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Abstract

The goal of this work is the formulation and analysis of a Covid-19 transmission dynam-
ics model which takes into account two doses of the vaccination process, confinement, and
treatment with limited resources, using both integer and fractional derivatives in the Ca-
puto sense. After the model formulation with classical derivative, we start by establishing
the positivity, boundedness, existence, and uniqueness of solutions. Then, we compute the
control reproduction number Rc and perform the local and global asymptotic stability of
the disease-free equilibrium whenever Rc < 1. We also prove the existence of at least one
endemic equilibrium point whenever Rc > 1. Using real data from Germany, we calibrate
our models by performing parameter estimations. We find that the control reproduction
number is approximately equal to 1.90, which shows that we are in an endemic state. We
also perform global sensitivity analysis by computing partial rank correlation (PRCC) co-
efficients between Rc (respectively infected states) and each model parameter. After that,
we formulate the corresponding fractional model in the Caputo sense, proving positivity,
boundedness, existence, and uniqueness of solutions. We also compute the control repro-
duction number of the fractional model, which depends on the fractional order ϕ. We prove
the local and global asymptotic stability of the disease-free equilibrium whenever the control
reproduction number is less than one, as well as the existence of an endemic equilibrium
point whenever the control reproduction number is greater than one. To validate our theo-
retical analysis of both models, and compare the two types of derivatives, we perform several
numerical simulations. We find that for long-term forecasting, the fractional model, with a
fractional order ϕ ≤ 0.87 is better than the model with integer derivative.
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1. Introduction

COVID-19 is a disease caused by a new strain of coronavirus. The first case was reported
in Wuhan, China in December 2019. Since then, the disease spread in many countries and
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became a pandemic [61]. The virus called the SARS-CoV-2 virus spreads generally popula-
tion through close contact with an infected person or with an infected object. According to
currently available data, the virus is mainly spread by respiratory droplets between people
who are in close contact with each other [23].

At the beginning of the pandemic, the absence of a general Covid-19 pre-existing im-
munity in humans as well as the absence of curative drugs and vaccines, have guided the
choice of several countries to implement non-pharmaceutical interventions that include so-
cial distancing, hand-washing, confinement, isolation which is recommended in order to stop
the spread of the virus [43]. As of May 2021, different COVID-19 vaccines were authorized
in some countries. For emergency or full use, seventeen vaccines have been approved by
at least one stringent regulatory authority recognized by the World Health Organization
(WHO) [62].Twenty five (26) other vaccines are in the test phase [62].

The problem remains the efficiency of each proposed vaccine [35, 60]. A mini-review
discussing the reliability and efficiency of Covid-19 Vaccines revealed that four of the available
vaccine had an efficacy greater than 80% (Pfizer-BioNTech (≈ 95%), Moderna (≈ 94%),
Sputnik V (≈ 92%), and Oxford-AstraZeneca (≈ 81%)) [12]. However, it has been found
that Covid-19 vaccines permit the alleviation of severe adverse reactions to the disease. This
is why there has been a real reduction in the number of hospitalizations as well as deaths
linked to Covid-19 in countries in which the level of vaccination coverage is high [5, 12].

Since the work of Sir Ronald Ross on malaria [46], mathematical modeling is used to
describe transmission mechanisms as well as estimation and choice of control strategies.
One of the first mathematical models, which was formulated to describe the new coronavirus
transmission dynamics, is the model proposed in [32] by Zhihua his collaborators. The
authors developed a Susceptible-Infectious-Symptomaric reported cases-Unreported cases-
Removed epidemiological model to predict the Covid-19 epidemic in Wuhan. Chen et al.
[4] also developed a Bats-Hosts-Reservoir-People transmission network model for simulating
the potential transmission from the infection source (probably bats) to the human infection.
They estimated the value of the basic reproduction number R0 of 3.58 (in fact, infection
between reservoir and human gives a basic reproduction number equal to 2.30, and 3.58
from human to human). They conclude that the transmissibility of SARS-CoV-2 is higher
than the Middle East respiratory syndrome (MERS) in the Middle East countries. Taking
into account the existence of the super-spreader of the coronavirus, Ndäırou et al. [42]
formulate a compartmental model for the spread of the Covid-19 disease with application
to Wuhan reported cases. Since then, several other model were also developed [2, 11, 13,
26, 27, 28, 40, 43]. Several works are conducted to evaluate the impact of vaccination on
the fight against Covid-19 spread [30, 38, 37, 44, 47, 54]. In [44], the authors formulate
a compartmental model to examine the impact of the use of three vaccine-types (Pfizer,
Moderna and Janssen) on the on the dynamics of COVID-19 in a population. They use
available data for these three vaccine-types to calibrate their model. They concluded through
numerical simulations that the three vaccine-types permit to decrease the total number of
individuals with severe Covid-19 illness, this means hospitalized persons. Moore et al. in
[38, 37] used a mathematical model structured by age and UK region to evaluated the use
of Covid-19 vaccine as only control strategy. The obtained results permitted to conclude
that vaccination alone is insufficient to contain the outbreak. In the same way, Watson et
al. [59] concluded that vaccination has permitted to prevent 14.4 million deaths, due to the
Coronavirus, in 185 countries and territories between Dec 8, 2020, and Dec 8, 2021.

To estimate the costs of hospitalization, vaccination and the economic benefits of the
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reducing Covid-19 deaths, Du et al. in [13] developed a multi-scale model which takes
into account population-level transmission and individual-level vaccination. Their model
consists of ten compartments in which two compartments stand for the two vaccine doses.
They did not consider the environmental infection by indirect contact with tools infected by
a infectious persons. To assess age-specific vaccine allocation strategies in India, Foy and
coworkers in [16] used an age-structured, expanded SEIR model with social contact matrices.
Through numerical simulations, they concluded that depending on vaccine characteristics,
people belonging to older age groups must be a priority in vaccine allocation. A statistical
model in which social and SARS-CoV-2 epidemiological dynamics interact with one another
is developed by Jentsch and coworkers [25]. The following vaccination strategies were taken
into account: oldest-first strategy (those aged 60 years and older), youngest-first strategy
(those younger than 20 years), uniform strategy (vaccinating uniformly by age), and a novel
contact-based strategy. They concluded that the choice of the most effective vaccination
strategy depends on the time course of the disease in the population, and for later vacci-
nation campaigns, Covid-19 vaccines to interrupt transmission might prevent more deaths
than prioritizing vulnerable age groups. In [49], Shen et al. formulated and studied a com-
partmental Covid-19 model in which vaccination is combined with the prevention, the rapid
screening of exposed individuals, and infected individuals without screening. Through opti-
mal control tools, they concluded that combined control measures can be used to minimize
the disease burden. However, their model only considers a unique vaccine dose.

It should be noted that most of the Covid-19 models existing in the literature are either
formulated using classical derivatives (integer derivatives) [11, 34, 42, 43] or using fractional
derivatives (Caputo, Caputo-Fabrizio, Atangana-Baleanu,...) [27, 28, 31, 40, 41, 56, 50]. The
latter are increasingly used in the modeling of infectious diseases. The given reason is that
they have the great advantage of having a memory effect, compared to classical derivatives
[6, 24, 58, 64]. The memory effect in the Covid-19 pandemic was emphasized by Sofonea et
al. in [52]. Fractional derivatives give flexibility to decision-makers. Indeed, choosing the
optimal value of fractional order, one can decide the start and the end date of the control
measure strategies [40].

In the present work, we formulate and analyze an SEIR extended model in which we
take into account quarantine, two vaccine doses, and the treatment of symptomatic persons
in the presence of limited resources. We use both integer and non-integer derivatives. The
goal here is to know which of the two types of derivatives can be used to better forecast the
Covid-19 pandemic in Germany, and which fractional order better fit the reported case data.
After the model formulation with integer derivatives, we prove the positivity, boundedness,
existence, and uniqueness of solutions. We then compute the control reproduction number
denoted by Rc and prove the local as well as global stability of the Covid-19 free equilibrium
point whenever Rc < 1. We also prove the existence of at least one endemic equilibrium
point and give the condition of its local stability when Rc > 1. Using the daily infected
reported cases in Germany from February 15, 2021, to April 05, 2021, we calibrate the
model by performing parameter estimation. By fixing the vaccine coverage at 70%, the
vaccine efficacy on the disease dynamics is depicted through numerical simulations. We then
perform global sensitivity analysis by computing the partial rank correlation coefficients
between Rc (respectively infected states) and each model parameters. In the second part of
the work, we present the corresponding fractional model in the Caputo sense and prove the
positivity, boundedness, existence, and uniqueness of solutions of the fractional model. We
compute the corresponding control reproduction which depends on the fractional order ϕ.
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Indeed when ϕ = 1, the two models have the same threshold which governs their dynamics.
We also prove the local stability of the disease-free equilibrium for the fractional model
and deduce from the existence of the endemic equilibrium point of the integer model, the
existence of at least one endemic equilibrium of the fractional model too. We then present
the numerical scheme used to simulate the fractional model. We perform several numerical
simulations to validate our analytical results and to compare the use of classical derivatives
with fractional derivatives in the Caputo sense by determining which model better fit the
German data, in a long-term dynamics.

The present work is structured as follows: Section 2.1 is devoted to the model formulation
with classical derivative (Ordinary differential equations) and its mathematical analysis.
Section 3 is devoted to model calibration and global sensitivity analysis. The formulation
and analysis of the fractional model are done in Section 4. Numerical simulations of both
models are done in Section 5. A conclusion and perspectives round up the work.

