
Exact Interior Controllability of Magnetoelastic Plates by Means of

Purely Magnetic Actuation

Buddhika Priyasad * Reinhard Racke �

January 10, 2026

Abstract

We establish exact interior controllability for a two-dimensional magnetoelastic plate system
with control acting solely in the magnetic field equation. The main result shows that exact
controllability of the coupled system is achievable in arbitrarily small time T > 0, despite the
control acting only the magnetic dynamics. This extends the principle of indirect control - previ-
ously demonstrated for thermoelastic systems [6] - to the magnetoelastic regime, revealing that
steering the mechanical plate displacement through magnetic actuation alone is possible. The
analysis employs the operator-theoretic multiplier method adapted to handle vectorial fields with
divergence-free constraints and non-self-adjoint coupling. The approach requires several techni-
cal components: norm equivalences for divergence-free vector fields, analysis of non-self-adjoint
coupling operators, integration by parts identities for rot rot systems, and trace regularity re-
sults. The proof follows three steps: establishing a trace regularity result for the adjoint system,
deriving an energy estimate via the multiplier method, and using a compactness-uniqueness
argument to eliminate lower-order terms. This work provides the first controllability result for
magnetoelastic systems and extends the indirect control framework from thermoelasticity to this
setting. The techniques developed here are applicable to the control-theoretic investigation of
magnetically-coupled elastic systems, with potential applications in smart materials, damping
devices, and electromagnetic actuators.

Keywords: Magnetoelastic plates, exact controllability, multiplier method, indirect control,
operator-theoretic multipliers, divergence-free fields, observability inequality.

1 Introduction

1.1 Statement of the problem.

Let Ω be a bounded domain in R2 with a sufficiently smooth boundary Γ ≡ ∂Ω and let the terminal
time T > 0. In this study, we investigate the problem of exact controllability for a magnetoelastic
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plate system, subject to clamped (1d) boundary conditions, and controlled via interior magnetic
input u.

1.1.1 Controlled magnetoelastic plate with clamped boundary conditions

We consider the following magnetoelastic plate equation with clamped boundary conditions (1d)
subject to a control input u ∈ L2(0, T ;H1(Ω)′):

wtt − γ∆wtt +∆2w − α(rot roth) ·
−→
H = 0 in Q, (1a)

ht + rot roth+ β rot rot(
−→
Hwt) = u in Q, (1b)

div h = 0 in Ω, (1c)

w = 0,
∂w

∂ν
= 0 on Γ, (1d)

h · ν = 0, ν × roth = 0 on Γ, (1e)

w(t = 0) = w0, wt(t = 0) = w1, h(t = 0) = h0 on Ω. (1f)

Here, w denotes the plate displacement, h is the magnetic field, and
−→
H ∈ R2 is a constant

applied magnetic field. The parameter γ ≥ 0 is the Kelvin–Voigt damping coefficient, while α > 0
and β > 0 are the magnetoelastic coupling and magnetic damping coefficients, respectively. The
domain Ω ⊂ R2 has boundary Γ with outward unit normal ν. The space–time cylinder is denoted
by Q = Ω × (0, T ). For simplicity and wlog in the analysis throughout, we set the parameters
α = β = 1.

1.2 Main theorem

Before stating the main result of this paper, we briefly remark the results of well-posedness re-
quired for its formulation. A comprehensive set of results on existence, uniqueness, and regularity
is provided later in Theorem 2.1. In particular, for any u ∈ L2(0, T ;H1(Ω)′) and initial data
[w0, w1,h0] ∈ H2

0(Ω)×H1
0,γ(Ω)×L2

σ,ν(Ω) the theorem ensures the existence of a solution [w,wt,h].
With this preparation, the main theorem of the paper may now be stated as follows.

Theorem 1.1. For all γ ≥ 0, the system (1) is exactly controllable in arbitrary time T > 0. That
means for any T > 0, and data [w0, w1,h0], [w

T
0 , w

T
1 ,h

T
0 ] in the space H2

0(Ω)× H1
0,γ(Ω)× L2

σ,ν(Ω),

there exists a control u ∈ L2(0, T ;H1(Ω)′) such that the corresponding solution [w,wt,h] of (1)
satisfies [w(T ), wt(T ),h(T )] = [wT

0 , w
T
1 ,h

T
0 ].

The exact controllability result holds for both γ > 0 and γ = 0. The methodology employed to
prove Theorem 1.1 is based on the classical approach of establishing the surjectivity of the control-
to-terminal-state map LT (see (18) below for its explicit definition). For this purpose, it suffices to
establish the following observability inequality:∫ T

0
∥rotψ∥2L2(Ω) ≥ CT ∥[ϕ0, ϕ1,ψ0]∥

2
H2

0(Ω)×H1
0,γ(Ω)×L2

σ,ν(Ω) , (2)
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where ψ is the magnetic component of the solution [ϕ, ϕt,ψ] to the following backwards magnetoe-
lastic system, adjoint with respect to (1):

ϕtt − γ∆ϕtt +∆2ϕ+ (rot rotψ) ·
−→
H = 0 in Q, (3a)

−ψt + rot rotψ − rot rot(
−→
Hϕt) = 0 in Q, (3b)

divψ = 0 in Ω, (3c)

ϕ =
∂ϕ

∂ν
= 0, and ψ · ν = ν × rotψ = 0 on Γ, (3d)

ϕ(T ) = ϕ0, ϕt(T ) = ϕ1, ψ(T ) = ψ0 on Ω. (3e)

A multiplier method is employed to derive the observability inequality (2) (see [15] for a com-
prehensive treatment of multiplier techniques in PDE control theory). Specifically, we choose a
multiplier of operator-theoretic type, which is given by A−1

D ψ where AD denotes the Laplacian
with homogeneous Dirichlet boundary conditions. The choice of this multiplier is motivated by
its role in controlling the energy associated with the adjoint system and ensuring the coercivity of
the resulting estimates. Multipliers of this nature have been previously employed in similar PDE
control problems, such as in the thermoelastic setting (see [6]).

1.3 Overview of Existing Literature and Organization of the Paper

The controllability of coupled PDE systems has been a central topic in control theory over the past
several decades. This work contributes to this field by establishing exact interior controllability
for magnetoelastic plate systems, extending classical ideas from thermoelasticity to a new regime
with fundamentally different mathematical structure. We organize this section as follows: we
first discuss the foundational theory of exact controllability and the multiplier method; we then
review the extensive work on thermoelastic plate controllability, paying particular attention to
the technical strategies and principles that motivate our approach; we explain why magnetoelastic
systems present qualitatively new challenges compared to thermoelastic systems; we survey the
existing mathematical theory of magnetoelastic systems; and finally we identify the gap in the
literature that this work addresses.

The structure of the paper is as follows. In Section 1, we state the problem and main result
(Theorem 1.1). In Section 2, we reformulate the magnetoelastic system as an abstract evolution
equation in a Hilbert space, define the control operator, the control-to-terminal-state map, and
establish well-posedness of the semigroup. The proof of Theorem 1.1 reduces to proving an observ-
ability inequality for the adjoint system (inequality (2)). In Section 3, we prove this observability
inequality using the multiplier method, employing an operator-theoretic multiplier adapted to the
vectorial setting. This section is divided into three steps: deriving a trace regularity result (Lemma
3.1), establishing a tainted observability inequality or a preliminary energy estimate (Lemma 3.2),
and removing lower-order error terms using a compactness-uniqueness argument (Proposition 3.3).
The appendix provides technical lemmas on vector calculus, norm equivalences, and specialized
estimates needed for the multiplier argument.
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Foundational Framework. The problem of exact controllability for coupled PDE systems rests
on the framework established by [30], where exact controllability is equivalent to surjectivity of the
control-to-terminal-state map, which in turn reduces to establishing an observability inequality for
the adjoint system. For PDE systems, the multiplier method pioneered by [24] and systematically
developed in [15] provides the most effective technique for deriving observability inequalities by
constructing test functions that couple with adjoint dynamics to isolate the observable quantity.

Thermoelastic Plate Controllability. The exact controllability problem for thermoelastic plate
systems has been extensively investigated. [16] initiated this line of work with boundary control
on the mechanical component, obtaining partial exact controllability when the coupling parameter
α is sufficiently small. [6] achieved the breakthrough result: control acting solely in the thermal
equation suffices for exact controllability of the full thermoelastic system (both displacement and
temperature) for all γ ≥ 0, and remarkably, controllability is achieved in arbitrarily small time.
This counterintuitive result reveals that indirect control through a diffusive component can be as
effective as direct mechanical control. The proof employs an operator-theoretic multiplier A−1

D θ
combined with a compactness-uniqueness argument to eliminate lower-order terms from a prelimi-
nary energy estimate. This strategy has become the standard approach for such coupled systems.
[7, 8] developed complementary exponential stability results using similar multiplier techniques.
[22] extended these results to the analytic case γ = 0, proving exact null controllability.

