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Abstract: We consider the system of dual-phase-lag thermoelasticity proposed by Chandrasekha-

raiah and Tzou. First, we prove that the solutions of the problem are generated by a semigroup

of quasi-contractions. Thus, the problem of third-order in time is well-posed. Then the expontial

stability is investigated. Finally the spatial behavior of solutions is analyzed in a semi-infinite

cylinder and a resuult on the domain of influence is obtained.

1 Introduction

It is well known that the usual theory of heat conduction based on Fourier’s law predicts

infinite heat propagation speed. Heat transmission at low temperature has been observed

to propagate by means of waves. These aspects have caused intense activity in the field of

heat propagation. Extensive reviews on the so-called second sound theories (hyperbolic

heat conduction) are given in Chandrasekharaiah [3] and in the books of Müller and

Ruggeri [20] and Jou et al. [18]. A theory of heat conduction in which the evolution

equation contains a third order derivative with respect to time was proposed in [8]. Several

instability results have been obtained for the theory, see e.g. [7, 23], as well as proof of

the nonexistence of global solutions in the nonlinear theory [29].

In 1995, Tzou [34] proposed a theory of heat conduction in which the Fourier law is
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replaced by an approximation of the equation

q(x, t+ τq) = −k∇θ(x, t+ τθ), τq > 0, τθ > 0, (1.1)

where τq is the phase-lag of the heat flux and τθ is the phase-lag of the gradient of

temperature. The relation (1.1) states that the gradient of temperature at a point in the

material at time t+τθ corresponds to the heat flux vector at the same point at time t+τq.

The delay time τθ is caused by microstructural interactions such as phonon scattering or

phonon-electron interactions. The delay τq is interpreted as the relaxation time due to

fast-transient effects of thermal inertia. The thermoelastic model was proposed in [3]

µui,jj + (λ+ µ)uj,ji −mθ,i = ρüi (1.2)

−qi,i −mθ0u̇,i = cθ̇ (1.3)

qi(·, t+ τq) = −kθ,i(·, t+ τθ) (1.4)

where ρ, θ0, c are positive constants. µ > 0 and λ are the Lamé moduli satisfying µ∗ > 0,

where µ∗ is defined in (2.16) depending on the space dimension.

Here and in the sequel we use the Einstein summation convention with indices in the

range 1 . . . n, where n = 1, 2, 3 denotes the space dimension. Instead of Fourier’s law,

being equivalent to assuming

τq = τθ = 0 (1.5)

and leading to the classical hyperbolic-parabolic system of thermoelasticity together with

the physical paradoxon of infinite propagation speed through the heat conduction part,

we consider the model proposed by Chandrasekharaiah and Tzou [3], where

τq > 0, τθ > 0

are positive relaxation times, and where a second-order approximation for q and a first-

order approximation for θ is used, turning (1.4) into

qi + τq q̇i +
τ 2
q

2
q̈i = −kθ,i − kτθθ̇,i (1.6)

Thus, in this paper, we consider the theory developed by taking a Taylor series ex-

pansion on both sides of (1.1) and retaining terms up to the second-order in τq, but only

to the first-order in τθ. The model that we consider here involves a system of two coupled

partial differential equations. It is of hyperbolic type (cp. Section 3). One of them is

the usual second order in time equation of motion in the major part of thermoelastic

systems and the other has a third-order derivative with respect to time. This system of

equations have not received much attention in the literature (until now), but Hetnarski
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and Ignaczak consider it within the nonclassical approach of thermoelasticity in their re-

view [10]. However, we can recall several references in the case that we do not consider

mechanical deformations, cp. [15, 25]. It is known that, when τθ = 0, solutions of heat

conduction are not determined by means of a semigroup [9] (see p.125). However in [25], it

was established that whenever τθ > 0, one can obtain solutions by means of a semigroup.

Thus, the term τθ4θ̇ plays a role in the stabilization for the equation. In this paper we

extend some of the results on existence and stability obtained for the heat conduction to

the thermoelastic problem.

The case τθ > 0 but τq = 0, also leading to a hyperbolic system, the system of Lord

and Shulman, has been studied before, and, for example, the exponential stability has

been obtained for bounded reference configurations as well as the nonlinear stability near

the equilibrium, see [31, 32].

A natural question is the determination of the time parameters τq and τθ (see [10]) and

our work is motivated by this question. One might expect that mathematical analysis of

existence, uniqueness and stability issues, for example, would furnish certain restrictions

on the parameters. One condition to be satisfied by solutions of a heat equation should

be exponential stability (or at least stability). In [25], exponential stability (for the heat

conduction) was established whenever

τθ > τq/2. (1.7)

We also recall that in [10] Hetnarski and Ignaczak asked (p.474) for a general domain of

influence theorem as well as a principle of Saint-Venant’s type for this theory. We note

that results of this kind were obtained in [15] for the heat conduction. In this paper we

also extend some of the results concerning the time asymptotic and the spatial behavior

obtained for the heat conduction in order to include mechanical deformations.

Thus, under condition (1.7), one has a heat theory with a third-order derivative in

time in the equation that predicts stability. This is of interest in the light of the results

obtained in the theory proposed in [8]. By means of several exact solutions instability

of solutions was also established in [25] whenever the condition (1.7) is violated. Thus,

one may assume that the condition (1.7) must be satisfied in order to use this model to

describe heat transmission. In fact one of the objects of this paper is to extend stability

results to the thermoelastic problem. In [26] it was demonstrated for a bounded interval

(0, L) ⊂ R that for the boundary conditions

u = θx = 0 (1.8)

which allows a nice series expansion of the solutions into sin(nx), cos(nx) terms, expo-

nential stability is to be expected since the relevant spectrum of the associated stationary
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operator lies strictly in the right-half complex plane.

We shall investigate here the more complicated boundary conditions

u = 0, θ = 0 (1.9)

and prove the exponential stability of the associated semigroup.

So in this paper we study three kinds of questions. One is to determine the suitable

frame where the third-order problem of thermoelasticity of Chandrasekharaiah and Tzou

type is well posed and where the solutions are stable. Second is to prove the exponential

stability for bounded reference configurations, and third to determine the spatial behavior

of the solutions of the thermoelasticity in a semi-infinite cylinder in R3.

This paper is organized as follows: in Section 2 we set down the field equations and the

boundary and initial conditions of the problem we consider in this paper. A uniqueness

and existence result is proved in Section 3. In Section 4 we prove the exponential stability

for bounded reference configurations. In Section 5, we obtain some results of Saint-

Venant’s type concerning the spatial behavior of solutions in a semi-infinte cylinder and

some consequences of them as obtained in Section 6. the last section is devoted to the

study of the spatial behavior of solutions of a non-standard problem.

When we study the spatial behavior of solutions of some problems concerning the

dual-phase-lag thermoelastic system we shall denote the three-dimensional semi-infinite

cylinder R with cross-section D. The finite end face of the cylinder is in the plane x3 = 0.

The boundary ∂D is supposed regular enough to allow the use of the divergence theorem.

We denote by R(z) the set of points of the cylinder R such that x3 is greater than z and by

D(z) the cross-section of the points such that x3 = z. The spatial evolution with distance

from the end for solutions of elliptic equations is relevant to the study of Saint-Venant’s

principle in continuum mechanics (see, e.g. [6, 11, 12, 13] for reviews of this work). Such

results for parabolic equations have also been obtained (see [6, 11, 12, 13, 14]) and more

recently for hyperbolic equations (see [2] and the references cited therein).

