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Abstract: We consider the nonlinear wave equation utt − σ(ux)x + a(x)ut = 0 in a bounded interval

(0, L) ⊂ R1. The function a is allowed to change sign, but has to satisfy a = 1
L

L∫
0

a(x)dx > 0. For this

non-dissipative situation we prove the exponential stability of the corresponding linearized system for: (I)
possibly large ‖a‖L∞ with small ‖a(·)−a‖L2 , and (II) a class of pairs (a, L) with possibly negative moment∫ L

0
a(x) sin2(πx/L) dx. Estimates for the decay rate are also given in terms of a. Moreover, we show the

global existence of smooth, small solutions to the corresponding nonlinear system if, additionally, the
negative part of a is small enough.

1 Introduction

We consider the following nonlinear wave equation

utt − σ(ux)x + a(x)ut = 0 (1.1)

for a function u = u(t, x), t ≥ 0, x ∈ (0, L) ⊂ R1, L > 0 fixed, with initial conditions

u(t = 0) = u0, ut(t = 0) = u1 (1.2)

and Dirichlet type boundary conditions

u(·, 0) = u(·, L) = 0. (1.3)

We assume that a ∈ L∞((0, L)) for the part on the exponential stability of the associated
semigroup, and a ∈ C3([0, L]) for the discussion of the nonlinear system, as well as

a :=
1
L

L∫
0

a(x)dx > 0, (1.4)

0AMS subject classification: 35 L 70, 35 B 40
1Supported by a CNPq-DLR grant



in particular a may change sign in [0, L] or be zero in open subsets. The nonlinear function σ is
assumed to satisfy

σ ∈ C3(R), d0 := σ′(0) > 0, and σ′′(0) = 0. (1.5)

Remark: This is, for instance, satisfied for σ corresponding to a vibrating string,

σ(y) =
y√

1 + y2
.

Rewriting (1.1) as

utt − d0uxx + aut = b(ux)uxx (1.6)

with

b(ux) := σ′(ux)− d0 = σ′(ux)− σ′(0) (1.7)

the associated linearized system is

utt − d0uxx + aut = 0 (1.8)

together with the initial conditions (1.2) and the boundary conditions (1.3). Since a may change
sign we have a non-dissipative system still regarding aut to be a non-local but indefinite damping.
There are many papers on solutions to (1.1) or on decay rates for (1.1) or (1.8) if a ≥ 0 i.e. if a

does not change sign, see for example the papers of Cox and Overton [3], Cox and Zuazua [5],
Kawashima, Nakao and Ono [9], Nakao [13, 14], da Silva Ferreira [19] or Zuazua [21] and the
references therein. If a(x) ≥ a0 > 0 is strictly positive, the exponential decay of solutions to
(1.8) and also to (1.1), for small data, easily follows.
The non-dissipative case with indefinite a seems to have been posed first by Chen, Fulling,
Narcovich and Sun [2] where it was conjectured that the energy

E0(t) =
L∫

0

(u2
t + u2

x)(t, x)dx (1.9)

decays exponentially if

∃ γ > 0 ∀n = 1, 2, . . . :
L∫

0

a(x) sin2(nπx/L)dx ≥ γ (1.10)

holds. Later Freitas [6] found that (1.10) is not sufficient to guarantee exponential stability when
‖a‖L∞ is large. Replacing a by εa, Freitas and Zuazua [7] proved that when a is of bounded
variation and (1.10) holds, then there is ε∗ = ε∗(a) such that for all ε ∈ (0, ε∗) the energy decays
indeed exponentially. This result was extended to a differential equation of the type

utt − uxx + εa(x)ut + b(x)u = 0

by Benaddi and Rao [1]. K. Liu, Z. Liu and Rao [10] gave an abstract treatment of these
results under certain conditions on the abstract damping operator. An extension to higher
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space dimensions was presented by Liu, Rao and Zhang [11].
Here we show that solutions to the linearized system (1.8), (1.2), (1.3) decay exponentially for

(I) possibly large ‖a‖L∞ with small ‖a(·)− a‖L2 , and
(II) a class of pairs (a, L) with possibly negative moment

∫ L
0 a(x) sin2(πx/L) dx.

Part (II) is not a contradiction to a result of Freitas in [6] saying that if (1.10) is not valid, then
the solution is not exponentially decaying for sufficiently small ‖a‖L∞ , because in our examples of
admissible pairs (a, L), leading to exponential decay, a, resp.‖a‖L∞ , and L are not independent.
Estimates for the decay rate are also given in terms of a. Moreover, we show the global existence
of smooth, small solutions to the corresponding nonlinear system if, additionally, the negative
part of a is small enough. More precisely: If α0 denotes the decay rate for the linear system,

L∫
0

(u2
t + u2

x)(t, x) ≤ c1e
−2α0t, c1 > 0,

then a− has to satisfy in particular

||a−||L∞ < α0, (1.11)

see Section 3.
The paper is organized as follows: In Section 2 we shall prove the exponential stability for the
linearized system under either of the situations (I) or (II) above. This is the crucial part, and
the method will be the spectral one characterizing exponentially stable semigroups in terms of
the spectrum of the associated generator of the semigroup. It is possible to give an explicit lower
bound on the decay rate which, in turn, is necessary to make (1.11) a reasonable condition in
the nonlinear case.
In Section 3 the global existence of small solutions to the nonlinear system is investigated.
Using the result from Section 2 and pertubation arguments the condition (1.11) is shown to be
sufficient to guarantee the global existence and also the exponential stability of the nonlinear
system.
Summarizing the contributions of our paper we present results on exponential stability for the
wave equation when the function a may change sign under conditions that extend the existing
results to cases with indfinite damping a with possibly large L∞-norm, and give examples of pairs
(a, L) for which exponential stability holds but the moment

∫ L
0 a(x) sin2(πx/L) dx is negative.

We also present an explicit description of the decay rate and of the type of the associated
semigroup, and also a discussion of a corresponding nonlinear problem with global existence
and stability. Finally, our approach can be applied to other one-dimensional models.
We use standard notations. e.g. for Sobolev spaces.

2 Exponential stability for the linearized system

We first consider the linearized system. Without loss of generality we assume d0 = σ′(0) = 1.

utt − uxx + a(x)ut = 0 in (0,∞)× (0, L) (2.1)

u(0, ·) = u0, ut(0, ·) = u1 in (0, L) (2.2)
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u(·, 0) = u(·, L) = 0 in (0,∞). (2.3)

We assume that a ∈ L∞((0, L)) and satisfies (1.4). The aim is to prove that the energy given in
(1.9) decays to zero exponentially as time t tends to infinity in either

• Case (I): ‖a(·)− a‖L2 is sufficiently small — but ‖a‖L∞ may be large —, or

• Case (II): ‖a‖L∞ is small, (a, L) satisfy certain relations — but the moment∫ L
0 a(x) sin2(πx/L) dx may be negative.