The methodology for thermoelastic plate controllability was significantly refined through the
foundational work of Lasiecka and Triggiani. [18] established exact controllability and uniform
stabilization of Kirchhoff plates with boundary control only on ∆ω|Σ and homogeneous boundary
displacement, demonstrating that control of the Laplacian provides sufficient leverage. This work
required developing sharp regularity results for mixed Neumann-type hyperbolic systems. [17, 21]
proved sharp regularity for elastic and thermoelastic Kirchhoff equations with free boundary con-
ditions, establishing that these regularity properties are essential technical tools for controllability
analysis. [11, 12] proved simultaneous exact/approximate boundary controllability of thermoelastic
plates with variable thermal coefficients and moment control, showing how regularity and unique
continuation properties interact with controllability under varying parameter regimes. These re-
finements demonstrated the deep connection between sharp regularity results, unique continuation
principles, and exact controllability, see [20].

[10] addressed interior controllability of thermoelastic plates, proving exact controllability of
the displacement and approximate controllability of the temperature when control acts in the plate
domain. Their results demonstrate that the location of control (interior versus boundary) and the
component being controlled (mechanical versus thermal) are independent design parameters that
affect the structure of controllability results. [19] proved exact null controllability of structurally
damped and thermoelastic parabolic models, establishing controllability in the limiting case where
hyperbolic and parabolic dynamics blend.

Technical Strategy and Magnetoelasticity. In order to prove exact controllability at time T ,
one establishes that the control-to-terminal-state map LT is surjective. By duality, this is equiva-
lent to proving an observability inequality for the adjoint system; more precisely, the surjectivity
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of LT is equivalent to the boundedness from below of its adjoint operator L∗
T , see [13, 33]. For

thermoelasticity, one must show that the energy of the adjoint system is controlled by the time-
integral of the thermal gradient. The multiplier method accomplishes this by strategically choosing
test functions and integrating by parts, extracting positive control terms while carefully handling
boundary integrals. The key steps are: integrating by parts to expose the observable quantity;
employing standard inequalities and trace regularity to bound error terms; obtaining a preliminary
estimate containing lower-order norm terms; and using compactness arguments to remove these
error terms, yielding the clean observability inequality needed for controllability. Thermoelastic
systems feature scalar-scalar coupling: the temperature couples to displacement through the ther-
mal conductivity term appearing linearly in the plate equation. The adjoint thermal equation is
a scalar parabolic equation, and multiplication by a scalar multiplier produces boundary integrals
involving standard derivatives and function values on the boundary. The mathematical structure
operates within standard Sobolev spaces with well-understood integration-by-parts properties.

Magnetoelastic systems present qualitatively different mathematical structure. The magnetic
field h is vector-valued and satisfies the divergence-free constraint div h = 0. The coupling involves

“rot rot” (also denoted by “curl curl”) operators: (rot roth) ·
−→
H , where

−→
H is a fixed magnetic

field vector. The well-posedness of magnetoelastic plate equations was established by [29], who
provided the foundational semigroup theory and abstract operator formulations. The long-time
behavior and stability of magnetoelastic systems have been studied extensively. [25] and [26]
proved exponential stability of magneto-thermo-elastic systems and polynomial stability for two-
dimensional magneto-elastic systems. [28] established polynomial stability for three-dimensional
magnetoelastic waves. [34] investigated Mindlin-Timoshenko plates with magnetic interactions,
analyzing the dissipative effect of the magnetic field on coupled mechanical-magnetic dynamics. [27]
established that magnetoelastic plate systems generate analytic semigroups and provided explicit
decay rate estimates showing dependence on the magnetic field configuration.

Recent work on coupled piezoelectric-magnetic systems demonstrates the emerging importance
of magnetic effects in multiphysics coupling. [1, 2, 4] established stability results for piezoelectric
beams with magnetic effects. [3] proved stabilization of magnetizable piezoelectric and elastic
systems, revealing that magnetic coupling alters system dynamics compared to classical elastic
systems.

Despite this rich body of work on thermoelastic controllability and magnetoelastic stability, no
prior work addresses controllability (exact, approximate, or null) of magnetoelastic systems. The
natural question arises: Can one steer a magnetoelastic plate system by acting only on the magnetic
equation? The present work answers this affirmatively, establishing exact interior controllability
of magnetoelastic plates with control in the magnetic field dynamics alone. The key challenge
is that the vectorial and divergence-free nature of the magnetic field introduces mathematical
obstacles fundamentally absent in scalar-scalar thermoelasticity: (1) the magnetic field lives in
the constrained space L2

σ,ν(Ω) rather than standard Sobolev spaces, requiring specialized norm
equivalences (Lemma A.3); (2) the coupling operators are non-self-adjoint (Lemma A.2 establishes
duality, not equality), requiring precise domain analysis (Proposition 2.2); (3) integration by parts
for curl-curl operators produces boundary terms with fundamentally different structure than scalar
operations, necessitating new trace regularity results (Lemma 3.1); and (4) the magnetic boundary
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conditions h ·ν = 0 and ν× roth = 0 couple normal and tangential components in ways that affect
the entire multiplier argument. Our proof adapts Avalos’s operator-theoretic multiplier method to
this vectorial regime, employing tools from vector calculus and rot (curl) operator theory [23, 31]
to overcome these new technical barriers while maintaining the compactness-uniqueness strategy
for eliminating lower-order terms.

2 Abstract formulation of the PDE problem (1)

In this section, we reformulate the control problem (1) and its adjoint system (3) as abstract
evolution equations within an appropriate Hilbert space framework. To develop the correspond-
ing operator models, we first introduce the necessary definitions and notations that will be used
throughout this paper. We have extracted the following definitions and notations from [6, 9, 29]
and modified to our convenience. In particular, we define the state space, the relevant differen-
tial operators, and their domains, ensuring that the problem is embedded in a functional analytic
setting.

(A.1) We introduce the following realization of elliptic operators. First, the elastic operator A with
clamped boundary conditions (1d) is given by,

A : L2(Ω) ⊃ D(A) → L2(Ω), Aw := ∆2w, D(A) := H4(Ω) ∩H2
0(Ω). (4)

In order to define the magnetic operator, we first introduce the spaces

L2
σ(Ω) :=

{
ψ ∈ L2(Ω) : divψ = 0 in Ω

}
, (5)

L2
σ,ν(Ω) :=

{
ψ ∈ L2(Ω) : divψ = 0 in Ω, and ψ · ν = 0 on Γ

}
. (6)

Then the magnetic operator B : L2
σ,ν(Ω) ⊃ D(B) → L2

σ,ν(Ω) is given by

Bh := rot roth, with D(B) :=
{
h ∈ H2(Ω) ∩ L2

σ,ν(Ω) : ν × roth = 0 on Γ
}
. (7)

It is easy to see that D(B) is dense in L2
σ,ν(Ω). In the model equations (1) and (3), we observe

the occurrence of the operator “rot rot” acting on h and ψ respectively, followed by a scalar

product with the fixed vector
−→
H . To emphasize this dot-product with

−→
H , we introduce the

auxiliary operator B−→
H

: L2
σ,ν(Ω) ⊃ D(B−→

H
) → L2(Ω) defined by

B−→
H
h := rot roth ·

−→
H, D(B−→

H
) := D(B) in L2

σ,ν(Ω). (8)

We moreover define another magnetic operator G−→
H

by

G−→
H
(ζ) := rot rot(ζ

−→
H ) with D(G−→

H
) :=

{
ζ ∈ H2

0(Ω) : G−→
H
(ζ) ∈ L2

σ,ν(Ω)
}
. (9)

We remark here that H2
0(Ω) ⊂ D(G−→

H
) and hence D(A1/2) ⊂ D(G−→

H
).

To facilitate the multiplier technique, we introduce the homogeneous Dirichlet Laplacian
which serves as a critical tool in obtaining the required observability inequality (2),

AD w := −∆w with D(AD) := H2(Ω) ∩H1
0(Ω) in L2(Ω). (10)
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(A.2) For γ ≥ 0, we define the operator Pγ by

Pγ := I+γAD, D(Pγ) := D(AD) in L2(Ω) (11)

with “I” being the identity operator on L2(Ω). We define a space

H1
0,γ(Ω) :=

{
H1

0(Ω) if γ > 0,

L2(Ω) if γ = 0
(12a)

with its inner product being defined as(
φ,φ′)

H1
0,γ(Ω)

:= (w, w̃)L2(Ω) + γ (∇w,∇w̃)L2(Ω) , ∀w, w̃ ∈ H1
0(Ω). (12b)

The dual of H1
0,γ(Ω) is denoted by H−1

0,γ(Ω). When γ = 0 we have Pγ = I and set H1
0,0(Ω) =

H−1
0,0(Ω) = L2(Ω). The operator Pγ is clearly H1

0,γ(Ω)-elliptic and by the Lax-Milgram theo-

rem, it is boundedly invertible, i.e. P−1
γ ∈ L(H−1

0,γ(Ω),H
1
0,γ(Ω)).

