ) of a function f = f(x)

by
F [f ](ξ) ≡ f̂(ξ) =

1√
2π

∫
Rn

e−ix·ξf(x)dx.
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By C we denote a generic positive constant, the value of which may vary from one place to
another.

2 The JMGT-thermoviscoelastic plate with thermoelasticity
of type III

We can rewrite the system (1.2), (1.3) as{
τρuttt + ρutt = −k∗∆2u− k∆2ut −m∆αt, (x, t) ∈ Rn × R+,

cαtt = l∗∆α+ l∆αt +mτ∆utt +m∆ut, (x, t) ∈ Rn × R+,
(2.1)

with initial data

(u, ut, utt, α, αt)(x, 0) = (u0, u1, u2, α0, θ0)(x), x ∈ Rn. (2.2)

Taking the Fourier transform of system (2.1), (2.2), we obtain{
τρûttt + ρûtt + k∗ξ4û+ kξ4ût −mξ2α̂t = 0,

cα̂tt + l∗ξ2α̂+ lξ2α̂t +mτξ2ûtt +mξ2ût = 0,
(2.3)

with initial data
(û, ût, ûtt, α̂, α̂t)(ξ, 0) = (û0, û1, û2, α̂0, θ̂0)(ξ), (2.4)

where ξ ∈ Rn. The well-posedness is easy to obtain (cp.[18, 19]), so we omit the details
here. In this section, we first consider the decay result of the norm related to (2.1), (2.2). We
discuss two cases, the subcritical case K > 0 in Subsection 2.1.1 and the critical case K = 0 in
Subsection 2.1.2. After that, we investigate the associated characteristic equation and prove
the optimality of the decay estimates.

2.1 Decay estimates

We introduce the following new variables

φ̂ = ût, ŵ = ûtt, ψ̂ = α̂t, ẑ =

√
l∗

c
iξα̂.

Thus, (2.3) takes the form

ût − φ̂ = 0,

φ̂t − ŵ = 0,

ŵt +
1

τ
ŵ +

k∗

τρ
ξ4û+

k

τρ
ξ4φ̂− m

τρ
ξ2ψ̂ = 0,

ψ̂t −
√
l∗

c
iξẑ +

l

c
ξ2ψ̂ +

mτ

c
ξ2ŵ +

m

c
ξ2φ̂ = 0,

ẑt −
√
l∗

c
iξψ̂ = 0.

(2.5)
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2.1.1 The case K > 0

In this subsection, we assume that K > 0 and we have the following pointwise estimate
and decay result:

Theorem 2.1. Assume that K > 0. Let Û := (ût + τ ûtt,∆ût,∆(û + τ ût), α̂t,∇α̂)T , where
(û(ξ, t), α̂(ξ, t)) is the Fourier image of the solution (u(x, t), α(x, t)). Then Û satisfies the
following pointwise estimate

|Û(ξ, t)|2 ≤ Ce−cρ1(ξ)t|Û0(ξ)|2, (2.6)

for any t ≥ 0, where ρ1(ξ) := ξ4

(1+ξ2)2
, and where C > 0 is independent of t, ξ and the initial

data.
Furthermore, let U = (ut + τutt,∆ut,∆(u + τut), αt,∇α)T , where (u(x, t), α(x, t)) is the

solution of problem (2.1), (2.2), and U0 = U(x, 0) ∈ Hs(Rn)∩L1(Rn), where s is nonnegative,
then U satisfies the following decay estimate

∥∇kU(t)∥2L2(Rn) ≤ C(1 + t)−
n
4
− k

2 ∥U0∥2L1(Rn)+Ce
−Ct∥∇kU0∥2L2(Rn), (2.7)

for all 0 ≤ k ≤ s.

Remark 2.2. The decay estimate (2.7) indicates there is no regularity-loss phenomenon,
which is the decay result does not require a higher regularity of the initial data. Taking
the result in bounded domain into account, the decay estimate here is consistent with the
exponential stability for the MGT-viscoelastic plate with the heat conduction law of type III
(cf.[4]).

For our purpose, we state and prove some lemmas needed to establish our main result.

Lemma 2.3. Assume that K > 0. Let (û, φ̂, ŵ, ψ̂, ẑ) be the solution of (2.5), and define the
energy functional of system (2.5) as

Ê(ξ, t) := |φ̂+ τŵ|2 + τ

ρ
Kξ4|φ̂|2 + k∗

ρ
ξ4|û+ τφ̂|2 + c

ρ
|ψ̂|2 + c

ρ
|ẑ|2,

then there exist two positive constants C1 and C2 such that

C1|Û(ξ, t)|2 ≤ Ê(ξ, t) ≤ C2|Û(ξ, t)|2,

and Ê(ξ, t) satisfies
d

dt
Ê(ξ, t) = −1

ρ
Kξ4|φ̂|2 − l

ρ
ξ2|ψ̂|2.

Remark 2.4. Although the functionals F1(t) and F2(t) have the same form compared with
[18, 19], the estimates are different. The functionals F3(t) and F̄2(t) are different from those
in previous papers.

Lemma 2.5. The functional

F1(t) := Re((φ̂+ τŵ)(û∗ + τφ̂∗))
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satisfies

d

dt
F1(t) +

(
k∗

ρ
− 2ε1

)
ξ4|û+ τφ̂|2 ≤ |φ̂+ τŵ|2 + C(ε1)ξ

4|φ̂|2 + C(ε1)|ψ̂|2, (2.8)

for any ε1 > 0.

Proof. Adding (2.5)2 and (2.5)3 × τ together, we have

(φ̂+ τŵ)t = −k
∗

ρ
ξ4û− k

ρ
ξ4φ̂+

m

ρ
ξ2ψ̂. (2.9)

Multiplying (2.5)2 by τ , and summing up the resulting equality and (2.5)1, we obtain

(û+ τφ̂)t = τŵ + φ̂. (2.10)

Multiplying (2.9) and (2.10) by (û∗+τφ̂∗) and (φ̂∗+τŵ∗), respectively, combining the resulting
equations and taking real parts, we have

d

dt
F1(t)+

k∗

ρ
ξ4|û+τφ̂|2−|φ̂+τŵ|2 = −1

ρ
Kξ4Re(φ̂(û∗+τφ̂∗))+

m

ρ
ξ2Re(ψ̂(û∗+τφ̂∗)). (2.11)

Thanks to Young’s inequality our conclusion holds.

Lemma 2.6. Define the functional

F2(t) := Re(−τ(φ̂+ τŵ)φ̂∗),

then

d

dt
F2(t) + (1− ε3)|φ̂+ τŵ|2 ≤ C(ε2, ε3)(1 + ξ2 + ξ4)|φ̂|2 + ε2ξ

4|û+ τφ̂|2 + ε3ξ
2|ψ̂|2, (2.12)

for any ε2, ε3 > 0 and some positive constant C = C(ε2, ε3).

