
A transmission problem for wave equations in infinite

waveguides

Reinhard Racke, * Shuji Yoshikawa, �

Abstract

We prove a decay estimate for solutions to a transmission problem for wave

equations with different propagation speeds in an infinite waveguide. The problem

represents the wave propagation in unbounded and layered composite materials in

which different properties are given. It is a new composition of a waveguide problem

and a transmission problem, motivated by a unit cell model for CFRP. The proof is

based on splitting variables, partial eigenfunction expansions in the bounded cross

section, and on an explicit Weyl type estimate for the eigenvalues.
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1 Introduction

In this article, we study the decay of solutions for a transmission problem of wave equations

in a two-dimensional infinite waveguide, being an unbounded strip-shaped domain. Set

B1 := (0, L0) and B2 := (L0, L) for 0 < L0 < L, and denote R×B1, R×B2 and R×{L0}
by Ω1, Ω2 and Γ, respectively (see Figure 1 (a)). Let ∆α := ∂2

x+α∂2
y , for α > 0 (∂z :=

∂
∂z
,

z = t, x, y). The unknown function ui = ui(t, x, y) is a real-valued function in [0,∞)×Ωi

for i = 1, 2. We consider two wave equations with different propagation speeds:

∂2
t u1 = ∆α1u1 in (0,∞)× Ω1, (1.1)

∂2
t u2 = ∆α2u2 in (0,∞)× Ω2, (1.2)
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where α1, α2 are given positive constants, with transmission conditions on the interface

Γ given by

u1(t, x, L0) = u2(t, x, L0), α1∂yu1(t, x, L0) = α2∂yu2(t, x, L0) on (0,∞)× R, (1.3)

Dirichlet boundary conditions at the lower and upper end,

u1(t, x, 0) = u2(t, x, L) = 0 on (0,∞)× R, (1.4)

and initial conditions{
u1(0, x, y) := u1,0(x, y)

∂tu1(0, x, y) := v1,0(x, y)
in Ω1,

{
u2(0, x, y) := u2,0(x, y)

∂tu2(0, x, y) := v2,0(x, y)
in Ω2. (1.5)

The problem corresponds to a toy model for a composite material problem addressing

carbon fiber-reinforced plastics (CFRP). We aim at giving a first mathematical analysis

of a derived transmission problem in an infinite wave-guide. A CRFP is usually layered

on multiple sheets with different angles to strengthen from each direction such as Figure

1 (b). Although there is an enormous number of mathematical models for CFRP from

various aspects (see e.g. [1]), we here focus on the unit cell model which samples one

element in periodic materials (see Figure 1 (c)), and we study the dynamical property for

one sheet of the CFRP as indicated in Figure 1 (d).

0

L0

L

y

Ω2 = R× B2

Ω1 = R× B1 xx

Σ = R× {L0}

Figure 1: Waveguide domain

where α1, α2 are given positive constants, with transmission conditions on the interface

Γ given by

u1(t, x, L0) = u2(t, x, L0), α1∂yu1(t, x, L0) = α2∂yu2(t, x, L0) on (0,∞)× R, (1.3)

Dirichlet boundary conditions at the lower and upper end,

u1(t, x, 0) = u2(t, x, L) = 0 on (0,∞)× R, (1.4)

and initial conditions{
u1(0, x, y) := u1,0(x, y)

∂tu1(0, x, y) := v1,0(x, y)
in Ω1,

{
u2(0, x, y) := u2,0(x, y)

∂tu2(0, x, y) := v2,0(x, y)
in Ω2. (1.5)

The problem corresponds to a toy model for a composite material problem from me-

chanics addressing carbon fiber-reinforced plastics (CFRP). We aim at giving a first mathe-

matical analysis of a derived transmission problem in an infinite wave guide. A real CRFP

is usually layered on multiple sheets with different angles to strengthen from each direc-

tion such as Figure 2 (a). Although there is an enormous number of mathematical models

for CFRP from various aspects (see e.g. [1], [3], [4], [10], [12] and [13] etc.), we here focus

on the unit cell model which samples one element in periodic materials (see Figure 2 (b)),

and we study the dynamical property for one sheet of the CFRP as indicated in Figure 2

(c).
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Figure 2: standard product of CFRP, unit cell model and our model
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Figure 1: waveguide domain, standard product of CFRP, unit cell model and our model

Among the many existing results on mere transmission problems and the fewer existing

ones in infinite waveguides, we only mention some related to ours. It is well known that

the energy norm of a solution for a (single) viscoelastic material decays exponentially

in a bounded domain. However, when we consider the composite material which is a

viscoelastic material sandwiched by elastic materials, it is shown in [6] that the energy

norm of a solution only decays polynomially. This kind of problem is studied for other

various materials and settings. We refer to e.g. [8] and the references therein for the

recent development.