2 Preliminaries

We consider the homogeneous isotropic case. In this paper we study solutions (u, θ) =

(u(x, t), θ(x, t)) of the thermoelastic system for the C-T theory. The equations are

µui,jj + (λ+ µ)uj,ji −mθ,i = ρüi (2.1)

kθ̂,ii −mθ0
˙̃u,i = c ˙̃θ (2.2)

We have used the notation

f̂ = f + τθḟ , f̃ = f + τqḟ +
τ 2
q

2
f̈ , (2.3)
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where τθ > 0, τq > 0 are the dimensionless time lag parameters.

We study the qualitative behavior of classical solutions subject to the initial conditions

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), θ(x, 0) = θ0(x), θ̇(x, 0) = ϑ0(x), θ̈(x, 0) = φ0(x),

(2.4)

and the boundary conditions

ui(x, t) = θ(x, t) = 0, x ∈ ∂D × [0,∞), (2.5)

ui(x1, x2 , 0, t) = fi(xα , t) θ(x1, x2 , 0, t) = g(xα , t) on D(0) × [0,∞), (2.6)

where the prescribed boundary data fi, g on the end x3 = 0 is such that fi(xα, 0) =

u0
i (xα), θ0(xα) and fi, g are assumed to vanish on ∂D(0)× [0,∞). We will not make any

a priori assumption regarding the behavior of solutions as x3 −→ ∞.

Observe that in the limit as τθ and τq → 0, we recover from (2.1) or (2.2) the usual

thermoelastic system where, in this limiting case, only the three first of (2.4) are assumed

to hold. In this limit the existence, stability and the spatial evolution of solutions has

been studied in a variety of contexts (see, e.g., [17, 24, 4] and the references cited therein).

When τq and τθ are positive the results to be described in the sequel will be seen to be

similar to those obtained previously for such equations ( see, e.g., [2] and the references

cited therein).

In the course of our calculations, we will use the fact that the eigenvalues of the real

symmetric positive definite matrix (
a b

b l

)
(2.7)

are

λ± =
1

2

(
a+ l ±

√
(a− l)2 + 4b2

)
, (2.8)

so that the smallest eigenvalue is:

λ− =
1

2

(
a+ l −

√
(a− l)2 + 4b2

)
. (2.9)

We will use (2.7) in two particular cases. When

a = τq + τθ, b =
τ 2
q

2
, l =

τ 2
q τθ

2
, (2.10)

it can be easily verified on using (1.2) that the matrix (2.7) is indeed positive definite and

so its smallest positive eigenvalue, denoted by λ0, is given by

λ0 =
1

2

(
τq + τθ +

1

2
τ 2
q τθ −

√
τ 4
q + τ 2

q + τ 2
θ +

1

4
τ 4
q τ

2
θ + 2τqτθ − τ 2

θ τ
2
q − τ 3

q τθ

)
. (2.11)
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When

a =
2

γ
+ (τq + τθ), b =

1

2
τ 2
q , l =

1

2
τ 2
q τθ +

2

γ
(τθτq −

1

2
τ 2
q ), γ > 0, (2.12)

the matrix (2.9) is again positive definite with the smallest eigenvalue, denoted by µγ,

given by

µγ =
1

2γ

(
2 + γ(τq + τθ) +

γ

2
τ 2
q τθ + 2(τθτq −

1

2
τ 2
q )

−
√

[2 + γ(τq + τθ)−
γ

2
τ 2
q τθ − 2(τθτq −

1

2
τ 2
q )]2 + γ2τ 4

q

)
. (2.13)

To be used later, it will be worth using the following notation

Tij = µui,j + (λ+ µ)δijur,r −mδijθ. (2.14)

We have that the estimate

TjiTji ≤ (1 + ε)µ∗[µui,jui,j + (λ+ µ)ur,rus,s] + 3m2(1 + ε−1)θ2, (2.15)

is satisfied, for every positive ε, where

µ∗ =


2µ+ λ, n = 1

max{µ, 2λ+ 3µ}, n = 2

max{µ, 3λ+ 4µ}, n = 3

(2.16)

µ∗ is the maximal positive eigenvalue of the quadratic form

Q(ζ) := µζijζij + (λ+ µ)ζrrζss

cp. [4].

When we study the qualitative aspects concerning existence, uniqueness and exponen-

tial stability, and without loss of generality, we assume ρ = c = 1. However, when we

study the spatial behavior of solutions we relax this condition to assume that mass density

and thermal capacity are positive because we wish to demonstrate the dependence of the

decay parameters on ρ, c explicitly.

3 Well-posedness

We shall formulate the problem for the semi-infinite cylinder R in three space dimensions,

but the well-posedness holds for general domains, see the remarks following Theorem 3.3.

The well-posedness result for the third-order in time system can be achieved by an ap-

propriately sophisticated choice of variables and spaces which reflect the special structure

of the system.
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We first transform the system (2.1)–(2.6) to zero boundary conditions on all of ∂R by

defining

vi(xα, 0, t) := ui(xα, 0.t)− fi(xα, t), vi(xα, x3, t) := ui(xα, x3.t) for x3 > 0, (3.1)

ψ(xα, 0, t) := θ(xα, 0, t)− g(xα, t), ψ(xα, x3, t) := θ(xα, x3, t) for x3 > 0, (3.2)

and using (ui, θ) instead of (vi, ψ) again, we obtain the initial boundary value problem

µui,jj + (λ+ µ)uj,ji −mθ,i = üi − hi, (3.3)

kθ̂,ii −mθ0
˙̃ui,i = ˙̃θ − p, (3.4)

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), θ(x, 0) = θ0(x), θ̇(x, 0) = ϑ0(x), θ̈(x, 0) = φ0(x),

(3.5)

ui(x, t) = θ(x, t) = 0, x ∈ ∂R × [0,∞) (3.6)

where the given external force h and heat supply p arise from the transformation (3.1),

(3.2) in terms of the boundary data f and g, respectively.

For the transformation to a first-order system that finally will be characterized by a

semigroup, we apply the differential operator˜from (2.3) to the differential equation (3.3)

and obtain

µũi,jj + (λ+ µ)ũj,ji −mθ̃,i = ¨̃ui + h̃i. (3.7)

We remark that finding a solution (ũ, θ) allows to determine the desired solutions (u, θ)

of the original system.

Defining

V := (ũ, ũt, θ, θt.θtt)
′

we obtain

Vt = AV + F, V (0) = V 0 (3.8)

with the (yet formal) differential operator A given by the symbol

Af :=


0 1 0 0 0

µ∆ + (λ+ µ)∇∇′ 0 −m∇ −τqm∇ − τ2
q m

2
∇

0 0 0 1 0

0 0 0 0 1

0 −2mθ0

τ2
q
∇′ 2k

τ2
q
∆ 2

τ2
q
(kτθ∆− 1) − 2

τq


the right-hand side F given by

F := (0,h, 0, 0, 0, p)′

7



and the initial value

V0(x) := (ũ, ũt, θ, θt.θtt)
′(x, 0)

with its components being given in terms of the originally prescribed initial data in (3.5)

by using the differential equations.