2. The ODE model

2.1. Model formulation

Before formulating our model, it is important to fix some hypotheses:

H1: There are no infected immigrants;

H2: Only non-infectious persons are vaccinated and recovered persons do not get the vac-
cine;

H3: Persons who are hospitalized ( in situations of respiratory assistance) do not participate
to the disease spread;

We denote the human population at any time by N(t). Depending on their epidemiological
status, we split the total human population into nine sub-classes called compartments. Thus,
compartment S denotes susceptible individuals, Q is for quarantined individuals, V1 is for
susceptible individuals who have received the first vaccine dose against Covid-19, while V2 is
for individuals in V1 state who have received the second vaccine dose against Covid-19. Since
the infected individuals will become infectious after a period of 2 to 14 days, we consider
the latent compartment E. After this stage, a fraction of infected individuals will become
asymptomatic infected and enter the compartment denoted by A, and the other fraction
will become symptomatic infected and will enter the compartment I. Among asymptomatic
individuals, some of them will be recovered and become partially immunized (denoted by R,
and a few of them will enter the compartment of individuals who need respiratory assistance
and/or other specific treatments (denoted by H). A fraction of symptomatic individuals will
become recovered (R), and another fraction can need specific treatments and/or respiratory
assistance, and so will enter the compartment of hospitalized individuals denoted by H.
In this model, we take into account the partial immunity of recovered individuals. Thus,
after recovering from the disease, some people can become infected again. Contrary to Atifa
et al. [2], we assume that recovered individuals do not enter the infectious compartments
directly. Indeed, we assume that they must observe the necessary 2 days to become infected
again. Contrary to several models in the existing literature (see [40, 43] and some references
therein), we consider the fact that an uninfected person can become infected through a
contact, for example, with the door handles, and the fact to eat or drink from the same dish
or cup used by an infected person without disinfecting it. To model this phenomenon, we
include the compartment B which stands for the density of free viruses in nature [11].
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It is important to note that the vaccines available against Covid-19 do not confer perfect
immunity against this disease. Thus, we include this in our model by the fact that vaccinated
individuals can be infected regardless of their vaccination status (V1 or V2).

Dynamics of S. Susceptible individuals increase with the rate r2Λ, where Λ denotes the
recruitment rate and r2 is the proportion of newcomers who enter the susceptible compart-
ment. They decrease either by quarantine at a rate c2, or by natural death at a rate µ, or
by vaccination at a rate v1, or by contact with an infected person or a material used by an
infected person at a rate λ given by

λ(t) := β1
A(t) + I(t)

N(t)−H(t)
+ β2

B(t)

K + B(t)
. (1)

In Eq. (1), β1 is the transmission probability from a infectious individual (either asymp-
tomatic A or symptomatic I) to a uninfected individual (S, Q, V1, and V2); β2 is the exposure
rate to the free viruses in the environment; The half-saturation constant parameter denoted
by K represents the concentration of free virus that yields 50% of chance for a susceptible
individual to catch the coronavirus [11].

dS

dt
= r2Λ + c1Q(t)−








k1
︷ ︸︸ ︷
v1 + µ+ c2+φ2

λ(t)
︷ ︸︸ ︷(

β1
A(t) + I(t)

N(t)−H(t)
+ β2

B(t)

K + B(t)

)







S(t). (2)

Dynamics of Q. The compartment of quarantined persons increases with either the rate r1Λ,
where Λ denotes the recruitment rate and r1 is the proportion of new quarantined persons
who enter the system, or with a rate c1 of susceptible persons who are quarantined due
to their exposure or contact with an infected individual. They decrease either by natural
mortality rate µ, by end of quarantined by returning in the compartment of susceptible
individuals with a rate c1, or or by contact with an infected person or a material used by an
infected person at a rate λ described by Eq. (1).

dQ

dt
(t) = r1Λ + c2S(t)−





k2
︷ ︸︸ ︷
µ+ c1+φ1λ(t)



Q(t). (3)

Dynamics of V1. The compartment of vaccinated persons who have taken the first dose
increases with either the rate r3Λ, where Λ denotes the recruitment rate and r3 is the pro-
portion of vaccinated persons with the first dose who enter the system or with the susceptible
individuals who have taken for the first time the Covid-19 vaccine at the rate v1. They de-
crease either by natural mortality rate µ, by taking the second dose of vaccine at a rate v2,
or by contact with an infected person or a material used by an infected person at a rate λ
described by Eq. (1).

dV1
dt

(t) = r3Λ + v1S(t)−





k3
︷ ︸︸ ︷
µ+ v2+φ3λ(t)



V1(t). (4)
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Dynamics of V2. The compartment of vaccinated persons who have taken the second dose
increases with either the rate (1−r1−r2−r3)Λ, or with the vaccinated individuals who have
taken the first dose of the Covid-19 vaccine at the rate v2. They decrease either by natural
mortality rate µ, or by contact with an infected person or a material used by an infected
person at a rate λ described by Eq. (1).

dV2
dt

(t) =

π1
︷ ︸︸ ︷

(1− r1 − r2 − r3) Λ + v2V1(t)− (µ+ φ4λ(t))V2(t). (5)

Dynamics of E. Exposed persons are uninfected individuals (S, Q, V1, V2, and R) who have
contracted the Coronavirus (Covid-19) but are not yet infectious. Their number increases
with the flow due to susceptible individuals S, quarantined individuals Q, vaccinated indi-
viduals for the first time V1, vaccinated individuals with the second dose V2 and recovered
individuals R, who have had close contact with infected individuals (A or I). They decrease
by natural mortality with a rate µ, or by becoming either asymptomatic (A) with a rate

(1− q)γ or symptomatic (I) with a rate qγ, where
1

γ
is the average incubation period, and

q is a proportion of exposed person who will become symptomatic.

dE

dt
(t) := λ(t) (φ5R(t) + φ1Q(t) + φ2S(t) + φ3V1(t) + φ4V2(t))−

k4
︷ ︸︸ ︷

(µ+ γ)E(t). (6)

Dynamics of A. The compartment of asymptomatic persons increases with a flow (1 − q)γ
of exposed persons and decreases either by natural mortality at a rate µ, by becoming either
hospitalized at a rate ψ2θ, recovered at a rate ψ1θ, or by becoming symptomatic at a rate
(1− ψ1 − ψ2)θ, where θ stand for the transition rate to remainder states (I, H, R).

dA

dt
(t) :=

p
︷ ︸︸ ︷

(1− q) γE(t)−

k5
︷ ︸︸ ︷

(µ+ θ)A(t). (7)

Dynamics of I. The compartment of symptomatic persons increases with a flow qγ of ex-
posed persons to which we add a flow of (1−ψ1−ψ2)θ of asymptomatic persons; It decreases
either by natural mortality at a rate µ increased by the disease-induced death rate δ1, by
becoming either hospitalized at a rate (1− η)ν, or recovered at a rate ην, where ν stand for
the transition rate to hospitalized compartment and recovered compartment.

dI

dt
(t) := qγE(t) +

π2
︷ ︸︸ ︷

(1− ψ1 − ψ2) θA(t)−

k6
︷ ︸︸ ︷

(µ+ δ1 + ν) I(t). (8)

Dynamics of H. The compartment of hospitalized persons includes ψ2θ of asymptomatic
persons to which we add a rate (1− η)ν of symptomatic individuals. It decreases either by
natural mortality at a rate µ increased by the disease mortality rate δ2, or by healing with
a healing rate ζ, or by specific health care that is impacted by the limited medical resources
(for hospitalized persons requiring respiratory assistance) described as in [48, 65] by function

T (σ,H(t))(t) =
σH(t)

Φ +H(t)
, (9)

with the parameter σ representing the medical resources supplied per unit time and Φ cor-
responds to half-saturation constant. Thus, the dynamics of H is given by

dH

dt
(t) := ψ2θA(t) +

π3
︷ ︸︸ ︷

(1− η) νI(t)− (

k7
︷ ︸︸ ︷

µ+ δ2 + ζ)H(t)− T (σ,H(t)). (10)
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Dynamics of R. The compartment of recovered individuals includes ψ1θ rate of asymp-
tomatic persons, ην rate of symptomatic persons and ζ + T (σ,H) rate of hospitalized per-
sons. It decrease either by natural mortality at a rate µ, or by infection by a rate λ described
by Eq. (1).

dR

dt
(t) := ψ1θA(t) + νηI(t) + ζH(t) + T (σ,H(t))(t)− (µ+ φ5λ(t))R(t). (11)

Dynamics of B. Infectious individuals when they sneeze or cough without protection spill
small droplets that contain thousands of viruses that will spread through the air, thus directly
or indirectly infecting healthy people. We assume that only asymptomatic and symptomatic
individuals contribute to the virus spread in the environment, with a rate of α1 and α2,
respectively. The mortality rate of Coronavirus is denoted by τ .

dB

dt
(t) := α1A(t) + α2I(t)− τB(t). (12)

Putting Eqs.(2)–(12) together gives the following system expressed using ordinary deriva-
tives:







dS

dt
(t) = r2Λ + c1Q(t)− (k1 + φ2λ(t))S(t),

dQ

dt
(t) = r1Λ + c2S(t)− (k2 + φ1λ(t))Q(t),

dV1
dt

(t) = r3Λ + v1S(t)− (k3 + φ3λ(t))V1(t),

dV2
dt

(t) = π1Λ + v2V1(t)− (µ+ φ4λ(t))V2(t),

dE

dt
(t) = λ(t) (φ5R(t) + φ1Q(t) + φ2S(t) + φ3V1(t) + φ4V2(t))− k4E(t),

dA

dt
(t) = pγE(t)− k5A(t),

dI

dt
(t) = qγE(t) + π2θA(t)− k6I(t),

dH

dt
(t) = π3νI(t) + ψ2θA(t)− k7H(t)− T (σ,H(t)),

dR

dt
(t) = ζH(t) + T (σ,H(t))(t) + νηI(t) + ψ1θA(t)− (µ+ φ5λ(t))R(t),

dB

dt
(t) = α1A(t) + α2I(t)− τB(t).

(13)

We set x = (S,Q, V1, V2, E, A, I,H,R,B)
′ the vector of state variables and

R
10
+ =

{
x ∈ R

10 : xi ≥ 0, i ∈ [1; 10] ∩ N
}
.

System (13) can rewritten in the following compact form






dx

dt
= F(t, x) = (F1(x),F2(x), ...,F10(x))

′ ,

x(t0) = x0 = (S0, Q0, V10, V20, E0, A0, I0, H0, R0, B0)
′ ∈ R

10
+ ,

(14)

where F : R10 → R
10 represents the right hand-side of (13), and (•)′ stands for the transpo-

sition operator.
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Table 1: Description of model parameters.