(A.3) We denote the Hilbert space Hγ to be

Hγ := H2
0(Ω)×H1

0,γ(Ω)× L2
σ,ν(Ω), (13)

with the inner product

〈w0

w1

h0

 ,
ϕ̃0ϕ̃1
ψ̃0

〉
Hγ

:=
(
∆ϕ0,∆ϕ̃0

)
L2(Ω)

+
(
ϕ1, ϕ̃1

)
L2(Ω)

+ γ
(
∇ϕ1,∇ϕ̃1

)
L2(Ω)

+
(
ψ0, ψ̃0

)
L2(Ω)

. (14)

(A.4) We define Aγ : Hγ ⊃ D(Aγ) → Hγ to be

Aγ :=


0 I 0

−P−1
γ A 0 P−1

γ B−→
H

0 −G−→
H

−B

 with

D(Aγ) :=
{
[ϕ0, ϕ1,ψ0] ∈ H2

0(Ω)×H2
0(Ω)×D(B) : Aϕ0 ∈ H−1

0,γ(Ω)
}
.

(15)

Alternatively we can now write (3) for initial data [ϕ0, ϕ1,ψ0] ∈ D(Aγ) as

Pγ ϕtt = −Aϕ− B−→
H
ψ in H−1

0,γ(Ω), (16a)

ψt = −Bψ +G−→
H
ϕt in L2

σ,ν(Ω), (16b)

[ϕ(T ), ϕt(T ),ψ(T )] = [ϕ0, ϕ1,ψ0]. (16c)
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(A.5) We define the control operator B ∈ L(H1(Ω)′,H2
0(Ω)× L2(Ω)×H1(Ω)′) for u ∈ H1(Ω)′ by

Bu :=

00
u

 . (17)

With this definition, we define the input → terminal state map LT : L2(0, T ;H1(Ω)′) → Hγ ,
possibly unbounded, for all u ∈ L2(0, T ;H1(Ω)′) such that

LTu :=

∫ T

0
eAγ(T−t)Bu(t)dt. (18)

This will be made precise later.

(A.6) Throughout the paper, we use the symbol ≲ to denote an inequality up to a positive constant;
that is, A ≲ B means that there exists a constant C > 0 such that A ≤ CB. The constant
C is independent of the quantities under consideration.The L2-inner-products are denoted by
(·, ·), while other inner products are denoted by ⟨·, ·⟩ .

Taking initial data [w0, w1,h0] ∈ Hγ and control u ∈ L2(0, T ;H1(Ω)′), the the system (1) can be
written abstractly

d

dt

w(t)wt(t)
h(t)

 = Aγ

w(t)wt(t)
h(t)

+ Bu(t),

w(0)wt(0)
h(0)

 =

w0

w1

h0

 , (19)

which has an a priori meaning in [D(A∗
γ)]

′ ⊃ Hγ .

We have the following well-posedness result due to Theorems 3.1, Theorem 3.2 of [29].

Theorem 2.1 (Well-posedness). With the parameter γ ≥ 0, Aγ as defined in (15) generates a C0-
semigroup of contractions

{
eAγt

}
t≥0

on the energy space Hγ. Let [w(t), wt(t),h(t)] = eAγt[w0, w1,h0]
denote the solution trajectory.

(i) If initial data [w0, w1,h0] ∈ Hγ, then problem (1) is globally well-posed in energy space Hγ.
The unique weak solution [w,wt,h] belongs to C([0,∞);Hγ).

(ii) if initial data [w0, w1,h0] ∈ D(Aγ), then the solution [w,wt,h] belongs to C([0,∞);Aγ) ∩
C1([0,∞);Hγ).

With these dynamics in hand, the solution [w,wt,h] to (1) may be written explicitly asw(t)wt(t)
h(t)

 = eAγt

w0

w1

h0

+

∫ t

0
eAγ(t−s)Bu(s)ds (20)
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A fortiori, A−1
γ B ∈ L(H1(Ω)′,Hγ), or equivalently

B ∈ L(H1(Ω)′, [D(A∗
γ)]

′). (21)

The input to state map above thus gives that

[w,wt,h] ∈ C([0, T ]; [D(A∗
γ)]

′). (22)

Given the representation (20) for the solution [w,wt,h], establishing the exact controllability
at a given time T > 0 (Theorem 1.1) is equivalent to proving the surjectivity of the operator LT ,
where LT is defined in (18) (see, for instance, [30, 35]). It is important to note that LT is, a priori,
well-defined as follows

LT ∈ L(L2(0, T ;H1(Ω)′), [D(A∗
γ)]

′).

Consequently, the control-to-state operator LT , when viewed as a mapping into the state space Hγ ,
is initially well-posed only as an unbounded operator, closed and densely defined with a specified
domain of definition:

D(LT ) := {u ∈ L2(0, T ;H1(Ω)′) : LTu ∈ Hγ}. (23)

To further analyze its properties, one can compute the adjoint

L∗
T ∈ L(D(A∗

γ),L
2(0, T ;H1(Ω))), (24)

and with the domain of definition:

L∗
T : D(L∗

T ) ⊂ Hγ → L2(0, T ;H1(Ω)), (25)

D(L∗
T ) :=


ϕ0ϕ1
ψ

 ∈ Hγ : L∗
T

ϕ0ϕ1
ψ

 ∈ L2(0, T ;H1(Ω))

 (26)

and takes the classical form (see, for instance, [35]),

L∗
T

ϕ0ϕ1
ψ

 (t) = B∗eA
∗
γ(T−t)

ϕ0ϕ1
ψ

 . (27)

In the analysis, it is necessary to derive the PDE formulation of the adjoint operator L∗
T , as the

desired observability inequality (2) is intrinsically linked to it. To achieve this, one can explicitly
compute the adjoint operator A∗

γ . The following Proposition gives the characterization of A∗
γ .

Proposition 2.2. The adjoint A∗
γ of Aγ is given by

A∗
γ =


0 − I 0

P−1
γ A 0 −P−1

γ B−→
H

0 G−→
H

−B

 where Aγ =


0 I 0

−P−1
γ A 0 P−1

γ B−→
H

0 −G−→
H

−B

 (28)

with D(A∗
γ) = D(Aγ).
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Proof. We define the operator Tγ : Hγ → Hγ as

Tγ :=


0 − I 0

P−1
γ A 0 −P−1

γ B−→
H

0 G−→
H

−B

 , with D(Tγ) = D(Aγ). (29)

Let [ϕ0, ϕ1,ψ0], [ϕ̃0, ϕ̃1, ψ̃0] ∈ D(Aγ). Then we compute

〈
Aγ

ϕ0ϕ1
ψ0

 ,
 ϕ̃0ϕ̃1
ψ̃0

〉
Hγ

=
(
A

1/2ϕ1,A
1/2 ϕ̃0

)
L2(Ω)

+
(
P

1/2
γ

(
−P−1

γ Aϕ0 + P−1
γ B(ψ0) ·

−→
H
)
,P

1/2
γ ϕ̃1

)
L2(Ω)

−
(
G(ϕ1

−→
H ) + Bψ0, ψ̃0

)
L2(Ω)

=
(
ϕ1,Aϕ̃0

)
−
(
P

1/2
γ P−1

γ Aϕ0,P
1/2
γ ϕ̃1

)
+
(
P

1/2
γ P−1

γ B(ψ0) ·
−→
H,P

1/2
γ ϕ̃1

)
−
(
G(ϕ1

−→
H ), ψ̃0

)
−
(
Bψ0, ψ̃0

)
. (30)

Now we apply Lemma A.2 to handle the terms
(
P

1/2
γ P−1

γ B(ψ0) ·
−→
H,P

1/2
γ ϕ̃1

)
,
(
G(ϕ1

−→
H ), ψ̃0

)
and

continue as follows.

(30) =
(
A

1/2ϕ0,−A
1/2 ϕ̃1

)
+
(
P

1/2
γ ϕ1,P

1/2
γ P−1

γ Aϕ̃2
)
+
(
ψ0,G(ϕ̃1

−→
H )
)

−
(
P

1/2
γ ϕ1,P

1/2
γ P−1

γ B(ψ̃0) ·
−→
H
)
−
(
ψ0,B ψ̃0

)
=
(
A

1/2ϕ0,−A
1/2 ϕ̃1

)
+
(
P

1/2
γ ϕ1,P

1/2
γ P−1

γ Aϕ̃2 − P
1/2
γ P−1

γ B(ψ̃0) ·
−→
H
)

+
(
ψ0,G(ϕ̃1

−→
H )− B ψ̃0

)
=

〈ϕ0ϕ1
ψ0

 , Tγ
 ϕ̃0ϕ̃1
ψ̃0

〉
Hγ

. (31)

This shows that
D(Tγ) ⊂ D(A∗

γ) and A∗
γ |D(Tγ) = Tγ . (32)

Next, we determine the inverse A−1
γ of Aγ and then compute the adjoint (A−1

γ )∗. This approach
is employed because A−1

γ is a bounded operator on Hγ , allowing us to calculate (A−1
γ )∗ = (A∗

γ)
−1

without the need to specify domain conditions. Specifically, the adjoint of a bounded linear operator
on the Hilbert space Hγ is itself bounded and defined on the entire space, enabling straightforward
computation via the conjugate transpose of its matrix representation.
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For this purpose we explicitly compute the inverse of Aγ ∈ L(Hγ ;D(Aγ))