As underlying Hilbert space we choose

H := (H1
0 (R))n × (L2(R))n ×H1

0 (R)×H1
0 (R)× L2(R)

with inner product

〈V,W, 〉H :=
4

τ 4
q

(
〈θ0V

2,W 2〉+ 〈θ0µ∇V 1,∇W 1〉+ 〈θ0(λ+ µ)∇′V 1,∇′W 1〉
)

+〈 2

τ 2
q

V 4,W 4〉+ 〈2τθk
τ 2
q

∇V 4,∇W 4〉+ 〈V 5,W 5〉+ 〈2k
τ 2
q

∇V 3,∇W 4〉

+〈2k
τ 2
q

∇V 4,∇W 3〉+ b0〈∇V 3,∇W 3〉

where 〈·, ·〉 denotes the usual L2(R)-inner product, and where b0 is chosen appropriately

large in dependence of the coefficients to assure that the bilinear form 〈·, ·〉H is positive

definite. The operator A is now given as

A : D(A) ⊂ H 7→ H, AV := AfV

with

D(A) := {V ∈ H | V 2 ∈ H1
0 (R)n, V 5 ∈ H1

0 (R), AfV ∈ H}.

The choice of the inner product is special, of course, and extends similar considerations

from [25] for the pure heat conduction problem.

Lemma 3.1 There exists a constant c1 > 0 such that for all V ∈ D(A)

|〈AV, V 〉H| ≤ c1‖V ‖2
H

holds.

Proof: We have

〈AV, V 〉H = −4mθ0

τ 2
q

〈∇V 4, V 2〉 − 4mθ0

τ 2
q

〈∇V 4, V 2〉 − 2

τq
〈V 5, V 5〉

+
2k

τ 2
q

〈∇V 4,∇V 4〉+ b0〈∇V 3,∇V 3〉

which implies the assertion.

Qed

As a consequence we see that for d > c1 the operator A− d is dissipative and invertible.
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Lemma 3.2 For all d > c1 we have that the range of A− d is all of H.

Proof: The solvability of (A− d)V = F is equivalent to solving

V 2 − dV 1 = F 1, (3.9)

µ∆V 1 + (λ+ µ)∇∇′V 1 −m∇V 3 − τqm∇V 4 −
τ 2
qm

2
∇V 5 − dV 2 = F 2, (3.10)

V 4 − dV 3 = F 3, (3.11)

V 5 − dV 4 = F 4, (3.12)

−2mθ0

τ 2
q

∇′V 2 +
2k

τ 2
q

∆V 3 +
2

τ 2
q

(kτθ∆− 1)V 4 − 2

τq
V 5 − dV 5 = F 5. (3.13)

Eliminating V 2, V 4, and V 5, and using

E := −µ∆− (λ+ µ)∇∇′

we have to solve

−EV 1 + d2V 1 + (m+ τqmd+
τ 2
qmd

2

2
)︸ ︷︷ ︸

=:α1

∇V 3 = F 2 + dF 1 + (τqm+
τ 2
qmd

2
)∇F 3

+
τ 2
qm

2
∇F 4, (3.14)

− (
2k

τ 2
q

+
2kτθd

τ 2
q

)︸ ︷︷ ︸
=:γ1

∆V 3 + (
2d

τ 2
q

+
2d2

τq
+ d3)︸ ︷︷ ︸

=:δ1

V 3 +
2mθ0d

τ 2
q︸ ︷︷ ︸

=:β1

∇′V 1 =

−F 5 − 2mθ0

τ 2
q

∇′F 1 − 2

τ 2
q

F 3 − (
2

τq
+ d)(dF 3 + F 4) +

2kτθ
τ 2
q

∆F 3. (3.15)

Hence we consider for G1 ∈ L2(R)3 and G2 ∈ H−1, the dual space to H1
0 (R), the system

−EV 1 + d2V 1 + α1∇V 3 = G1, (3.16)

−γ∆V 3 + δV 3 + β∇′V 1 = G2 (3.17)

where α1, β1, γ1, δ1 are positive. If (V 1, V 3) ∈ (H1
0 (R))n×H1

0 (R) solve (3.16),(3.17), then

V 2, V 4 and V 5 can be determined from the equations (3.9), (3.11) and (3.12), respectively,

and V ∈ D(A) will solve (A− d)V = F .

−E + d2 can be regarded as a positive self-adjoint operator the inverse of which maps

L2(R)3 7→ (H2(R) ∩H1
0 (R))n, hence V 1 should satisfy

V 1 = (−E + d2)−1(G1 − α1∇V 3).

9



Plugging this into (3.17) it remains to determine V 3 as a solution in H1
0 (R) of

−γ1∆V
3 + δ1V

3 − α1β1∇′(−E + d2)−1∇V 3 = G2 − β1∇′(−E + d2)−1G1. (3.18)

But (3.18) can be solved easily because the bilinear form

B(g, h) := γ1〈∇g,∇h〉+ δ1〈g, h〉+ α1β1〈(−E + d2)−1/2∇g, (−E + d2)−1/2∇h〉

is positive on H1
0 (R), and hence the Lax & Milgram Lemma yields the solvability of (3.18)

for any right-hand side in H−1. This proves the assertion of the Lemma.

Qed

Now we conclude from the last two Lemmata that A generates a C0-semigroup, and hence

the initial (boundary) value problem (3.8) is uniquely solvable:

Theorem 3.3 For any F ∈ C0([0,∞), D(A)) or F ∈ C1([0,∞),H) and any V 0 ∈ D(A)

there is a unique solution V to (3.8) with V ∈ C1([0,∞),H) ∩ C0([0,∞), D(A)).

The well-posedness consideration in this section extend naturally to other domains Ω ⊂
Rn, n = 1, 2, 3, instead of the three-dimensional cylinder R, e.g. literally to smoothly

bounded domains and to convex domains (where elliptic H2-regularity up to the boundary

holds).

The system under consideration is of hyperbolic type, as we shall demonstrate in the

one-dimensional case. Here the differential equations (3.7), (3.4) turn into

ũtt = α∗ũxx −
τ 2
qm

2
θttx − τqmθtx −mθx, (3.19)

θttt = − 2

τq
θtt −

2

τ 2
q

θt −
2mθ0

τ 2
q

ũtx +
2τθk

τ 2
q

θtxx +
2k

τ 2
q

θxx (3.20)

where α∗ := 2µ+ λ and the right-hand sides are assumed to be zero.

Defining

W := (ũx, ũt, θx, θt, θtx, θtt)
′

we obtain

Wt = BWx +DW

where

B :=



0 1 0 0 0 0

α∗ 0 0 0 0 − τ2
q m

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 −2mθ0

τ2
q

2k
τ2
q

0 2τθk
τ2
q

0


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and

D :=



0 0 0 0 0 0

0 0 −m 0 −τqm 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 − 2
τ2
q

0 − 2
τq


.

The eigenvalues of B are

λ1 = λ2 = 0, λ3|4|5|6 = ± 1√
2

√√√√(m2θ0 +
2τθk

τ 2
q

+ α∗)±

√
(m2θ0 +

2τθk

τ 2
q

+ α∗)2 − 8α∗τθk

τ 2
q

.

which are all real, thus characterizing a hyperbolic system. The hyperbolicity also becomes

apparent in the results on the domains of dependence in the following sections.