Infinite waveguides are domains which are bounded in some directions but are un-

bounded in other directions. The simplest example of a waveguide is a strip with infinite
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length. There are several results for the initial boundary value problems in an infinite

waveguide for different partial differential equations (e.g [3] and [7] ). The decay estimates

for the wave equation and the elastic equation in a waveguide domain are investigated in

[4] and [5], see also the monograph [10].

As far as the authors know, there are no results on the composite material (trans-

mission) problem in an infinite waveguide, which is the motivation for the present work

which should be a starting point to investigatethe stability for more complex models in

bounded domains.

Our main results on the asymptotic distribution of eigenvalues in the cross section

and on the asymptotic behavior as time tends to infinity will be given in Section 3 resp.

4. The latter, roughly speaking, describes the time decay of solutions as follows:

∥u1(t)∥L∞(Ω1) + ∥u2(t)∥L∞(Ω2) ≤
C

t1/2
, t ≥ 0, (1.6)

where C depends only on the initial value under appropriate assumptions on the data. It

should be also noted that C depends on characteristic properties of material parameters

involved via the eigenvalues λj of the associated time independent operator, see Sections

2 and 4 below. This dependence is also expected for future models in bounded domains.

Summarizing we present a) the first discussion of a combined transmission – infinite

waveguide problem, b) explicit estimates for eigenvalues, and c) a first discussion of sta-

bility (time asymptotics) for CFRP, intended to trigger further research on the stability

for bounded, more complex situations.

2 Setting and Preliminaries

Let E(t) :=
∑2

j=1
1
2

∫∫
Ωj

(|∂tuj|2 + |∂xuj|2 + αj|∂yuj|2) dxdy be the associated energy term.

We have energy conservation: dE/dt = 0. Writing B := (0, L) and Ω := R×B, we gather
together u1 in (0,∞) × Ω1 and u2 in (0,∞) × Ω2 into a single function u in (0,∞) × Ω,

and define, yet formally, the operator A by

u =

{
u1 in (0,∞)× Ω1,

u2 in (0,∞)× Ω2.
A :=

{
−∆α1 in Ω1,

−∆α2 in Ω2.

Then, the problem (1.1)–(1.3) is reformulated as the single wave type equation ∂2
t u+Au =

0. More precisely, we define the operator A : L2(Ω) → L2(Ω) by

D(A) :=
{
u ∈ H1

0 (Ω) | ∃ g = gu ∈ L2(Ω) | ∀ φ ∈ H1
0 (Ω) : B(u, φ) = ⟨g, φ⟩L2(Ω)

}
,

Au := gu, where for u, v ∈ H1
0 (Ω),

B(u, v) := ⟨∂xu, ∂xv⟩L2(Ω1) + α1⟨∂yu, ∂yv⟩L2(Ω1) + ⟨∂xu, ∂xv⟩L2(Ω2) + α2⟨∂yu, ∂yv⟩L2(Ω2).
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This domain assures the transmission conditions (1.3) and the boundary conditions (1.4)

in the usual weak sense.

Remark 2.1. Since u ∈ H2(Ωj), for j = 1, 2 by the regularity theorem [9, Theorem 6.5.2],

and by the first transmission condition we conclude u ∈ C0(Ω).

The operator A is self-adjoint and positive by the Lax-Milgram theorem, observing

B(u, u) ≥ min{1, α1, α2}∥∇u∥L2(Ω).

Let us split the operator A into the operators Ax and Ay, where

Ax : D(Ax) := H2(R) ⊂ L2(R) → L2(R), Axu := −∂2
xu,

Ay : D(Ay) ⊂ L2(B) → L2(B), (yet formally) Ayu =

{
−α1∂

2
yu in B1,

−α2∂
2
yu in B2,

and

with By(u, v) := α1⟨∂yu, ∂yv⟩L2(B1) + α2⟨∂yu, ∂yv⟩L2(B2), u, v ∈ H1
0 (B),

D(Ay) :=
{
u ∈ H1

0 (B) | ∃ g = gu ∈ L2(B) : ∀φ ∈ H1
0 (B), By(u, φ) = ⟨g, φ⟩L2(B)

}
,

Ayu := gu. The operator Ay is self-adjoint, positive with a compact inverse A−1
y , the latter

by Rellich’s selection theorem. As a consequence, there exists a complete orthonormal

system {ϕm}m ∈ L2(B) of eigenfunctions of Ay with corresponding eigenvalues {λm}m
satisfying Ayϕm = λmϕm and 0 < λ1 ≤ λ2 ≤ · · · ≤ λm → ∞ as m → ∞.

We also need the decay estimate for solutions to the Klein-Gordon equation from [10,

Lemma 13.2].