Proof. Multiplying (2.5)2 and (2.9) by −τ(φ̂∗ + τŵ∗) and −τφ̂∗, respectively, adding the
resulting equations up and taking the real part, we arrive at

d

dt
F2(t) + |φ̂+ τŵ|2 − τK

ρ
ξ4|φ̂|2 = τk∗

ρ
ξ4Re((û+ τφ̂)φ̂∗)−Re((φ̂+ τŵ)φ̂∗)− τm

ρ
ξ2Re(ψ̂φ̂∗).

(2.13)
Thus we deduce (2.12).

Lemma 2.7. The following inequality holds true:

d

dt
F3(t) +

(√
l∗

c
− ε4

)
ξ2|ẑ|2 ≤ C(ε4, ε5)(ξ

2 + ξ4)|ψ̂|2 + ε5ξ
6|û+ τφ̂|2, (2.14)

where
F3(t) := Re

(
iξψ̂ẑ∗ + i

m

c
ξ3(û+ τφ̂)ẑ∗

)
.
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Proof. We multiply (2.5)4 and (2.5)5 by iξẑ∗ and −iξψ̂∗, respectively, add the results and
take the real part. This yields

d

dt
Re(iξψ̂ẑ∗) +

√
l∗

c
ξ2|ẑ|2 −

√
l∗

c
ξ2|ψ̂|2 = − l

c
Re(iξ3ψ̂ẑ∗)− m

c
Re(iξ3(φ̂+ τŵ)ẑ∗). (2.15)

Multiplying (2.10) and (2.5)5 by imc ξ
3ẑ∗ and −imc ξ

3(û∗ + τφ̂∗), respectively, combining the
resulting equations and taking real parts, we have

d

dt
Re
(
i
m

c
ξ3(û+ τφ̂)ẑ∗

)
=
m

c
Re(iξ3(φ̂+ τŵ)ẑ∗) +

√
l∗m2

c3
ξ4Re(ψ̂(û∗ + τφ̂∗)). (2.16)

Adding (2.15) and (2.16) up, we arrive at

d

dt
F3(t) +

√
l∗

c
ξ2|ẑ|2 =

√
l∗

c
ξ2|ψ̂|2 − l

c
Re(iξ3ψ̂ẑ∗) +

√
l∗m2

c3
ξ4Re(ψ̂(û∗ + τφ̂∗)). (2.17)

Hence we arrive at (2.14).

Now, we give the proof of our main result.
Proof of Theorem 2.1. We define the Lyapunov functional

L1(t) := NÊ(t) +N1
ξ4

(1 + ξ2)2
F1(t) +N2

ξ4

(1 + ξ2)2
F2(t) +N3

ξ2

(1 + ξ2)2
F3(t),

where N,N1, N2 and N3 are positive constants that will be fixed later. Taking advantage of
the above lemmas, we have

d

dt
L1(t) +

[
N1

(
k∗

ρ
− 2ε1

)
−N2ε2 −N3ε5

]
ξ4

(1 + ξ2)2
ξ4|û+ τφ̂|2

+

[
N2(1− ε3)−N1

]
ξ4

(1 + ξ2)2
|φ̂+ τŵ|2 +

[
N3

(√
l∗

c
− ε4

)]
ξ4

(1 + ξ2)2
|ẑ|2

+

[
N

ρ
K −N1C(ε1)−N2C(ε2, ε3)

]
ξ4|φ̂|2

+

[
Nl

ρ
−N1C(ε1)−N2ε3 −N3C(ε4, ε5)

]
ξ2|ψ̂|2

≤0, (2.18)

where we have used the fact that ξ2

1+ξ2
≤ 1. At this moment, we want to choose the constants

in (2.18). First, we choose

ε1 <
k∗

2ρ
, ε3 < 1, ε4 <

√
l∗

c
.

Next, we fix N1 = N3 = 1 and N2 >
1

1−ε3
. Then, we pick ε2 and ε5 satisfying

ε2 <
k∗

2ρN2
− ε1
N2

and ε5 <
k∗

2ρ
− ε1.

Finally, we choose N large enough such that

N > max

{
ρ[N1C(ε1) +N2C(ε2, ε3)]

K
,
ρ[N1C(ε1) +N2ε3 +N3C(ε4, ε5)]

l

}
.

7



So we arrive at, with a positive constant α1,

d

dt
L1(t) + α1M1(t) ≤ 0, (2.19)

where

M1(t) =
ξ4

(1 + ξ2)2
ξ4|û+ τφ̂|2 + ξ4

(1 + ξ2)2
|φ̂+ τŵ|2 + ξ4

(1 + ξ2)2
|ẑ|2 + ξ4|φ̂|2 + ξ2|ψ̂|2

≥ C
ξ4

(1 + ξ2)2
Ê(t).

On the other hand, we find that

|L1(t)−NÊ(t)| ≤ CÊ(t).

Therefore, (2.19) becomes
d

dt
Ê(t) + C

ξ4

(1 + ξ2)2
Ê(t) ≤ 0. (2.20)

At last, estimate (2.20) gives the desired result (2.6) and we can obtain the decay estimate
(2.7). □

2.1.2 The case K = 0

For the problem (2.1)-(2.2) in the case K = 0, we have the following result:

Theorem 2.8. Assume that K = 0. Let V̂ = (ût + τ ûtt,∆(û + τ ût), α̂t,∇α̂)T , where
(û(ξ, t), α̂(ξ, t)) is the Fourier image of the solution (u(x, t), α(x, t)). Then V̂ has the fol-
lowing pointwise estimate

|V̂ (ξ, t)|2 ≤ Ce−cρ2(ξ)t|V̂0(ξ)|2, (2.21)

for any t ≥ 0, where ρ2(ξ) := ξ6

(1+ξ2)3
. Furthermore, let V = (ut + τutt,∆(u+ τut), αt,∇α)T ,

where (u(x, t), α(x, t)) is the solution of problem (2.1)-(2.2), and V0 = V (x, 0) ∈ Hs(Rn) ∩
L1(Rn), where s is nonnegative, then V satisfies the following decay estimate

∥∇kV (t)∥2L2(Rn) ≤ C(1 + t)−
n
6
− k

3 ∥V0∥2L1(Rn)+Ce
−Ct∥∇kV0∥2L2(Rn), (2.22)

for all 0 ≤ k ≤ s.