A−1
γ =


−A−1B−→

H
B−1G−→

H
−A−1 Pγ −A−1B−→

H
B−1

I 0 0

−B−1G−→
H

0 −B−1

 . (33)

Now we compute its Hilbert space adjoint (A∗
γ)

−1 ∈ L(D(A∗
γ);Hγ) as follows:

〈
A−1

γ

ϕ0ϕ1
ψ0

 ,
 ϕ̃0ϕ̃1
ψ̃0

〉
Hγ

=

〈
−A−1B−→

H
B−1G−→

H
ϕ0 − A−1 Pγ ϕ1 − A−1B−→

H
B−1ψ0

ϕ0

−B−1G−→
H
ϕ0 − B−1ψ0

 ,

 ϕ̃0ϕ̃1
ψ̃0

〉
Hγ

=
(
A

1/2
(
−A−1B−→

H
B−1G−→

H
ϕ0 − A−1 Pγ ϕ1 − A−1B−→

H
B−1ψ0

)
,A

1/2 ϕ̃0

)
+
(
P

1/2
γ ϕ0,P

1/2
γ ϕ̃1

)
−
(
B−1G−→

H
ϕ0 +B−1ψ0, ψ̃0

)
= −

(
B−→

H
B−1G−→

H
ϕ0, ϕ̃0

)
−
(
Pγ ϕ1, ϕ̃0

)
−
(
B−→

H
B−1ψ0, ϕ̃0

)
+
(
P

1/2
γ ϕ0,P

1/2
γ ϕ̃1

)
−
(
B−1G−→

H
ϕ0, ψ̃0

)
−
(
B−1ψ0, ψ̃0

)
. (34)

The term
(
B−→

H
B−1G−→

H
ϕ0, ϕ̃0

)
: To handle this term we successively apply integration by parts as

shown in Lemma A.1. This the following computations, we drop the L2-part from the underlying
spaces L2(Ω),L2(Γ) since the context is clear.(
B−→

H
B−1G−→

H
ϕ0, ϕ̃0

)
Ω
=
(
rot rot

(
B−1G−→

H
ϕ0

)
·
−→
H, ϕ̃0

)
Ω

=
(
rot rot

(
B−1G−→

H
ϕ0

)
,
(
ϕ̃0 ·

−→
H
))

Ω

=
(
rot
(
B−1G−→

H
ϕ0

)
, rot

(
ϕ̃0 ·

−→
H
))

Ω
+
(
ν × rot

(
B−1G−→

H
ϕ0

)
,
(
ϕ̃0 ·

−→
H
))

Γ
.

The boundary term ν × rot
(
B−1G−→

H
ϕ0

)
= 0 since B−1G−→

H
ϕ0 ∈ D(B). Then we again apply

integration by parts to obtain(
B−→

H
B−1G−→

H
ϕ0, ϕ̃0

)
Ω
=
(
B−1G−→

H
ϕ0, rot rot

(
ϕ̃0 ·

−→
H
))

Ω
−
(
B−1G−→

H
ϕ0, ν × rot

(
ϕ̃0 ·

−→
H
))

Γ
.

Again the boundary term rot
(
ϕ̃0 ·

−→
H
)
vanishes as shown in Lemma A.2. Then we have(

B−→
H
B−1G−→

H
ϕ0, ϕ̃0

)
Ω
=
(
B−1G−→

H
ϕ0,G−→

H
ϕ̃0

)
Ω

=
(
G−→

H
ϕ0,B

−1G−→
H
ϕ̃0

)
Ω

(by the boundedness of B−1)

=
(
rot rot

(
ϕ0

−→
H
)
,B−1G−→

H
ϕ̃0

)
Ω

11



=
(
rot
(
ϕ0

−→
H
)
, rot

(
B−1G−→

H
ϕ̃0

))
Ω
+
(
ν × rot

(
ϕ0

−→
H
)
,
(
B−1G−→

H
ϕ̃0

))
Γ

=
((
ϕ0

−→
H
)
, rot rot

(
B−1G−→

H
ϕ̃0

))
Ω
−
(
ϕ0

−→
H, ν × rot

(
B−1G−→

H
ϕ̃0

))
Γ

=
(
ϕ0,B−→

H
B−1G−→

H
ϕ̃0

)
Ω
. (35)

The boundary terms from integration by parts vanish due to the same reasoning as above. Arguing
in a similar manner and using Lemma A.2, we get(

B−→
H
B−1ψ0, ϕ̃0

)
=
(
ψ0,B

−1G−→
H
ϕ̃0

)
and

(
B−1G−→

H
ϕ0, ψ̃0

)
=
(
ϕ0,B−→

H
B−1 ψ̃0

)
. (36)

Then by combining (34), (35) and (36), we obtain

(A∗
γ)

−1 =


−A−1B−→

H
B−1G−→

H
A−1 Pγ −A−1B−→

H
B−1

− I 0 0

−B−1G−→
H

0 −B−1

 . (37)

Thus for [ϕ0, ϕ1,ψ0] ∈ Hγ , we have that

(A∗
γ)

−1

ϕ0ϕ1
ψ0

 =


−A−1B−→

H
B−1G−→

H
A−1 Pγ −A−1B−→

H
B−1

− I 0 0

−B−1G−→
H

0 −B−1


ϕ0ϕ1
ψ0



=


−A−1B−→

H
B−1G−→

H
ϕ0 + A−1 Pγ ϕ1 − A−1B−→

H
B−1ψ0

−ϕ1
−B−1G−→

H
ϕ0 − B−1ψ0

 . (38)

This shows that
D(A∗

γ) ⊂ H2
0(Ω)×H2

0(Ω)×D(B). (39)

Additionally, we have

−A−1B−→
H
B−1G−→

H
ϕ0 + A−1 Pγ ϕ1 − A−1B−→

H
B−1ψ0 ∈ H1

0,γ(Ω). (40)

Combining the inclusions (32), (39), and by the definition of D(Tγ) in (29), we conclude that the
adjoint operator is precisely the one given in (28).

From the explicit characterization of A∗
γ established above, we can now state the following

corollary to the Theorem 2.1.

Corollary 2.3. For the parameter γ ≥ 0, let A∗
γ be the adjoint operator to Aγ as defined in

(28). Then A∗
γ generates a C0-semigroup of contractions {eA∗

γt}t≥0 on the energy space Hγ. Let

[ϕ(t), ϕt(t),ψ(t)] = eA
∗
γ(T−t)[ϕ0, ϕ1,ψ0] denote the adjoint solution trajectory.
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1. If terminal data [ϕ0, ϕ1,ψ0] ∈ Hγ, then the adjoint problem is well-posed in the energy space
Hγ. The unique weak solution [ϕ, ϕt,ψ] satisfies

[ϕ, ϕt,ψ] ∈ C([0, T ];Hγ). (41)

2. If terminal data [ϕ0, ϕ1,ψ0] ∈ D(Aγ), then the solution [ϕ, ϕt,ψ] satisfies

[ϕ, ϕt,ψ] ∈ C([0, T ];D(Aγ)) ∩ C1([0, T ];Hγ). (42)

Now, using the form of the control operator given in (17), one has the adjoint B∗ ∈ L(D(Aγ),H
1(Ω))

taking the form

B∗

ϕ0ϕ1
ψ0

 = ψ0. (43)

With the inequality (27), for of the adjoints in (28) and (43), and the definitions (A.1), (A.2) for
the components of Aγ and A∗

γ , one has then that the solution [ϕ, ϕt,ψ] ∈ C([0, T ];Hγ) to the PDE
system (3) is given by

eA
∗
γ(T−t)

ϕ0ϕ1
ψ0

 =

ϕ(t)ϕt(t)
ψ(t)

 . (44)

Moreover, we have explicitly

L∗
T

ϕ0ϕ1
ψ0

 (t) = B∗eA
∗
γ(T−t)

ϕ0ϕ1
ψ0

 = ψ(t). (45)

With these definitions, to establish the surjectivity of LT , it suffices to show the existence of a
constant CT > 0 such that the following injectivity condition holds for all [ϕ0, ϕ1, ψ0] ∈ Hγ :∥∥∥∥∥∥L∗

T

ϕ0ϕ1
ψ0

∥∥∥∥∥∥
L2(0,T ;H1(Ω))

≥ CT

∥∥∥∥∥∥
ϕ0ϕ1
ψ0

∥∥∥∥∥∥
Hγ

. (46)

Using equation (27), this is equivalent to proving the observability estimate (2) for arbitrary ter-
minal data [ϕ0, ϕ1, ψ0] ∈ Hγ . The next section is devoted to establishing this inequality.