4 Exponential stability

We recall that in classical thermoelasticity as well as in several other thermoelastic models

like the Lord-Shulman theory or the model of type III, the exponential stability of the

system could be proved for bounded domains in one space dimension as well as for radially

symmetric situations in higher dimensions, see e.g. [17, 31, 32, 28]. We shall demonstrate

the exponential stability in one space dimension. Let (u, θ) satisfy (cp. (3.7), (3.4) or

(3.19), (3.20))

ũtt − α∗ũxx +mθ̃x = 0 (4.1)

θ̃t +mθ0ũtx − kθ̂xx = 0 (4.2)

with boundary conditions

u = θ = 0 for x = 0, L (4.3)

and initial conditions given in terms of the original initial conditions u(·, 0), ut(·, 0), θ(·, 0).

As in the previous section we define

V := (ũ, ũt, θ, θt.θtt)
′

and we have

‖V (t)‖H =

∫ L

0

{
4θ0

τ 4
q

ũ2
t +

4θ0α∗
τ 4
q

ũ2
x +

2

τ 2
q

θ2
t +

2τθk

τ 2
q

θ2
tx + θ2

tt +
4k

τ 2
q

θxθtx + b0θ
2
x

}
dx

≡ 2EH(t) (4.4)

11



defining the first “energy” term EH(t). Another energy term is defined by

E(t) :=
1

2

∫ L

0

{
θ0ũ

2
t + θ0α∗ũ

2
x + θ̃2 +

τ 2
q τθk

2
θ2

tx + k(τq + τθ)θ
2
x +

kτ 2
q

2
θxθtx

}
dx. (4.5)

The aim will be to find a suitable Lyapunov functional for the energy terms that proves

the exponential stability.

Multiplying the differential equation (4.1) by θ0ũt and (4.2) by θ̃, integrating and

performing partial integrations we obtain

d

dt
E(t) = −k

∫ L

0

θ2
xdx− τq(τθ −

τq
2

)k

∫ L

0

θ2
txdx

≤ −c1
∫ L

0

{
θ2

x + θ2
tx

}
dx (4.6)

for some positive constant c1, if the condition (1.7) holds. Then (4.6) reflects the dissi-

pative character of the system. We shall assume (1.7) in the sequel, cp. [26], where the

sufficiency and necessity of (1.7) was investigated for the boundary conditions (1.8).

Multiplying the differential equation (4.2) by θtt and integrating we get

d

dt

1

2

∫ L

0

{
θ2

tt +
2

τ 2
q

θ2
t +

4k

τ 2
q

θxθtx +
2kτθ
τ 2
q

θ2
tx

}
dx = − 2

τq

∫ L

0

θ2
ttdx+

2k

τ 2
q

∫ L

0

θ2
txdx

−2mθ0

τ 2
q

∫ L

0

ũtxθttdx. (4.7)

Moreover,

d

dt

1

2

∫ L

0

b0θ
2
xdx =

∫ L

0

b0θxθtxdx ≤
b0
2

∫ L

0

θ2
xdx+

b0
2

∫ L

0

θ2
txdx. (4.8)

Multiplying (4.1) by 4θ0

τ4
q
ũt and integrating we obtain

d

dt

1

2

∫ L

0

{4θ0

τ 4
q

ũ2
t +

4θ0α∗
τ 4
q

ũ2
x}dx =

2mθ0

τ 2
q

∫ L

0

θttũtxdx−
4mθ0

τ 3
q

∫ L

0

θtxũtdx

−4mθ0

τ 4
q

∫ L

0

θxũtdx. (4.9)

We conclude from (4.7)–(4.9)

d

dt
EH(t) ≤ − 2

τq

∫ L

0

θ2
ttdx+

2k

τ 2
q

∫ L

0

θ2
txdx+

b0
2

∫ L

0

θ2
xdx+

b0
2

∫ L

0

θ2
txdx

−4mθ0

τ 3
q

∫ L

0

θtxũtdx−
4mθ0

τ 4
q

∫ L

0

θxũtdx

≤ − 2

τq

∫ L

0

θ2
ttdx+ (

b0
2

+
4mθ0

τ 4
q ε1

)

∫ L

0

θ2
xdx+ (

2k

τ 2
q

+
b0
2

+
4mθ0

τ 3
q ε1

)

∫ L

0

θ2
txdx

+2ε1

∫ L

0

ũ2
tdx (4.10)
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where ε1 > 0 will be chosen later appropriately small. Combining (4.6) and (4.10) we get

d

dt
(EH(t) +KE(t)) ≤ − 2

τq

∫ L

0

θ2
ttdx− [Kk − (

4mθ0

τ 4
q ε1

+
b0
2

)]

∫ L

0

θ2
xdx

−[Kkτq(τθ −
τq
2

)− (
4mθ0

τ 3
q ε1

+
b0
2

+
2k

τ 2
q

)]

∫ L

0

θ2
txdx

+2ε1

∫ L

0

ũ2
tdx (4.11)

where K > 0 will be chosen below appropriately large. Once ε1 will be fixed, we shall fix

K such that the coefficients in [·]-brackets in front of the two integrals of the right-hand

side in (4.11) will be strictly positive.

Now we follow ansätze described in [17] for classical thermoelasticity but we have to

add essential modifications in order to deal with the higher-order system and the different

structure under investigation.

If we multiply the differential equation (4.1) by 1
α∗
ũxx and integrate we obtain after

partial integrations

1

α∗

d

dt

∫ L

0

ũtxũxdx ≤ −2

3

∫ L

0

ũ2
xxdx+

1

α∗

∫ L

0

ũ2
txdx+ C

∫ L

0

θ̃2
xdx (4.12)

where capital C will denote a positive constant that may change from line to line in

the sequel. Multiplying the differential equation (4.2) by 3
α∗mθ0

ũtx and integrating, using

(4.1), yields

3

α∗

∫ L

0

ũ2
txdx = − 3

α∗mθ0

∫ L

0

θ̃tũtxdx−
3k

α∗mθ0

d

dt

∫ L

0

θ̂x(
1

α∗
ũtt +

m

α∗
θ̃x)dx

+
3k

α∗mθ0

∫ L

0

θ̂txũxx +
3k

α∗mθ0

[θ̂xũtx]
x=L
x=0 ,

hence

3

α2
∗mθ0

d

dt

∫ L

0

{θ̂xũtt +mθ̂xθ̃x}dx ≤ − 2

α∗

∫ L

0

ũ2
txdx+

1

6

∫ L

0

ũ2
xxdx+ C

∫ L

0

{θ̂2
tx + θ̃2

t }dx

+C‖θ̂x‖L∞({0,L})‖ũtx‖L∞({0,L}) (4.13)

where ‖f‖L∞({0,L}) := max{|f(0)|, |f(L)|} denotes the sup-norm on the boundary. Com-

bining (4.12) and (4.13) we obtain

d

dt

∫ L

0

{ 1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x}dx ≤ − 1

α∗

∫ L

0

ũ2
txdx−

1

2

∫ L

0

ũ2
xxdx

+C

∫ L

0

{θ̃2
x + θ̂2

tx + θ̃2
t }dx+

C

ε2
‖θ̂x‖2

L∞({0,L}) + ε2‖ũtx‖2
L∞({0,L}) (4.14)

13



where ε2 > 0 will be chosen appropriately small later. The differential equation (4.2)

yields ∫ L

0

θ̂2
xxdx ≤ C

∫ L

0

{θ̃2
t + ũ2

tx}dx.