Parameter Description

Λ Recruitment rate
µ Natural mortality rate
β1 Direct contact rate
β2 Indirect contact rate
r1 Proportion of newcomers to the Q compartment
r2 Proportion of newcomers to the S compartment
r3 Proportion of newcomers to the V1 compartment
v1 First dose vaccination rate
v2 Second dose vaccination rate
c1 The rate of flow between Q to S
c2 The rate of flow between S to Q
γ Incubation period
q Proportion of people in the E-compartment who will become asymptomatic
θ The rate of flow between A to I,H,R-compartments
ψ1 Proportion of people in the A-compartment who will recover from the disease
ψ2 Proportion of people in the A-compartment who will become Hospitalized
ν The rate of flow between I to H,R-compartments
η Proportion of people in the I-compartment who will recover from the disease
δ1 Disease-induced death for symptomatic people
δ2 Disease-induced death for hospitalized people
ζ Recovered rate of Hospitalized people
σ Medical resources supplied per unit time
Φ Half-saturation constant
α1 Rate of virus spread to the environment by asymptomatic people
α2 Rate of virus spread to the environment by symptomatic people
τ The natural death rate of coronavirus in the environment
K Half-saturation constant
φi, i ∈ [1; 5] ∩ N Modification parameters

Remark 1. Hospitalized people (H) are not included in the force of infection. Indeed, we
assume that people in respiratory assistance (hospitalized individuals) due to the infection to
the coronavirus are not taking part in the active population who contribute to the transmission
dynamics of the disease [43].

2.2. Mathematical analysis

2.2.1. Positivity and Boundedness of solutions

We have the following result

Theorem 1. (Positivity) Each solution x(t) = (S(t), Q(t), V1(t), V2(t), E(t), A(t), I(t), H(t), R(t),B(t))
t

of model (13) with non-negative initial conditions
x(0) = (S(0), Q(0), V1(0), V2(0), E(0), A(0), I(0), H(0), R(0),B(0))

t ∈ R
10
+ is non-negative for

all t > 0.

Proof. See Appendix A.
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Before proving the boundedness of solutions of systems (13), let us define the following
subset of R10

+

Υ =

{

x = (S,Q, V1, V2, E, A, I,H,R,B)
′ ∈ R

10
+ :

(
9∑

i=1

xi

)

≤
Λ

µ
, x10 ≤

(α1 + α2)Λ

µτ

}

.

(15)
The following result holds.

Theorem 2. (Boundedness of solutions) The region Υ is positively invariant and attracting
for system (13).

Proof. See Appendix B.

2.2.2. Existence and uniqueness of solutions

Before proving the existence and uniqueness, let us claim the following result.

Lemma 1. The function F : R10 → R
10 defined in (14) is a continuously differentiable

function on R
10.

Proof. See Appendix C.

From Lemma 1, the following result holds.

Lemma 2. The continuously differentiable function F : R10 → R
10 defined in (14) is locally

Lipschitz continuous on R
10.

Theorem 3 (Existence-uniqueness). With Theorem 2, and for initial conditions
x0 = (S0, Q0, V10, V20, E0, A0, I0, H0, R0,B0)

′ ∈ R
10
+ , the Covid-19 transmission model (13)

admits a unique solution x ∈ C([0; +∞[,R10
+ ).

2.2.3. The control reproduction number

First of all, it is important to note that in the absence of disease, that is E = A =
I = H = B = 0, system (13) admits always one stationary point, also called disease-free
equilibrium (DFE), E0 = (S0, Q0, V10, V20, 0, 0, 0, 0, 0, 0)

′ where







S0 =
[c1 (c2r2 + k1r1) + (k1k2 − c1c2) r2] Λ

k1 (k1k2 − c1c2)
,

Q0 =
(c2r2 + k1r1) Λ

k1k2 − c1c2
,

V10 =
[(k1k2 − c1c2) r3 + v1 (k2r2 + c1r1)] Λ

(k1k2 − c1c2) k3
,

V20 =
[(k1k2 − c1c2) (v2r3 + π1k3) + (k2r2 + c1r1) v1v2] Λ

(k1k2 − c1c2) k3µ
.

(16)

with k1k2 − c1c2 = µ2 + (c2 + v1 + c1)µ + c1v1 > 0. From (16), we have N0 := S0 + Q0 +

V10 + V20 =
Λ

µ
.
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To compute the control reproduction number, denoted by Rc, we will use the next gen-
eration approach (see [7, 57]). Let us set y = (E,A, I,H,B)′. The vector Z and W for the
new infection terms and the remaining transfer terms for y are, respectively, given by

Z =









λ (φ5R + φ1Q+ φ2S + φ3V1 + φ4V2)
0
0
0
0









,

and

W =











k4E
−pγE + k5A,

−qγE − π2θA+ k6I,

−π3νI − ψ2θA+ k7H +
σH

Φ +H
,

−α1A− α2I + τB











,

Their Jacobian matrices evaluated at E0 are respectively given by

Z =









0 β1
N1

N0

β1
N1

N0

0 β2
N1

K

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









, (17)

and

W =










k4 0 0 0 0
−pγ k5 0 0 0,
−qγ −π2θ k6 0 0,

0 −ψ2θ −π3ν k7 +
σ

Φ
0,

0 −α1 −α2 0 τ










, (18)

with N1 = φ1Q0 + φ2S0 + φ3V10 + φ4V20. Then, the control reproduction number Rc is
defined, following [7, 57], as the spectral radius of the next generation matrix, ZW−1 where

ZW−1 =









Rh +Re U1 U2 0 U3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









.

with

Rh =
β1N1 (π2pθ + k5q) γ

k4k5k6N0

+
β1pγN1

k4k5N0

=
β1N1γ

k4k5k6N0

[k8 + k6p] =
β1N1γ

k4k5k6N0

k9,

Re =
β2N1γ (α2 (π2pθ + k5q) + pα1k6)

k4k5k6Kτ
=
β2N1γ (α2k8 + pα1k6)

k4k5k6Kτ
=
β2N1γk10
k4k5k6Kτ

,

U1 =
β1KN1τ (π2θ + k6) + β2N0N1 (α2π2θ + α1k6)

k5k6KN0τ
, U2 =

β1KN1τ + α2β2N0N1

k6KN0τ
,

U3 =
β2N1

Kτ
, k8 = π2pθ + k5q, k9 = k8 + k6p, k10 = α2k8 + pα1k6.

(19)
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Therefore, the control reproduction number, Rc, is the sum of two main contributions,
namely, humans and environment, as follows:

Rc := ρ(ZW−1) = Rh +Re, (20)

where ρ(•) represents the spectral radius operator.
The threshold quantity Rc measures the average number of new Covid-19 infections

generated by a single infectious individual in a completely susceptible population where
quarantine, treatment and vaccination campaign are implemented [19, 40]. The threshold
Rh represents the number of humans infected through close contact with an infectious in-
dividual (either an asymptomatic person (A) or symptomatic person (Ih)) during his/her
infectious lifetime. It is equal to the product of the direct contact rate between susceptible
individuals and infected individuals, the probability that an exposed human survives the
latent period, the average duration of the infectious period in asymptomatic humans, the
average duration of the infectious period in symptomatic humans, and the ratio between
the total number of persons who will become infected and the total number of humans at
the disease-free equilibrium. Re represents the number of new infected caused by a contact
with an object used by an infected person throughout his/her infectious lifetime. It is equal
to the product of the contact rate between susceptible individuals and an object used by
an infected individuals, the probability that an exposed human survives the latent period,
the average duration of the infectious period in asymptomatic humans, the average duration
of the infectious period in symptomatic humans, the natural life expectancy of virus in the
environment, the average rate of virus spread to the environment by infectious individuals
and the ratio between the total number of persons at the disease-free equilibrium who will
become infected, and the total number of free viruses in the environment secreted by an
infectious person (A or I).

From [57, Theorem 2], we have the following result.

Lemma 3. (Local stability of the DFE) The stationary point E0 of system (13) is locally
asymptotically stable (LAS) if Rc < 1, and unstable otherwise.

2.2.4. Global stability of the DFE

Theorem 4. The disease-free equilibrium E0 is globally asymptotically stable in Υ whenever
Rc < 1.

Proof. Considering only the infected compartments of system (13), we obtain

d

dt









E(t)
A(t)
I(t)
H(t)
B(t)









= (Z −W )









E(t)
A(t)
I(t)
H(t)
B(t)









−M(S,Q, V1, V2, E, A, I,H,R,B), (21)

where F and V are the same matrices used to compute the control reproduction number

11



(see Eq. (20)), and

M(S,Q, V1, V2, E, A, I,H,R,B) =













β1(A+ I)

(
N1

N0

−
N1

N −H

)

+ β2B

(
N1

K
−

N1

K + B

)

0
0
0
0
0













,

where N1 = φ2S+φ1Q+φ3V1+φ4V2+φ5R, N1 = φ2S0+φ1Q0+φ3V10+φ4V20. In Υ,
N1

N0

≥

N1

N −H
and

N1

K
≥

N1

K + B
for all t > 0. Then, it follows thatM(S,Q, V1, V2, E, A, I,H,R,B) ≥

0R6 . This means that

d

dt









E(t)
A(t)
I(t)
H(t)
B(t)









≤ (Z −W )









E(t)
A(t)
I(t)
H(t)
B(t)









.

Note that

W−1 =











1
k4

0 0 0 0
pγ

k4k5

1
k5

0 0 0
(π2pϑ+k5q)γ

k4k5k6

π2ϑ
k5k6

1
k6

0 0
((π2π3Φν+ϕ2k6Φ)pϑ+π3k5Φνq)γ

k4k5k6σ+k4k5k6k7Φ
(π2π3Φν+ϕ2k6Φ)ϑ
k5k6σ+k5k6k7Φ

π3Φν
k6σ+k6k7Φ

Φ
σ+k7Φ

0
(α2π2pϑ+α2k5q+α1k6p)γ

k4k5k6τ
α2π2ϑ+α1k6

k5k6τ
α2

k6τ
0 1

τ











≥ 0R5×5 .

We also have, from (17), that Z ≥ 0. Thus, from [51, Theorem 2.1], there exists a Lyapunov
function for system (13) expressed as L (S,Q, V1, V2, E, A, I,H,R,B) = u′W−1 (E,A, I,H,B)′

where u′ is the left eigenvector of the nonnegative matrix W−1Z corresponding to the eigen-
value Rc. This implies that,

dL

dt
= (Rc − 1) u′ (E,A, I,H,B)− u′W−1M (S,Q, V1, V2, E, A, I,H,R,B) ≤ 0.