Now we define the energy of the system (3) as follows:

Eγ(t) ≡
1

2

∥∥∥∥∥∥eA∗
γ(T−t)

ϕ0ϕ1
ψ0

∥∥∥∥∥∥
2

Hγ

, for 0 ≤ t ≤ T, (47a)

or

Eγ(t) ≡
1

2

(
∥ϕ(t)∥2H2

0(Ω) + ∥ϕt(t)∥2H1
0,γ(Ω) + ∥ψ(t)∥2L2(Ω)

)
(47b)
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so that in particular

Eγ(T ) =
1

2
∥[ϕ0, ϕ1,ψ0]∥Hγ

, and Eγ(0) =
1

2
∥[ϕ(0), ϕt(0),ψ(0)]∥Hγ

.

Furthermore, we can obtain the following energy relation

Proposition 2.4. The component ψ of the weak solution [ϕ, ϕt,ψ] to the backward system (3)
satisfies ψ ∈ L2(0, T ;H1(Ω)). Moreover, for all initial data [ϕ0, ϕ1,ψ0] ∈ Hγ and for all 0 ≤ t ≤ T ,
the following identity holds:

Eγ(t) +

∫ T

t
∥rotψ(τ)∥L2(Ω) dτ = Eγ(T ). (48)

Proof. By computing the energy of the dual system (3) we obtain

1

2

d

dt

[
∥∆ϕ∥2L2(Ω) + ∥ϕt∥2L2(Ω) + γ ∥∇ϕ∥2L2(Ω) + ∥ψ∥2L2(Ω)

]
= ∥rotψ(t)∥2L2(Ω) .

This gives (48).

Remark 1. Recall the operator L∗
T from (45). For L∗

T ∈ L(Hγ ,L
2(0, T ;H1(Ω))) to hold, it is

necessary that the following condition is satisfied

∥ψ∥2L2(0,T ;H1(Ω)) ≤ C ∥[ϕ0, ϕ1,ψ0]∥Hγ
.

Then one can observe that the Proposition 2.4 implies this condition. This implies LT ∈ L(L2(0, T ;H1(Ω)′),Hγ)
by duality.

3 Proof of Theorem 1.1

3.1 Orientation

We now proceed to construct a multiplier argument in order to establish the following lemma.
To this end, we consider a suitable multiplier of operator type, namely A−1

D ψ, and take the L2-
inner product of this multiplier with equation (3a) from the system (3). One may also view such
multiplier as a pseudo-differential type; similar multiplier techniques were used in [6, Lemma 3.2]
and [9, Lemma 2.2]. Upon performing integration by parts, we obtain a set of terms that will
be estimated using Lemmas 3.1, A.4 together with standard Sobolev embedding theorems. These
estimates yield the desired inequality (52) in the lemma.

However, the resulting estimate, as formulated in (52), includes residual or “polluting” terms
that prevent a direct conclusion. To address this, we employ a compactness–uniqueness argument
(see Proposition 3.3) to eliminate these undesired contributions. This argument then yields the
clean estimate required for the conclusion of Theorem 1.1, thereby completing the proof.
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Remark 2. To rigorously justify the integration-by-parts and the estimates used in the proof of
Lemma 3.2 (and consequently in the proof of Theorem 1.1), we first establish the tainted observability
inequality under a stronger regularity assumption on the initial data of the adjoint system. The
terms evaluated on the boundary such as

γ
(
∇ϕt,∇A−1

D ψi,t

) ∣∣∣T
0
, and

∂ϕtt
∂ν

∣∣∣∣
Γ

= 0 in (54)

require additional regularity. More specifically in the above cases we need ∇ϕt ∈ C([0, T ]; L2(Ω))
and ϕtt ∈ C([0, T ];D(A1/2)). Therefore, we temporarily assume

[ϕ0, ϕ1,ψ0] ∈ D(A2
γ).

For such data the corresponding (backward) solution [ϕ, ϕt,ψ] is classical and enjoys the regularity

ϕ ∈ C([0, T ];D(Aγ)),

ϕt ∈ C([0, T ]; H3(Ω) ∩H2
0(Ω)),

ψ ∈ C([0, T ];H3(Ω) ∩ L2
σ,ν(Ω)).

(49)

With this regularity all formal computations performed in Lemmas 3.1–3.2 are fully justified. Since
D(A2

γ) is dense in the finite-energy space Hγ, a standard density argument (see for example [6, 9])
extends the observability inequality, and hence the exact controllability result of Theorem 1.1, to
arbitrary initial and terminal data in Hγ.

3.2 Main ingredients of the proof

First, we sketch the proof of the following trace regularity result for the adjoint system (3). This
result does not follow from the standard Sobolev trace theory but is instead derived in a similar
spirit to the trace results obtained for Euler-Bernoulli plates [24] and Kirchhoff plates [18]. Notably,
this result is essential for deriving the observability estimate (2).

Lemma 3.1 (Sharp Trace Regularity). The component ϕ of the solution [ϕ(t), ϕt(t),ψ(t)] of (3)
satisfies ∆ϕ|Γ ∈ L2(0, T ; L2(Γ)), with the estimate∫ T

0
∥∆ϕ∥L2(Γ) dt ≤ C

(∫ T

0
Eγ(t)dt+

∫ T

0
∥rotψ∥2L2(Ω) dt+ Eγ(T )

)
, (50)

where C is independent of the parameter γ.

Proof. Following the methodology of [8, Lemma 2.3] (see also [7, Lemma 2]), we sketch the proof.
We multiply the first equation of (3) by h · ∇ϕ, where h(x, y) ≡ [h1(x, y), h2(x, y)] is a smooth
vector field in C2(Ω̄) satisfying h|Γ = [ν1, ν2] on Γ. Integrating over [0, T ]× Ω, we obtain∫ T

0

(
ϕtt − γ∆ϕtt +∆2ϕ− (rot rotψ) ·

−→
H,h · ∇ϕ

)
L2(Ω)

dt = 0. (51)
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The crucial term requiring special treatment is the

∫ T

0

(
(rot rotψ) ·

−→
H,h · ∇ϕ

)
L2(Ω)

dt term. Using

Lemma A.1, we decompose this as∫ T

0

(
(rot rotψ) ·

−→
H,h · ∇ϕ

)
L2(Ω)

dt

=

∫ T

0

(
ν × rotψ, (h · ∇ϕ)

−→
H
)
L2(Γ)

dt+

∫ T

0

(
rotψ, rot

[
(h · ∇ϕ)

−→
H
])

L2(Ω)
dt

=

∫ T

0

(
rotψ, rot

[
(h · ∇ϕ)

−→
H
])

L2(Ω)
dt.

The boundary integral in the penultimate step vanishes due to ν × rotψ = 0 on Γ. The remaining
interior term, combined with the other terms arising from integration by parts, yields the estimate
(50) through standard arguments (see [7, Lemma 2] for the detailed computation).

We then obtain the following lemma, which provides the observability inequality, albeit tainted
by certain lower-order terms, as indicated in the orientation.

Lemma 3.2 (Tainted Observability Inequality). For γ ≥ 0 and T > 0, the solution [ϕ, ϕt,ψ] to
(3) satisfies the following estimate

Eγ(T ) ≤ CT

(∫ T

0
∥rotψ∥L2(Ω) dt+ ∥ϕ∥2C([0,T ];H1

0,γ(Ω)) + γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′)

)
.

(52)

Proof. We multiply the first equation of (3) by A−1
D ψi where ψi is the i-th component of the

magnetic vector field ψ. Then, integrating over both space and time, we obtain∫ T

0

(
ϕtt − γ∆ϕtt +∆2ϕ− (rot rotψ) ·

−→
H,A−1

D ψi

)
L2(Ω)

dt = 0. (53)

We then proceed to estimate the individual terms of this expression separately.

(i) Estimating the term

∫ T

0

(
ϕtt − γ∆ϕtt,A

−1
D ψi

)
L2(Ω)

dt. We use integration by parts.

∫ T

0

(
ϕtt − γ∆ϕtt,A

−1
D ψi

)
L2(Ω)

dt

=

∫ T

0

(
ϕtt,A

−1
D ψi

)
L2(Ω)

dt− γ

∫ T

0

(
∆ϕtt,A

−1
D ψi

)
L2(Ω)

dt

=
(
ϕt,A

−1
D ψi

) ∣∣∣T
0
−
∫ T

0

(
ϕt,A

−1
D ψi,t

)
L2(Ω)

dt− γ

∫ T

0

(
∆ϕtt,A

−1
D ψi

)
L2(Ω)

dt

=
(
ϕt,A

−1
D ψi

) ∣∣∣T
0
−
∫ T

0

(
ϕt,A

−1
D ψi,t

)
L2(Ω)

dt− γ

∫ T

0

(
∂ϕtt
∂ν

,A−1
D ψi

)
L2(Γ)

dt
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+ γ

∫ T

0

(
∇ϕtt,∇A−1

D ψi

)
L2(Ω)

dt

By using
∂ϕtt
∂ν

∣∣∣∣
Γ

= 0, we further obtain

∫ T

0

(
ϕtt − γ∆ϕtt,A

−1
D ψi

)
L2(Ω)

dt

=
(
ϕt,A

−1
D ψi

) ∣∣∣T
0
−
∫ T

0

(
ϕt,A

−1
D ψi

)
L2(Ω)

dt+ γ

∫ T

0

(
∇ϕtt,∇A−1

D ψi

)
L2(Ω)

dt

=
(
ϕt,A

−1
D ψi

) ∣∣∣T
0
+ γ

(
∇ϕt,∇A−1

D ψi,t

) ∣∣∣T
0

−
∫ T

0

[(
ϕt,A

−1
D ψi,t

)
L2(Ω)

+ γ
(
∇ϕt,∇A−1

D ψi,t

)
L2(Ω)

]
dt. (54)

Recalling (16b), we derive an explicit expression for A−1
D ψi,t as follows. Consider the equation

(16b) in the following abstract formulation

ψt = G(
−→
Hϕt)− Bψ.