Using this and the Sobolev imbedding W 1,1((0, L)) ↪→ L∞((0, L)) we arrive at

‖θ̂x‖2
L∞({0,L}) ≤

C

ε22

∫ L

0

{θ̂2
x + θ̃2

t }dx+ Cε22

∫ L

0

ũ2
txdx.

Inserting this into (4.14) we conclude for sufficiently small ε2

d

dt

∫ L

0

{ 1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x}dx ≤ − 1

2α∗

∫ L

0

ũ2
txdx−

1

2

∫ L

0

ũ2
xxdx

+
C

ε32

∫ L

0

{θ̃2
x + θ̂2

tx + θ̃2
t }dx+ Cε2‖ũtx‖2

L∞({0,L}). (4.15)

In order to estimate the boundary term, we use a well-known technique exploiting in

the multipliers a smooth extension of the normal at the boundary which means in one

dimension to use the following function Φ with

Φ(x) :=
1

2
− x

L
. (4.16)

Differentiation of (4.1) with respect to t, multiplying with Φũtx and partially integrating

yields

0 =
d

dt

∫ L

0

ũttΦũtxdx+
1

2

∫ L

0

Φx(ũ
2
tt + ũ2

tx)dx+
α∗
2

(ũ2
tx(0) + ũ2

tx(L))

+m

∫ L

0

(θtx + τqθttx +
τ 2
q

2
θtttx)Φũtxdx

whence

d

dt

∫ L

0

ũttΦũtxdx ≤ −α∗
4

(ũ2
tx(0) + ũ2

tx(L)) + C

∫ L

0

{ũ2
tt + ũ2

tx + θ2
tx + θ2

ttx}dx

−
mτ 2

q

2

∫ L

0

θtttxΦũtxdx (4.17)

14



follows. Using the differential equation (4.2) again, we obtain

mθ0

∫ L

0

θtttxΦũtxdx = k
d

dt

∫ L

0

θttxΦθ̂xxdx− k

∫ L

0

θttxΦθ̂txxdx+

∫ L

0

θtttΦθtxdx

+

∫ L

0

θtttΦxθtdx+ τq

∫ L

0

θtttΦθttxdx+ τq

∫ L

0

θtttΦxθttdx

+
τ 2
q

4

∫ L

0

Φxθ
2
tttdx

≤ k
d

dt

∫ L

0

θttxΦθ̂xxdx−
k

τθ

∫ L

0

θ̂txΦθ̂txxdx+
k

τθ

∫ L

0

θtxΦθ̂txxdx

+C

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx}dx

= k
d

dt

∫ L

0

θttxΦθ̂xxdx+
k

4τθ
[θ̂2

tx(0) + θ̂2
tx(L)]

+
d

dt

k

τθ

∫ L

0

θtxΦθ̂xxdx−
k

τθ

∫ L

0

θttxΦθ̂xxdx

+C

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx}dx. (4.18)

Inserting (4.18) into (4.17) and using (4.1) again we get

d

dt

∫ L

0

{ũttΦũtx +
kτ 2

q

2θ0

θttxΦθ̂xx +
kτ 2

q

2θ0τθ
θtxΦθ̂xx}dx ≤ −α∗

4
(ũ2

tx(0) + ũ2
tx(L))

+C

∫ L

0

{ũ2
tx + ũ2

xx + θ2
t + θ2

x + θ2
tt + θ2

tx + θ2
ttt + θ2

ttx + θ̂2
xx}dx. (4.19)

We still have to produce a term −
∫ L

0
θ̂2

xxdx-term on the right-hand side. This is obtained

as follows. We have from (4.2)

θ̂xx =
1

k
θ̃t +

mθ0

k
ũtx

which, inserted into (4.19), yields

d

dt

∫ L

0

{ũttΦũtx +
kτ 2

q

2θ0

θttxΦθ̂xx +
kτ 2

q

2θ0τθ
θtxΦθ̂xx}dx ≤ −α∗

4
(ũ2

tx(0) + ũ2
tx(L))

+C

∫ L

0

{ũ2
tx + ũ2

xx + θ2
t + θ2

x + θ2
tt + θ2

tx + θ2
ttt + θ2

ttx}dx. (4.20)

A multiplication of (4.20) by ε3 > 0, and then a combination with (4.15) yields

d

dt

∫ L

0

{ 1

α∗
ũtxũx+

3k

α2
∗mθ0

θ̂xũtt+
3k

α2
∗θ0

θ̂xθ̃x+ε3ũttΦũtx+ε3
kτ 2

q

2θ0

θttxΦθ̂xx+ε3
kτ 2

q

2θ0τθ
θtxΦθ̂xx}dx
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≤ − 1

2α∗

∫ L

0

ũ2
txdx−

1

2

∫ L

0

ũ2
xxdx+

C

ε32

∫ L

0

{θ̃2
t + θ̂2

tx + θ̃x
2}dx

−[
α∗ε3

4
− C1ε2](ũ

2
tx(0) + ũ2

tx(L))

+C2ε3

∫ L

0

{ũ2
tx + ũ2

xx}dx+ C2ε3

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx + θ̃2

x}dx

where C1, C2 are positive constants. Now choosing

ε3 := min{ 1

4α∗C2

,
1

2C2

}

and then

ε2 :=
α∗ε3
4C1

we obtain

d

dt

∫ L

0

{ 1

α∗
ũtxũx+

3k

α2
∗mθ0

θ̂xũtt+
3k

α2
∗θ0

θ̂xθ̃x+ε3ũttΦũtx+ε3
kτ 2

q

2θ0

θttxΦθ̂xx+ε3
kτ 2

q

2θ0τθ
θtxΦθ̂xx}dx

≤ − 1

4α∗

∫ L

0

ũ2
txdx−

1

4

∫ L

0

ũ2
xxdx

+C

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx + θ̃2

t + θ̃2
x}dx. (4.21)

We observe that by Poincaré’s estimates and (4.1) we have∫ L

0

{ũ2
t + ũ2

x}dx ≤ C

∫ L

0

{ũ2
tx + ũ2

xx}dx,
∫ L

0

ũ2
ttdx ≤ C

∫ L

0

{ũ2
xx + θ̃2

x}dx. (4.22)

Now let E(t) and EH(t) be given as defined in (4.4) and (4.5), respectively, and define for

K > 0 (yet to be determined)

W1(t) ≡ E1(u, θ; t) := EH(t) +KE(t), W2(t) := W1(ut, θt; t)

and the final energy term

W(t) := W1(t) +W2(t)

where we now choose ε1 small enough such that the terms 2ε1
∫ L

0
{ũ2

t + ũ2
tt}dx are absorbed

by arising corresponding negative terms (cp. (4.21), (4.22)). Then we choose K large

enough to make sure that the coefficients in [·]-brackets in (4.11) are positive. Defining

for ε > 0 the Lyapunov functional L by

L(t) :=
1

ε
W(t) +

∫ L

0

{ 1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x + ε3ũttΦũtx

+ε3
kτ 2

q

2θ0

θttxΦθ̂xx + ε3
kτ 2

q

2θ0τθ
θtxΦθ̂xx}dx
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we now find from (4.11), (4.21), (4.22), observing

k

8mθ0α∗

∫ L

0

θ̂2
xxdx ≤

1

8α∗

∫ L

0

ũ2
txdx+

1

8mθ0α∗

∫ L

0

θ̃2
t dx

and choosing ε small enough that

d

dt
L(t) ≤ −C3W(t) (4.23)

for some constant C3 > 0. Moreover, we have for ε small enough

∃K1, K2 > 0 ∀ t ≥ 0 : K1W(t) ≤ L(t) ≤ K2W(t). (4.24)

