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Abstract. We present a blow-up result for large data for relaxed compressible Navier-Stokes

models avoiding the possibility of reaching the boundary of hyperbolicity. Thus a previous
result is improved and further examples are given illustrating possible effects of a relaxation and

contrasting the classical compressible Navier-Stokes equations without relaxation where solutions

for large data exist globally.
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1. Introduction

We consider the system of one-dimensional non-isentropic compressible Navier-Stokes equations,
ρt + (ρu)x = 0,

ρut + ρuux + px = Sx,

Et + (uE + pu+ q − Su)x = 0.

(1.1)

with (t, x) ∈ R+×R. Here, ρ, u, p, E represent the fluid density, velocity, pressure and total energy,
respectively. Equations for the stress S and the heat flux q should be given to make the system
(1.1) closed. We shall use the following model:

τ1(θ)(ρqt + ρu · qx) + q + κ(θ)θx = 0, (1.2)

and

τ2(ρSt + ρu · Sx) + S = µux. (1.3)

Here τ1(θ), τ2 > 0 are relaxation parameters, κ(θ) > 0 and µ > 0 denote the heat conduction
and the viscosity coefficient, respectively. τ2 and µ are assumed to be constants. The constitutive
equation (1.3) was proposed by Freistühler [7, 8] for the isentropic case, see also Ruggeri [19] and
Müller[17] for a similar model in the non-isentropic case.

Furthermore, we assume that the total energy is given by

E =
1

2
ρu2 +

τ2
2µ
ρS2 + ρe(θ, q), (1.4)

and the specific internal energy e and the pressure p are given by

e(θ) = Cvθ + a(θ)q2, p(ρ, θ) = Rρθ, (1.5)

where

a(θ) =
Z(θ)

θ
− 1

2
Z ′(θ) with Z(θ) =

τ1(θ)

κ(θ)
.
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Here, Cv > 0, R > 0 denotes the heat capacity at constant volume and the gas constant, respec-
tively. p and e satisfy the usual thermodynamic equation

ρ2eρ = p− θpθ.
The dependence of the internal energy on q2 is indicated by Coleman et al. [5], where they

rigorously prove that for heat equations with Cattaneo-type law, the formulation (1.5) is consistent
with the second law of thermodynamics, see also [3, 6, 22].

In the constitutive relation (1.3), in its linearized form: τ2St +S = µux, the positive parameter
τ2 is the relaxation time describing the time lag in the response of the stress tensor to the velocity
gradient, cf. also Christov and Jordan [4]. Pelton et al. [18] showed that such a”time lag” cannot
be neglected, even for simple fluids, in the experiments of high-frequency vibration of nano-scale
mechanical devices immersed in water-glycerol mixtures. It turned out that, cf. also [2], equation
(1.3) provides a general formalism to characterize the fluid-structure interaction of nano-scale
mechanical devices vibrating in simple fluids. A similar relaxed constitutive relation was already
proposed by Maxwell in [16], in order to describe the relation of stress tensor and velocity gradient
for a non-simple fluid.

We shall consider the Cauchy problem for the functions

(ρ, u, θ, S, q) : R× [0,+∞)→ R+ × R× R+ × R× R

with initial conditions

(ρ(x, 0), u(x, 0), θ(x, 0), S(x, 0), q(x, 0)) = (ρ0, u0, θ0, S0, q0). (1.6)

Neglecting ρ in the constitutive relations (1.2)-(1.3) and assuming τ1, κ to be constants, the
authors and Wang[12] established a blow-up result under the assumption that (ρ−1, θ−1, q, S) ∈ Ω
with Ω a ”small” domain. Therefore, the solutions in [12] might ”blow up” in the sense that one
may reach the boundary of Ω. The aim of this paper is to:

• establish a symmetric hyperbolic system without smallness condition,
• find a physical entropy which gives lower energy estimates and some dissipation,
• show a global existence result for small data,
• mainly prove a blow-up of classical solutions for large data.