Then we consider the component-wise version of the above vector equation. Note that the

component-wise action on G on
−→
Hϕt is denoted by Gi. We need to emphasize that Gi ̸= Gj

if i ̸= j necessarily. Then we obtain the component-wise version of the above equation as
follows:

ψi,t = Gi(
−→
Hϕt)−∆ψi for i = 1, 2.

Then we apply A−1
D to obtain

A−1
D ψi,t = A−1

D Gi(
−→
Hϕt)−A−1

D ∆ψi for i = 1, 2.

Then we rewrite (54) and proceed as follows.∫ T

0

(
ϕtt − γ∆ϕtt,A

−1
D ψi

)
L2(Ω)

dt

=
(
ϕt,A

−1
D ψi

) ∣∣∣T
0
+ γ

(
∇ϕt,∇A−1

D ψi

) ∣∣∣∣T
0

+

∫ T

0

[(
ϕt,A

−1
D Gi(

−→
Hϕt)−A−1

D ∆ψi

)
L2(Ω)

+ γ
(
∇ϕt,∇

(
A−1

D Gi(
−→
Hϕt)−A−1

D ∆ψi

))
L2(Ω)

]
dt. (55)

Consider the first two terms of (55). Applying Green’s theorem and utilizing the fact that
ϕt ∈ H1

0(Ω) for γ > 0 and t ∈ [0, T ], we obtain
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2∑
i=1

γ
(
∇ϕt(t),∇A−1

D ψi(t)
)
L2(Ω)

≤
2∑

i=1

γ (ϕt(t), ψi(t))

≤ γCε ∥ϕt∥2C([0,T ];L2(Ω)) + γ
ε

16
∥ψ(t)∥2L2(Ω)

≤ ε

8
Eγ(T ) + γCε ∥ϕt∥2C([0,T ];L2(Ω)) (56)

and

2∑
i=1

(
ϕt(t),A

−1
D ψi(t)

)
L2(Ω)

≤ ε

16
∥ϕt∥2H1

0,γ(Ω) + Cε

2∑
i=1

∥∥A−1
D ψi

∥∥2
L2(Ω)

≤ ε

16
∥ϕt∥2H1

0,γ(Ω) + Cε ∥ψ∥2H1(Ω)′ ≤
ε

8
Eγ(T ) + Cε ∥ψ∥2C([0,T ];H1(Ω)′) , (57)

where we have used the contraction of the semigroup {eA∗
γt}t≥0. Then we estimate the

remaining integral terms of (55) by utilizing Lemma A.4.∫ T

0

[(
ϕt,A

−1
D Gi(

−→
Hϕt)

)
L2(Ω)

− γ
(
∇ϕt,∇

(
A−1

D Gi(
−→
Hϕt)

))
L2(Ω)

]
dt

≲
∫ T

0

[
∥ϕt∥L2(Ω) ∥∇ϕt∥L2(Ω) + γ ∥∇ϕt∥2L2(Ω)

]
dt

≤ C1

∫ T

0

[
∥ϕt∥2L2(Ω) + γ ∥∇ϕt∥2L2(Ω)

]
dt+

ε

16

∫ T

0
γ ∥∇ϕt∥2L2(Ω) dt. (58)

In the previous step, the constant C1 > 0 is taken sufficiently large, and the parameter ε > 0
is chosen small enough so that the second integral appears with coefficients ε and the (fixed)
parameter γ > 0, allowing it to be absorbed into the left-hand side of the energy inequality.
We again estimate∫ T

0

[(
ϕt,A

−1
D ∆ψi

)
L2(Ω)

− γ
(
∇ϕt,∇

(
A−1

D ∆ψi

))
L2(Ω)

]
dt

≲
∫ T

0

[
∥ϕt∥L2(Ω) ∥∇ψi∥L2(Ω) + γ ∥∇ϕt∥L2(Ω) ∥∇ψi∥L2(Ω)

]
dt. (59)

Then by taking sum over components ψi for i = 1, 2,

2∑
i=1

∫ T

0

[(
ϕt,A

−1
D ∆ψi

)
L2(Ω)

− γ
(
∇ϕt,∇

(
A−1

D ∆ψi

))
L2(Ω)

]
dt

≤ C2

∫ T

0

[
∥ϕt∥L2(Ω) ∥ψ∥H1(Ω) + γ ∥∇ϕt∥L2(Ω) ∥ψ∥H1(Ω)

]
dt. (60)

Now we combine the estimates (55)-(59) to obtain∣∣∣∣∣
2∑

i=1

∫ T

0

(
ϕtt − γ∆ϕtt,A

−1
D ψi

)
L2(Ω)

dt− C1

∫ T

0

[
∥ϕt∥2L2(Ω) + γ ∥∇ϕt∥2L2(Ω)

]
dt

∣∣∣∣∣
18



≤ C2

∫ T

0

[
∥ϕt∥L2(Ω) ∥ψ∥H1(Ω) + γ ∥∇ϕt∥L2(Ω) ∥ψ∥H1(Ω)

]
dt

+
ε

16

∫ T

0
γ ∥∇ϕt∥2L2(Ω) dt+

ε

4
Eγ(T ) + Cε

(
γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′)

)
≤ ε

16

∫ T

0

[
∥ϕt∥2L2(Ω) + γ ∥∇ϕt∥2L2(Ω)

]
dt+ Ĉε

∫ T

0
∥ψ∥2H1(Ω) dt+

ε

16

∫ T

0
γ ∥∇ϕt∥2L2(Ω) dt

+
ε

4
Eγ(T ) + Cε

(
γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′)

)
(61)

≤ C

(∫ T

0
∥rotψ∥2L2(Ω) dt+ γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′)

)
+
ε

4

(∫ T

0
Eγ(t)dt+ Eγ(T )

)
(62)

where the constant C is independent of γ, where 0 ≤ γ ≤M .

(ii) Estimating the term

∫ T

0

(
∆2ϕ,A−1

D ψi

)
dt. We compute using Green’s second identity and

the fact that A−1
D ψi

∣∣
Γ
= 0:

∫ T

0

(
∆2ϕ,A−1

D ψi

)
dt

=

∫ T

0

(
∆ϕ,∆A−1

D ψi

)
L2(Ω)

dt+

∫ T

0

(
∂∆ϕ

∂ν
,A−1

D ψi

)
L2(Γ)

dt−
∫ T

0

(
∆ϕ,

∂A−1
D ψi

∂ν

)
L2(Γ)

dt

=

∫ T

0
(∆ϕ, ψi)L2(Ω) dt+

∫ T

0

(
∂∆ϕ

∂ν
,A−1

D ψi

)
L2(Γ)

dt−
∫ T

0

(
∆ϕ,

∂A−1
D ψi

∂ν

)
L2(Γ)

dt.

Since A−1
D ψi|Γ = 0, we have∫ T

0

(
∆2ϕ,A−1

D ψi

)
dt =

∫ T

0
(∆ϕ, ψi)L2(Ω) dt−

∫ T

0

(
∆ϕ,

∂A−1
D ψi

∂ν

)
L2(Γ)

dt. (63)

Now we estimate the second integral of (63) by using elliptic regularity.∣∣∣∣∣∣
∫ T

0

(
∆ϕ,

∂A−1
D ψi

∂ν

)
L2(Γ)

dt

∣∣∣∣∣∣ ≤ ε

8C

∫ T

0
∥∆ϕ∥2L2(Γ) dt+ Cε

∫ T

0

∥∥∥∥∥∂A−1
D ψi

∂ν

∥∥∥∥∥
2

L2(Γ)

dt

≤ ε

8C

∫ T

0
∥∆ϕ∥2L2(Γ) dt+ Cε

∫ T

0

∥∥A−1
D ψi

∥∥2
H

3/2 (Ω)
dt

≤ ε

8C

∫ T

0
∥∆ϕ∥2L2(Γ) dt+ Cε

∫ T

0
∥ψi∥2H−1/2 (Ω)

dt. (64)
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The preceding estimate relied on the sharp trace regularity result in Lemma 3.1 and classical
trace theory, with the constant Cε reused throughout. To further estimate the final inequality,
we invoke the norm equivalence provided in Lemma A.3, which is explained below.∣∣∣∣∣