Combining (4.23) and (4.24) we have thus proved the exponential stability

Theorem 4.1 The system (4.1)–(4.3) is exponentially stable,

∃ d1, d2 > 0∀ t ≥ 0 : W(t) ≤ d1e
−d2tW(0)

The Dirichlet-Neumann type boundary conditions

ux = θ = 0 for x = 0, L

or

u = θx = 0 for x = 0, L

could be treated similarly. It is even likely that one can work just with the first energy

W1(t) (instead of W1(t) +W2(t)). Moreover, the radially symmetric case in two or three

space dimensions should be accessible.

The exponential stability result is first a result for θ and ũ. But we obtain an expo-

nential decay result also for u itself observing that for functions w, h : [0,∞)× (0, L) → R

satisfying

ẅ +
2

τq
ẇ +

2

τ 2
q

w = h (:= ũ(t, x))

and

∃ d1, d2 > 0 ∀ t ≥ 0 :

∫ L

0

|h(x, t)|2dx ≤ d1e
−2d2tC2

0

where C0 depends on the initial data according to Theorem 4.1, we conclude for z :=

(w, ẇ)′,

∃ d3, d4 > 0 ∀ t ≥ 0 :

∫ L

0

|z(x, t)|2dx ≤ d3e
−2d4t(|z(0)|2 + C2

0).

Here d4 can be any positive number smaller than min{1/τq, d2} which becomes apparent

observing that the characteristic values for the ODE for w are

β1,2 = − 1

τq
± i

1

τq
.
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5 First spatial estimates

In this Section we establish results on the spatial evolution of solutions of (2.1)-(2.6),

provided that the initial data of (2.4) is assumed to be bounded in a certain energy norm.

We begin by considering

F (z, t) = −
∫ t

0

∫
D(z)

(T̃i3
˙̃ui +

1

θ0

kθ̂,3θ̃)dAds. (5.1)

From (5.1) we find that

∂F (z, t)

∂t
= −

∫
D(z)

(T̃i3
˙̃ui +

1

θ0

kθ̂,3θ̃)dA, (5.2)

and, on using (2.1), the divergence theorem on D(z) and (2.4), (2.5), we obtain

∂F (z, t)

∂z
= −1

2

∫
D(z)

(
ρ ˙̃ui

˙̃ui + µũi,jũi,j + (λ+ µ)ũr,rũs,s +
c

θ0

(θ̃)2 (5.3)

+
k

θ0

(
(τq + τθ)|∇θ|2 +

1

2
τ 2
q τθ|∇θ̇|2 + τ 2

q∇θ∇θ̇
))
dA

−
∫ t

0

∫
D(z)

k

θ0

(
|∇θ|2 + (τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dAds+ E1(z)

where

E1(z) =
1

2

∫
D(z)

(
ρṽ0

i ṽ
0
i + µũ0

i,jũ
0
i,j + (λ+ µ)ũ0

r,rũ
0
s,s

)
dA+ (5.4)

+
1

2θ0

∫
D(z)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ 2
q τθ|∇ϑ0|2 + τ 2

q∇θ0∇ϑ0
))
dA.

Note that E1(z) depends only on the initial data (2.4) and we note that several time

derivative at the time zero can be obtained assuming the continuity of the solutions at

time t = 0. Re-writing (5.3) with z replaced by the variable η, and integrating with

respect to η from 0 to z, we get

F (z, t)− F (0, t) = −1

2

∫ z

0

∫
D(η)

(
ρ ˙̃ui

˙̃ui + µũi,jũi,j + (λ+ µ)ũr,rũs,s

)
dV (5.5)

− 1

2θ0

∫ z

0

∫
D(η)

(
c(θ̃)2 + k

(
(τq + τθ)|∇θ|2 +

k

2
τ 2
q τθ|∇θ̇|2 + kτ 2

q∇θ∇θ̇
))
dV

− k

θ0

∫ t

0

∫ z

0

∫
D(η)

(
|∇θ|2 + (τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dV ds

+
1

2

∫ z

0

∫
D(η)

(
ρṽ0

i ṽ
0
i + µũ0

i,jũ
0
i,j + (λ+ µ)ũ0

r,rũ
0
s,s

)
dV+
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+
1

2θ0

∫ z

0

∫
D(η)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ 2
q τθ|∇ϑ0|2 + τ 2

q∇θ0∇ϑ0
))
dV.

Our next step is to establish an inequality between the time and spatial derivatives of

F (z, t). By virtue of (1.2), the second integral on the right in (5.3) is non-negative. The

last three terms in the integrand in the first integral on the right in (5.3) are a quadratic

form and may be bounded below on using the smallest positive eigenvalue λ0 of (2.7),

(2.10) given in (2.11). Thus we find that

∂F (z, t)

∂z
≤ −1

2

∫
D(z)

(
ρ ˙̃ui

˙̃ui + µũi,jũi,j + (λ+ µ)ũr,rũs,s

+
c

θ0

(θ̃)2 +
kλ0

θ0

(|∇θ|2 + |∇θ̇|2)
)
dA+ E1(z). (5.6)

Applying Schwarz’s inequality in (5.2) and using (2.3), we get

|∂F
∂t
| ≤ 1

2

∫
D(z)

[
ε1
ρ
T̃ijT̃ij +

ρ

ε1
˙̃ui

˙̃ui +
c

ε2θ0

(θ̃)2 +
ε2k

2

cθ0

θ̂,3θ̂,3]dA (5.7)

≤ 1

2

∫
D(z)

[
ε1
ρ

(1 + ε)µ∗[µũi,jũi,j + (λ+ µ)ũr,rũs,s] +
1

ε1
(ρ ˙̃ui

˙̃ui)

+(
1

ε2
+

3m2ε1θ0

ρc
(1 + ε−1))

c

θ0

(θ̃)2 +
ε2k(1 + τ 2

θ )

cλ0

[
kλ0

θ0

(|∇θ|2 + |∇θ̇|2)]dA

where the weighted arithmetic-geometric mean inequality has been employed and where

εi are arbitrary positive constants.

Now, we equate the coefficients of the energetic terms in the last integral of the (5.7).