It should be noted that the constitutive relations (1.2)-(1.3) have many merits. For example, as
mentioned by Freistühler [7], they are Galilean invariant and in a conservation form which allows
one to define weak solutions. Moreover, the use of constitutive relations (1.2)-(1.3) in this paper is
originally coming from the idea that putting the system into a symmetric hyperbolic system, for
which the pressure p should not depend on q and S. In this regard, to satisfy the thermodynamic
relation ρ2eρ = p − θpθ, the specific internal energy e should not depend on ρ (for an ideal gas).
Therefore, we removed the variable ρ in the formulation of e in our previous paper [12]. Then, to
have an entropy equation and a ”good” equation for θ, we just need the new constitutive relations
(1.2)-(1.3) which coincide with the model proposed by Freistühler, at least for the isentropic case.

The most interesting aspect might be that the blow-up result contrasts the situation without
relaxation. i.e. for the classical compressible Navier-Stokes system corresponding to τ1 = τ2 = 0,
where large global solutions exist, see Kazhikhov [15]. This really nonlinear effect – loosing the
global existence for large data –, not anticipated from the linearized version, shows the possible
impact a relaxation might have. For several linear systems of various type an effect is visible in
loosing exponential stability in bounded domains or becoming of regularity loss type in the Cauchy
problem, see the discussion in our paper [12].

The method we use to prove the blow-up result is mainly motivated by Sideris’ paper [20] where
he showed that any C1 solutions of compressible Euler equations must blow up in finite time. A
blow-up result for a similar system has also been stated recently by Freistühler [9] applying the
general result for symmetric hyperbolic systems with sources in one space dimension by Bärlin [1].
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A solution remains bounded, but the solution does not remain in C1, provided the data are small
enough. We shall show that the system (1.1)-(1.6) is a symmetric hyperbolic system which has the
important property of finite propagation speed. This allows us to define some averaged quantities
(different from that in [20]) and finally show a blow-up of solutions in finite time by establishing a
Riccati-type inequality. In contrast to [9, 1], our blow-up requires large initial velocities; moreover,
here the largeness is described explicitly. For initial data being small in higher-order Sobolev spaces
(H2), there exist global solutions. The method used here also extends to higher dimensions, see
[11].

The paper is organized as follows. In Section 2, we derive an entropy equation for system (1.1)-
(1.6) and then present the local existence theorem in Section 3 together with some remarks on
global existence for small data. In Section 4 we show the blow-up result.

Finally, we introduce some notation. Wm,p = Wm,p(R), 0 ≤ m ≤ ∞, 1 ≤ p ≤ ∞, denotes the
usual Sobolev space with norm ‖ · ‖Wm,p , Hm and Lp stand for Wm,2 resp. W 0,p.

2. Local existence

In the following, we shall assume that for θ > 0

a(θ) > 0, a′(θ) ≥ 0,
1

2

(
Z(θ)

θ

)′
≥ 0 (2.1)

The assumption a′(θ) ≥ 0 implies eθ ≥ Cv > 0, which make the system (1.1)-(1.3) uniformly
hyperbolic without small condition. The third inequality in (2.1) will give the L2 estimates of
q from Lemma 3.2 below, which will be used in the blow-up result. Note also that by choosing

Z(θ) = τ1(θ)
κ(θ) = kθα with k be any constant and 1 ≤ α < 2, the assumption (2.1) holds.

Now, we transform the equations (1.1)-(1.3) into a first-order symmetric hyperbolic system.
First, we rewrite the equation (1.1)3 for θ as

ρeθθt +

(
ρueθ −

2a(θ)

Z(θ)
q

)
θx +Rρθux + qx =

2a(θ)

τ1(θ)
q2 +

1

µ
S2. (2.2)