Since M (S,Q, V1, V2, E, A, I,H,R,B) ≥ 0R5 , it follows that
dL

dt
< 0 whenever Rc < 1,

with
dL

dt
= 0 if and only if (E,A, I,H,B) = 0R5 . It follows that the largest invariant set

contained in

{

(S,Q, V1, V2, E, A, I,H,R,B) ∈ R
10
+ :

dL

dt
= 0

}

is {E0}. Thus, from LaSalle

Invariance Principle [29], every solution of (13) with initials conditions in Υ converge to E0
when t −→ +∞. That is (E,A, I,H,B) −→ (0, 0, 0, 0, 0), S −→ S0, Q −→ Q0, V1 −→ V10
and V2 −→ V20 when t −→ +∞, which is equivalent to (S,Q, V1, V2, E, A, I,H,R,B) −→
(S0, Q0, V10, V20, 0, 0, 0, 0, 0, 0) when t −→ +∞. Thus, the disease-free equilibrium E0 is
globally asymptotically stable in W whenever Rc < 1. This ends the proof.
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2.2.5. Existence of endemic equilibrium points

Due to the model complexity, we consider only the particular case when σ = 0 and φi = 1
for i ∈ 1, 2, 3, 4. σ = 0 implies that there are no specific medical resources supplied which was
the case at the beginning of the Covid-19 epidemic in Wuhan, China. φ1 = φ2 = φ3 = φ4 = 1
implies that susceptible individuals, as well as quarantined, and vaccinated individuals, have
the same probability to become infected and the vaccine does not confer immunity. This is
motivated by the fact that, in the case of the Covid-19 pandemic, available vaccines do not
confer permanent immunity, but permit the reduction of the number of critical cases by the
decrease the number of Covid-19 hospitalization as well as the number of deaths due to the
Covid-19 pandemic [15].

We claim:

Proposition 1. Assume that Rc > 1 or Rc ≤ 1. Then, in addition to the disease-free
equilibrium E0, the Covid-19 model could have one or more than one positive equilibrium.

Proof. See Appendix D.

The case Rc < 1 of Proposition 1 suggests the possibility that the forward (resp. back-
ward) bifurcation phenomenon can occurs in the Covid-19 model (13). Since from Theorem
4, the disease-free equilibrium is globally asymptotically stable, it follows that even if the
DFE co-exists with other positive equilibrium points in Υ, these last are unstable.

3. Model calibration and sensitivity analysis

3.1. Model calibration with real data of Germany

The start date of mass vaccination in Germany was Sunday, 27 December 2020 [17]. Since
then, several constrained measures was taken to ensure that the majority of inhabitants is
vaccinated. We consider the daily infected reported cases in Germany from February 15,
2021 to April 05, 2021 [22]. The map of the Federal Republic of Germany is depicted in
Figure 1. Taking the total approximate population of Germany equal to N(0) = 83, 000, 000
[18], the recruitment rate is equal to Λ = µN(0). The following initial conditions subject
to the data fitting ar S(0) = 48, 790, 644 and the other variables with the initial conditions
subject to data fitting are Q(0) = 2, 338, 987, V1(0) = 23, 240, 000, V2(0) = 2, 324, 000,
E(0) = 2, 32, 843, A(0) = 0, I(0) = 2, 338, 987, H(0) = 23, 389, R(0) = 160, 115, and
B(0) = 106. The nonlinear square method is used to fit the model to the real data. It
provides realistic values of model parameters, which is beneficial when we want to forecast
the evolution of the disease in a given time interval. We perform experiments until the
desired accurate fitting of the model is achieved. After solving numerically the following
optimization problem

min
Γ

‖ Ipredict − Idata ‖2, (22)

where Γ = {β1, β2, v1, v2, c1, c2, γ, θ, ψ1, ψ2}, we obtain the results consigned in Table 2. The
value of the control reproduction number computed with the parameter values in Table 2 is
Rc = 1.899451294774579. The model simulations versus data fitting are depicted in Figure
2. The future evolution of the disease without any added control measures is depicted in
Figure 3. It is clear that, in a long term, the disease will persist in the population if there is
no best scientific advance like, for example, the establishment of a vaccine that could protect
a vaccinated person to be infected, even if this vaccinated person has close contact with the
virus or a sick person. For the moment, available vaccines permit only to prevent severe

13



6 7 8 9 10 11 12 13 14 15

48

49

50

51

52

53

54

Baden-

Württemberg

Bayern

Hessen

Thüringen Sachsen

Nordrhein-

Westfalen

Rheinland-

Pfalz

Sachsen-

Anhalt

Niedersachsen

Brandenburg

Hamburg BerlinSchleswig-

Holstein

Saarland

Bremen

Mecklenburg-

Vorpommern

Figure 1: Map of the Federal Republic of Germany with its sixteen states.

Table 2: Model parameters and their estimated values.

Parameter Value/per day Source Parameter Value/per day Source

Λ N(0)× µ Estimated ζ 0.1428 [55]

µ
1

81.72× 365
Estimated α1 0.1 [39]

β1 0.052428772948116 Fitted α2 0.1 [39]
β2 3.303061249323349e-07 Fitted τ 0.1724 [39]
r1 0.1 Assumed K 106 [11]
r2 0.8 Assumed δ1 0.0018 [39]
r3 0.05 Assumed δ2 0.0018 [39]
v1 0.000547888192948 Fitted q 0.7 [39]
v2 0.000080792493821 Fitted η 0.09 [39]
c1 0.000318771165360 Fitted σ 0.0584 [48]
c2 0.014228191665571 Fitted Φ 3.0173 [48]
γ 0.759448007021108 Fitted φ1 0.596 [40]
θ 0.019286496666118 Fitted φ2 1 Assumed
ψ1 0.31 Assumed φ3 0.52 [14]
ψ2 0.045 Assumed φ4 0.52 [14]
ν 0.017 Assumed φ5 0.5 Assumed
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Figure 2: Model fitting versus reported cases in Germany during the period from February 15, 2021 (t = 0)
to April 05, 2021 (t = 49).

forms of the disease by decreasing the number of hospitalized cases as well as the number of
deaths.
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Figure 3: Short and Long-term forecasting of Coronavirus (Covid-19) pandemic in Germany.

The impact of the vaccination process is depicted on Figure 4 by varying the vaccination
coverage between 0 and 70%. The simulation results show that vaccination forward delayed
the date of the epidemic peak. Whatever the vaccine coverage, the dynamics of the disease
remain the same after the epidemic peak. This can be justify by the fact that the available
Covid-19 vaccines do not prevent the virus transmission between infectious persons and
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vaccinated persons. This is why it is urgent to develop a Covid-19 vaccine which prevents
virus transmission with a high efficacy level.
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Figure 4: Impact of vaccination coverage on the Covid-19 dynamics in Germany.

Now, we fix the vaccine coverage at 70%, that is v1 = v2 = 0.7, and varying the vac-
cine efficacy at the second dose between 0 to 100%, that is φ4 ∈ {0, 0.52, 0.75, 0.95}. The
result, depicted on Figure 5, shows that fight against Covid-19 pandemic passes through by
intensification of vaccination campaigns with a vaccine with a high efficacy level.
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Figure 5: Impact of vaccine efficacy on the Covid-19 dynamics in Germany with a fixed vaccine coverage
equal to 70%.

3.2. Uncertainty and global Sensitivity analysis

Using 10,000 runs of the Latin hypercube sampling (LHS) [53], we compute the partial
rank correlation coefficients (PRCC) between the control reproduction number Rc and each
model parameters [1, 33, 63]. Each model parameter is supposed to be a random variable,
uniformly distributed, with its mean value as listed in Table 2. With this 10,000 sampling,
we obtain the mean value of Rc equal to 2.4724 which implies that we are in an endemic
state. The derived distribution of Rc is depicted in Figure 6 (panel (a)) while the PRCCs
are depicted in panel (b) of Figure 6. Statistically, a large PRCC value ( > +0.5 or < −0.5
) with less P-values (< 0.001) indicates that the corresponding parameter is influency in
the model dynamics. It then follows that β1, the human-to-human transmission probability,
and φ2, a modification parameter which indicates the level of infectiousness of susceptible
individuals, are the most influential for the control reproduction number Rc.

Figure 7 depicts PRCC between infected states E, A, I andH, and each model parameter,
as well as the corresponding P-values. We observe that: For the compartment E, the most
influence parameters are β1, γ and φ2; For the compartment A, the most influence parameters
are β1, θ, q and φ2; For the compartment I, the most influence parameters are β1, ν and φ2;
And for the compartment H, the most influence parameters are β1, ν, η and ζ. This suggest
that control measures like individual protection, prevention and treatment (with high level of
efficacy) combined with all measures which consist to detect new cases as well as which can
boost the immunity system must be intensified to fight against the persistence of Covid-19
in the population.
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(a) Sampling distribution of Rc from 10,000 runs of Latin hypercube sampling.
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Figure 6: Sampling distribution of Rc (a) and global sensitivity indices (b) for Rc against model parameters.
The character ’d’ stands for the dummy parameter.
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Figure 7: Global sensitivity indices for infected state variables of the model (13) against model parameters.

Figures 8 shows the control reproduction number Rc as a function of some model pa-
rameters. In panel (a) of Figure 8, Rc is represented as a function of the direct transmission
contact coefficient β1 and the indirect transmission contact coefficient β2. We see that Rc

increases rapidly according to the increase of β1 than β2. This suggests that decreasing the
coefficient β1 is the best way to reduce the control reproduction number. In panel (b) of
Figure 8, Rc is represented as a function of the coefficients β1 and ζ. It clear from panel
(b) of Figure 8 that Rc increases rapidly according to the increase of β1 and the decrease of
ζ. This suggest that individual protection combined with effective treatment can permits to

20



reduce the control reproduction number.
In panel (c) of Figure 8, Rc is represented as a function of the coefficients β1 and φ2. By

Noting that φ2 = 1 − ǫ2 where ǫ2 represents the booster immunity level, we look that de-
creasing simultaneously these two parameters permits to decrease Rc, that is, not individual
protection with a population with weakened immune system contributes to the persistence
of the disease in the population. In panel (d) of Figure 8, Rc is represented as a function of
the coefficients β1 and γ. We see Rc is a increase function of this two parameters. The same
way is observed in the remaining panels (e) and (f).