We introduce the variables
p := ut − ux, q := ut + ux

such that
pt + px = −a(x)ut, qt − qx = −a(x)ut. (2.4)

Let

U :=

(
p

q

)
, K :=

(
1 0
0 −1

)
, B :=

(
1 1
1 1

)
,

and let A denote the operator given by

AU := −KUx −
a

2
BU

with domain

D(A) :=


(

p

q

)
∈ H1((0, L))×H1((0, L)) | p(0) + q(0) = p(L) + q(L) = 0,

L∫
0

p(s)− q(s)ds = 0


in the Hilbert space

H :=


(

p

q

)
∈ L2((0, L))× L2((0, L)) |

L∫
0

p(s)− q(s)ds = 0


with the L2((0, L)) inner product. D(A) is dense in H and A is the infinitesimal generator of a
C0-semigroup {eAt}t≥0. We can rewrite (2.1) as

Ut = AU, U(0) = U0, U ∈ D(A) (2.5)

To verify the equivalence of the systems (2.1)–(2.3) and (2.5), let U solve (2.5) for appropriate
initial conditions. Let

w :=
p + q

2
, v :=

q − p

2
.

Then
wx − vt = 0

hence there exists a function u with (
ux

ut

)
=

(
v

w

)
.
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We can choose u such that u(0, 0) = 0. It is not difficult to see that u satisfies (2.1). Moreover,

0 = w(t, 0) = ut(t, 0), 0 = w(t, L) = ut(t, L).

Using u(0, 0) = 0 we obtain
u(t, 0) = 0, t ≥ 0.

Since U ∈ D(A) we conclude

0 =
L∫

0

ux(t, s)ds = u(t, L)− u(t, 0) ⇒ u(t, L) = 0, t ≥ 0,

therefore the system (2.1)–(2.3) is equivalent to (2.5).

Lemma 2.1 A−1 is compact.

Proof: AU = −F is solvable for F ∈ H, A−1 is bounded:
With

M0(x) :=
a(x)

2
KB =

a(x)
2

(
1 1

−1 −1

)
AU = −F is equivalent to

Ux + M0(x)U = KF

or

U(x) = e
−

x∫
0

M0(s)ds

U0 +
x∫

0

e
−

x∫
s

M0(t)dt

KF (s)ds

where U0 has to be determined appropriately. Since M2
0 = 0, the corresponding series e−

∫ x

0
M0(s)ds

has only two terms and therefore we have for U = (p, q)′, U0 = (p0, q0)′, F = (f, g)′ that(
p

q

)
(x) =

Id− 1
2

x∫
0

a(s)ds

(
1 1

−1 −1

)(p0

q0

)

+
x∫

0

Id− 1
2

x∫
s

a(t)dt

(
1 1

−1 −1

)( f(s)
−g(s)

)
ds.

The boundary conditions require p0 + q0 = 0, hence(
p

q

)
(x) =

(
p0

−p0

)
+

x∫
0

(
f(s)
−g(s)

)
ds−

x∫
0

(
f(s)− g(s)

−f(s) + g(s)

)
1
2

x∫
s

a(t)dt ds.

Then p(L) + q(L) = 0 is satisfied since F ∈ H. Finally the condition
L∫
0

p(s) − q(s)ds = 0

determines p0 uniquely by

p0 =
1

2L


L∫

0

x∫
0

(f(s)− g(s))
x∫

s

a(t)dt ds dx +
L∫

0

x∫
0

f(s) + g(s)ds dx

 .
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Hence AU = −F is uniquely solvable and

‖U‖ ≤ c‖F‖,

where ‖ · ‖ denotes the L2((0, L))-norm. Thus 0 ∈ %(A) (resolvent set).
Now we prove A−1 is compact:
Let (Fn)n ⊂ H be bounded, let Un := A−1Fn. Then (Un)n is bounded according to (ii).
This implies that (pn, qn)n is bounded in H1((0, L)) and hence has a convergent subsequence in
L2((0, L)). Q.e.d.

Lemma 2.1 implies that the spectrum σ(A) of A consists of eigenvalues (λn)n only, without any
finite accumulation point.
First we consider Case (I), where finally ‖a(·) − a‖L2 will be chosen sufficiently small, and we
will show below, by using fixed point arguments, that for ε > 0

ΓI
ε :=

ε + α + iβ; α > <

−a

2
+

√
(
a

2
)2 − π2

L2

 and β ∈ R

 ⊂ %(A),

and also that
sup
λ∈ΓI

ε

‖(λI −A)−1‖ < ∞.

This will imply, see e.g. the results by Prüss [17] or [12, Thm 1.3.1], that the corresponding
semigroup decays exponentially.
We shall regard A as a perturbation of AI

0 defined by

AI
0U := −KUx −

a

2
BU

on

D(AI
0) :=

{(
p

q

)
∈ H1((0, L))×H1((0, L)) | p(0) + q(0) = p(L) + q(L) = 0

}

Lemma 2.2 Let σ(AI
0) denote the spectrum of AI

0. Then we have that

σ(AI
0) =

−1
2
a±

√(
1
2
a

)2

− k2π2

L2
| k ∈ N


Proof: As for A, one can show that AI

0 has a compact inverse. We now consider the equation

λU −AI
0U = F (2.6)

where F ∈ H, which is equivalent to finding a function U such that

Ux + MU = KF

where M := K(λI + a
2B). The solution to this equation is given by

U(x) = e−MxU0 +
∫ x

0
e−M(x−s)KF (s) ds (2.7)
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This is the solution of an initial value problem. To find the set of λ belonging to the resolvent
set, is equivalent to the problem of finding λ such that U satisfies the boundary conditions of
the problem and can be estimated appropriately by F . Denoting

U =

(
p

q

)
, U0 =

(
p0

q0

)

we have to find U ∈ D(AI
0). To get this we have to satisfy first p0 + q0 = 0 which implies

p0 = −q0

Now the problem reduces to find p0 for which we have

p(L) + q(L) = 0. (2.8)

Let us denote by

E(x, s) := e−M(x−s) =:

(
e11(x, s) e12(x, s)
e21(x, s) e22(x, s)

)
Note that (

p

q

)
= E(x, 0)

(
p0

−p0

)
+
∫ x

0
E(x, s)

(
f(s)
−g(s)

)
ds (2.9)

Using the expression above to verify relation (2.8) we conclude that p0 should satisfy

{e11(L, 0)− e12(L, 0) + e21(L, 0)− e22(L, 0)} p0

=
L∫

0

{e11(L, s) + e21(L, s)} f(s)− {e12(L, s) + e22(L, s)} g(s) ds (2.10)

It is not difficult to see that the above problem has a solution if and only if

e11(L, 0)− e12(L, 0) + e21(L, 0)− e22(L, 0) 6= 0 (2.11)

and that therefore λ ∈ %(A) holds if and only if condition (2.11) holds. To characterize the
spectrum precisely, we need to calculate the matrix E(x, s) explicitly. To do this we note that

M =

(
α β

−β −α

)
where α := λ +

1
2
a, β :=

1
2
a (2.12)