Then, we have

A0(U)Ut +A1(U)Ux +B(U)U = F (U), (2.3)

where U = (ρ, u, θ, q, S) and

A0(U) = diag{Rθ
ρ
, ρ,

ρeθ
θ
,
τ1(θ)ρ

κ(θ)
,
τ2ρ

µ
},

A1(U) =



Rθ
ρ u Rθ 0 0 0

Rθ ρu Rρ 0 −1

0 Rρ
(
ρueθ
θ −

2a(θ)
θZ(θ)q

)
1
θ 0

0 0 1
θ

τ1(θ)
κ(θ) ρu 0

0 −1 0 0 τ2
µ ρu

 ,

B(U) = diag{0, 0, 0, 1

κθ
,

1

µ
}, F (U) = diag{0, 0,− 2a(θ)

τ1(θ)θ
q2 − S2

µθ
, 0, 0}.

Therefore, the local existence follows immediately, see [14, 21, 13].

Theorem 2.1. Let s ≥ 2. Suppose that

(ρ0 − 1, u0, θ0 − 1, q0, S0) ∈ Hs(R)
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with minx(ρ0(x), θ0(x)) > 0, there exists a unique local solution (ρ, u, θ, q, S) to (1.1)-(1.6) in some
time interval [0, T ] with

(ρ− 1, u, θ − 1, q, S) ∈ C0([0, T ], Hs(R)) ∩ C1([0, T ], Hs−1(R)), (2.4)

min
x

(ρ(t, x), θ(t, x)) > 0, ∀t > 0. (2.5)

3. Entropy equation and global existence

In this part, we first derive an entropy equation for system (1.1)-(1.3). Defining the entropy

η := Cv ln θ −R ln ρ−
(
Z(θ)

2θ

)′
q2. (3.1)

Similar to [12], we have for a local solution

Lemma 3.1. The entropy η defined above satisfies

(ρη)t +
(
ρuη +

q

θ

)
x

=
q2

κ(θ)θ2
+
S2

µθ
. (3.2)

Proof. From the energy equation (1.3), we easily get the equation for e as follows:

ρet + ρuex + pux + qx =
1

µ
S2. (3.3)

Dividing the above equation by θ and using formula (1.5), one has

ρ

θ
(Cvθ + a(θ)q2)t +

ρu

θ
(Cvθ + a(θ)q2)x +Rρux +

qx
θ

=
1

µθ
S2.

Now, we calculate the following term
ρ

θ
(a(θ)q2)t +

ρu

θ
(a(θ)q2)x

= ρ

(
a(θ)

θ
q2
)
t

+ ρ
a(θ)

θ2
q2θt + ρu

(
a(θ)

θ2
q2
)
x

+ ρu
a(θ)

θ
q2θx

= ρ

(
a(θ)

θ
q2
)
t

− ρ
(
Z(θ)

2θ2
q2
)
t

+ ρ
Z(θ)

θ2
qqt + ρu

(
a(θ)

θ
q2
)
x

− ρu
(
Z(θ)

2θ2
q2
)
x

+ ρu
Z(θ)

θ2
qqx

= ρ

((
a(θ)

θ
− Z(θ)

2θ2

)
q2
)
t

+ ρu

((
a(θ)

θ
− Z(θ)

2θ2

)
q2
)
x

− 1

κ(θ)θ2
q2 − θx

θ2
q

where we have used the identity (Z(θ)
2θ2 )t = −a(θ)θ2 θt. On the other hand, using the mass equation

(1.1)1, we have

Rρux = −Rρ((ln ρ)t + u(ln ρ)x)

Combining the above estimates and noting that

a(θ)

θ
− Z(θ)

2θ2
= −

(
Z(θ)

2θ

)′
,

we get the desired result. �

Remark 3.1. Once we use the constitutive relation (1.2), there are three unknown thermodynamic
variable (for example, the density, temperature and heat flux) rather than two in the classical
system. Thus, with the entropy defined in (3.1), we can get an extended Gibbs relation used in
extended irreversible thermodynamics (see [19, 17]) as

θdη = de+ pdv − Z(θ)

θ
qdq, (3.4)
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where v = 1
ρ and η is the physical entropy. When τ1(θ) = 0, the equation (3.4) reduces to the

classical Gibbs relation.