According to Lemma 2.3, 2.5 and K = 0, we have the following result:

Lemma 2.9. Assume that K = 0. Let (û, φ̂, ŵ, ψ̂, ẑ) be the solution of (2.5), and the energy
functional of system (2.5) becomes

Ê(ξ, t) := |φ̂+ τŵ|2 + k∗

ρ
ξ4|û+ τφ̂|2 + c

ρ
|ψ̂|2 + c

ρ
|ẑ|2,

then Ê(ξ, t) and F1(t) satisfy

d

dt
Ê(ξ, t) = − l

ρ
ξ2|ψ̂|2,

d

dt
F1(t) +

(
k∗

ρ
− ε′1

)
ξ4|û+ τφ̂|2 ≤ |φ̂+ τŵ|2 + C(ε′1)|ψ̂|2.
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Lemma 2.10. The functional

F̄2(t) := Re

(
(φ̂+ τŵ)ψ̂∗ +

√
l∗

c
iξ(û+ τφ̂)ẑ∗

)

satisfies

d

dt
F̄2(t) +

(m
c
− ε′2

)
ξ2|φ̂+ τŵ|2 ≤ C(ε′2)

(
ξ2 +

1 + ξ2

ξ4

)
|ψ̂|2 + 2ε′2ξ

2ξ4|û∗ + τφ̂∗|2, (2.23)

for any ε′2 > 0.

Proof. Multiplying (2.9) and (2.5)4 by ψ̂∗ and (φ̂∗ + τŵ∗), respectively, adding the results
and taking the real part, we have

d

dt
Re((φ̂+ τŵ)ψ̂∗) +

m

c
ξ2|φ̂+ τŵ|2

=
m

ρ
ξ2|ψ̂|2 − k∗

ρ
ξ4Re((û+ τφ̂)ψ̂∗) +

√
l∗

c
Re(iξẑ(φ̂∗ + τŵ∗))− l

c
ξ2Re(ψ̂(φ̂∗ + τŵ∗)). (2.24)

Multiplying (2.10) and (2.5)5 by
√

l∗

c iξẑ
∗ and −

√
l∗

c iξ(û
∗+ τφ̂∗), respectively, combining the

resulting equations and taking real parts, we arrive at

d

dt
Re

(√
l∗

c
iξ(û+ τφ̂)ẑ∗

)
= Re

(√
l∗

c
iξ(φ̂+ τŵ)ẑ∗

)
+
l∗

c
ξ2Re(ψ̂(û∗ + τφ̂∗)). (2.25)

Summing up (2.24) and (2.25), we have

d

dt
F̄2(t) +

m

c
ξ2|φ̂+ τŵ|2

=
m

ρ
ξ2|ψ̂|2 − k∗

ρ
ξ4Re((û+ τφ̂)ψ̂∗) +

l∗

c
ξ2Re(ψ̂(û∗ + τφ̂∗))− l

c
ξ2Re(ψ̂(φ̂∗ + τŵ∗)).

Since ξ2

1+ξ2
≤ 1 we obtain (2.23). The proof is complete.

Proof of Theorem 2.8. We define the Lyapunov functional as

L2(t) := N̄(1 + ξ2)3Ê(t) + N̄1ξ
6F1(t) + N̄2ξ

4F̄2(t) + N̄3ξ
4F3(t),

which is obviously equivalent to the energy functional Ê(t). Now, a combination of the above
lemmas, we obtain

d

dt
L2(t) +

[
N̄1

(
k∗

ρ
− ε′1

)
− 2N̄2ε

′
2 − N̄3ε5

]
ξ6ξ4|û+ τφ̂|2

+

[
N̄2

(m
c
− ε′2

)
− N̄1

]
ξ6|φ̂+ τŵ|2 + N̄3

(√
l∗

c
− ε4

)
ξ6|ẑ|2

+

[
N̄ l

ρ
− N̄1C(ε

′
1)− N̄2C(ε

′
2)− N̄3C(ε4, ε5)

]
ξ2(1 + ξ2)3|ψ̂|2

≤0. (2.26)
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By choosing our constants carefully like before, we can derive

d

dt
L2(t) + α2M2(t) ≤ 0, (2.27)

where α2 is a positive constant and

M2(t) = ξ6ξ4|û+ τφ̂|2 + ξ6|φ̂+ τŵ|2 + ξ6|ẑ|2 + ξ2(1 + ξ2)3|ψ̂|2

≥ Cξ6Ê(t).

Exploiting the equivalence L2(t) ∼ (1 + ξ2)3Ê(t), we arrive at

d

dt
Ê(t) + C

ξ6

(1 + ξ2)3
Ê(t) ≤ 0. (2.28)

Therefore, making use of Gronwall’s inequality, we obtain the desired pointwise estimate
(2.21) and we conclude the desired decay estimate (2.22). □

2.2 Eigenvalue Expansions

In what follows, we study the asymptotic expansion of the eigenvalues to confirm that our
pointwise estimates (2.6) and (2.21) are optimal.

Putting Ẑ = (û, φ̂, ŵ, ψ̂, ẑ)T and Ẑ0 = (û0, φ̂0, ŵ0, ψ̂0, ẑ0)
T , we can rewrite system (2.3)-

(2.4) as {
Ẑt + LẐ + iξAẐ + ξ2BẐ + ξ4DẐ = 0,

Ẑ(ξ, 0) = Ẑ0(ξ),
(2.29)

where

A =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 −
√

l∗

c

0 0 0 −
√

l∗

c 0

 , L =


0 −1 0 0 0
0 0 −1 0 0
0 0 1

τ 0 0
0 0 0 0 0
0 0 0 0 0

 ,

B =


0 0 0 0 0
0 0 0 0 0
0 0 0 −m

τρ 0

0 m
c

mτ
c

l
c 0

0 0 0 0 0

 , D =


0 0 0 0 0
0 0 0 0 0
k∗

τρ
k
τρ 0 0 0

0 0 0 0 0
0 0 0 0 0

 .

The solution to (2.29) is Ẑ(ξ, t) = etΦ̂(iξ)Ẑ0(ξ), where Φ̂(iξ) = −(L+ iξA+ ξ2B + ξ4D).
(1) Setting ζ = iξ, we get

Φ̂(ζ) = −(L+ ζA− ζ2B + ζ4D).