To get the explicit representation of the exponential matrix E we will use the eigenvector rep-
resentation. Therefore our next step is to calculate the eigenvalues and eigenvectors. Since

det

(
µ− α −β

+β µ + α

)
= µ2 − (α2 − β2)

it follows that the eigenvalues are given by µ = ±
√

α2 − β2. Let us denote by µ0 :=
√

α2 − β2

with non-negative real part. Then we have that the eigenvector are given by

w1 =

(
µ0 + α

−β

)
, w2 =

(
−µ0 + α

−β

)
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Letting

D :=

(
µ0 + α −µ0 + α

−β −β

)
⇒ D−1 = − 1

2βµ0

(
−β µ0 − α

β µ0 + α

)
.

we have the representation

E(x, 0) = B

(
eµ0x 0
0 e−µ0x

)
B−1.

which implies

E(x, 0) =

(
cosh(µ0x) + α

µ0
sinh(µ0x) β

µ0
sinh(µ0x)

β
µ0

sinh(µ0x) cosh(µ0x)− α
µ0

sinh(µ0x)

)
. (2.13)

The condition (2.11) now turns into

2
α

µ0
sinh(µ0L) = 0 ⇒ e2µ0L = 1

Therefore we conclude that µ0L = kπi, for integers k, or

µ2
0L

2 = −k2π2.

Recalling the definition of µ0 we get and using (2.12) we get

λ2L2 + Lλa + k2π2 = 0 ⇒ λ = −1
2
a±

√(
1
2
a

)2

− k2π2

L2

Finally, note that if k = 0 then we will have µ0 = 0 and therefore λ = 0. But λ = 0 ∈ %(A0).

Q.e.d.

Lemma 2.3 Let λ = γ + iη with γ > −a
2 , and let

µ0 = A(η) + iB(η)

define A and B. Then we have

A2 + B2 =
√

η4 + [2γ2 + 2γa + a2]η2 + (γ2 + γa)2. (2.14)

lim
η→∞

| α
µ0
| = 1, lim

η→∞
| β

µ0
| = 0, lim

η→∞
| λ

µ0
| = 1, lim

η→∞
A = γ +

a

2
. (2.15)

lim
(γ,η)→(0,0)

| sinh(µ0x)|
|µ0|

= x, lim sup
η→∞

| sinh(µ0x)| ≤
√

1 + sinh2(γ +
a

2
)L (2.16)

Proof: Recalling that
µ0 =

√
α2 − β2 =

√
λ2 + λa.

we have
µ0 =

√
α2 − β2 =

√
γ2 + aγ + iη(a + 2γ)− η2 = A + iB

8



Squaring the above expression we get

γ2 + aγ − η2 = A2 −B2

η(a + 2γ) = 2AB

Solving the equation for A we conclude that

A2 =
γ2 + aγ

2
+
−η2 +

√
η4 + [2γ2 + 2γa + a2]η2 + (γ2 + γa)2

2

B2 = −γ2 + aγ

2
+

η2 +
√

η4 + [2γ2 + 2γa + a2]η2 + (γ2 + γa)2

2
Summing up the above identities we get (2.14). Note that√

η4 + [2γ2 + 2γa + a2]η2 + (γ2 + γa)2

2
≤

√
(η2 + γ2 + γa + a2

2 )2 − a2(γ + a
2 )2

2

=
η2 + γ2 + γa + a2

2

2

On the other hand we have√
η4 + [2γ2 + 2γa + a2]η2 + (γ2 + γa)2

2
≥

√
η4 + [2γ2 + 2γa]η2 + (γ2 + γa)2

2

=
η2 + γ2 + γa

2

Therefore we obtain
γ2 + aγ ≤ A(η)2 ≤ (γ +

a

2
)2.

Similarly we have

η2 ≤ B(η)2 ≤ η2 +
a2

4
.

Thus we conclude

lim
η→∞

| α
µ0
|2 = lim

η→∞

(γ + 1
2a)2 + η2

A(η)2 + B(η)2
= 1.

proving (2.15). Finally,

sinh(µ0x) =
1
2

{
eAx(cos(Bx) + i sin(Bx))− e−Ax(cos(Bx) + i sin(Bx))

}
= cos(Bx) sinh(Ax) + i sin(Bx) cosh(Ax).

implies

| sinh(µ0x)| =
√

cos2(Bx) sinh2(Ax) + sin2(Bx) cosh2(Ax)

=
√

sinh2(Ax) + sin2(Bx)
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similarly we have

| cosh(µ0x)| =
√

sinh2(Ax) + cos2(Bx).)

yielding (2.16).

Q.e.d.

Lemma 2.4 Let F = (f1, f2) and λ = γ + iη as above, and let

I(λ, F ) :=
1
2

∫ L
0 (a− a)(cosh((L− s)µ0) + λ+a

µ0
sinh(µ0(L− s))f1 ds

− α
µ0

sinh(µ0L)

−1
2

∫ L
0 (a− a)(cosh(µ0(L− s)) + λ

µ0
sinh(µ0(L− s)))f2 dx

− α
µ0

sinh(µ0L)

Then we have

lim sup
(γ,η)→(0,0)

|I(λ, F )| ≤ ‖a− a‖L2‖F‖L2

(
1 + aL

aL

)

lim sup
η→∞

|I(λ, F )| ≤ ‖a− a‖L2‖F‖L2

(
1 + sinh(γ + a

2 )L
sinh((γ + a

2 )L)

)

lim sup
(λ,η)→(0,0)

|E(x, s)| ≤ 1 +
aL

2

lim sup
η→∞

|E(x, s)| ≤ 2
√

1 + sinh2((γ +
a

2
)L)

Proof: We have

|I(λ, F )| ≤ 1
2

‖a− a‖L2(2‖ cosh(µ0x)‖∞ + |λ+a|+|λ|
|µ0| ‖ sinh(µ0x)‖∞)‖F‖L2

| α
µ0
|| sinh(µ0L)|

where ‖ · ‖∞ denotes the sup-norm with respect to x. Our conclusion now follows from Lemma
2.3 using

| sinh(µ0L)| ≥ | sinh(A(η)L)| → sinh((γ +
a

2
)L) as η →∞.

Q.e.d.

Corollary 2.5 There exists a positive constant C0, depending essentially only on |γ − a
2 |, such

that for any η ∈ R and any (x, s) we have

|I(λ, F )| ≤ C0‖a− a‖L2‖F‖L2 ,

|E(x, s)| ≤ C0.
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Remark: For the interval (0, 1) and 0 < µ < 1
2 , let the function aµ : [0, 1] −→ R be given by

aµ(x) :=

{
−1 0 ≤ x < µ

1 µ ≤ x < 1

Then
aµ = 1− 2µ and ‖aµ − aµ‖L2 = 2

√
(1− µ)µ < 1,

hence, as µ → 0,
‖aµ‖L∞ = 1 and ‖aµ − aµ‖L2 → 0.

Lemma 2.6 There exists τ > 0 such that when ‖a− a‖L2 < τ , we have

(i) ΓI
ε ⊂ %(A),

(ii) sup
λ∈ΓI

ε

‖(λ−A)−1‖ < ∞.