The entropy equation implies the following lower energy estimates:

Lemma 3.2. Let (ρ, u, θ, q, S) be local solutions to (1.1)-(1.6), then we have∫
R

[
Cvρ(θ − ln θ − 1) +R(ρ ln ρ− ρ+ 1) + ρa(θ)q2 +

τ2
2µ
S2 +

1

2
ρu2
]

dx

+

∫ t

0

∫
R

(
q2

κ(θ)θ2
+
S2

µθ

)
dxdt = I0, (3.5)

where

I0 :=

∫
R

(
Cvρ0(θ0 − ln θ0 − 1) +R(ρ0 ln ρ0 − ρ0 + 1) + ρ0a(θ0)q20 +

τ2
µ
S2
0 +

1

2
ρ0u

2
0

)
dx.

Moreover, for |ρ− 1| ≤ 1
2 , |θ − 1| ≤ 1

2 , we have∫
R
((θ − 1)2 + (ρ− 1)2 + q2 + S2 + u2)dx+

∫ t

0

∫
R
(q2 + S2)dxdt ≤ CI0. (3.6)

Proof. Combing the entropy equation (3.2), the momentum equation (1.1)2 and the energy equa-
tion (1.1)3, we have[

Cvρ(θ − ln θ − 1) +R(ρ ln ρ− ρ+ 1) + ρ

(
a(θ) +

1

2

(
Z(θ)

θ

)′)
q2 +

τ2
2µ
ρS2 +

1

2
ρu2

]
t

+

[
Cvρu(θ − ln θ − 1) +Rρu ln ρ−Rρu+ ρu

(
a(θ) +

1

2

(
Z(θ)

θ

)′)
q2 +

τ2
2µ
ρuS2 +

1

2
ρu3 + pu+ q − Su− q

θ

]
x

+
q2

κ(θ)θ2
+
S2

µθ
= 0.

Then, using assumption (2.1), we get (3.5) immediately. Moreover, using Taylor expansions, we get

θ − ln θ − 1 =
1

2ξ2
(θ − 1)2, (3.7)

ρ ln ρ− ρ+ 1 =
1

2η
(ρ− 1)2, (3.8)

where ξ ∈ (1, θ), η ∈ (1, ρ). Therefore, by assuming |ρ − 1| ≤ 1
2
, |θ − 1| ≤ 1

2
, we get the L2 estimates

(3.6). �

We give a remark on global existence for small data.

Remark 3.2. Since the system is symmetric hyperbolic, zero-order estimates (from the entropy
equation) together with Kawashima’s dissipation structure (from our linear analysis in [12]: The
linearized system are the same) would imply the global existence of strong solutions for small initial
data which we do not state in detail.

4. Blow-up for large data

Here we now show that there exist large initial data (ρ0, u0, θ0, q0, S0) such that the local solution
(ρ, u, θ, q, S)(t, x) must blow up in finite time.

Since the system is symmetric hyperbolic, the local solutions of (1.1)-(1.3) possess the finite
propagation speed property:
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Proposition 4.1. Let (ρ0, u0, θ0, q0, S0) be given as in Theorem 2.1 and (ρ, u, θ, q, S) be local
solutions to (1.1)-(1.6) on [0, T0). Let M > 0. We further assume the initial data (ρ0 − 1, u0, θ0 −
1, q0, S0) are compactly supported in (−M,M). Then, there exists a constant σ such that

(ρ(·, t), u(·, t), θ(·, t), q(·, t), S(·, t) = (1, 0, 1, 0, 0) := (ρ̄, ū, θ̄, q̄, S̄)

on D(t) = {x ∈ R
∣∣|x| ≥M + σt}, 0 ≤ t < T0.

Now, we define some averaged quantities as follows:

F (t) :=

∫
ρu · xdx− τ2

∫
ρSdx, (4.1)

G(t) :=

∫
R

(E(x, t)− Ē)dx, (4.2)

where

E =
1

2
ρu2 +

τ2
2µ
ρS2 + ρe(θ, q)

is the total energy and

Ē := ρ̄(ē+
1

2
ū2) = Cv.