(a) 3-D plot of Rc as a function of β1 and β2 (b) 3-D plot of Rc as a function of β1 and ζ

(c) 3-D plot of Rc as a function of β1 and φ2 (d) 3-D plot of Rc as a function of β1 and γ

(e) Contour plot of Rc as a function of φ2 and γ (f) Contour plot of Rc as a function of φ2 and ζ

Figure 8: 3-D plot of Rc as a function of some model parameters. The parameter values are those of Table
2 except (a) β1 and β2; (b) beta1 and ζ; (c) β1 and φ2; (d) β1 and γ; (e) φ2 and γ; (f) φ2 and ζ which vary.
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4. The fractional model

4.1. Preliminary definitions and results

Definition 1 (The R-L integral). Let f ∈ L1([0; a],R+), a > 0. The fractional order integral
of f of order ϕ > 0, in the sense of Riemann-Liouville, is defined as

C
a I

ϕ
t (f(t)) =

1

Γ(ϕ)

∫ t

0

f(θ)(t− θ)ϕ−1dθ. (23)

Definition 2 (The Caputo derivative [45]). Let f ∈ Cm([0; a]), a > 0, ϕ ∈ R, m ∈ N such
that m− 1 < ϕ < m. The Caputo fractional order derivative of f of order ϕ is defined as

C
aD

ϕ
t (f(t)) =

1

Γ(ϕ−m)

∫ t

a

(t− θ)m−ϕ−1f (m) (θ) dθ, t > 0. (24)

Definition 3 (The Mittag-Leffler function [36]). The Mittag-Leffler function of order ϕ > 0
is an entire function defined by the series

Eϕ(x) =
∞∑

k=0

xk

Γ(ϕk + 1)
. (25)

4.2. The fractional model and its analysis

The new formulation of the Covid-19 transmission model (13) with the Caputo fractional
derivative is given by







C
aD

ϕ
t S(t) = r2Λ

ϕ + cϕ1Q(t)− (kϕ1 + φ2λ(t))S(t),
C
aD

ϕ
t Q(t) = r1Λ

ϕ + cϕ2S(t)− (kϕ2 + φ1λ(t))Q(t),
C
aD

ϕ
t V1(t) = r3Λ

ϕ + vϕ1 S(t)− (kϕ3 + φ3λ(t))V1(t),
C
aD

ϕ
t V2(t) = π1Λ

ϕ + vϕ2 V1(t)− (µϕ + φ4λ(t))V2(t),
C
aD

ϕ
t E(t) = λ(t) (φ5R(t) + φ1Q(t) + φ2S(t) + φ3V1(t) + φ4V2(t))− kϕ4E(t),

C
aD

ϕ
t A(t) = pγϕE(t)− kϕ5A(t),

C
aD

ϕ
t I(t) = qγϕE(t) + π2θ

ϕA(t)− kϕ6 I(t),
C
aD

ϕ
t H(t) = π3ν

ϕI(t) + ψ2θ
ϕA(t)− kϕ7H(t)− T (σ,H(t)),

C
aD

ϕ
t R(t) = ψ1θ

ϕA(t) + ηνϕI(t) + ζϕH(t) + T (σ,H(t))(t)− (µϕ + φ5λ(t))R(t),
C
aD

ϕ
t B(t) = αϕ1A(t) + αϕ2 I(t)− τϕB(t).

(26)

where

λ(t) = βϕ1
A(t) + I(t)

N(t)−H(t)
+ βϕ2

B(t)

K + B(t)
, and T (σ,H(t))(t) =

σϕH(t)

Φ +H(t)
, (27)

and kϕ1 = µϕ + cϕ2 + vϕ1 , k
ϕ
2 = µϕ + cϕ1 , k

ϕ
3 = µϕ + vϕ2 , k

ϕ
4 = µϕ + γϕ, kϕ5 = µϕ + θϕ,

kϕ6 = µϕ + δϕ1 + νϕ, kϕ6 = µϕ + δϕ2 + ζϕ.
For dimensional consistency emphasized by Diethelm in [8], all model parameters except

r1, r2, r3, q, ψ1, ψ2, η, and φi for i ∈ [1; 5] ∩ N have dimensions 1
tϕ
.

System (26) is subject to the following initial conditions

S(0) = S0 > 0, Q(0) = Q0 ≥ 0, V1(0) = V10 ≥ 0, V2(0) = V20 ≥ 0, E(0) = E0 ≥ 0,

A(0) = A0 ≥ 0, I(0) = I0 ≥ 0, H(0) = H0 ≥ 0, R(0) = R0 ≥ 0,B(0) = B0 ≥ 0.
(28)
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Let us set x = (S,Q, V1, V2, E, A, I,H,R,B(t))
′ and K (t, x(t)) = (fϕi )

′, i ∈ [0, 10]∩N, where
fϕi for i ∈ [0, 10] ∩ N are the right-hand side of system (26). Thus the fractional model (26)
is rewritten in the following compact form

C
aD

ϕ
t x(t) = K (t, x(t)) , x(0) = x0 ≥ 0, t ∈ [0, a], a > 0, 0 < ϕ ≤ 1, (29)

with the condition x(0) = x0 ≥ 0 which is interpreted component by component.
The initial value problem (IVP) is in turn rewritten in the following integral form

x(t) = x(0) + C
a I

ϕ
t (K (t, x(t))) . (30)

The following results hold. The proofs are obtained as the same ways than the results
obtained for the model (13).

Theorem 5. For x(t) ≥ 0R10, the solution x(t) of the IVP (29) is positive whenever t ≥ 0.

Let us define the following subset of R10
+

Υϕ =

{

x = (S,Q, V1, V2, E, A, I,H,R,B)
′ ∈ R

10
+ :

(
9∑

i=1

xi

)

≤
Λϕ

µϕ
, x10 ≤

(αϕ1 + αϕ2 )Λ
ϕ

µϕτϕ

}

.

(31)

Theorem 6. (Boundedness of solutions)
The region Υϕ is positively invariant and attracting for system (26).

Lemma 4. The function K : [0;∞)× R
10 → R

10 defined in (29) is a continuously differen-
tiable function on R

10.

Lemma 5. The continuously differentiable function K : [0;∞)×R
10 → R

10 defined in (29)
is locally Lipschitz continuous on R

10.

Theorem 7 (Existence-uniqueness). For initial conditions x0 = (S0, Q0, V10, V20, E0, A0, I0, H0, R0, B0)
′ ∈

R
10
+ , the Covid-19 transmission model (26) admits a unique solution x ∈ C([0; +∞[,R10

+ ).

4.2.1. Steady states and stability analysis

4.2.2. Local stability of the disease-free equilibrium

As for the case of the model with integer derivative (13), the fractional model (26) admits
always one stationary point, also called disease-free equilibrium (DFE), E0 = (S0, Q0, V10, V20, 0, 0, 0, 0, 0, 0)

′

where 





S0 =
[cϕ1 (c

ϕ
2 r2 + kϕ1 r1) + (kϕ1 k

ϕ
2 − cϕ1 c

ϕ
2 ) r2] Λ

ϕ

kϕ1 (k
ϕ
1 k

ϕ
2 − cϕ1 c

ϕ
2 )

,

Q0 =
(cϕ2 r2 + kϕ1 r1) Λ

ϕ

kϕ1 k
ϕ
2 − cϕ1 c

ϕ
2

,

V10 =
[(k1k2 − c1c2) r3 + vϕ1 (k

ϕ
2 r2 + cϕ1 r1)] Λ

ϕ

(kϕ1 k
ϕ
2 − cϕ1 c

ϕ
2 ) k

ϕ
3

,

V20 =
[(kϕ1 k

ϕ
2 − cϕ1 c

ϕ
2 ) (v

ϕ
2 r

ϕ
3 + π1k

ϕ
3 ) + (kϕ2 r2 + cϕ1 r1) v

ϕ
1 v

ϕ
2 ] Λ

ϕ

(kϕ1 k
ϕ
2 − cϕ1 c

ϕ
2 ) k

ϕ
3 µ

.

(32)

with kϕ1 k
ϕ
2 − cϕ1 c

ϕ
2 = (µϕ)2 + (cϕ2 + vϕ1 + cϕ1 )µ

ϕ + cϕ1 v
ϕ
1 > 0. From (16), we have N0 :=

S0 +Q0 + V10 + V20 =
Λϕ

µϕ
.
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As in the case of the ODE model (13), we compute the control reproduction number,
denoted by Rc using the next generation approach (see [7, 57]), and the control reproduction
number of the fractional model (26) is given by

Rc =
βϕ1N1γ

ϕkϕ9
kϕ4 k

ϕ
5 k

ϕ
6N0

+
βϕ2N1γ

ϕkϕ10
kϕ4 k

ϕ
5 k

ϕ
6 τ

ϕK
. (33)

Before study the local stability of the disease-free equilibrium, let us recall the following
result.

Lemma 6. [21, Theorem 4.4] The disease-free equilibrium of the fractional model (26) is
locally asymptotically stable if all the eigenvalues ̟i of its Jacobian matrix evaluated at the

DFE satisfy |arg(̟i)| >
ϕπ

2
, i = [1; 10] ∩ N.

The Jacobian of system (26) evaluated at the disease-free equilibrium E0 is given by

J (E0) =






















−kϕ1 c1 0 0 0 −βϕ1 φ2
S0

N0

−βϕ1 φ2
S0

N0

0 0 −βϕ2 φ2
S0

K

cϕ2 −kϕ2 0 0 0 −βϕ1 φ1
Q0

N0

−βϕ1 φ1
Q0

N0

0 0 −βϕ2 φ1
Q0

K

vϕ1 0 −kϕ3 0 0 −βϕ1 φ3
V10
N0

−βϕ1 φ3
V10
N0

0 0 −βϕ2 φ3
V10
K

0 0 vϕ2 −µϕ 0 −βϕ1 φ4
V20
N0

−βϕ1 φ4
V20
N0

0 0 −βϕ2 φ4
V20
K

0 0 0 0 −kϕ4 βϕ1
N1

N0

βϕ1
N1

N0

0 0 βϕ2
N1

K

0 0 0 0 pγϕ −kϕ5 0 0 0 0
0 0 0 0 qγϕ π2θ

ϕ −kϕ6 0 0 0

0 0 0 0 0 ψ2θ
ϕ π3ν

ϕ −kϕ7 − σϕ

Φ
0 0

0 0 0 0 0 ψ1θ
ϕ ηνϕ ζϕ + σϕ

Φ
−µϕ 0

0 0 0 0 0 αϕ1 αϕ2 0 0 −τϕ






















.