2∑
i=1

∫ T

0

(
∆2ϕ,A−1

D ψi

)
dt

∣∣∣∣∣ ≤ C0

∫ T

0
∥∆ϕ∥L2(Ω) ∥ψ∥L2(Ω) dt

+
ε

8C

∫ T

0
∥∆ϕ∥2L2(Γ) dt+ Ĉε

∫ T

0
∥rotψ∥2L2(Ω) dt

≤ C0

∫ T

0
∥∆ϕ∥L2(Ω) ∥ψ∥L2(Ω) dt

+ Cε

∫ T

0
∥rotψ∥2L2(Ω) dt+

ε

8

(∫ T

0
Eγ(t)dt+ E(T )

)
≤ Cε

∫ T

0
∥rotψ∥2L2(Ω) dt+

ε

4

(∫ T

0
Eγ(t)dt+ E(T )

)
. (65)

(iii) Estimating the term

∫ T

0

(
rot rotψ ·

−→
H,A−1

D ψi

)
L2(Ω)

dt: By invoking Lemmas A.1 and A.3

we estimate∫ T

0

(
rot rotψ ·

−→
H,A−1

D ψi

)
L2(Ω)

dt =

∫ T

0

(
rot rotψ, (A−1

D ψi)
−→
H
)
L2(Ω)

dt

=

∫ T

0

(
rotψ, rot

[
(A−1

D ψi)
−→
H
])

L2(Ω)
dt+

∫ T

0

(
ν × rotψ, (A−1

D ψi)
−→
H
)
L2(Γ)

dt

=

∫ T

0

(
rotψ, rot

[
(A−1

D ψi)
−→
H
])

L2(Ω)
dt

≲
∫ T

0
∥ψ∥H1(Ω) ∥ψ∥H−1(Ω) dt

≤ Cε

∫ T

0
∥rotψ∥2L2(Ω) dt+

ε

2

∫ T

0
∥ψ∥2L2(Ω) dt. (66)

(iv) Combining (53), (62), (65), and (66), we obtain the following estimate: For any arbitrary
ε > 0 sufficiently small, there exists a constant C > 0, independent of γ, such that the
solution [ϕ, ϕt,ψ] of (3) satisfies∫ T

0

[
∥ϕt∥2L2(Ω) + γ ∥∇ϕt∥2L2(Ω)

]
dt

≤ C

(∫ T

0
∥rotψ∥2L2(Ω) dt+ γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H−1(Ω))

)
+ ε

(∫ T

0
Eγ(t)dt+ Eγ(T )

)
(67)
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where the dependence of C on ε has been omitted, as it is not crucial to the analysis.

(v) Now, we multiply the first equation of (3) by ϕ and apply integrate by parts, and integrate
from 0 to T with respect to time to obtain the following relation

(ϕt, ϕ)H1
0,γ(Ω) −

∫ T

0

[
∥ϕt∥2L2(Ω) + γ ∥∇ϕ∥2L2(Ω)

]
dt

= −
∫ T

0
∥∆ϕ∥2L2(Ω) dt+

∫ T

0

(
(rot rotψ) ·

−→
H,ϕ

)
L2(Ω)

dt

= −
∫ T

0
∥∆ϕ∥2L2(Ω) dt+

∫ T

0

(
rotψ, rot(ϕ

−→
H )
)
L2(Ω)

dt

≤ −(1− ε)

∫ T

0
∥∆ϕ∥2L2(Ω) dt+ Cε

∫ T

0
∥rotψ∥2L2(Ω) dt. (68)

Now we estimate (ϕt, ϕ)H1
0,γ(Ω) using the contraction of the underlying semigroup eAγt for all

t ∈ [0, T ]:

(ϕt, ϕ)H1
0,γ(Ω) ≤

ε

2
∥ϕt(t)∥2H1

0,γ(Ω) + Cε ∥ϕ(t)∥2H1
0,γ(Ω) ≤ εEγ(T ) + Cε ∥ϕ(t)∥2H1

0(Ω) . (69)

Then by combining (68), and (69), we obtain the following estimate for sufficiently small ε > 0∫ T

0
∥∆ϕ∥2L2(Ω) dt ≤

∫ T

0

[
∥ϕt∥2L2(Ω) + γ ∥∇ϕ∥2L2(Ω)

]
dt

+ CT

(∫ T

0
∥rotψ∥2L2(Ω) dt+ ∥ϕ∥2C([0,T ];H1

0(Ω))

)
+ εE(T ) (70)

where the ε-dependence of CT is omitted.

Thus, for sufficiently small ε, by combining (67) and (70), and recalling the definition of the energy
Eγ(t) in (47), we obtain the existence of a constant Cε > 0 such that∫ T

0

[
∥∆ϕ∥2L2(Ω) + ∥ϕt∥2L2(Ω) + γ ∥∇ϕt∥2L2(Ω) + ∥ψ∥2L2(Ω)

]
dt ≤ CεEγ(T )

+ CT

(∫ T

0
∥rotψ∥2L2(Ω) dt+ ∥ϕ∥2C([0,T ];H1

0(Ω)) + γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′)

)
. (71)

Applying the relation (48) and using the property that Eγ(t) ≥ Eγ(0) for all t ∈ [0, T ], we obtain

T

(
Eγ(T )−

∫ T

0
∥rotψ∥2L2(Ω) dt

)
= TEγ(0) ≤

∫ T

0
Eγ(t)dt

≤ CεEγ(T ) + CT

(∫ T

0
∥rotψ∥2L2(Ω) dt
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+ ∥ϕ∥2C([0,T ];H1
0(Ω)) + γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′)

)
. (72)

By further selecting ε > 0 sufficiently small, we obtain the following estimate for all γ ≥ 0 and
0 < T <∞:

Eγ(T ) ≤ CT

(∫ T

0
∥rotψ∥L2(Ω) dt+ ∥ϕ∥2C([0,T ];H1

0(Ω)) + γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′)

)
.

(73)
This proves the Lemma.

Remark 3. In the concluding estimate of the preceding Lemma, the expression comprises three
terms: ∥ϕ∥2C([0,T ];H1

0(Ω)) , ∥ϕt∥
2
C([0,T ];L2(Ω)), and ∥ψ∥2C([0,T ];H1(Ω)′). These terms must be eliminated to

establish the target observability inequality (2). To achieve this, we employ a subsequent Proposition
that leverages a compactness-uniqueness argument. This approach exploits the compact embedding
properties of the relevant function spaces and the uniqueness of solutions to an associated homoge-
neous problem, thereby enabling the absorption of these terms into the desired inequality.

Proposition 3.3 (Elimination of the Polluting Terms). The inequality (73) implies the existence
of a constant CT > 0 such that the corresponding solution [ϕ, ϕt,ψ] of (3) satisfies

∥ϕ∥2C([0,T ];H1
0(Ω)) + γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′) ≤ CT

∫ T

0
∥rotψ∥2L2(Ω) dt. (74)

Proof. The proof of this proposition follows the same argumentation as in [6, Prop 3.3]. But due to
the magnetic boundary conditions at hand, several technicalities must be properly handled. Due
to that reason, we give a full proof for this proposition here. We proceed by contradiction. If the

proposition is false, then there exists a sequence
{[
ϕ
(n)
0 , ϕ

(n)
1 ,ψ

(n)
0

]}∞

n=1
⊂ Hγ , and a corresponding

solution sequence
{[
ϕ(n), ϕ

(n)
t ,ψ(n)

]}∞

n=1
to (3) which satisfies

∥ϕ∥2C([0,T ];H1
0(Ω)) + γ ∥ϕt∥2C([0,T ];L2(Ω)) + ∥ψ∥2C([0,T ];H1(Ω)′) = 1 for all n (75)

and ∫ T

0
∥rotψ∥2L2(Ω) dt→ 0 as n→ ∞. (76)

Equations (73), (75) and (76) imply that there exists a constant

E(n)
γ (T ) ≤ C uniformly in n. (77)

Then, we can find a subsequence inHγ , still denoted by
{[
ϕ(n), ϕ

(n)
t ,ψ(n)

]}∞

n=1
, and

{[
ϕ̃0, ϕ̃1, ψ̃0

]}
∈

Hγ such that [
ϕ(n), ϕ

(n)
t ,ψ(n)

]
→
[
ϕ̃0, ϕ̃1, ψ̃0

]
weakly in Hγ . (78)
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Moreover, if we denote
[
ϕ̃, ϕ̃t, ψ̃

]
to be the solution to (3), corresponding to the terminal data[

ϕ̃0, ϕ̃1, ψ̃0

]
, then a fortiori,[

ϕ(n), ϕ
(n)
t ,ψ(n)

]
→
[
ϕ̃0, ϕ̃1, ψ̃0

]
weak* in L∞(0, T ;Hγ). (79)

Now we need to prove the following regularity estimate

∥ϕtt∥L∞(0,T ;[D(A1/2 P−1
γ )]′)

≤ C ∥[ϕ0, ϕ1,ψ0]∥Hγ
. (80)