Proof: It suffices to show that for sufficiently small τ > 0 and for λ ∈ ΓI
ε the equation

(λ−A)U = F is solvable for any F ∈ H, and ‖U‖ ≤ C‖F‖ with a constant C at most depending
on ε and τ . We shall use a fixed point argument to prove this. Now let F = (f, g)′ ∈ H be given
as well as λ ∈ ΓI

ε. Let
Φ : H̃ → H̃, V 7→ U = ΦV

be defined as solution U = (U1, U2)′ to

(λ−A0)U = F − a− a

2
BV

which is well defined since λ ∈ %(A0). Using the explicit representation of U we have

U(x) = (ΦV )(x) = E0(x)U0 +
∫ x

0
E0(x− s)

(
KF (s)− a(s)− a

2
KBV (s)

)
ds (2.17)

where U0 = (p0,−p0) with p0 = I(λ, V ), cp. (2.10),

p0 =

{∫ L

0
(e11 + e21)(L− s)

(
f(s)− a(s)− a

2
(V1(s) + V2(s)

)
−(e12 + e22)(L− s)

(
g(s)− a(s)− a

2
(V1(s) + V2(s))

)
ds

}
/

(e11(L)− e12(L) + e21(L)− e22(L)), (2.18)

where V = (V1, V2)′. Let
U j := ΦV j , j = 1, 2.

Then

U1(x)− U2(x) = E0(x)(U1
0 − U2

0 ) +
∫ x

0
E0(x− s)

(
a(s)− a

2
KB(V 2(s)− V 1(s))

)
ds.

This implies

|U1(x)− U2(x)| ≤ |E0(x, 0)(U1
0 − U2

0 )|+ c1

∫ x

0
|(a− a)E0(x, s)(V 1(s)− V 2(s))|ds (2.19)
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and c1 denotes here and in the sequel a positive constant at most depending on τ and ε. We
conclude from Corollary 2.5 that

|U1
0 − U2

0 | ≤ c1‖a− a‖L2‖V 1 − V 2‖L2 . (2.20)

The last two inequalities yield and using Corollary 2.5 once more we have

‖U1 − U2‖2 ≤ C2‖a− a‖L2‖V 1 − V 2‖L2 .

Hence Φ is a contraction mapping if

c1‖a− a‖2
L2 < 1

determining τ as τ = 1
c1

. Let U ≡ (p, q)′ be the unique fixed point. It satisfies

λU + KUx +
a

2
BU = F. (2.21)

By definition we have U ∈ D(A0). Since F ∈ H we obtain by integration of (2.21)

0 =
∫ L

0
f(s)− g(s)ds = λ

∫ L

0
p(s)− q(s)ds +

∫ L

0
(p + q)x(s)ds

= λ

∫ L

0
p(s)− q(s)ds.

Without loss of generality we can assume that λ 6= 0. Then we conclude

U ∈ D(A) and (λ−A)U = F.

Finally, we estimate the inverse (λ−A)−1. Let U be still the fixed point, and let

Ũ := Φ(0)

or, in other words,
(λ−A0)Ũ = F.

Then we get
‖U‖ − ‖Ũ‖ ≤ ‖U − Ũ‖ = ‖ΦU − Φ(0)‖ ≤ d‖U‖

where d < 1 describes the contraction mapping property. It follows

‖U‖ ≤ 1
1− d

‖Ũ‖.

On the other hand we obtain from (2.17), (2.18) (cp. (2.19), (2.20))

‖Ũ‖ ≤ c1‖F‖

Hence we have proved

‖(λ−A)−1‖ ≤ c1
1

1− d

which proves the Lemma.

Q.e.d.

As a consequence we obtain the following Theorem on the exponential decay.
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Theorem 2.7 There exists τ > 0 such that when ‖a − a‖L2 < τ , we have that the solution to
the linearized system decays exponentially, that is to say

∃ c0 > 0 ∃α0 > 0 ∀t ≥ 0 : E0(t) ≤ c0e
−2α0tE0(0).

In particular we can take any

α0 > <

−a

2
+

√
(
a

2
)2 − π2

L2

 ,

e.g. α0 = − 1
4L

∫ L
0 a(x) dx when

∫ L
0 a(x) dx < 2π.

Proof: The assertion follows from Lemma 2.6 by well known characterizations of the exponen-
tial stability of semigroups, see the results by Prüss [17], cp. [12, Thm 1.3.1].

Q.e.d.

Now we consider Case (II), where finally ‖a‖L∞ will have to be sufficiently small, related to
L, that is, (a, L) will satisfy certain relations. Contrasting these restrictions with respect to
previous results for small a, e.g. by Freitas and Zuazua [7], we shall obtain examples where the
moment

∫ L
0 a(x) sin2(πx/L) dx is negative.

Similary as in Case (I) above, we wish to prove that for small ε1 > 0 and any ε0 > ε1 we can
choose (a, L) with a small enough such that for any ε ∈ [ε1, ε0]

ΓII
ε := {−a

2
+ ε + iη | η ∈ R} ⊂ %(A) (2.22)

and that
sup

ε∈[ε1,ε0], λ∈ΓII
ε

‖(λ−A)−1‖ < ∞. (2.23)

We choose
ε1 :=

a

4
, ε0 := max{2ε1, 3|a|∞}, (2.24)

where |a|∞ := ‖a‖L∞ , and we observe that A− 3|a|∞ is dissipative.
Now we shall regard A as a perturbation of the following operator AII

0 , given by

AII
0 U := −KUx −

a

2
U

with domain

D(AII
0 ) := D(AI

0) =

{(
p

q

)
∈ H1((0, L))×H1((0, L)) | p(0) + q(0) = p(L) + q(L) = 0

}
in the same Hilbert space

H̃ = L2((0, L))× L2((0, L)).

For U ∈ D(A) we have
AU = A0U − a

2
WU

with

W :=

(
0 1
1 0

)
.

A0
−1 is compact which can be shown as for A above.

13



Lemma 2.8 σ(A0) =
{
− a

L + kπi
L | k ∈ Z

}
Proof: We investigate the the solvability of (λ − A0)U = F for any F = (f, g)′ ∈ H̃. Using
similar ideas as in the proof of Lemma 2.2 we obtain

λ ∈ σ(A0) ⇔ e−2λL−
∫ L

0
a(y)dy = 1 ⇔ λ = λk = − a

L
+

kπi
L

, k ∈ Z.

Q.e.d.

For given, 0 < γ0 < γ1 we define the set of admissible a and L as

K(γ0, γ1) := {(a, L) | γ0 ≤
L∫

0

a(x)dx ≤ a∞L ≤ γ1}.

We shall prove that, after fixing γ0 and γ1, we can determine the maximal possible L∞-norm of
a, and the admissible values of L, that imply exponential decay.

Lemma 2.9 There are pairs (a, L) ∈ K(γ0, γ1) such that

(i) ∀ ε ∈ [ε1, ε0] : Γε = {−a
2 + ε + iη | η ∈ R} ⊂ %(A).

(ii) sup
ε∈[ε1,ε0], λ∈Γε

‖(λ−A)−1‖ < ∞.