Let λj(ζ) denote the eigenvalues of the matrix Φ̂(ζ). Then the eigenvalues λj(ζ), j = 1, 2, 3, 4, 5,
are the solutions of the characteristic equation

τρc det(λI − Φ̂(ζ))
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=τρcλ5 + (ρc− τρlζ2)λ4 + [(τm2 + ck)ζ4 − (τρl∗ + ρl)ζ2]λ3

+ [−klζ6 + (ck∗ +m2)ζ4 − ρl∗ζ2]λ2 − (k∗l + l∗k)ζ6λ− k∗l∗ζ6

=0. (2.30)

When |ζ| → 0, λj(ζ) has the following asymptotic expansion:

λj(ζ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ2 + λ

(3)
j ζ3 + · · · . (2.31)

Substituting (2.31) into (2.30) and calculating the coefficients λ(h)j (h = 0, 1, 2, · · · ), we have

λ
(0)
j = −1

τ
, j = 1,

λ
(0)
j = λ

(1)
j = 0, λ

(2)
j = ±

√
k∗

ρ
, λ

(3)
j = 0, λ

(4)
j = −K

2ρ
± m2

2ρl∗

√
k∗

ρ
i,

j = 2, 3, when K > 0;

λ
(0)
j = λ

(1)
j = 0, λ

(2)
j = ±

√
k∗

ρ
, λ

(3)
j = 0, λ

(4)
j = ± m2

2ρl∗

√
k∗

ρ
i,

λ
(5)
j = 0, λ

(6)
j =

lk∗m2

2ρ2l∗2
± m4 − ck∗m2

2ρ2l∗2

√
k∗

ρ
i, j = 2, 3, when K = 0;

λ
(0)
j = 0, λ

(1)
j = ±

√
l∗

c
, λ

(2)
j =

l

2c
j = 4, 5.

Consequently, when K > 0, we have

Reλj(iξ) =



−1

τ
+O(|ξ|2), j = 1,

−K
2ρ

|ξ|4 +O(|ξ|5), j = 2, 3,

− l

2c
|ξ|2 +O(|ξ|3), j = 4, 5,

(2.32)

for |ξ| → 0. And when K = 0, we have

Reλj(iξ) =



−1

τ
+O(|ξ|2), j = 1,

− lk
∗m2

2ρ2l∗2
|ξ|6 +O(|ξ|7), j = 2, 3,

− l

2c
|ξ|2 +O(|ξ|3), j = 4, 5,

(2.33)

for |ξ| → 0.
(2) When |ζ| → ∞, we define the matrix Ψ̂(ζ−1) = B−ζ−1A−ζ−2L−ζ2D, which satisfies

the relation Φ̂(ζ) = ζ2Ψ̂(ζ−1).
Let µj(ζ−1), for j = 1, 2, 3, 4, 5, be the eigenvalues of the matrix Ψ̂(ζ−1), which are the

solutions to the characteristic equation

τρc det(µI − Φ̂(ζ−1))

=τρcµ5 + (ρcζ−2 − τρl)µ4 + [(τm2 + ck)− (τρl∗ + ρl)ζ−2]µ3
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+ [−kl + (ck∗ +m2)ζ−2 − ρl∗ζ−4]µ2 − (k∗l + l∗k)ζ−2µ− k∗l∗ζ−4

=0.

When |ζ| → ∞, µj(ζ−1) has the following asymptotic expansion:

µj(ζ
−1) = µ

(2)
j + µ

(1)
j ζ−1 + µ

(0)
j ζ−2 + µ

(−1)
j ζ−3 + · · · .

From the relation λj(ζ) = ζ2µj(ζ
−1), we have the asymptotic expansion of λj(ζ) for |ζ| → ∞:

λj(ζ) = µ
(2)
j ζ2 + µ

(1)
j ζ + µ

(0)
j + µ

(−1)
j ζ−1 + · · · .

By direct computations, we have

µ
(2)
j = χj , j = 1, 2, 3,

µ
(2)
j = 0, µ

(1)
j = 0, µ

(0)
j = −k

∗

k
, j = 4,

µ
(2)
j = 0, µ

(1)
j = 0, µ

(0)
j = − l

∗

l
, j = 5,

where χj are the roots of equation τρcX3 − τρlX2 + (τm2 + ck)X − kl = 0. To see that
Re(χj) > 0, we set f(X) := τρcX3 − τρlX2 + (τm2 + ck)X − kl. Since

f(0) = −kl < 0 and f

(
l

c

)
=
τm2l

c
> 0,

we have that f has at least least one real root X = χ1 and χ1 ∈
(
0, lc

)
. We rewrite f as

f(X) = (X − χ1)(τρcX
2 + d1X + d0),

where d1 = −τρl + χ1τρc < 0 and d0 =
kl
χ1

. For the other two roots χ2 and χ3, we have

χ2 + χ3 = − d1
τρc

> 0, χ2χ3 =
d0
τρc

> 0.

We conclude that if χ2 and χ3 are real, they are both positive; if χ2 and χ3 are complex
conjugate and

Re(χ2) = Re(χ3) =
1

2

(
l

c
− χ1

)
> 0.

Consequently, for |ξ| → ∞, we have

Reλj(iξ) =



−Re(χj) +O(1), j = 1, 2, 3,

−k
∗

k
+O(|ξ|−1), j = 4,

− l
∗

l
+O(|ξ|−1), j = 5.

(2.34)

Remark 2.11. It follows from Theorem 2.1 that

ρ1(ξ) =
ξ4

(1 + ξ2)2
, when K > 0.
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Then ρ1(ξ) ∼ |ξ|4 for |ξ| → 0 and ρ1(ξ) ∼ 1 for |ξ| → ∞. We find that it is consistent with the
real parts of the “slowest” eigenvalues, which behave like |ξ|4 for |ξ| → 0 and 1 for |ξ| → ∞
from (2.32) and (2.34), respectively. Therefore, the pointwise estimate in Theorem 2.1 is the
optimal pointwise estimates of solutions in Fourier space.
Theorem 2.8 yields

ρ2(ξ) =
ξ6

(1 + ξ2)3
, when K = 0.

Then ρ2(ξ) ∼ |ξ|6 for |ξ| → 0 and ρ2(ξ) ∼ 1 for |ξ| → ∞. Since it matches with the real parts
of the slowest eigenvalues in (2.33) and (2.34), the pointwise estimate in Theorem 2.8 is also
optimal.

3 The JMGT-viscoelastic plate with Gurtin-Pipkin thermal
law

Following the same process (cp.[18, 19]) and the treatment of Gurtin-Pipkin thermal law
(cp.[26]), it is easy to prove the well-posedness of system (1.4)-(1.5). We start directly with
decay estimates.

3.1 Decay estimate

Here we prove the decay estimates in two cases, which are the subcritical case K > 0

in Subsection 3.1.1 and the critical case K = 0 in Subsection 3.1.2. Before we state our
main result about system (1.4)-(1.5), we need some notations and hypotheses to deal with
the memory term. First we introduce the following new variable (cp. [6, 8])

η(x, t, s) =

∫ s

0
θ(x, t− σ)dσ =

∫ t

t−s
θ(x, σ)dσ, (x, t, s) ∈ Rn × [0,+∞)× R+, (3.1)

which satisfies
ηt = −ηs + θ, (x, t, s) ∈ Rn × R+ × R+,

and the conditions
lim
s→0

η(x, t, s) = 0, (x, t) ∈ Rn × [0,+∞),

and
η(x, 0, s) = η0(s) =

∫ s

0
θ0(x, σ)dσ, (x, s) ∈ Rn × R+.