We get
1

ε1
=
ε1
ρ

(1 + ε)µ∗ =
1

ε2
+

3m2ε1θ0

ρc
(1 + ε−1) =

ε2k(1 + τ 2
θ )

cλ0

. (5.8)

That is

ε1 = β−1, ε2 =
cλ0β

k(1 + τ 2
θ )
, β =

√
(1 + ε0)µ∗

ρ
, (5.9)

where ε0 is the positive root of the second order equation

x2 +

(
1− ρk(1 + τ 2

0 )

µ∗λ0c
− 3m2θ0

µ∗c

)
− 3m2θ0

µ∗c
= 0. (5.10)

In view of (5.6) we can write (5.7) as

|∂F
∂t
|+ β

∂F

∂z
≤ βE1(z), (5.11)

where β is defined at (5.9).
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The inequality (5.11) implies that

∂F

∂t
+ β

∂F

∂z
≤ βE1(z) (5.12)

and
∂F

∂t
− β

∂F

∂z
≥ −βE1(z). (5.13)

Integrating (5.12) and recalling the definition of E1(z) in (5.4) we obtain

F (z, β−1(z − z∗)) ≤ 1

2

∫ z

z∗

∫
D(η)

(
ρṽ0

i ṽ
0
i + µũ0

i,jũ
0
i,j + (λ+ µ)ũ0

r,rũ
0
s,s

)
dV, (5.14)

+
1

2θ0

∫ z

z∗

∫
D(η)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ 2
q τθ|∇ϑ0|2 + τ 2

q∇θ0∇ϑ0
))
dV

where z ≥ z∗. Similarly on integrating (5.1) we obtain

F (z, β−1(z∗∗ − z)) ≥ −1

2

∫ z∗∗

z

∫
D(η)

(
ρṽ0

i ṽ
0
i + µũ0

i,jũ
0
i,j + (λ+ µ)ũ0

r,rũ
0
s,s

)
dV, (5.15)

− 1

2θ0

∫ z∗∗

z

∫
D(η)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ 2
q τθ|∇ϑ0|2 + τ 2

q∇θ0∇ϑ0
))
dV

where z∗∗ ≥ z. Let

E(z, t) :=
1

2

∫
R(z)

(
ρ ˙̃ui

˙̃ui + µũi,jũi,j + (λ+ µ)ũr,rũs,s

)
dV (5.16)

+
1

2θ0

∫
R(z)

(
c(θ̃)2 + k

(
(τq + τθ)|∇θ|2 +

k

2
τ 2
q τθ|∇θ̇|2 + kτ 2

q∇θ∇θ̇
))
dV

+
k

θ0

∫ t

0

∫
R(z)

(
|∇θ|2 + (τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dV ds.

If we now assume that the initial data (2.4) is such that

E(0, 0) =
1

2

∫
R

(
ρṽ0

i ṽ
0
i + µũ0

i,jũ
0
i,j + (λ+ µ)ũ0

r,rũ
0
s,s

)
dV (5.17)

+
1

2θ0

∫
R

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ 2
q τθ|∇ϑ0|2 + τ 2

q∇θ0∇ϑ0
))
dV <∞.

Then the inequalities (5.15), (5.16) imply that, for each finite time t,

lim
z→∞

F (z, t) = 0. (5.18)

Thus, we may rewrite

F (z, t) =
1

2

∫
R(z)

(
ρ ˙̃ui

˙̃ui + µũi,jũi,j + (λ+ µ)ũr,rũs,s

)
dV (5.19)
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+
1

2θ0

∫
R(z)

(
c(θ̃)2 + k

(
(τq + τθ)|∇θ|2 +

k

2
τ 2
q τθ|∇θ̇|2 + kτ 2

q∇θ∇θ̇
))
dV

+
k

θ0

∫ t

0

∫
R(z)

(
|∇θ|2 + (τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dV ds

−1

2

∫
R(z)

(
ρṽ0

i ṽ
0
i + µũ0

i,jũ
0
i,j + (λ+ µ)ũ0

r,rũ
0
s,s

)
dV.

− 1

2θ0

∫
R(z)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ 2
q τθ|∇ϑ0|2 + τ 2

q∇θ0∇ϑ0
))
dV.

Now the inequality (5.12) implies that

E(z, t) ≤ E(z∗, 0) (5.20)

where z, z∗ and t are related by t = β−1(z − z∗). In a similar way, we get

E(z, t) ≥ E(z∗∗, 0) (5.21)

for t = β−1(z∗∗ − z). From the inequalities (5.19) and (5.21), we conclude that

E(z, t) ≤ E(z∗, t∗) (5.22)

for |t− t∗| ≤ β−1(z − z∗). Thus, we have proved:

Theorem 5.1 Let (u, θ) be a solution of the initial-boundary-value problem (2.1)-(2.6).

Then the energy function E(z, t) defined in (5.20) satisfies the inequality (5.22) whenever

|t− t∗| ≤ β−1(z − z∗), provided that the initial data satisfy (5.16).

We note that this result gives an answer to the question proposed by Hetnarski and

Ignaczak ([10], p.474) a principle of Saint-Venant’s type in this theory.

If one defines the measure

E∗(z, t) =

∫ t

0

E(z, s)ds, (5.23)

the following inequalities can be obtained as in [2]:

E∗(z, t) ≤ β−1

∫ z

z−βt

E(η, 0)dη, βt ≤ z, (5.24)

E∗(z, t) ≤ β−1

∫ z

0

E(η, 0)dη +
(
1− z

βt

)
E∗(0, t), βt ≥ z. (5.25)
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6 Consequences of the estimates (5.22), (5.24), (5.25)

In this section we show some consequences of the estimates (5.22), (5.24) and (5.25).

First, we assume that the initial conditions (2.4) are homogeneous. In this case we

see that E(0, 0) = 0. Estimate (5.22) implies that E(z, t) = 0 whenever βt ≤ z. In view

of the definition (5.20) we obtain that

ũi = 0, θ = 0 (6.1)

whenever βt ≤ z. Then for every x = (x1, x2, z) such that βt ≤ z, the functions ui(x, t)

satisfy the ordinary differential equation ũi = 0 with null initial conditions. Thus, we also

conclude that

ui = 0, (6.2)

when βt ≤ z. This is a result of the kind of the domain of dependence of the solutions.

We have proved:

Theorem 6.1 Let (u, θ) be a solution of the initial-boundary-value problem (2.1)-(2.6)

when the initial conditions are null. Then (u, θ) = (0, 0) whenever βt ≤ z.

We note that this result gives an answer to the question proposed by Hetnarski and

Ignaczak ([10], p.474) concerning a general domain of influence theorem in this theory.

In this situation it is natural to look for estimates for

H(z, t) :=

∫ ∞

z

E(ξ, t)dξ, (6.3)

where z ≤ βt. We have that

H(z, t) =

∫ βt

z

E(ξ, t)dξ. (6.4)

But

E(z, t) ≤ E(0, z∗), (6.5)

when z∗ ≥ t− β−1z ≥ 0. Thus, it follows that

H(z, t) ≤ βt− z

t

∫ t

0

E(0, s)ds =
βt− z

t
E∗(0, t). (6.6)

The second natural question we are interested with is to obtain spatial estimates for

some norm of the solutions. We had obtained the estimates (5.22), (5.24) and (5.25), but

they are expressed in a combination of the solution and its time derivatives. Now, we give

explicit spatial estimates. From (5.20), (5.22), (5.24) and (5.25) we have

J (z, t) =
1

2θ0

∫
R(z)

(
k
(
(τq + τθ)|∇θ|2 +

1

2
τ 2
q τθ|∇θ̇|2 + τ 2

q∇θ∇θ̇
))
dV (6.7)
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+
k

θ0

∫ t

0

∫
R(z)