The eigenvalues of J (E0) are −µ
ϕ, −kϕ3 , −

(
kϕ7 +

σϕ

Φ

)
, and those of the following sub-matrix

J1 =












−kϕ1 cϕ1 0 −βϕ1 φ2
S0

N0

−βϕ1 φ2
S0

N0

−βϕ2 φ2
S0

K

cϕ2 −kϕ2 0 −βϕ1 φ1
Q0

N0

−βϕ1 φ1
Q0

N0

−βϕ2 φ1
Q0

K

0 0 −kϕ4 βϕ1
N1

N0

βϕ1
N1

N0

βϕ2
N1

K

0 0 pγϕ −kϕ5 0 0
0 0 qγϕ π2θ

ϕ −kϕ6 0
0 0 0 αϕ1 αϕ2 −τϕ












=

(
J11 •
0R4×2 J22

)

.

with

J11 =

(
−kϕ1 cϕ1
cϕ2 −kϕ2

)

,

and

J22 =







−kϕ4 βϕ1
N1

N0

βϕ1
N1

N0

βϕ2
N1

K

pγϕ −kϕ5 0 0
qγϕ π2θ

ϕ −kϕ6 0
0 αϕ1 αϕ2 −τϕ






.

It is easy to verify that J11 has all its eigenvalues nonpositive. It thus remains to show
that the ones of J22 are also nonpositive. The characteristic equation of J22 is given by
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P(z) = a1z
4+a2z

3+a3z
2+a4z+a5 = 0, where a1 = kϕ9 k

ϕ
10, a2 = kϕ9 k

ϕ
10 (τ

ϕ + kϕ6 + kϕ5 + kϕ4 ),

a3 = kϕ10 [(k
ϕ
6 + kϕ5 + kϕ4 ) k

ϕ
9 τ

ϕ + kϕ5 k
ϕ
6 k

ϕ
9 + kϕ4 k

ϕ
6 (pk

ϕ
6 + π2pθ

ϕ + kϕ5 q (1−Rh))

+kϕ4 k
ϕ
5 (k

ϕ
8 + pkϕ6 (1−Rh))] ,

a4 = kϕ4 k
ϕ
5 k

ϕ
6 k

ϕ
10 [Rh (τ

ϕ + kϕ5 q) + kϕ6 p (Rh + 1) + pπ2θ
ϕ (1−Rh)]

+ kϕ4 k
ϕ
5 k

ϕ
6 k

ϕ
9 τ

ϕ (pαϕ1 + αϕ2 q) (1−Re) + kϕ4 k
ϕ
9 τ

ϕ
[
αϕ2π2pθ

ϕ (kϕ5 + kϕ6 ) + (kϕ5 )
2αϕ2 q + (kϕ6 )

2αϕ1 p
]

+ kϕ5 k
ϕ
6 k

ϕ
9 k

ϕ
10τ

ϕ,

a5 = kϕ4 k
ϕ
5 k

ϕ
6 τ

ϕ (π2pθ
ϕ + kϕ5 q + kϕ6 p) (α

ϕ
2π2pθ

ϕ + αϕ2 k
ϕ
5 q + αϕ1 k

ϕ
6 p) (1−Rc) .

Coefficients a1, a2 are always positive. Coefficient a5 is positive (resp. negative) iff Rc < 1
(resp. Rc > 1). Since Rc < 1 =⇒ (Rh < 1 & Re < 1), it follows that a3 and a4 are also
positive. Then, E0 is locally asymptotically stable iff the following Routh-Hurwitz conditions
hold

a2a3 − a4 > 0,

a2(a3a4 − a2a5)− a1a
2
3 > 0.

(34)

We thus claim what follows:

Lemma 7. Assume that condition (34) holds. Then, the disease-free equilibrium of the
fractional model (26) is locally asymptotically stable whenever Rc < 1.

From [3, Corollarly 2], we use the same Lyapunoy-type function to prove the global
stability of the DFE for the classical model (13), we prove that the DFE of the fractional
model (26) is globally asymptotically stable in Υϕ whenever Rc < 1. Thus, the following
result is valid.

Theorem 8. Assume that condition (34) holds. Then, the disease-free equilibrium of the
fractional model (26) is globally asymptotically stable whenever Rc < 1.

4.2.3. Numerical scheme

To construct a numerical scheme of the fractional model (26), we used the Adams-type
predictor-corrector iterative scheme [9, 10]. To this aim, let us consider the uniform dis-
cretization of [0, a] given by tm = mh, m ∈ [0;N ] ∩ N where h = a/m denotes the step size.
For a given approximation xh(ti) ≈ x(ti), the next approximation xh(ti+1) is obtained (using
the predictor-corrector method) as follows:

Predictor: xph(tn+1) =
⌈ϕ⌉−1∑

l=0

tln+1

l!
xl0 +

1

Γ(ϕ)

m∑

l=0

dl,m+1K (tl, xh(tl)) ;

Corrector: xh(tn+1) =
⌈ϕ⌉−1∑

l=0

tln+1

l!
xl0 +

hϕ

Γ(2 + ϕ)
K
(
tl+1, x

h
h(tl+1)

)
+

hϕ

Γ(2 + ϕ)

m∑

l=0

bl,m+1K (tl, xh(tl)) ;

with

bl,m+1 =







m1+ϕ − (m− ϕ)(m+ 1)ϕ, if l = 0,
(m− l + 2)1+ϕ + (m− l)1+ϕ − 2(m− l + 1)1+ϕ, if 1 ≤ l ≤ m,
1 if l = m+ 1,

and dl,m+1 =
hϕ

ϕ
[(m− l + 1)ϕ − (m− l)ϕ].
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5. Numerical simulations and discussion

Here, we perform several numerical simulations to (1) Validate our theoretical results;
and (2) compare the use of integer derivatives with fractional derivatives (which of the two
permits to better predicting the disease spread in a short, medium or, long term).

5.1. General dynamics

Figure 9 illustrates the situation of the disease when the control reproduction number is
greater that one. Indeed, when Rc > 1 implies that the disease will persist in the popula-
tion. Although we did not prove the uniqueness of the endemic equilibrium point as well
as its global asymptotic stability, the figure 9 suggests that the model admits a globally
asymptotically stable endemic equilibrium point whenever Rc is greater than 1.

Figure 9: Time-series of A(t), I(t), H(t) and B(t) with the above parameter values of Table 2. In this case
Rc = 1.899451294774579 > 1.

Figure 10 illustrate the result of Lemma 3 and Theorem 4. Indeed, if some other control
measures like social distancing, wearing a mask continuously, and Confinement, are combined
with vaccine and quarantine, the control reproduction number Rc should be less than one,
then it is possible that, in long-term, the disease dies out.
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Figure 10: Time-series of A(t), I(t), H(t) and B(t) with the above parameter values of Table 2 except
β1 = 0.027. In this case Rc = 0.9787 < 1 and the disease will die out in the population.

5.2. Impact of the fractional operator

The impact of fractional derivative on the Covid-19 dynamics is depicted in Figures 11-
12. Figure 11 depicts Rc as function of the fractional order ϕ. It is clear that Rc is an
increasing function of ϕ. Indeed, ϕ ∈ [0.5; 1] implies Rc ∈ [0.77; 1.8998] with Rc = 1 when
ϕ ≈ 0.681. In a quantitative point of view, we note that the model with integer derivative
(ϕ = 1) struggles to hug data on the long-term predictions. Indeed, in Figure 12, it is clear
that it is only from ϕ ≈ 0.87 that the fractional-order model better fits the data. Thus the
model with fractional derivative (in the Caputo sense) is better than the model with integer
derivative in the prediction of the Covid-19 new cases. From Figure 13, we see that using
a model with classical derivatives (integer derivative) can overestimate the total number of
news cases. Indeed, we see in Figure 13 that at t ≈ 744 days, the epidemic peak is reached
with 21, 850, 146 cases for ϕ = 1, while for ϕ = 0.84, the epidemic peak is reached with
11, 843, 669 cases at t ≈ 1224 days.

27



Figure 11: 2-D plot of Rc as a function of the fractional-order. The parameter values are those of Table 2.
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Figure 12: Long-term forecasting of Coronavirus (Covid-19) with varying the fractional-order parameter
ϕ ∈ [0.87; 1] (left panel) and ϕ ∈ [0.74; 0.87] (right panel). The parameter values are those of Table 2. t = 0
stands for February 15, 2021 and t = 437 stands for April 28, 2022. We see that curves with fractional-order
ϕ less than 0.87 better fit the data comprising the days between t = 300 and t = 437.
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Figure 13: 2-D plot of Rc as a function of the fractional-order. The parameter values are those of Table 2.

Figure 14 and 15 illustrate Theorem 8. We see that when Rc < 1, all trajectories
vanish to zero, which means that the DFE of the fractional model is globally asymptotically
stable (Figure 14), while they tend to their maximum values which represent the endemic
equilibrium point (Figure 15.

0 0.5 1 1.5 2 2.5 3

Time (days) 104

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3

Time (days) 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

I

0 0.5 1 1.5 2 2.5 3

Time (days) 104

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

Time (days)

0

1

2

3

4

5

6

7

8

9

10
105

Figure 14: Time-series of A(t), I(t), H(t) and B(t) with the parameter values listed in Table 2 except
β1 = 0.027 (to have Rc < 1) for different values of the fractional order ϕ.
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Figure 15: Time-series of A(t), I(t), H(t) and B(t) with the parameter values listed in Table 2 for different
values of the fractional order ϕ.

6. Conclusion and perspective

In this work, we formulated and analyzed a Covid-19 transmission dynamics model which
takes into account two doses of the vaccination process, confinement, and treatment with
limited resources, using both integer and fractional derivatives in the Caputo sense. After
the model formulation with classical derivative, we started by establishing the positivity,
boundedness, existence, and uniqueness of solutions. Then, we computed the control repro-
duction number Rc and perform the local and global asymptotic stability of the disease-free
equilibrium whenever Rc < 1. Indeed, we constructed a Lyapunov function and applied the
comparison theorem to prove that the disease-free equilibrium is GAS whenever the control
reproduction number is less than one. In the other words, this means that if existing controls
can achieve that Rc < 1, then the disease will die out. After that, we took the case Rc > 1
and proved the existence of at less than one endemic equilibrium point. We then calibrate
the model by estimating the model parameters with German data. With these estimated
parameter values, we found that the control reproduction number is approximately equal
to 1.90, which means that we are in endemic state since the control reproduction number
is greater than one. Thus, intensification of control measures is needed to decrease this
threshold under unity. We also found through numerical simulations that intensification of
mass vaccination campaigns with a Covid-19 vaccine with a high efficacy level can permit
to decrease the disease burden. We then performed global sensitivity analysis by computing
partial rank correlation coefficients (PRCC) between Rc (respectively infected states) and
each model parameters. We found that the most influential model parameters are β1, γ, φ2,
θ, ν, η and ζ. This suggest that, control measures like individual protection, prevention and
treatment (with high level of efficacy) combined with all measures which consist to detect
new cases as well as which can boost the immunity system must be intensified to fight against
the persistence of Covid-19 in the population.