Lemma 2.2. Let M ≥ M0 > 0, u0 ∈ W 2,1(R), v0 ∈ W 1,1(R). Then the unique solution

v to {
∂2
t u− ∂2

xu+Mu = 0 in [0,∞)× R,
u(0, ·) = u0, ∂tu(0, ·) = v0 in R,

satisfies, for t ≥ 1√
M
, with a constant c > 0 depending on M0,

∥u(t)∥L∞(R) ≤
c

t1/2
(
M1/4∥u0∥W 2,1(R) +M−1/4∥v0∥W 1,1(R)

)
.

3 The Distribution of the Eigenvalues

The estimate for the distribution of the eigenvalues {λm}m of Ay is of interest in itself, but

will also play an essential role in the proof of the theorem on the decay of solutions to be

presented in Section 4. The following estimate can be found in [2, (1.28)] for more general

classical elliptic boundary value problems in any space dimension. Since the proof of the

estimate for transmission problems there consists only in the remark that all the results

in five chapters before remain true almost without alterations, we prefer to give a separate

proof here, finally obtaining more inside into relations between system parameters.
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Theorem 3.1. The eigenvalues {λm}m of Ay satisfy λm ≥ cm2 (m ∈ N), where c > 0 is

independent of m (but depends on B).

Proof. The eigenvalue problem Ayϕ=λϕ is equivalent to the ODE transmission problem

for ϕ̃j := ϕ in Bj, j = 1, 2,{
−α1ϕ̃

′′
1 = λϕ̃1, y ∈ (0, L0),

ϕ̃1(0) = 0,

{
−α2ϕ̃

′′
2 = λϕ̃2, y ∈ (L0, L),

ϕ̃2(L) = 0,
(3.1)

with transmission conditions ϕ̃1(L0) = ϕ̃2(L0) and α1ϕ̃
′
1(L0) = α2ϕ̃

′
2(L0). With κ1 :=√

λ/α1 and κ2 :=
√

λ/α2, and observing the boundary condition, we obtain ϕ̃1(y) =

C1 sin(κ1y), ϕ̃2(y) = C2 sin(κ2(y−L)). Substituting them into the transmission conditions,

we get

C1 sin(κ1L0) = C2 sin(κ2(L0 − L)), α1κ1C1 cos(κ1L0) = α2C2 cos(κ2(L0 − L)),

implying α1κ1
cos(κ1L0)
sin(κ1L0)

= −α2κ2
cos(κ2(L−L0))
sin(κ2(L−L0))

, which is equivalent to

f(ξ) := sin ξ +B sin(b ξ) = 0, ξ > 0, (3.2)

where ξ :=
(

L0√
α1

+ L−L0√
α2

)√
λ, B :=

√
α1−

√
α2√

α1+
√
α2

and b := (L−L0√
α2

− L0√
α1
)/( L0√

α1
+ L−L0√

α2
).

In the case α1 = α2, these are the well-known eigenvalues for the Dirichlet boundary

value problem without interface, λ = λk = α1π2

L2 k2, k ∈ N. Thus, let us consider

the case α1 ̸= α2 corresponding to the presence of a real interface. We remark that

|b|, |B| < 1 and B ̸= 0 since α1 ̸= α2. Let Ik =
[
−π

2
+ 2πk, π

2
+ 2πk

]
for k ∈ N. Since

f
(
−π

2
+ 2πk

)
< 0 < f

(
π
2
+ 2πk

)
, there exists at least one solution ξk for the equation

(3.2) in Ik. This ξk satisfies ξk ∼ k namely c−1k ≤ ξk ≤ ck for some c > 0.

Denote sin ξ and −B sin(b ξ) by f1(ξ) and f2(ξ), respectively. Investigating the zeros

of f is equivalent to investigating the intersections of f1 and f2. The intersection is at

most two in each Ik, namely, there is at most one other intersection without ξk in Ik. Let

us give a more detailed explanation. There are three cases: (i) f2 is monotone decreasing

in Ik, (ii) f2 is monotone increasing in Ik, (iii) f2 has an extremum in Ik.

Case (i): (f−1
1 )′ = 1√

1−η2
> 0 and (f−1

2 )′ < 0 in [f2(
π
2
+ 2πk), f2(−π

2
+ 2πk)] ⊂ [−1, 1],

because f−1
1 (η) = arcsin η + 2πk and f2 is monotone decreasing. Therefore, it holds that

(f−1
1 )′(η) > (f−1

2 )′(η) for every η. The following elementary Lemma 3.2 implies that there

is no other intersection than f(ξk) of f
−1
1 and f−1

2 :

Lemma 3.2. Let g1, g2 ∈ C1([a, b]). If g′1(x) > g′2(x) for every x ∈ [a, b] and there is an

intersection c ∈ [a, b] such that g1(c) = g2(c), then there is no other intersection of g1 and

g2 in [a, b].
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Case (ii): f−1
2 (η) is expressed as 1

|b| arcsin
(

η
|B|

)
+ c by some constant c. Then, we see that

(f−1
1 )′(η) = 1√

1−η2
< 1

|b|
√

B2−η2
= (f−1

2 )′(η) for every η ∈ [f2(−π
2
+ 2πk), f2(

π
2
+ 2πk)],

thanks to |b| < 1 and |B| < 1.