Proof: We will show, for any admitted ε, that for λ ∈ ΓII
ε the equation (λ − A)U = F is

solvable for any F ∈ H, and the postulated estimate on the inverse holds. We shall use again a
fixed point argument to prove this. Now let F = (f, g)′ ∈ H be given as well as λ ∈ Γε. Let

Φ : H̃ −→ H̃, V → U = ΦV

be defined as solution U = (U1, U2)′ to

(λ−A0)U = F − a

2
WV

which is well defined since λ ∈ %(A0). Let us consider

U(x) = (ΦV )(x) = E0(x, 0, λ)U0 +
∫ x

0
E0(x, s, λ)

(
KF (s)− a(s)

2
KWV (s)

)
ds (2.25)

where U0 = (p0,−p0) with

p0 =

∫ L
0 e1(L, s, λ)

(
f(s)− a(s)

2 V2(s)
)
− e2(L, s, λ)

(
g(s)− a(s)

2 V1(s)
)

ds

e2(L, 0, λ)− e1(L, 0, λ)
. (2.26)

Let
U j := ΦV j , j = 1, 2.

Then

U1(x)− U2(x) = E0(x, 0, λ)(U1
0 − U2

0 ) +
∫ x

0
E0(x, s, λ)

(
a(s)
2

KW (V 2(s)− V 1(s))
)

ds.

14



This implies

|U1(x)− U2(x)| ≤ c1e
(a∞+ε0)L|U1

0 − U2
0 |+ c2e

(a∞+ε0)La∞

∫ x

0
|V 1(s)− V 2(s)|ds (2.27)

where c2 denotes here and in the sequel a generic positive constant, in particular not depending
on a or L. We conclude from (2.26)

|U1
0 − U2

0 | ≤
c1e

(a∞+ε0)La∞
sinh(ε1L)

∫ L

0
|V 1(s)− V 2(s)|ds. (2.28)

The last two inequalities yield

‖U1 − U2‖ ≤ c2
a∞ea∞Leε0L

sinh(ε1L)
‖V 1 − V 2‖.

Hence Φ is a contraction mapping if

c2
a∞ea∞Leε0L

sinh(ε1L)
< 1

Observing (2.24), this is satisfied for (a, L) in K if

c2e
γ1e3γ1a∞

sinh(γ0/8)
< 1

or, equivalently, if

a∞ <
sinh(γ0/2)

c2e4γ1
=: c0(γ0, γ1) (2.29)

(i) Now fixing γ0 and γ1, the last inequality determines the maximal possible L∞-norm of a.
(ii) Then the condition

γ0

a∞
< L ≤ γ1

a∞
(2.30)

determines the possible values of L.
(iii) Now fixing L, since a∞L > γ0, we can choose a satisfying (i) as well as

L∫
0

a(x)dx ≥ γ0 (2.31)

Altogether we have found in (i)–(iii) pairs (a, L) ∈ K for which Φ is a contraction.
Let U ≡ (p, q)′ be the unique fixed point. It satisfies

λU + KUx +
a

2
BU = F. (2.32)

By definition we have U ∈ D(A0). Since F ∈ H we obtain by integration of (2.32)

0 =
∫ L

0
f(s)− g(s)ds = λ

∫ L

0
p(s)− q(s)ds +

∫ L

0
(p + q)x(s)ds

= λ

∫ L

0
p(s)− q(s)ds.
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Without loss of generality we can assume that λ 6= 0. Then we conclude

U ∈ D(A) and (λ−A)U = F.

Finally, we obtain the uniform boundedness of the inverses as in Case (I),namely let U be still
the fixed point, and let Ũ := Φ(0). Using the same arguments as in the proof of Lemma 2.6 we
get

‖U‖ ≤ c3‖F‖

where c3 depends at most on a, L, γ0, γ1. This proves assertion (ii).

Q.e.d.

As in Case (I) we conclude the exponential stability. Let

E(t) := ‖U(t, ·)‖2 = ‖etAU0‖2

be the associated energy to problem (2.5). Then

E(t) =

∥∥∥∥∥
(

p

q

)
(t, ·)

∥∥∥∥∥
2

=

∥∥∥∥∥
(

ut − ux

ut + ux

)
(t, ·)

∥∥∥∥∥
2

=
L∫

0

(u2
t + u2

x)(t, x)dx.

Theorem 2.10 For sufficiently small |a|∞ and admissible (a, L) ∈ K(γ0, γ1), we have

∃ c0 > 0∃α0 > 0 ∀t ≥ 0 : E(t) ≤ c0e
−2α0tE(0).

Using Lemma 2.9 which gives information on the spectral radius ωσ(A) := sup
λ∈σ(A)

<λ, a result of

Neves, Ribeiro and Lopes [16] saying that the essential type ωe(A) is given by

ωe(A) = − 1
2L

∫ L

0
a(y)dy. (2.33)

as well as using the general characterization (see [15])

ω0(A) = max{ωe(A), ωσ(A)},

where ω0(A) denotes the type of the semigroup,

ω0(A) = lim
t→∞

ln‖eAt‖
t

.

Using this we can establish

Theorem 2.11 Under the conditions of Theorem 2.10 we have

∃ c0 > 0 ∃α0 = α0

 1
L

L∫
0

a(x)dx

 > 0 ∀t ≥ 0 : E(t) ≤ c0e
−2α0tE(0).

α0 can be chosen as any number −α with

0 > α > − 1
2L

∫ L

0
a(x)dx + ε1, e.g. α0 :=

1
4L

∫ L

0
a(x)dx
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We can now present an example of a function a : [0, 1] −→ R, for which exponential stability
holds, but for which (1.10) is violated since we shall have

1∫
0

a(x) sin2(πx)dx < 0. (2.34)

This will not be a contradiction to a result of Freitas in [6] saying that if (1.10) is not valid, then
the solution is not exponentially decaying if one replaces a by εa for sufficiently small ε > 0,
because in our example replacing a by εa is not allowed in general because of the admissibility
criteria to be observed in the construction of (a, L) in Case (II).
Let 0 < δ1 < δ2, to be fixed later, and let

a(x) :=

{
δ1 for x ∈ [0, 1/4) ∪ (3/4, 1]

−δ2 for x ∈ [1/4, 3/4]

Then 0 <
∫ 1
0 a(x)dx = (δ1 − δ2)/2 provided δ1 > δ2. Moreover, we have

1∫
0

a(x) sin2(πx)dx =
1
2π

((π − 1)δ1 − (π + 1)δ2) < 0

if and only if

δ1 <
π + 1
π − 1

δ2.

Hence choosing δ1, δ2 such that

δ2 < δ1 <
π + 1
π − 1

δ2 (2.35)

we have a function a satisfying

0 <

∫ 1

0
a(x)dx and

1∫
0

a(x) sin2(πx)dx < 0.