After that, we formulated the corresponding fractional model in the Caputo sense. As
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in the case of the integer model, we proved the positivity, boundedness, existence, and
uniqueness of solutions. We also computed the control reproduction number of the fractional
model, which depends on the fractional order ϕ. So, if the fractional order ϕ = 1, then both
models have the same control reproduction number. Using the same approach as the case of
the integer model, we proved the global asymptotic stability of the disease-free equilibrium
whenever the control reproduction number is less than one, as well as the existence of an
endemic equilibrium point whenever the control reproduction number is greater than one.
We constructed a numerical scheme of the fractional number using the Adams-type predictor-
corrector iterative method. To validate the theoretical analysis of both models, and compare
the two types of derivatives, we performed several numerical simulations. We found that
for a long-term prediction of new daily cases, the fractional model is better than the model
with integer derivative. Indeed, when the fractional order ϕ is less than 0.87, the model with
fractional derivative best fits the data in comparison to the model with classical derivatives.
For both models, numerical simulations showed that all infected compartments go to zero
whenever Rc < 1, which confirms the GAS of the disease-free equilibrium. Although we did
not prove the uniqueness of the endemic equilibrium, numerical simulations indicate that
the model can have a unique endemic equilibrium that is globally asymptotically stable.

In the present work, we considered constant controls. It would be more realistic to replace
constant controls with time-dependent controls. And thus, one should use the optimal control
theory to make decisions like (1) the percentage of the population that should be vaccinated
as the progression of the Covid-19 pandemic, to minimize the number of people infected, (2)
the cost of implementing the vaccination strategy, and (3) which controls must be combined
with vaccination to decrease rapidly the disease burden. This represents a direct perspective
of this work.
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Appendix

A. Proof of Theorem 1

From (13), we have






dS

dt
(t)

∣
∣
∣
∣
S=0,Q≥0

= r2Λ + c1Q(t) > 0,
dQ

dt
(t)

∣
∣
∣
∣
Q=0,S≥0

= r1Λ + c2S(t) > 0,

dV1
dt

(t)

∣
∣
∣
∣
V1=0,S≥0

= r3Λ + v1S(t) > 0,
dV2
dt

(t)

∣
∣
∣
∣
V20=0,V1≥0

= π1Λ + v2V1(t) > 0,

dB

dt
(t)

∣
∣
∣
∣
B=0,A,I≥0

= α1A(t) + α2I(t) ≥ 0,
dA

dt
(t)

∣
∣
∣
∣
A=0,E≥0

= (1− q)γE(t) ≥ 0,

dI

dt
(t)

∣
∣
∣
∣
I=0,E,A≥0

= qγE(t) + π2θA(t) ≥ 0,
dH

dt
(t)

∣
∣
∣
∣
H=0,A,I≥0

= π3νI(t) + ψ2θA(t) ≥ 0,

dR

dt
(t)

∣
∣
∣
∣
R=0,A,I,H≥0

= ζH(t) + T (σ,H(t))(t) + νηI(t) + ψ1θA(t) ≥ 0,

dE

dt
(t)

∣
∣
∣
∣
E=0,S,Q,V1,V2,A,I,R,B≥0

=

(

β1
A(t) + I(t)

N(t)−H(t)
+ β2

B(t)

K + B(t)

)

× (φ5R(t) + φ1Q(t) + φ2S(t) + φ3V1(t) + φ4V2(t)) ≥ 0.
(35)

So, the nonnegativity of state variables of system (13) are obtained thanks to the Barrier
theorem [20]. This means that R10

+ is an invariant set for the system (13).

B. Proof of Theorem 2

Adding the first nine equations of system (13) together, it follows that

dN

dt
(t) :=

9∑

i=1

d

dt
xi(t) = Λ− µ

(
9∑

i=1

xi(t)

)

− δ1x7 − δ2x8 ≤ Λ− µ

(
9∑

i=1

xi(t)

)

.

Solving this inequality gives

0 ≤ N(t) :=
9∑

i=1

xi(t) ≤
Λ

µ
+

(
9∑

i=1

xi(0)−
Λ

µ

)

e−µt, for all t ≥ 0.

This implies, by passing to the limit, that lim sup
t−→+∞

N(t) ≤
Λ

µ
.

From the last equation of (13), we have

dx10
dt

(t) :=
dB

dt
(t) = α1x6(t) + α2x7(t)− τx10 ≤ (α1 + α2)

Λ

µ
− τx10.

Solving the above inequality gives

0 ≤ x10(t) = B(t) ≤
(α1 + α2)Λ

µτ
+

(

x10(0)−
(α1 + α2)Λ

µτ

)

e−τt for all t ≥ 0.

By passing to the limit, we obtain lim sup
t−→+∞

x10(t) = lim sup
t−→+∞

B(t) ≤
(α1 + α2)Λ

µτ
.

Thus, Υ is positively invariant and attracting for system (13).
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C. Proof of Lemma 1

To prove Lemma (1), we just have to show that each
∂Fi

∂xj
, 1 ≤ i, j ≤ 10 exists and is

continuous. From (13) and using the fact that each state variable of system (13) is bounded,
we have:

∂F1

∂S
= −k1 − φ2λ+ φ2β1S

[
A+ I

(N −H)2

]

,

∣
∣
∣
∣

∂F1

∂S

∣
∣
∣
∣
≤ k1 + φ2 + φ2β1 < +∞,

∂F1

∂Q
= c1 + φ2β1

(A+ I)S

(N −H)2
,

∣
∣
∣
∣

∂F1

∂S

∣
∣
∣
∣
≤ c1 + φ2β1 < +∞,

∂F1

∂V1
= φ2β1

(A+ I)S

(N −H)2
,

∣
∣
∣
∣

∂F1

∂V1

∣
∣
∣
∣
≤ φ2β1 < +∞,

∂F1

∂V2
= φ2β1

(A+ I)S

(N −H)2
,

∣
∣
∣
∣

∂F1

∂V2

∣
∣
∣
∣
≤ φ2β1 < +∞,

∂F1

∂E
= φ2β1

(A+ I)S

(N −H)2
,

∣
∣
∣
∣

∂F1

∂E

∣
∣
∣
∣
≤ φ2β1 < +∞,

∂F1

∂A
= −φ2β1

(N −H − A− I)S

(N −H)2
,

∣
∣
∣
∣

∂F1

∂A

∣
∣
∣
∣
≤ φ2β1 < +∞,

∂F1

∂I
= −φ2β1

(N −H − A− I)S

(N −H)2
,

∣
∣
∣
∣

∂F1

∂I

∣
∣
∣
∣
≤ φ2β1 < +∞,

∂F1

∂H
= 0,

∣
∣
∣
∣

∂F1

∂H

∣
∣
∣
∣
≤ +∞,

∂F1

∂R
= −φ2β1

(A+ I)S

(N −H)2
,

∣
∣
∣
∣

∂F1

∂R

∣
∣
∣
∣
≤ φ2β1 < +∞,

∂F1

∂B
= −φ2β2

K

(K +B)2
S,

∣
∣
∣
∣

∂F1

∂B

∣
∣
∣
∣
≤ φ2β2 |S| < +∞,

(36)

We proceed by the similarly way for
∂Fj

∂xi
, 1 ≤ i ≤ 10; 2 ≤ j ≤ 10. Thus, we conclude that

each ∂Fi

∂xj
, for i, j ∈ [1, 10] ∩ N, is continuous and bounded.

D. Proof of Proposition 1

To find stationary (equilibrium) points of system (13) for the special case, we set the
right-hand side of (13) equal to zero. That is







r2Λ + c1Q
⋆ − [k1 + φ2λ

⋆]S⋆ = 0,
r1Λ + c2S

⋆ − [k2 + φ1λ
⋆]Q⋆ = 0,

r3Λ + v1S
⋆ − [k3 + φ3λ

⋆]V ⋆
1 = 0,

π1Λ + v2V
⋆
1 − [µ+ φ4λ

⋆]V ⋆
2 = 0,

λ⋆(φ5R
⋆ + φ1Q

⋆ + φ2S
⋆ + φ3V

⋆
1 + φ4V

⋆
2

)
− k4E

⋆ = 0,

pγE⋆ − k5A
⋆ = 0,

qγE⋆ + π2θA
⋆ − k6I

⋆ = 0,
π3νI

⋆ + ψ2θA
⋆ − k7H

⋆ = 0,
ζH⋆ + νηI⋆ + ψ1θA

⋆ − [µ+ φ5λ
⋆]R⋆ = 0,

α1A
⋆ + α2I

⋆ − τB⋆ = 0,

(37)
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where

λ⋆ := β1
A⋆ + I⋆

N⋆ −H⋆
+ β2

B⋆

K + B⋆
. (38)

The resolution of the first seven equations coupled with the tenth equation of (37) in term
of λ⋆ gives







S⋆ =
r2Λ + c1Q

⋆

[k1 + φ2λ⋆]
, Q⋆ =

r1Λ + c2S
⋆

[k2 + φ1λ⋆]
, V ⋆

1 =
r3Λ + v1S

⋆

[k3 + φ3λ⋆]
, V ⋆

2 =
π1Λ + v2V

⋆
1

[µ+ φ4λ⋆]
,

E⋆ =
λ⋆(φ5R

⋆ + φ1Q
⋆ + φ2S

⋆ + φ3V
⋆
1 + φ4V

⋆
2

)

k4
, A⋆ =

pγE⋆

k5
,

I⋆ =
qγE⋆ + π2θA

⋆

k6
,B⋆ =

α1A
⋆ + α2I

⋆

τ

(39)

Using (39) in the eighth equation of (37) gives

π3νI
⋆ + ψ2θA

⋆ − k7H
⋆ = 0,

⇐⇒

[
π3νγ

k6

(
qk5 + pπ2θ

k5

)

+ ψ2θ
pγ

k5

]

E⋆ − k7H
⋆ = 0,

⇐⇒

[
π3νγ

k6

(
qk5 + pπ2θ

k5

)

+ ψ2θ
pγ

k5

]
λ⋆φ5R

⋆

k4

+

[
π3νγ

k6

(
qk5 + pπ2θ

k5

)

+ ψ2θ
pγ

k5

]
λ⋆(φ1Q

⋆ + φ2S
⋆ + φ3V

⋆
1 + φ4V

⋆
2

)

k4
− k7H

⋆ = 0,

(40)

Solving the ninth equation of (37) gives

R⋆ =

{

ζH⋆ +
k11
k4
λ⋆ (φ1Q

⋆ + φ2S
⋆ + φ3V

⋆
1 + φ4V

⋆
2 )

}{
k4

[k4 (µ+ φ5λ⋆)− k11φ5λ⋆]

}

, (41)

where k11 =
[
νηγ(qk5+pπ2θ)

k5k6
+ ψ1θpγ

k5

]

.