The functional F with the second term involving S is different from those used in [20, 12].
We mention that the functional defined above exists since the solution (ρ − 1, u, θ − 1, q, S) is

zero on the set D(t) defined in Proposition 4.1.
Now, we are ready to show our main result.

Theorem 4.2. We assume that the initial data satisfy the assumption in Theorem 2.1 and Propo-
sition 4.1 . Moreover, we assume that assumption (2.1) holds and

G(0) > 0. (4.3)

Then, there exists (ρ0, u0, θ0, q0, S0) satisfying

F (0) >
32σmax ρ0

3− γ
M2 (4.4)

and

4

(
(3− γ)µτ2

M2
+ γ − 1

)
(H0 +

max ρ0
2
‖u0‖2L2) ≤ 128σ2 max ρ0M

3− γ
, (4.5)

where H0 is defined in (4.7), such that the length T0 of the maximal interval of existence of a
smooth solution (ρ, u, θ, q, S) of (1.1)-(1.6) is finite, provided the compact support of the initial
data is sufficiently large and γ := 1 + R

Cv
is sufficiently close to 1.

Proof. From equations (1.1)2 and (1.1)3, we can get the equation for E:

Et + (uE + up− uS + q)x = 0,

which implies that G is a constant and

G(t) = G(0) > 0. (4.6)
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In the following,
∫

denotes
∫
R for simplicity. Using the momentum equation (1.1)2, the constitutive

equation (1.3), Lemma 3.2 and (2.1), we can derive

F ′(t) =

∫
(ρu)t · xdx− τ2

∫
(ρS)tdx

=

∫
(−ρu2 − p+ S)x · xdx+

∫
Sdx

=

∫
ρu2 +

∫
(p− p̄)dx

=

∫
ρu2dx+

∫
(Rρθ −Rρ̄θ̄)dx

=

∫
ρu2dx+

∫ (
R

Cv
(ρe− ρ̄ē)− R

Cv
a(θ)ρq2 − R

Cv

τ2
2µ
ρS2

)
dx

=

∫
ρu2dx+ (γ − 1)

∫
(E − Ē)dx− (γ − 1)

∫
1

2
ρu2dx− (γ − 1)

∫ (
a(θ)ρq2 +

τ2
2µ
ρS2

)
dx

≥ 3− γ
2

∫
ρu2dx− (γ − 1)

∫ (
a(θ)ρq2 +

τ2
2µ
ρS2

)
dx

≥ 3− γ
2

∫
ρu2dx− (γ − 1)(H0 +

max ρ0
2
‖u0‖2L2)

where γ = R
Cv

+ 1 and

H0 :=

∫
Cvρ0(θ0 − ln θ0 − 1) +R(ρ0 ln ρ0 − ρ0 + 1) + ρ0

(
a(θ0) +

1

2

(
Z(θ0)

θ0

)′)
q20 +

τ2
2µ
S2
0dx.

(4.7)

On the other hand,

F 2(t) ≤ 2

(∫
ρu · xdx

)2

+ 2τ22

(∫
ρSdx

)2

≤ 4 max ρ0(M + σt)3
∫
ρu2dx+ 2τ22

∫
ρS2dx

∫
ρdx

≤ 4 max ρ0(M + σt)3
∫
ρu2dx+ 4µτ2(H0 +

max ρ0
2
‖u0‖2L2) max ρ0 · 2(M + σt)

which implies ∫
ρu2dx ≥ F (t)2

4 max ρ0(M + σt)3
−

2µτ2(H0 + max ρ0
2 ‖u0‖2L2)

(M + σt)2
.