Choose δ2 := αδ1 such that (2.35) is satisfied, e.g. α := 1/1.92 for the rest of the exposition.
Then δ1 is still free. Let us define the function â as

â(x) :=
a(x/L)

L
for x ∈ (0, L)

where L will be chosen to satisfy (2.30). Since a∞ = δ1 we have â∞ = δ1/L. We are free to
choose γ0 and γ1. Fix γ1. The condition (2.31) can be satisfied if

γ0 ≤ (δ1 − δ2)/2 =
23
96

δ1

i.e. we choose δ1 := 96
23γ0, condition (2.29) can now be satisfied if

δ1

L
< c0(γ0, γ1) = cγ1 sinh(γ0/2)

where
cγ1 :=

1
c2 exp(γ1) exp(3γ1)
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Since, for small γ0,
sinh(γ0/2) ≥ γ0

3
it is hence sufficient to require

L >
288

23cγ1

(2.36)

The last condition (2.30) can now be satisfied if 96
23γ0 ≤ γ1 e.g. take γ0 := χ23

96γ1 with arbitrary,
but then fixed χ ∈ (0, 1]. As conclusion from the discussion of Case (II) above we get that with
such an L and the given â the solution to

utt − uxx + â(x)ut = 0 in (0, L)

plus initial and boundary conditions has exponentially decaying energy. In the way we have
chosen â resp. a, we have now found u solving

utt − uxx + a(x)ut = 0 in (0, 1)

with exponentially decaying energy for a function a satisfying

0 <

∫ 1

0
a(x)dx and

1∫
0

a(x) sin2(πx)dx < 0.

We finish this section giving some higher norm estimates valid in both Cases (I) and (II),
i.e. whenever exponential stability is given. Differentiating the differential equation (2.1) with
respect to t,

(∂j
t u)tt − (∂j

t u)xx + a(x)(∂j
t u)t = 0, j ∈ N,

and using the fact that derivatives with respect to x can be computed from the differential
equation successively, we get as a consequence of a ∈ C0([0, L], R), and a ∈ Cs−2([0, L], R) if
s ≥ 2 the following theorem.

Theorem 2.12 Under the conditions of the Theorems 2.7 and 2.10, respectively, we have

∀s ∈ N ∃Cs > 0 ∀t ≥ 0 :

∥∥∥∥∥
(

ut

ux

)
(t, ·)

∥∥∥∥∥
Hs((0,L))

≤ Cse
−α0t

∥∥∥∥∥
(

u1

u0,x

)∥∥∥∥∥
Hs(0,L)

where α0 is given in Theorem 2.11, and the data are assumed to be sufficiently smooth and to
satisfy the usual compatibility conditions.

Remarks:

1. We only used a ∈ L∞((0, L)).

2. Without loss of generality we studied the equation

utt − d0uxx + a(x)ut = 0, x ∈ (0, L),

for d0 = 1, because if d0 > 0 is arbitrary we may define

v(t, y) := u(t,
√

d0y), y ∈
(

0,
L√
d0

)
.
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Then v satisfies
vtt − vyy + ã(y)vt = 0, y ∈

(
0,

L√
d0

)
,

for which Theorem 2.11 can be applied directly replacing a by ã and L by L/
√

d0. The

decay rate α̃0 = α̃0

√
d0
L

L/
√

d0∫
0

ã(y)dy

 turns into α̃0 = α0

(
1
L

L∫
0

a(y)dy

)
again since

√
d0
L

L/
√

d0∫
0

ã(y))dy = 1
L

L∫
0

a(x)ds.

3 Global existence for the nonlinear system

We now return to the nonlinear system (1.1)–(1.3) assuming again the positivity of the mean
value (1.4) and also the condition (1.5) on the nonlinearity, which, for example, is satisfied in
the classical model for a nonlinear string, where

σ(ux) =
ux√

1 + u2
x

.

After recalling the local well-posedness it is the aim to prove a global existence result for data
(u0, u1) being sufficiently small in H4((0, L)), and, quasi simultaneously, to obtain the exponen-
tial stability. The method used imitates that one which is well-known for nonlinear evolution
equations and systems, see [18] for a presentation of the general approach for Cauchy problems
(x ∈ Rn, no boundary). Here we shall have to prove so-called high energy estimates and a
weighted a priori estimate — describing the expected exponential decay — for a boundary value
problem and a non-dissipative problem reflected in the possible negativity of the function a. To
deal with the latter the condition (1.11) on the negative part of a, i.e.

‖a−‖L∞ < α0,

will be used.
We assume that the conditions on a and on (a, L), respectively, are satisfied which assured the
exponential stability of the linearized systems as given in Theorem 2.12.
Observing that the term a(x)ut is of lower order, we can recall the following local existence
theorem, see for instance [4] or [8, p.97].

Theorem 3.1 There is T = T (‖(u0, u1)‖H4×H3) > 0 such that (1.1)–(1.3) has a unique local
solution

u ∈
3⋂

k=0

Ck([0, T ],H4−k((0, L)) ∩H1
0 ((0, L)) ∩ C4([0, T ], L2((0, L)).

Remark: Of course u0, u1 have to satisfy the usual compatibility conditions.
Now we turn to the high energy estimates. For this purpose it is useful to rewrite (1.1)–(1.3)

as a first-order system for
V := (ut, ux)′.
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Then V satisfies

Vt +

(
a −d0∂x

−∂x 0

)
︸ ︷︷ ︸

=:−A

V =

(
b(ux)∂xux

0

)
=: F (V, Vx),

V (t = 0) = (u1, ∂xu0)′ =: V0.

The first formally defined operator A generates a C0-semigroup as usual, for F = 0 the solution
V is given by

V (t) = etAV0

and the (local) solution to (1.1)–(1.3) satisfies

V (t) = etAV0 +
t∫

0

e(t−r)AF (V, Vx)(r)dr. (3.1)

From Section 2 we conclude that
V := (ut, ux)

as solution of the linear system (1.1)–(1.3) written in first-order form satisfies

V (t) = etAV (t = 0)

with a C0-semigroup {etA}t≥0 satisfying

‖V (t)‖Hs ≤ cse
−α0t‖V (t = 0)‖Hs (3.2)

for s = 0, 1, 2 (cp. below). This follows from Theorem 2.1 for s = 0 and obtained for s = 1, 2
by differentiating the equation (1.8) with respect to t one and then twice, as well as using the
differential equation to obtain information for derivatives in x. Let

a−∞ := ‖a−‖L∞ (3.3)

in the sequel we assume without loss of generality that ux is small enough a priori, i.e. such
that σ′(ux) remains strictly positive (near ux = 0, cp. (1.5)), or in other terms we can assume
that there is η > 0 such that

d0 − b(ux) ≥ d0

2
> 0 if |ux| < η < 1. (3.4)

Lemma 3.2 There are constants c2, c3 > 0, not depending on V0 or T , such that the local
solution given in Theorem 3.1 satisfies for t ∈ [0, T ]:

‖V (t)‖2
H3 ≤ c2‖V0‖2

H3ea−∞te
c3
∫ t

0
(‖V (r)‖H2+‖V (r)‖2

H2+‖V (r)‖3
H2 )dr

Proof: Multiplying

utt − d0uxx + aut = b(ux)uxx (3.5)
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by ut in L2 we obtain

(∫
≡

L∫
0

)

1
2

d

dt

∫
u2

t + d0u
2
xdx = −

∫
au2

t dx +
∫

b(ux)uxxutdx (3.6)

≤
∫

a−∞u2
t −

∫
(∂xb(ux))uxutdx−

∫
b(ux)uxuxt

≡ I.1 + I.2 + I.3,

|I.2| ≤ 1
2
‖b′(ux)uxx‖L∞

∫
u2

x + u2
t dx (3.7)

≤ c‖V ‖H2

∫
u2

x + u2
t dx

where c will denote a constant not depending on V 0 or on T .