Assuming g(∞) = 0, it follows from integration by parts that∫ ∞

0
g(s)∆θ(t− s)ds = −

∫ ∞

0
g′(s)∆η(s)ds.

Setting µ(s) = −g′(s), we obtain∫ ∞

0
g(s)∆θ(t− s)ds =

∫ ∞

0
µ(s)∆η(s)ds.
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Let the linear operator T defined as Tη = −ηs. Then, system (1.4), (1.5) is equivalent to the
following:

τρuttt + ρutt + k∗∆2u+ k∆2ut +m∆θ = 0, (x, t) ∈ Rn × R+,

θt −
1

l

∫ ∞

0
µ(s)∆η(s)ds−mτ∆utt −m∆ut = 0, (x, t) ∈ Rn × R+,

ηt = Tη + θ, (x, t, s) ∈ Rn × R+ × R+,

(3.2)

with the conditions
(u, ut, utt, θ)(x, 0) = (u0, u1, u2, θ0)(x), x ∈ Rn,

lim
s→0

η(x, t, s) = 0, (x, t) ∈ Rn × [0,+∞),

η0(x, s) =

∫ s

0
θ0(x, σ)dσ, (x, s) ∈ Rn × R+.

(3.3)

For the memory kernel g, we use the following assumptions as in [8]:
(G1) g′ is an absolutely continuous function on R+ so that

g′(s) ≤ 0, g′′(s) ≥ 0, g′(0) = lim
s→0

g′(s) ∈ (−∞, 0).

(G2) There exists ν > 0 such that the differential inequality

g′′(s) + νg′(s) ≥ 0

holds for almost every s > 0. A typical example is given by g(s) = e−ν s.
We take the Fourier transform of system (3.2)-(3.3) to obtain

τρûttt + ρutt + k∗ξ4û+ kξ4ût −mξ2θ̂ = 0,

θ̂t +
ξ2

l

∫ ∞

0
µ(s)η̂(s)ds+mτξ2ûtt +mξ2ût = 0,

η̂t + η̂s = θ̂,

(3.4)

with initial data 
(û, ût, ûtt, θ̂)(ξ, 0) = (û0, û1, û2, θ̂0)(ξ),

η̂0(ξ, s) =

∫ s

0
θ̂0(ξ, σ)dσ,

(3.5)

where ξ ∈ Rn. By introducing the following new variables

v̂ = ût, ŵ = ûtt,

(3.4) can be rewritten as

ût − v̂ = 0,

v̂t − ŵ = 0,

τ ŵt + ŵ +
k∗

ρ
ξ4û+

k

ρ
ξ4v̂ − m

ρ
ξ2θ̂ = 0,

θ̂t +
ξ2

l

∫ ∞

0
µ(s)η̂(s)ds+mτξ2ŵ +mξ2v̂ = 0,

η̂t + η̂s = θ̂.

(3.6)
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3.1.1 The case K > 0

In this subsection, we first state the following pointwise estimate and decay result in the
case K > 0.

Theorem 3.1. Assume that K > 0. Let Û = (ût + τ ûtt,∆ût,∆(û + τ ût), θ̂,∇η̂)T , where
(û(ξ, t), θ̂(ξ, t)) is the Fourier image of the solution (u(x, t), θ(x, t)). Then Û has the following
pointwise estimate

|Û(ξ, t)|2 ≤ Ce−cρ1(ξ)t|Û0(ξ)|2, (3.7)

for any t ≥ 0, where ρ1(ξ) := ξ2

(1+ξ2)2
. Furthermore, let U = (ut + τutt,∆ut,∆(u +

τut), θ,∇η)T , where (u(x, t), θ(x, t)) is the solution of problem (3.2)-(3.3), and U0 = U(x, 0) ∈
Hs(Rn) ∩ L1(Rn), where s is nonnegative, then U satisfies the following decay estimate

∥∇kU(t)∥2L2(Rn) ≤ C(1 + t)−
n
2
−k∥U0∥2L1(Rn)+C(1 + t)−l∥∇k+lU0∥2L2(Rn), (3.8)

for all 0 ≤ k ≤ s.

Remark 3.2. The above decay estimate is of regularity-loss type. From the asymptotic
expansion of the eigenvalues later in this section, we observe that the asymptotic behavior in
(3.29) is not the same as in the exponent ρ1(ξ) in (3.7), which means that the exponent is not
optimal. Although the above pointwise estimate is not optimal, we notice that the decay rate
in (3.8) is optimal. The regularity-loss estimate of the solutions may be improved.

Lemma 3.3. Assume that K > 0. Let (û, v̂, ŵ, θ̂, η̂) be the solution of (3.6), and define the
energy functional of system (3.6) as

Ê(ξ, t) := |v̂ + τŵ|2 + τK

ρ
ξ4|v̂|2 + k∗

ρ
ξ4|û+ τ v̂|2 + 1

ρ
|θ̂|2 + ξ2

l

∫ ∞

0
µ(s)|η̂(ξ, t, s)|2ds,

then there exist two positive constants C1 and C2 such that

C1|Û(ξ, t)|2 ≤ Ê(ξ, t) ≤ C2|Û(ξ, t)|2,

then Ê(ξ, t) satisfies
d

dt
Ê(ξ, t) = −K

ρ
ξ4|v̂|2 + ξ2

2ρl

∫ ∞

0
µ′(s)|η̂(ξ, t, s)|2ds.

Lemma 3.4. Define the functional

F1(ξ, t) := Re((v̂ + τŵ)(û∗ + τ v̂∗)),

then for any ε1 > 0, there exists C(ε1) > 0 such that
d

dt
F1(ξ, t) +

(
k∗

ρ
− 2ε1

)
ξ4|û+ τ v̂|2 ≤ |v̂ + τŵ|2 + C(ε1)ξ

4|v̂|2 + C(ε1)|θ̂|2. (3.9)

Lemma 3.5. The functional

F2(ξ, t) := Re(−τ(v̂ + τŵ)v̂∗)

satisfies
d

dt
F2(ξ, t)+ (1− ε3)|v̂+ τŵ|2 ≤ C(ε2, ε3)ξ

2(1+ ξ2)2|v̂|2+ ε2ξ4|û+ τ v̂|2+ ε3
ξ2

1 + ξ2
|θ̂|2, (3.10)

for any ε2, ε3 > 0 and C(ε2, ε3) > 0.
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Lemma 3.6. For any ε4, ε5 > 0, there exist C(ε4), C(ε5) > 0 such that the following inequality
holds true

d

dt
F3(ξ, t) + (g(0)− ε4)|θ̂|2

≤
(
1

l
+ C(ε5)

)
g(0)ξ2(1 + ξ2)

∫ ∞

0
µ(s)|η̂(s)|2ds+ ε5

ξ2

1 + ξ2
|v̂ + τŵ|2

+ C(ε4)g
′(0)

∫ ∞

0
(−µ′(s))|η̂(s)|2ds, (3.11)

where
F3(ξ, t) := Re

(
−
∫ ∞

0
µ(s)η̂∗(s)dsθ̂

)
.