For terminal data [ϕ0, ϕ1,ψ0] ∈ D(A∗
γ), for any test function ϕ̂ ∈ L1(0, T ;D(A1/2 P−1

γ )), satisfying

P−1
γ ϕ̂ ∈ L1(0, T ;D(A1/2)) with Pγ in (11), we employ the abstract equation (16a) and duality

arguments to derive the required estimate, as detailed in the subsequent calculations.∫ T

0

(
ϕ̂, ϕtt

)
L2(Ω)

dt =

∫ T

0

(
ϕ̂,P−1

γ

(
−Aϕ+B−→

H
ψ
))

dt

=

∫ T

0

[
−
(
A

1/2 P−1
γ ϕ̂,A

1/2ϕ
)
+
(
G−→

H
(P−1

γ ϕ̂),ψ
)]

dt

≤ C

(
∥ϕ∥

C([0,T ];D(A1/2 ))

∥∥∥ϕ̂∥∥∥
L1(0,T ;D(A1/2 P−1

γ ))
+ ∥ψ∥C([0,T ];L2(Ω))

∥∥∥ϕ̂∥∥∥
L1(0,T ;D(G−→

H
P−1
γ ))

)
≤ C

(
∥ϕ∥

C([0,T ];D(A1/2 ))
+ ∥ψ∥C([0,T ];L2(Ω))

)∥∥∥ϕ̂∥∥∥
L1(0,T ;D(A1/2 P−1

γ ))
.

In obtaining the last estimate, we have used the fact D(A1/2) ⊂ D(G−→
H
). By leveraging the con-

tractivity of the semigroup {eA∗
γt}t≥0, we derive∫ T

0

(
ϕ̂, ϕtt

)
L2(Ω)

dt ≤ C ∥[ϕ0, ϕ1,ψ0]∥Hγ

∥∥∥ϕ̂∥∥∥
L1(0,T ;D(A1/2 P−1

γ ))
. (81)

Then the density argument yields the bound (80). Arguing in a similar manner and utilizing the
equation (16b), we obtain

∥ψt∥L∞(0,T ;[D(B)]′) ≤ C ∥[ϕ0, ϕ1,ψ0]∥Hγ
. (82)

Then (80) and (82) yield∥∥∥ϕ(n)tt

∥∥∥
L∞(0,T ;[D(A1/2 P−1

γ )]′)
≤ C, and

∥∥∥ψ(n)
t

∥∥∥
L∞(0,T ;[D(B)]′)

≤ C. (83)

The boundedness of {
[
ϕ
(n)
tt ,ψ

(n)
t

]
} and that of {

[
ϕ(n), ϕ

(n)
t ,ψ(n)

]
} allow the use of Simon’s com-

pactness result in [32] so as to have

ϕ(n) → ϕ̃ strongly in C([0, T ]; H1
0(Ω)), (84)
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ϕ
(n)
t → ϕ̃t strongly in C([0, T ]; L2(Ω)) if γ > 0, (85)

ψ(n) → ψ̃ strongly in C([0, T ];H1(Ω)′). (86)

We then pass to the limit in (75) to get∥∥∥ϕ̃∥∥∥2
C([0,T ];H1

0(Ω))
+ γ

∥∥∥ϕ̃t∥∥∥2
C([0,T ];L2(Ω))

+
∥∥∥ψ̃∥∥∥2

C([0,T ];H1(Ω)′)
= 1. (87)

Conversely, the convergence established in (76) implies that ψ̃ = 0. This, combined with the
magnetic equation (16b), yields ϕ̃t = 0. In turn, the coupled plate equation (16a) yields ϕ̃ = 0.

Thus, we obtain
[
ϕ̃, ϕ̃t, ψ̃

]
= [0, 0,0], which contradicts the equality in (87).

Remark 4 (Unique Continuation Property). At the conclusion of the proof of Proposition 3.3,
we observe that the vanishing of ψ̃ ensures uniqueness through straightforward elliptic regularity
arguments. This embodies the unique continuation property essential for controllability in our
system. Since the control u acts across the entire interior in (1b), these implications follow directly.
However, if the control’s support were restricted to a proper subset of the interior or confined to
the boundary, the complexity of establishing controllability would increase significantly, as evident
in related thermoelastic systems; see [14].

3.3 Completion of the proof of Theorem 1.1

By combining the tainted observability inequality from Lemma 3.2 with the estimate of the polluting
terms provided in Lemma 3.3, we obtain the desired bound, which completes the proof of Theorem
1.1.

Appendix A Technical Lemmas

Lemma A.1 (Integration by parts). Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary
∂Ω and outward unit normal ν. For all vector fields u,v ∈ L2(Ω) and rotu, rotv ∈ L2(Ω), the
following identities hold:∫

Ω
rotu · rotv dx =

∫
Ω
rot rotu · v dx+

∫
∂Ω

(ν × rotu) · v dS. (88a)

∫
Ω
(rot rotu · v − rot rotv · u) dx =

∫
∂Ω

(
(ν × rotu) · v − (ν × rotv) · u

)
dS. (88b)

Proof. Both identities follow from the vector calculus identity

∇ ·
(
(rotu)× v

)
= (rot rotu) · v − (rotu) · (rotv),

together with the divergence theorem and exchanging u and v for symmetry.
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Lemma A.2. The following duality relation holds:(
G−→

H
ϕ,ψ

)
=
(
ϕ,B−→

H
ψ
)

for ϕ ∈ D(G−→
H
), ψ ∈ D(B−→

H
). (89)

Proof. Let us compute〈
G−→

H
ϕ,ψ

〉
=

∫
Ω
rot rot(ϕ

−→
H ) ·ψ dx

=

∫
Ω
(ϕ
−→
H ) · rot rotψ dx+

∫
Γ

[(
ν × rot(ϕ

−→
H )
)
·ψ − (ν × rotψ) · (ϕ

−→
H )
]
dS.

Since ψ0 ∈ D(B−→
H
) = D(B), we have (ν × rotψ) · (ϕ

−→
H ) = 0.

Now we calculate

∫
Γ

(
ν × rot(ϕ

−→
H )
)
·ψ dS. For this purpose, let

−→
H = (H1, H2) ∈ R2. Then

rot(ϕ1H) = ∂1(ϕ1H2)− ∂2(ϕ1H1) = (∂1u)H2 − (∂2u)H1.

Writing
−→
H⊥ = (H2,−H1), this reads

rot(ϕ
−→
H ) = ∇ϕ ·

−→
H⊥.

If ϕ = 0 and ∂νϕ = 0 on Γ, then ∇ϕ = 0 on Γ, hence

rot(ϕ
−→
H ) = 0 on Γ implying

∫
Γ

(
ν × rot(ϕ

−→
H )
)
·ψ dS = 0.

This means (
G(ϕ1

−→
H ),ψ

)
=
(
ϕ1,G

∗(ψ) ·
−→
H
)
=
(
ϕ1,B(ψ) ·

−→
H
)
. (90)

Lemma A.3. [5, Theorem 2.1] Let Ω ⊂ R2 be a simply connected domain with a C2 boundary Γ.
Let ψ ∈ H1(Ω) satisfy divψ = 0 in Ω and either ψ · ν = 0 or ν × ψ = 0 on Γ, where ν is the
outward unit normal. Then the H1 norm ∥ψ∥H1(Ω) is equivalent to ∥rotψ∥L2(Ω), i.e., there exist
constants c, C > 0 such that:

c ∥ψ∥H1(Ω) ≤ ∥rotψ∥L2(Ω) ≤ C ∥ψ∥H1(Ω) .

Lemma A.4. The following estimates hold true.∥∥∥A−1
D Gi(

−→
Hϕt)

∥∥∥
L2(Ω)

≲ ∥∇ϕt∥L2(Ω) , (91a)∥∥∥∇A−1
D Gi(

−→
Hϕt)

∥∥∥
L2(Ω)

≲ ∥∇ϕt∥L2(Ω) , (91b)∥∥A−1
D ∆ψi

∥∥
L2(Ω)

≲ ∥ψ∥H1(Ω) , (91c)∥∥∇A−1
D ∆ψi

∥∥
L2(Ω)

≲ ∥ψ∥H1(Ω) . (91d)
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Proof. 1. To prove (91a), we estimate using elliptic regularity∥∥∥B−1
D G(

−→
Hϕt)

∥∥∥
L2(Ω)

≲
∥∥∥G(

−→
Hϕt)

∥∥∥
H−1(Ω)

≲
∥∥∥−→Hϕt∥∥∥

H1
0(Ω)

≲ ∥∇ϕt∥L2(Ω) .

2. To prove (91b), we estimate as before∥∥∥∇B−1
D G(

−→
Hϕt)

∥∥∥
L2(Ω)

≲
∥∥∥B−1

D G(
−→
Hϕt)

∥∥∥
H1(Ω)

≲
∥∥∥G(

−→
Hϕt)

∥∥∥
H−1(Ω)

≲ ∥∇ϕt∥L2(Ω) .

The estimates (91c) and (91d) follow from classical elliptic regularity theory.
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