I.3 = −1
2

d

dt

∫
b(ux)u2

xdx +
1
2

∫
(∂tb(ux))u2

x (3.8)

≡ I.3.1 + I.3.2.

The term I.3.2 can be estimated in the same way as I.2 in (3.7):

|I.3.2| ≤ c‖V ‖H2

∫
u2

x. (3.9)

The term I.3.1 can be incorporated into and be dominated by the left-hand side of inequality
(3.6) after an integration with respect to t later on, since

t∫
0

I.3.1(r)dr = −1
2

∫
b(ux)u2

xdx +
1
2

∫
b(ux(t = 0))u2

x(t = 0)dx. (3.10)

Summarizing (3.6)–(3.10) we have proved

‖V (t)‖2
L2 ≤ c‖V0‖2

L2 +
t∫

0

(a−∞ + c‖V (r)‖H2)‖V (r)‖2
L2dr. (3.11)

In order to get estimates for the higher-order derivatives of V (resp. u) we differentiate equation
(3.5) with respect to t to get

uttt − d0utxx + autt = b′(ux)uxtuxx + b(ux)utxx. (3.12)

Multiplying by utt in L2 we obtain

1
2

d

dt

∫
u2

tt + d0u
2
txdx ≤

∫
a−∞u2

ttdx +
∫

b(ux)utxxuttdx +
∫

b′(ux)uxtuxxuttdx (3.13)

≡ I.4 + I.5 + I.6.

The term I.5 can be treated like the term I.2 + I.3 from (3.6), see (3.7)–(3.11).

|I.6| ≤ c‖V ‖H2

∫
u2

tt + u2
txdx. (3.14)
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Observe that the differential equation (3.5) yields the estimate

|uxx|2 ≤ c(|utt|2 + |ut|2). (3.15)

Thus we obtain from (3.11), (3.13), (3.14)

‖V (t)‖2
H1 ≤ c‖V0‖2

H1 +
t∫

0

(a−∞ + c‖V (r)‖H2)‖V (r)‖2
H1dr. (3.16)

Differentiating the differential equation (3.12) once more with respect to t we get

utttt − d0uttxx + auttt = b′′(ux)u2
xtuxx + b′(ux)uxttuxx + 2b′(ux)uxtuxxt + b(ux)uttxx. (3.17)

Multiplying by uttt in L2 we obtain

1
2

d

dt

∫
u2

ttt + d0u
2
ttxdx ≤

∫
a−∞u2

tttdx +
∫

b′′(ux)u2
xtuxxutttdx (3.18)

+
∫

b′(ux)uxttuxxutttdx

+2
∫

b′(ux)uxtuxxtutttdx +
∫

b(ux)uttxxutttdx

≡ I.7 + I.8 + I.9 + I.10 + I.11.

The term I.11 is again dealt with like I.2 + I.3 in (3.7)– (3.11).

|I.8|+ |I.9|+ |I.10| ≤ c(‖V ‖2
H2 + ‖V ‖H2)

∫
u2

xt + u2
ttt + u2

ttt + u2
xtt + u2

xxtdx. (3.19)

Hence we obtain from (3.16), (3.19) using (3.12) to estimate utxx,

‖V (t)‖2
H2 ≤ c‖V0‖2

H2 +
t∫

0

a−∞ + c(‖V (r)‖H2 + ‖V (t)‖2
H2)‖V (r)‖2

H2dr. (3.20)

The final estimate is obtained after differentiating the differential equation a last time with
respect to t yielding

uttttt − d0utttxx + autttt = b′′′(ux)u3
xtuxx + 3b′′(ux)uxtuxttuxx (3.21)

+3b′′(ux)u2
xtuxxt + b′(ux)uxtttuxx + 3b′(ux)uxttuxxt

+3b′(ux)uxtuxxtt + b(ux)utttxx

≡
18∑

j=12

θj .

Remark: The derivatives of order five are formally not defined but the estimates aimed at will
only involve derivatives of order four. A usual approximation argument with data V0 ∈ H4((0, 2))
and the lower semicontinuity of the norms justifies our calculation finally for V0 ∈ H3((0, 2))
only.
A multiplication of (3.21) by utttt in L2 yields

1
2

d

dt

∫
u2

tttt + u2
tttxdx ≤

∫
a−∞u2

tttt +
18∑

j=12

∫
θjuttttdx. (3.22)
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The term
∫

θ18uttttdx can be dealt with like I.2. + I.3 in (3.7)–(3.11). The terms
∫

θjutttxdx for
j 6= 16, 18 can be estimated easily as before by∣∣∣∣∣∣∣

17∑
j=12
j 6=16

∫
θjuttttdx

∣∣∣∣∣∣∣ ≤ c(‖V ‖H2 + ‖V ‖2
H2 + ‖V ‖3

H2)‖V ‖2
H3 . (3.23)

The only more difficult term is∫
θ16utttt = 3

∫
b′(ux)uxttuxxtuttttdx

involving three factors of order at least three. This term is estimated as follows using the
Gagliardo-Nirenberg inequality.∣∣∣∣ ∫ b′(ux)uttxutxxuttttdx

∣∣∣∣ ≤ c‖b′(ux)uttx‖L2‖utttt‖L2 (3.24)

≤ c‖b′(ux)uttxutxx‖L2‖V ‖H3 .

‖b′(ux)uttxutxx‖L2 ≤ ‖∂x(b′(ux)utt)∂x(utx)‖L2 + ‖b′′(ux)uxxuttutxx‖L2 (3.25)

≤ ‖∂x(b′(ux)utt)∂x(utx)‖ L2 + c‖V ‖2
H2‖V ‖H3 .

Using Young’s inequality and the Gagliardo-Nirenberg inequality, and observing L∞ ↪→ H1, we
conclude

‖∂x(b′(ux)utt)∂x(utx)‖L2 ≤ ‖∂x(b′(ux)utt)‖L4‖∂x(utx)‖L4 (3.26)

≤ c‖b′(ux)utt‖1/2
H2 ‖b′(ux)utt‖1/2

L∞‖utx‖1/2
H2 ‖utx‖1/2

L∞

= c
(
‖b′(ux)utt‖L∞‖utx‖H2

)1/2 (‖b′(ux)utt‖H2‖utx‖∞
)1/2

≤ c
(
‖b′(ux)utt‖L∞‖utx‖H2 + ‖utx‖L∞‖b′(ux)utt‖H2

)
≤ c‖V ‖H2‖V ‖H3 .

From (3.20) and (3.22)–(3.26) we conclude

‖V (t)‖2
H3 ≤ c‖V0‖2

H3 +
t∫

0

a−∞ + c(‖V ‖H2 + ‖V ‖2
H2 + ‖V ‖3

H2)(r)‖V (r)‖2
H3dr

which yields the assertion of Lemma 3.2 using Gronwall’s inequality.