Proof of Theorem 3.1. We define the Lyapunov functional

L1(t) := N1ξ
2F1(t) +N2ξ

2F2(t) +N3ξ
2F3(t),

where N1, N2 and N3 are positive constants that will be fixed later. It follows from the above
estimates that

d

dt
L1(ξ, t) +

[
N1

(
k∗

ρ
− 2ε1

)
−N2ε2

]
ξ2ξ4|û+ τ v̂|2

+

[
N2(1− ε3)−N1 −N3ε5

]
ξ2|v̂ + τŵ|2

+

[
N3(g(0)− ε4)−N1C(ε1)−N2ε3

]
ξ2|θ̂|2

+

[
−N1C(ε1)−N2C(ε2, ε3)

]
(1 + ξ2)2ξ4|v̂|2

−N3

(
1

l
+ C(ε5)

)
g(0)ξ2(1 + ξ2)

∫ ∞

0
ξ2µ(s)|η̂(s)|2ds

−N3C(ε4)ξ
2g′(0)

∫ ∞

0
(−µ′(s))|η̂(s)|2ds

≤0, (3.12)

where we used the fact that ξ2

1+ξ2
≤ 1. Moreover, according to (G2), we deduce∫ ∞

0
ξ2µ(s)|η̂(ξ, t, s)|2ds ≤ 1

ν

∫ ∞

0
(−µ′(s))ξ2|η̂(ξ, t, s)|2ds. (3.13)

Hence, (3.12) becomes

d

dt
L1(ξ, t) +

[
N1

(
k∗

ρ
− 2ε1

)
−N2ε2

]
ξ2ξ4|û+ τ v̂|2

+

[
N2(1− ε3)−N1 −N3ε5

]
ξ2|v̂ + τŵ|2 +

[
N3(g(0)− ε4)−N1C(ε1)−N2ε3

]
ξ2|θ̂|2

− C(N1, N2, ε1, ε2, ε3)(1 + ξ2)2ξ4|v̂|2 − C(N3, ε4, ε5, ν)(1 + ξ2)2
∫ ∞

0
ξ2(−µ′(s))|η̂(ξ, t, s)|2ds

≤0. (3.14)

By choosing the constants carefully as before, we obtain
d

dt
L1(ξ, t) + α1M1(ξ, t)
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≤C(N1, N2, ε1, ε2, ε3)(1 + ξ2)2ξ4|v̂|2 + C(N3, ε4, ε5, ν)(1 + ξ2)2
∫ ∞

0
ξ2(−µ′(s))|η̂(ξ, t, s)|2ds,

(3.15)

where
M1(ξ, t) = ξ2(ξ4|û+ τ v̂|2 + |v̂ + τŵ|2 + |θ̂|2).

We define the Lyapunov functional L1(ξ, t) as

L1(ξ, t) := N(1 + ξ2)2Ê(ξ, t) + L1(ξ, t),

where N is a positive constant that will be fixed later. By virtue of Lemma 3.3 and (3.15),
we have

d

dt
L1(ξ, t) + α1M1(ξ, t) +

[
NK

ρ
− C(N1, N2, ε1, ε2, ε3)

]
(1 + ξ2)2ξ4|v̂|2

+

[
N

2ρl
− C(N3, ε3, ε5, ν)

]
(1 + ξ2)2ξ2

∫ ∞

0
(−µ′(s))|η̂(ξ, t, s)|2ds

≤0. (3.16)

Finally, (3.16) becomes
d

dt
L1(ξ, t) + Cξ2Ê(ξ, t) ≤ 0, ∀t ≥ 0 (3.17)

by choosing N large enough.
On the other hand, for N large enough, we can find two positive constants C1 and C2

such that
C1(1 + ξ2)2Ê(ξ, t) ≤ L1(ξ, t) ≤ C2(1 + ξ2)2Ê(ξ, t), ∀ t ≥ 0.

Therefore, (3.17) becomes

d

dt
Ê(ξ, t) + C

ξ2

(1 + ξ2)2
Ê(ξ, t) ≤ 0, ∀t ≥ 0.

Consequently, making use of the equivalence of Ê(ξ, t) and |Û |2 and Gronwall’s inequality, we
obtain the desired result (3.7). Hence we arrive at the desired decay estimate (3.8). □

3.1.2 The case K = 0

In this subsection, we assume that K = 0 and we have the following pointwise estimate
and decay result:

Theorem 3.7. Assume that K = 0. Let V̂ = (ût + τ ûtt,∆(û + τ ût), θ̂,∇η̂)T , where
(û(ξ, t), θ̂(ξ, t)) is the Fourier image of the solution (u(x, t), θ(x, t)). Then V̂ has the fol-
lowing pointwise estimate

|V̂ (ξ, t)|2 ≤ Ce−cρ2(ξ)t|V̂0(ξ)|2, (3.18)

for any t ≥ 0, where ρ2(ξ) := ξ2

(1+ξ2)2
. Furthermore, let V = (ut + τutt,∆(u + τut), θ,∇η)T ,

where (u(x, t), θ(x, t)) is the solution of problem (3.2)-(3.3), and V0 = V (x, 0) ∈ Hs(Rn) ∩
L1(Rn), where s is nonnegative, then V satisfies the following decay estimate

∥∇kV (t)∥2L2(Rn) ≤ C(1 + t)−
n
2
−k∥V0∥2L1(Rn)+C(1 + t)−l∥∇k+lV0∥2L2(Rn), (3.19)

for all 0 ≤ k ≤ s.
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Remark 3.8. We note that the above result exhibits a regularity-loss phenomenon. And
according to the asymptotic expansion of the eigenvalues in the next section, the exponent in
pointwise estimate (3.18) is optimal. Hence, the decay estimate (3.19) is also optimal.

We get the following consequence from Lemma 3.3 and 3.4.

Lemma 3.9. Assume that K = 0. Let (û, v̂, ŵ, θ̂, η̂) be the solution of (3.6), and the energy
functional of system (3.6) becomes

Ê(ξ, t) := |v̂ + τŵ|2 + k∗

ρ
ξ4|û+ τ v̂|2 + 1

ρ
|θ̂|2 + ξ2

l

∫ ∞

0
µ(s)|η̂(ξ, t, s)|2ds,

then Ê(ξ, t) and F1(t) satisfy

d

dt
Ê(ξ, t) = ξ2

2ρl

∫ ∞

0
µ′(s)|η̂(ξ, t, s)|2ds,

d

dt
F1(ξ, t) +

(
k∗

ρ
− ε′1

)
ξ4|û+ τ v̂|2 ≤ |v̂ + τŵ|2 + C(ε′1)|θ̂|2.