Combining the above results, we derive

F ′(t) ≥ 3− γ
8 max ρ0(M + σt)3

F 2(t)−
(

(3− γ)µτ2
(M + σt)2

+ γ − 1

)
(H0 +

max ρ0
2
‖u0‖2L2) (4.8)

≡ c3
(1 + c2t)3

F (t)2 −K(t)

where c2 := σ
M , c3 := 3−γ

8max ρ0M3 . With this Riccati inequality, we can show the blow-up result.

Indeed, assuming a priori that

2K(t) ≤ c3
(1 + c2t)3

F 2(t), (4.9)
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then we have

F ′(t) ≥ c3
2(1 + c2t)3

F 2(t),

which gives

1

F0
≥ 1

F0
− 1

F (t)
≥ c3

4c2
− c3

4c2(1 + c2t)2
(4.10)

for which the maximal existence time T can not be infinity provided

F0 >
4c2
c3

=
32σmax ρ0M

2

3− γ
. (4.11)

Here F0 = F (0). Moreover, we have

1

F (t)
≤ 1

F0
− c3

4c2
+

c3
4c2(1 + c2t)2

, (4.12)

which implies that

F (t) ≥ 4c2(1 + c2t)
2

c3
. (4.13)

To show that the a priori estimate (4.9) holds, we use the bootstrap method expressed in the
following simple lemma.

Lemma 4.3. Let f ∈ C0 ([0,∞), [0,∞)) and 0 < a < b such that the following holds for any
0 ≤ α < β <∞:

f(0) < a and (∀ t ∈ [α, β] : f(t) ≤ b =⇒ ∀ t ∈ [α, β] : f(t) ≤ a.) .

Then we have

∀t ≥ 0 : f(t) ≤ a.

That is, under the a priori assumption (4.9), we need to show that

4K(t) ≤ c3
(1 + c2t)3

F 2(t). (4.14)

We need the above equality holds in particular for t = 0, that is,

4

(
(3− γ)µτ2

M2
+ γ − 1

)
(H0 +

max ρ0
2
‖u0‖2L2) ≤ c3F 2

0 . (4.15)

Next, using (4.13), one only need to show

4K(t)
(1 + c2t)

2

c3
≤ 16c22

c23
(1 + c2t)

4 (4.16)

which is sufficient to show

4

(
(3− γ)µτ2

M2
+ γ − 1

)
(H0 +

max ρ0
2
‖u0‖2L2) ≤ 16c22

c3
(4.17)
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Note that (4.11) and (4.17) imply (4.15), we need to find some u0 such that the assumptions (4.11)
and (4.17) hold. As in [10], we choose u0 ∈ H2(R) ∩ C1(R) as follows:

u0(x) :=



0, x ∈ (−∞,−M ],
L
2 cos(π(x+M))− L

2 x ∈ (−M,−M + 1],

−L, x ∈ (−M + 1,−1],

L cos(π2 (x− 1)), x ∈ (−1, 1],

L, x ∈ (1,M − 1],
L
2 cos(π(x−M + 1)) + L

2 x ∈ (M − 1,M ],

0, x ∈ (M,∞),

(4.18)

where L is a positive constant to be determined later. We assume M ≥ 4. Assumption (4.3) can
easily be satisfied since it is equivalent to requiring∫

R

(
ρ0e0 − ρ̄ē+

1

2
u20

)
dx > 0,

which is satisfied by choosing ρ0θ0 > ρ̄θ̄ = 1. Since∫
R
(xρ0(x)u0(x))dx ≥ L

2
min ρ0M

2

and ∣∣∣∣τ2 ∫ ρ0S0dx

∣∣∣∣ ≤ ∫ M

−M
ρ0dx+ τ2

∫
ρ0S

2
0dx ≤ max ρ0(1 + µH2

0 )M2.

We choose L large enough, and independent of M , such that

L

4
minρ0 > max{max ρ0(1 + µH2

0 ),
32σmax ρ0

3− γ
}

Therefore, (4.11) hold. Now, after having chosen σ large enough, fix L. Then we choose M
sufficiently large and γ − 1 sufficiently small such that (4.17) holds. �
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