Q.e.d.

Next we want to prove a weighted a priori estimate for ‖V (t)‖H2 .

Remark: Observe that we did not yet use the assumption (1.5) requiring b′(0) = σ′′(0) = 0.
Indeed, with this assumption it would be possible to remove the linear term ‖V (t)‖1

H2 in the
exponential in the estimate for ‖V (t)‖H3 in Lemma 4.2, i.e. the estimate would read

‖V (t)‖2
H3 ≤ C‖V0‖2

H3ea−∞te
c

t∫
0

(‖V (r)‖2
H2+‖V (r)‖3

H2 )dr

(3.27)
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and without loss of generality the a priori boundedness — being proved a posteriori — of
‖V (t)‖H2 would be used to achieve

‖V (t)‖2
H3 ≤ C‖V0‖2

H3ea−∞te
c

t∫
0

(‖V (r)‖2
H2dr

. (3.28)

Since we aim at exponential decay it will not matter if we use (3.28), (3.27) or the statement of
Lemma 3.2.
Using the representation (3.1) and Theorem 2.12 — observing that the nonlinearity satisfies the
compatibility conditions to estimate the H2-norm — we can estimate

‖V (t)‖H2 ≤ ‖eAtV0‖H2 +
t∫

0

‖e(t−r)AF(V, Vx)(r)‖H2dr (3.29)

≤ c1e
−α0t‖V0‖H2 + c1

t∫
0

e−α0(t−r)‖F (V, Vx)‖H2dr

and it will be in the following estimate for ‖F (V, Vx)‖H2 , where we really use assumption (1.5)
to get an estimate we need later on in the weighted a priori estimate.

Lemma 3.3 ∃ c > 0 ∀W ∈ H3 : ‖F (W,Wx)‖H2 ≤ c‖W‖2
H2‖W‖H3.

Proof: (cp. [18] in Rn) Let u := W 1.

Using b(τ) =
1∫
0

b′′(µτν)dνµdµτ2 we obtain

‖b(ux)uxx‖H2 ≤ c(‖b(ux)‖∞‖uxx‖H2 + ‖b(ux)‖H2‖uxx‖L∞)

≤ c(‖ux‖2
L∞‖ux‖H3 + ‖ux‖L∞‖uxx‖L∞‖ux‖H3)

≤ c‖W‖2
H2‖W‖H3

Q.e.d.

Using Lemma 3.3 we conclude from (3.29)

‖V (t)‖H2 ≤ ce−α0t‖V0‖H2 + c

t∫
0

e−α0(t−r)‖V (r)‖2
H2‖V (r)‖H3dr (3.30)

which is the starting point to prove the following weighted a priori estimate.

Lemma 3.4 For 0 ≤ t ≤ T let

M2(t) := sup
0≤r≤t

(eτ0r‖V (r)‖H2)

where 0 < τ0 ≤ α0. Let (1.11) be satisfied, i.e. a−∞ < d0. Then there are M0 > 0 and δ > 0 such
that if ‖V0‖H3 < δ we have for all 0 ≤ t ≤ T :

M2(t) ≤ M0 < ∞

M0 is independent of T (and of V0).
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Proof: From (3.30) and the energy estimate in Lemma 3.2 we conclude

‖V (t)‖H2 ≤ c‖V0‖H2e−α0t + c

t∫
0

e−α0(t−r)‖V (r)‖2
H2‖V0‖H3e

a−∞
2

r ×

× e
c

r∫
0

(‖V (τ)‖H2+‖V (τ)‖2
H2+‖V (τ)‖3

H2 )dτ

dr

If ‖V0‖H3 ≤ δ (δ to be determined) we get

‖V (t)‖H2 ≤ cδe−α0t + cδe
c

t∫
0

(‖V (τ)‖H2+‖V (τ)‖2
H2+‖V (τ)‖3

H2 )dτ
t∫

0

e−α0(t−r)e
a−∞r

2 ‖V (r)‖2
H2dr

≤ cδe−α0t + cδe
c(M2(t)+M2

2 (t)+M3
2 (t)

t∫
0

e−α0r+e−2α0r+e−3α0rdr

×

×M2
2 (t)

t∫
0

e−α0(t−r)e
a−∞r

2 e−2α0rdr

which implies

M2(t) ≤ cδ + cδec(M2(t)+M2
2 (t)+M3

2 (t)) × (3.31)

×M2
2 (t) sup

0≤ t<∞
eα0t

t∫
0

e−α0(t−r)e
a−∞
2

re−2α0rdr.

Since by assumption (1.11) it easily follows that

sup
0≤ t<∞

eα0t

t∫
0

e−α0(t−r)e
a−∞
2

re−2α0rdr ≤ c < ∞

we obtain from (3.31) for 0 ≤ t ≤ T :

M2(t) ≤ cδ + cδM2
2 (t)ec(M2(t)+M2

2 (t)+M3
2 (t)). (3.32)

By standard arguments (cp. e.g. [18]), considering the function

f(x) := cδ(1 + cx2ec(x+x2+x3))− x

it follows that M2(t) is uniformly bounded by the first zero M0 of f provided δ and M2(0) are
sufficiently small.
This proves Lemma 3.4.

Q.e.d.

Now we can formulate and prove the main theorem on global existence and exponential decay.

Theorem 3.5 Let the assumptions (1.5) and (1.11) be satisfied. Then there exists δ > 0 such
that if ‖V0‖H3 < δ there is a unique global solution u to (1.1)–(1.3) satisfying

u ∈
3⋂

k=0

Ck
(
[0,∞), H4−k((0, L)) ∩H1

0 ((0, L)
)
∩ C4

(
[0,∞), L2((0, L))

)
.
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Moreover there are constants c0 = c0(V0) > 0 and c1 > 0 such that

‖V (t)‖H2 ≤ c0e
−α0t

and
‖V (t)‖H3 ≤ c1‖V0‖H3ea−∞t, t ≥ 0.

Proof: From Lemma 3.2 and Lemma 3.4 we conclude for the local solution

‖V (t)‖H3 ≤ c‖V0‖H3ea−∞te
c

t∫
0

(‖V (r)‖H2+‖V (r)‖2
H2+‖V (r)‖3

H2 )dr

≤ c‖V0‖H3ea−∞tec(M0+M2
0 +M3

0 )

≤ c‖V0‖H3ea−∞t,

c being independent of t or V0, from where the global existence follows by the usual continuation
argument. The claim on the exponential decay of ‖V (t)‖H2 now is a consequence of Lemma 3.4.

Q.e.d.

The assumption (1.11), i.e.
a−∞ < 2α0

together with the explicit estimates for α0 from Section 2 just requires that the possibly existing
negative part of a is not too large in comparison to its positive part.

Acknowledment: The authors thank Farid Ammar Khodja and Assia Benabdallah for discus-
sions and for bringing the papers [3, 5] to their attention, and also for mentioning the relation
of [16] to Section 2.
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