Lemma 3.10. The following inequality holds true:

d

dt
F̄2(t) + (m− ε′2)ξ

2|v̂+ τŵ|2 ≤ ε′3ξ
6|û+ τ v̂|2 +C(ε′3)ξ

2|θ̂|2 +C(ε′2)ξ
2g(0)

∫ ∞

0
µ(s)|η̂(s)|2ds,

(3.20)
for any ε′2, ε′3 > 0, where

F̄2(t) := Re((v̂ + τŵ)θ̂∗).

Proof. Combining (3.6)2 + (3.6)3 with (3.6)4, we arrive at
(v̂ + τŵ)t +

k∗

ρ
ξ4(û+ τ v̂)− m

ρ
ξ2θ̂ = 0,

θ̂t +
ξ2

l

∫ ∞

0
µ(s)η̂(s)ds+mξ2(v̂ + τŵ) = 0.

(3.21)

Multiplying (3.21)1 and (3.21)2 by θ̂∗ and (v̂∗ + τŵ∗), respectively, adding the results and
taking the real part, we get

d

dt
F̄2(t) +mξ2|v̂ + τŵ|2

=
m

ρ
ξ2|θ̂|2 − k∗

ρ
ξ4Re((û+ τ v̂)θ̂∗)− Re

(
ξ2

l

∫ ∞

0
µ(s)η̂(s)ds(v̂∗ + τŵ∗)

)
.

Young’s inequality yields, for any ε′2, ε′3 > 0,

−ξ4Re((û+ τ v̂)θ̂∗) ≤ ε′3ξ
6|û+ τ v̂|2 + C(ε′3)ξ

2|θ̂|2,

−Re

(
ξ2

l

∫ ∞

0
µ(s)η̂(s)ds(v̂∗ + τŵ∗)

)
≤ ε′2ξ

2|v̂ + τŵ|2 + C(ε′2)ξ
2g(0)

∫ ∞

0
µ(s)|η̂(s)|2ds.

A combination of all the above estimates gives the desired result.
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At this position, we are ready to prove Theorem 3.7.
Proof of Theorem 3.7. We define the Lyapunov functional

L2(t) := N̄1
ξ2

1 + ξ2
F1(t) + N̄2

1

1 + ξ2
F̄2(t) + N̄3F3(t),

where N̄1, N̄2 and N̄3 are positive constants that will be fixed later. By virtue of the above
estimates, we obtain

d

dt
L2(ξ, t) +

[
N̄1

(
k∗

ρ
− ε′1

)
− N̄2ε

′
3

]
ξ2

1 + ξ2
ξ4|û+ τ v̂|2

+

[
N̄2(m− ε′2)− N̄1 − N̄3ε5

]
ξ2

1 + ξ2
|v̂ + τŵ|2

+

[
N̄3(g(0)− ε4)− N̄1C(ε

′
1)− N̄2C(ε

′
3)

]
|θ̂|2

− N̄3

(
1

l
+ C(ε5)

)
g(0)(1 + ξ2)

∫ ∞

0
ξ2µ(s)|η̂(s)|2ds

− N̄3C(ε4)g
′(0)

∫ ∞

0
(−µ′(s))|η̂(s)|2ds

− N̄2C(ε
′
2)

1

1 + ξ2
g(0)

∫ ∞

0
ξ2µ(s)|η̂(s)|2ds

≤0,

where we used the fact that ξ2

1+ξ2
≤ 1. It follows from (3.13) that

d

dt
L2(ξ, t) +

[
N̄1

(
k∗

ρ
− ε′1

)
− N̄2ε

′
3

]
ξ2

1 + ξ2
ξ4|û+ τ v̂|2

+

[
N̄2(m− ε′2)− N̄1 − N̄3ε5

]
ξ2

1 + ξ2
|v̂ + τŵ|2

+

[
N̄3(g(0)− ε4)− N̄1C(ε

′
1)− N̄2C(ε

′
3)

]
|θ̂|2

− C(N̄2, N̄3, ε
′
2, ε4, ε5, ν)(1 + ξ2)

∫ ∞

0
ξ2(−µ′(s))|η̂(ξ, t, s)|2ds

≤0.

By choosing our constants carefully as what we did before, we can derive

d

dt
L2(ξ, t) + α2M2(ξ, t)

≤C(N̄2, N̄3, ε
′
2, ε4, ε5, ν)(1 + ξ2)

∫ ∞

0
ξ2(−µ′(s))|η̂(ξ, t, s)|2ds, (3.22)

where
M2(ξ, t) =

ξ2

1 + ξ2
(ξ4|û+ τ v̂|2 + |v̂ + τŵ|2 + |θ̂|2).

Then we define the Lyapunov functional L2(ξ, t)

L2(ξ, t) := N̄(1 + ξ2)Ê(ξ, t) + L2(ξ, t),
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where N̄ is a positive constant that will be fixed later. Applying Lemma 3.9 and (3.22), we
have

d

dt
L2(ξ, t) + α2M2(ξ, t)

+

[
N̄

2ρl
− C(N̄2, N̄3, ε

′
2, ε4, ε5, ν)

]
(1 + ξ2)ξ2

∫ ∞

0
(−µ′(s))|η̂(ξ, t, s)|2ds

≤0. (3.23)

Finally, by choosing N large enough, we arrive at

d

dt
L2(ξ, t) + C

ξ2

1 + ξ2
Ê(ξ, t) ≤ 0, ∀t ≥ 0.

Moreover, by the equivalence of L2(ξ, t) and (1 + ξ2)Ê(ξ, t), we find that

d

dt
Ê(ξ, t) + C

ξ2

(1 + ξ2)2
Ê(ξ, t) ≤ 0, ∀t ≥ 0.

Therefore, we obtain the desired pointwise estimate (3.18) and the desired decay estimate
(3.19). □

3.2 Asymptotic behavior of the eigenvalues

We assume here
g(s) = δ1e

−δ2s, (3.24)

where for δ1, δ2 > 0, as typical memory type kernel. From (1.4)1 and (1.4)2, it follows that

−m∆θ = τρuttt + ρutt + k∗∆2u+ k∆2ut (3.25)

and
−m∆θt +

m

l

∫ ∞

0
g(s)∆2θ(t− s)ds+m2τ∆2utt +m2∆2ut = 0. (3.26)

Substituting (3.25) into (3.26), we arrive at

τρutttt + ρuttt + k∗∆2ut + k∆2utt +m2τ∆2utt +m2∆2ut

− 1

l

∫ ∞

0
δ1e

−δ2s(τρ∆uttt + ρ∆utt + k∗∆3u+ k∆3ut)(t− s)ds = 0,

or

τρutttt + ρuttt + k∗∆2ut + k∆2utt +m2τ∆2utt +m2∆2ut

− 1

l

∫ t

−∞
δ1e

−δ2(t−r)(τρ∆uttt + ρ∆utt + k∗∆3u+ k∆3ut)(r)dr = 0.