Merging (41) in (40) gives

k12λ
⋆φ5

k4

1

[µ+ φ5λ⋆]

{

ζH⋆ +
k11
k4
λ⋆G(λ∗)

}{

1−
k11φ5λ

⋆

k4 [µ+ φ5λ⋆]

}−1

+ k12
λ⋆G(λ∗)

k4
− k7H

⋆ = 0,

which gives

H⋆ =

{
k11k12φ5λ

⋆ + k12 [k4 (µ+ φ5λ
⋆)− k11φ5λ

⋆]

k4k7 [k4 (µ+ φ5λ⋆)− k11φ5λ⋆]− k4k12φ5ζλ⋆

}

λ⋆G(λ∗), (42)

where k12 =

[

π3νγ

k6

(
qk5 + pπ2θ

k5

)

+ ψ2θ
pγ

k5

]

and G(λ∗) = φ1Q
⋆ + φ2S

⋆ + φ3V
⋆
1 + φ4V

⋆
2 .

Using (39), (41) and (42) in (38), it follows that find the equilibrium points of model (13)
in this special case consists in the resolution of the following equation

P(λ⋆) := λ⋆
[
A4(λ

⋆)4 + A3(λ
⋆)3 + A2(λ

⋆)2 + A1λ
⋆ + A0

]
= 0 (43)

where

A0 = −k24k
2
5k

2
6k

2
7Kµ

4τ (Rc − 1) ,
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A4 = φ25k7 × ...

× (pθγ [π2 (ν + δ1) + k6 (ψ2 + ψ1)] + k5qγ (ν + δ1)− k4k5k6)× ...

× (Kτγζ (π3ν (θπ2p+ k5q) + ψ2pk6θ) + k7Kτγ (ην (π2pθ + k5q) + ψ1k6pθ)

−k7Λγ [α2 (π2pθ + k5q) + α1k6p]− k4k5k6k7Kτ)

= φ25k7 × ...

× k4k5k6

(
γ (ν + δ1) k8
k4k5k6

+
pθγ (ψ2 + ψ1)

k4k5
− 1

)

× ...

× (Kτγζπ3k8ν +Kτγk7ψ1k6pθ +Kτγζψ2pk6θ +Kτγk7ηνk8 − k7Λγk10 − k4k5k6k7Kτ) ,

A1 = (((β1π2k5φ5k6k7k12Kµ
3pτ + (α2β2π2k5φ5 − α2β2π2k5)k6k7k12Λµ

2p)θ

+ (β1k
2

5
φ5k6k7k12Kµ

3q + β1k5φ5k
2

6
k7k12Kµ

3p)τ + (α2β2k
2

5
φ5 − α2β2k

2

5
)k6k7k12Λµ

2q

+ (α1β2k5φ5 − α1β2k5)k
2

6
k7k12Λµ

2p)γ + (k4k
2

5
− 2k4k

2

5
φ5)k

2

6
k7k12Kµ

3τ)ζ

+ ((α2β2π
2

2
π3k

2

7
Λµ2ν − β1α2π

2

2
k2
7
Λµ3 + (α2β2π2ψ2k6 + δ1α2β2π

2

2
)k2

7
Λµ2)p2θ2

+ ((2α2β2π2π3k5k
2

7
Λµ2ν − 2β1α2π2k5k

2

7
Λµ3 + (α2b2ψ2k5k6 + 2δ1α2β2π2k5)k

2

7
Λµ2)pq

+ (α1β2π2π3k6k
2

7
Λµ2ν + (−β1α2 − α1β1)π2k6k

2

7
Λµ3 + (α1β2ψ2k

2

6
+ α1δ1β2π2k6)k

2

7
Λµ2)p2)θ

+ (α2β2π3k
2

5
k2
7
Λµ2ν − β1α2k

2

5
k2
7
Λµ3 + δ1α2β2k

2

5
k2
7
Λµ2)q2

+ (α1β2π3k5k6k
2

7
Λµ2ν + (−β1α2 − α1β1)k5k6k

2

7
Λµ3 + α1δ1β2k5k6k

2

7
Λµ2)pq − α1β1k

2

6
k2
7
Λµ3p2)γ2

+ ((((β1π2k5φ5k6k
2

7
k11 + (((−δ1 − β1)π2k4k5 − 2β1π2k4k5φ5)k6 − ψ2k4k5k

2

6
)k2

7
)Kµ3 − π2π3k4k5k6k

2

7
Kµ3ν)pτ

+ (α2π2k4k5k6k
2

7
Λµ3 + (α2β2π2k5φ5k6k

2

7
k11 + (−2α2β2π2k4k5φ5 − α2β2π2k4k5)k6k

2

7
)Λµ2)p)θ

+ (((β1k
2

5
φ5k6k

2

7
k11 + ((−δ1 − β1)k4k

2

5
− 2β1k4k

2

5
φ5)k6k

2

7
)Kµ3 − π3k4k

2

5
k6k

2

7
Kµ3ν)q

+ (β1k5φ5k
2

6
k2
7
k11 + (−2β1k4k5φ5 − β1k4k5)k

2

6
k2
7
)Kµ3p)τ

+ (α2k4k
2

5
k6k

2

7
Λµ3 + (α2β2k

2

5
φ5k6k

2

7
k11 + (−2α2β2k4k

2

5
φ5 − α2β2k4k

2

5
)k6k

2

7
)Λµ2)q

+ (α1k4k5k
2

6
k2
7
Λµ3 + (α1β2k5φ5k

2

6
k2
7
k11 + (−2α1β2k4k5φ5 − α1β2k4k5)k

2

6
k2
7
)Λµ2)p)γ

+ ((2k2
4
k2
5
φ5 + 2k2

4
k2
5
)k2

6
k2
7
− 2k4k

2

5
φ5k

2

6
k2
7
k11)Kµ

3τ,
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A2 = (k2
5
φ2
5
− k2

5
φ5)k

2

6
k2
12
Kµ2τζ2

+ ((((π2π3k5φ5k6k7k12Kµ
2ν + (ψ2k5φ5k

2

6
+ (b1π2k5φ

2

5
+ (δ1 + b1)π2k5φ5)k6)k7k12Kµ

2)pτ

+ ((α2π2k5 − α2π2k5φ5)k6k7k12Λµ
2 + (α2b2π2k5φ

2

5
− α2b2π2k5φ5)k6k7k12Λµ)p)θ

+ ((π3k
2

5
φ5k6k7k12Kµ

2ν + (b1k
2

5
φ2
5
+ (δ1 + b1)k

2

5
φ5)k6k7k12Kµ

2)q + (b1k5φ
2

5
+ b1k5φ5)k

2

6
k7k12Kµ

2p)τ

+ ((α2k
2

5
− α2k

2

5
φ5)k6k7k12Λµ

2 + (α2b2k
2

5
φ2
5
− α2b2k

2

5
φ5)k6k7k12Λµ)q + ((α1k5 − α1k5φ5)k

2

6
k7k12Λµ

2

+ (α1b2k5φ
2

5
− α1b2k5φ5)k

2

6
k7k12Λµ)p)γ + ((2k2

5
φ2
5
− k2

5
φ5)k

2

6
k7k11

+ (−2k4k
2

5
φ2
5
− 2k4k

2

5
φ5 + k4k

2

5
)k2

6
k7)k12Kµ

2τ)ζ + (((2α2b2π
2

2
π3φ5k

2

7
Λµ− α2π

2

2
π3k

2

7
Λµ2)ν

+ (−α2π2ψ2k6 − 2b1α2π
2

2
φ5 − δ1α2π

2

2
)k2

7
Λµ2 + (2α2b2π2ψ2φ5k6 + 2δ1α2b2π

2

2
φ5)k

2

7
Λµ)p2θ2

+ (((4α2b2π2π3k5φ5k
2

7
Λµ− 2α2π2π3k5k

2

7
Λµ2)ν + (−α2ψ2k5k6 − 4b1α2π2k5φ5 − 2δ1α2π2k5)k

2

7
Λµ2

+ (2α2b2ψ2k5φ5k6 + 4δ1α2b2π2k5φ5)k
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Coefficient A0 is negative (resp. positive) if and only if Rc > 1 (resp. Rc < 1). The sign of
the remaining coefficients depend of the parameters values. The proof is completed thanks
to Descartes’ rule of signs.

E. Proof of Theorem 6

Adding the first nine equations of system (26) together, it follows that

C
aD

ϕ
t N(t) :=

9∑

i=1

C
0 D

ϕ
t xi(t) = Λϕ − µϕ

(
9∑

i=1

xi(t)

)

− δϕ1 x7 − δϕ2 x8 ≤ Λϕ − µϕ

(
9∑

i=1

xi(t)

)

.

Using the Mittag-Leffler function defined at Eq. (25) (see Definition 25), we obtain by solving
the above inequality, that

0 ≤ N(t) :=
9∑

i=1

xi(t) ≤
Λϕ

µϕ
+

(
9∑

i=1

xi(0)−
Λϕ

µϕ

)

Eϕ (−µ
ϕt) , for all t ≥ 0.

This implies, by passing to the limit, that lim sup
t−→+∞

N(t) ≤
Λϕ

µϕ
.

From the last equation of (13), we have

C
aD

ϕ
t x10(t) :=

C
0 Dϕ

t B(t) = αϕ1x7(t) + αϕ2x8(t)− τϕx10 ≤ (αϕ1 + αϕ2 )
Λϕ

µϕ
− τϕx10.
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Solving the above inequality gives

0 ≤ x10(t) = B(t) ≤
(αϕ1 + αϕ2 )Λ

ϕ

µϕτϕ
+

(

x10(0)−
(αϕ1 + αϕ2 )Λ

ϕ

µϕτϕ

)

Eϕ (−τ
ϕt) for all t ≥ 0.

By passing to the limit, we obtain lim sup
t−→+∞

x10(t) = lim sup
t−→+∞

B(t) ≤
(αϕ1 + αϕ2 )Λ

ϕ

µϕτϕ
.

Thus, Υϕ is positively invariant and attracting for system (26).
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