Case (iii): The extremum is only one in Ik because of the period of f2 is larger than the one

of f1. Let us denote by ξ̃k the value ξ of the extremum (that is, ξ̃k is the point satisfying

f ′
2(ξ̃k) = 0 in Ik. Split the interval Ik into Ik,l := [−π

2
+2πk, ξ̃k] and Ik,r := [ξ̃k,

π
2
+2πk].

Then f2 is monotone in the each subintervals. Therefore, from the same argument as

above, there are at most two intersections in Ik for k ∈ N. Applying the same argument

to the problem in Îk :=
[
π
2
+ 2π(k − 1),−π

2
+ 2πk

]
, we obtain the unique existence of a

solution to f(ξ) = 0 in Îk. Lastly, it is easily seen that there is no solution in (0, π
2
]. This

completes the proof of Theorem 3.1.

4 The Decay Estimate

As in the classical situation for an infinite waveguide without interface situation, see [10],

we will make the ansatz of an eigenfunction expansions in the bounded cross section.

Modifications are necessary due to the additional difficulties coming up through the lack

of regularity of the solution along the interface.

We expand the solution u = u(t, x, y) as u(t, x, y) =
∑∞

j=1 wj(t, x)ϕj(y) with wj(t, x) =

⟨u(t, x, ·), ϕj⟩L2(B). Substituting this into the equation for u, observing A = Ax+Ay, yields

0 = ∂2
t u+ Au =

∞∑
j=1

(
∂2
twj + Axwj + λjwj

)
(t, x) · ϕj(y),

thus wj satifies{
∂2
twj − ∂2

xwj + λjwj = 0, (t, x) ∈ (0,∞)× R,
wj(0, x) = ⟨u0(x, ·), ϕj⟩L2(B), ∂twj(0, x) = ⟨v0(x, ·), ϕj⟩L2(B), x ∈ R,

for j = 1, 2, . . .. Observe that ⟨u, ϕj⟩L2(B) =
1

λ
K/2
j

⟨(Ay)
K
2 u, ϕj⟩L2(B) for any K. It follows

from Sobolev imbedding that

|u(t, x, y)|2 ≤ c∥u(t, x, ·)∥2H1(B) ≤ c∥Ayu(t, x, ·)∥2L2(B) = c

∞∑
j1

λ2
j |wj(t, x)|2,

where the penultimate inequality arises from the regularity result for the transmission

problem, see [9, Theorems 6.5.1 and 6.5.2]. By Lemma 2.2, the quantity
∑∞

j1
λ2
j |wj(t, x)|2

is estimated by

c

t

∞∑
j=1

1

λ
K−5/2
j

(
∥⟨AK/2

y u0, ϕj⟩L2(B)∥2W 2,1(R) + ∥⟨A(K−1)/2
y v0, ϕj⟩L2(B)∥2W 1,1(R)

)
,
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where K ∈ N will be chosen appropriately below. Dividing B into B1 and B2, we have

|⟨AK/2
y u0(x, ·), ϕj⟩L2(B)| ≤ ∥AK/2

y u0(x, ·)∥W 1,1(B1)∪W 1,1(B2), thus, ∥⟨A
K/2
y u0, ϕj⟩L2(B)∥W 2,1(R) ≤

c∥AK/2
y u0∥W 2,1(Ω), where the derivates in the y-direction are taken in B1 and B2 sep-

arately, not along the interface. Analogously, we have ∥⟨A(K−1)/2
y v0, ϕj⟩L2(B)∥W 1,1(R) ≤

c∥A(K−1)/2
y v0∥W 2,1(Ω). The series

∑∞
j=1 λ

5/2−K
j is finite if K > 3, because of Theorem 3.1.

Hence, we have proved the following

Theorem 4.1. Let K > 3. Let u0, v0 be such that the norms appearing below are finite.

Then the solution for the initial boundary value and transmission problem (1.1)–(1.5)

satisfies

∥u(t, ·, ·)∥L∞(Ω) ≤
C

t1/2

(
∥A

K
2
y u0∥W 2,1(Ω) + ∥A

K−1
2

y v0∥W 2,1(Ω)

)
,

where C only depends on K.

The constant C naturally depends on the geometry of the domains and the material

parameters α1, α2, as the explicit dependence on the eigenvalues visible in (4.16) shows.

Of course, data u0, v0 ∈ C∞
0 (Ω1 ∪ Ω2) are admissible.
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