Taking the derivative of the above equation with respect to t, we have

τρuttttt + (k +m2τ)∆2uttt + (k∗ +m2 + kδ2 +m2τδ2)∆
2utt + (k∗δ2 +m2δ2)∆

2ut

− τρδ1
l

∆uttt −
ρδ1
l
∆utt −

δ1k

l
∆3ut −

δ1k
∗

l
∆3u+ ρδ2uttt + (ρ+ τρδ2)utttt = 0. (3.27)
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Taking the Fourier transform of (3.27), we arrive at

τρ
d5

dt5
û+ (ρ+ τρδ2)

d4

dt4
û+

[
(m2τ + k)ξ4 +

τρδ1
l
ξ2 + ρδ2

]
d3

dt3
û

+

[
(k∗ +m2 + kδ2 +m2τδ2)ξ

4 +
δ1ρ

l
ξ2
]
d2

dt2
û

+

[
δ1k

l
ξ6 + (k∗δ2 +m2δ2)ξ

4

]
d

dt
û+

δ1k
∗

l
ξ6û = 0.

Let ζ = iξ, then the characteristic equation is

τρlλ5 + (ρl + τρδ2l)λ
4 +

[
(m2τ l + kl)ζ4 − τρδ1ζ

2 + ρδ2l
]
λ3

+
[
(k∗l +m2l + kδ2l +m2τδ2l)ζ

4 − δ1ρζ
2
]
λ2

+
[
−δ1kζ6 + (k∗δ2l +m2δ2l)ζ

4
]
λ− δ1k

∗ζ6 = 0.

(1)When |ζ| → 0, we denote the eigenvalues of the above equation as λj(ζ), j = 1, · · · , 5,
which has the following asymptotic expansion:

λj(ζ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ2 + λ

(3)
j ζ3 + · · · .

Here each coefficient is given by direct computations as

λ
(0)
j = λ

(1)
j = 0, λ

(2)
j = ϕj , j = 1, 2, 3,

λ
(0)
j = −1

τ
, j = 4,

λ
(0)
j = −δ2, j = 5,

where Re(ϕj) > 0.
Consequently, we have

Reλj(iξ) =


−Re(ϕj)|ξ|2 +O(|ξ|3), j = 1, 2, 3,

−1

τ
+O(|ξ|2), j = 4,

−δ2 +O(|ξ|2), j = 5.

(3.28)

(2) When |ζ| → ∞, taking ν = ζ−1 = (iξ)−1, the characteristic equation is

τρlµ5 + (ρl + τρδ2l)ζ
−2µ4 +

[
(m2τ l + kl)− τρδ1ζ

−2 + ρδ2lζ
−4
]
µ3

+
[
(k∗l +m2l + kδ2l +m2τδ2l)ζ

−2 − δ1ρζ
−4
]
µ2

+
[
−δ1kζ−2 + (k∗δ2l +m2δ2l)ζ

−4
]
µ− δ1k

∗ζ−4 = 0,

where µ(ν) = ν2λ = ζ−2λ is a solution. λj(ζ) has the following asymptotic expansion:

λj(ζ) = µ
(2)
j ζ2 + µ

(1)
j ζ + µ

(0)
j + µ

(−1)
j ζ−1 + · · · .

Here each coefficient is given by direct computations as

µ
(2)
j = ±

√
τ lm2 + kl

τρl
i, µ

(1)
j = 0, µ

(0)
j = − Kl

2τ(τ lm2 + kl)2
∓ 2τδ1m

2 (τρl)
1
2

(τ lm2 + kl)
3
2

i,
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j = 1, 2, when K > 0;

µ
(2)
j = ±

√
τ lm2 + kl

τρl
i, µ

(1)
j = 0, µ

(0)
j = ∓2τδ1m

2 (τρl)
1
2

(τ lm2 + kl)
3
2

i, µ
(−1)
j = 0,

Re
(
µ
(−2)
j

)
=

4(τ3ρδ1δ2lm
4 + τ2ρδ1δ2l

2m2k) + 3(τ2ρδ1l
2m4 + τρδ1kl

2m2)

2(τ lm2 + kl)3
,

j = 1, 2, when K = 0;

µ
(2)
j = 0, µ

(1)
j = ±

√
δ1k

τlm2 + kl
, µ

(0)
j = −δ1δ2kl(τm

2 + k) +Kδ1lm
2

2δ1k(τ lm2 + kl)
, j = 3, 4,

µ
(2)
j = µ

(1)
j = 0, µ

(0)
j = −k

∗

k
, j = 5.

Consequently, when K > 0, we have

Reλj(iξ) =



− Kl

2τ(τ lm2 + kl)2
+O(|ξ|−1), j = 1, 2,

−δ1δ2kl(τm
2 + k) +Kδ1lm

2

2δ1k(τ lm2 + kl)
+O(|ξ|−1), j = 3, 4,

−k
∗

k
+O(|ξ|−1), j = 5,

(3.29)

for |ξ| → ∞. And when K = 0, we have

Reλj(iξ) =



−Re
(
µ
(−2)
j

)
|ξ|−2 +O(|ξ|−3), j = 1, 2,

−δ1δ2kl(τm
2 + k)

2δ1k(τ lm2 + kl)
+O(|ξ|−1), j = 3, 4,

−k
∗

k
+O(|ξ|−1), j = 5,

(3.30)

for |ξ| → ∞.

Remark 3.11. From (3.28) and (3.29), we find that the real parts of the slowest eigenvalues
are |ξ|2 for |ξ| → 0 and 1 for |ξ| → ∞ respectively. Observe that the exponent is

ρ1(ξ) =
ξ2

(1 + ξ2)2
, when K > 0

in Theorem 3.1. Then ρ1(ξ) ∼ |ξ|2 for |ξ| → 0 and ρ1(ξ) ∼ |ξ|−2 for |ξ| → ∞, which means the
exponent does not match with the real parts of the slowest eigenvalues. Hence, the pointwise
estimate in Theorem 3.1 is not yet optimal with respect to ρ1.

It follows from Theorem 3.7 that

ρ2(ξ) =
ξ2

(1 + ξ2)2
, when K = 0.

Then ρ2(ξ) ∼ ξ2 for |ξ| → 0 and ρ2(ξ) ∼ |ξ|−2 for |ξ| → ∞. Since it is in line with the real
parts of the slowest eigenvalues in (3.28) and (3.30), the pointwise estimate in Theorem 3.7
is optimal.
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