(
|∇θ|2 + (τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dV ds ≤ E(z, t),

for |t− t∗| ≤ β−1(z − z∗). Also, we obtain that

J ∗(z, t) ≤ β−1

∫ z

z−βt

E(η, 0)dη, βt ≤ z, (6.8)

and

J ∗(z, t) ≤ β−1

∫ z

0

E(η, 0)dη + (1− z

βt
)E∗(0, t), βt ≥ z (6.9)

where

J ∗(z, t) =

∫ t

0

J (z, s)ds. (6.10)

Now, we will obtain estimates for the mechanical part. To this end, we note that∫ t

0

(f̃)2ds =

∫ t

0

(f 2 +
τ 4
q

4
(f̈)2)ds+ (τq(f

2(t) + τqf(t)ḟ(t) +
τ 2
q

2
ḟ 2(t))

−(τq(f
2(0) + τqf(0)ḟ(0) +

τ 2
q

2
ḟ 2(0)). (6.11)

It is worth noting that the expression

τq(f
2(t) + τqf(t)ḟ(t) +

τ 2
q

2
ḟ 2(t))

is positive in the sense that it is equivalent to the measure defined by f 2(t)+ ḟ 2(t). Thus,

if we define

M∗(z, t) =
1

2

∫ t

0

∫
R(z)

(
ρ(u̇iu̇i +

τ 4
q

4

...
u i

...
u i) + µ(ui,jui,j +

τ 4
q

4
üi,jüi,j) + (λ+ µ)(ur,rus,s

+(λ+ µ)(ur,rus,s +
τ 4
q

4
ür,rüs,s)

)
dV ds

+
τq
2

∫
R(z)

(
ρ(u̇iu̇i + τqu̇iüi +

τ 2
q

2
üiüi) + µ(ui,jui,j + τqui,ju̇i,j +

τ 2
q

2
u̇i,ju̇i,j)

+(λ+ µ)(ur,rus,s + τqur,ru̇s,s +
τ 2
q

2
u̇r,ru̇s,s)

)
dV, (6.12)

we obtain the estimates

M∗(z, t) ≤ β−1

∫ z

z−βt

E(η, 0)dη + P(z), βt ≤ z (6.13)

and

M∗(z, t) ≤ β−1

∫ z

0

E(η, 0)dη + (1− z

βt
)E∗(0, t) + P(z), βt ≥ z, (6.14)
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where

P(z) =
τq
2

∫
R(z)

(
ρ(v0

i v
0
i + τqv

0
i z

0
i +

τ 2
q

2
z0

i z
0
i ) + µ(u0

i,ju
0
i,j + τqu

0
i,jv

0
i,j +

τ 2
q

2
v0

i,jv
0
i,j) (6.15)

+(λ+ µ)(u0
r,ru

0
s,s + τqu

0
r,rv

0
s,s +

τ 2
q

2
v0

r,rv
0
s,s)
)
dV

and

z0
i = (µu0

i,j + (λ+ µ)u0
r,rδij +mδijθ),j. (6.16)

It is worth noting that it is also possible to obtain estimates in the L2-norm of the

temperature and its two first times derivatives in a similar way of the estimates (6.13),

(6.14)

7 A non-standard problem for (2.1), (2.2)

In this Section, we briefly discuss the behavior of solutions of (2.1), (2.2) subject to the

boundary condition (2.5), (2.6) and the non-standard conditions

ui(x, T ) = αui(x, 0), u̇i(x, T ) = αu̇i(x, 0),

θ(x, T ) = αθ(x, 0), θ̇(x, T ) = αθ̇(x, 0), θ̈(x, T ) = αθ̈(x, 0), (7.1)

where α > 1. Such non-standard conditions have been the subject of much recent atten-

tion (see, e.g. [1, 16, 33] in the context of the heat equation, [21] for generalized heat

conduction and [22] for viscous flows, [19] for the isothermal elasticity and [30], [27] for

some thermoelastic theories).

The boundary data in (2.6) is assumed compatible with (6.1),(6.2).

The analysis begins by considering the function

Fγ(z) = −
∫ T

0

∫
D(z)

exp(−γs)(T̃i3
˙̃ui +

1

θ0

kθ̂,3θ̃)dAds, (7.2)

where, guided by results established in [1, 16, 33], the positive constant γ is given by

γ =
2

T
lnα. (7.3)

We have

Fγ(z) = Fγ(0) +
γ

2

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)
(
ρ ˙̃ui

˙̃ui + µũi,jũi,j + (λ+ µ)ũr,rũs,s (7.4)

+
c

θ0

(θ̃)2 +
k

θ0

(
(τq + τθ)|∇θ|2 +

1

2
τ 2
q τθ|∇θ̇|2 + τ 2

q∇θ∇θ̇
))
dA
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+γ
k

θ0

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)
(1

γ
|∇θ|2 +

1

γ
(τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dV ds.

An argument similar to the one used in the case of the standard initial conditions leads

to the estimate

|Fγ| ≤ γβγ
∂Fγ

∂z
, (7.5)

where βγ is defined in the same form of β defined in (5.9), but changing the parameter

λ0 by µγ defined at (2.13).

This inequality is well-known in the study of spatial decay estimates. It implies that

Fγ ≤ γβγ
∂Fγ

∂z
, and − Fγ ≤ γβγ

∂Fγ

∂z
. (7.6)

From (7.6), we can obtain an alternative of Phragmen-Lindelöf type which states (see

[5]) that the solutions either grow exponentially for z sufficiently large or solutions decay

exponentially in the form

Eγ(z) ≤ Eγ(0) exp
(
− γ−1β−1

γ z
)

(7.7)

for all z ≥ 0, where

Eγ(z) =
γ

2

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)
(
ρ ˙̃ui

˙̃ui + µũi,jũi,j + (λ+ µ)ũr,rũs,s (7.8)

+
c

θ0

(θ̃)2 +
k

θ0

(
(τq + τθ)|∇θ|2 +

1

2
τ 2
q τθ|∇θ̇|2 + τ 2

q∇θ∇θ̇
))
dV ds

+
k

θ0

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)
(
|∇θ|2 + (τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dV ds.

The decay rate in (7.7) depends explicitly on γ given in (7.3). Thus, we have proved

Theorem 7.1 Let (u, θ) be a solution of the initial-boundary-value problem (2.1), (2.2)

(2.5), (2.6) and (7.1). Then either the solutions grow exponentially or the estimate (7.7)

is satisfied, where Eγ is defined at (7.8).

Estimate (7.7) implies that

Jγ(z) ≤ Eγ(0) exp
(
− γ−1β−1

γ z
)

(7.9)

where

Jγ(z) =
γ

2θ0

∫ T

0

∫
R(z)

exp(−γs)
(
k
(
(τq +τθ)|∇θ|2 +

1

2
τ 2
q τθ|∇θ̇|2 +τ 2

q∇θ∇θ̇
))
dV ds (7.10)

+
k

θ0

∫ T

0

∫
R(z)

exp(−γs)
(
|∇θ|2 + (τθτq −

1

2
τ 2
q )|∇θ̇|2

)
dV ds.
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To obtain an estimate on the mechanical part, we first note that∫ T

0

exp(−γs)(f̃)2ds =

∫ T

0

exp(−γs)((f 2 +
τ 4
q

4
(f̈)2) + γ(τq(f

2 + τqfḟ +
τ 2
q

2
ḟ 2)
)
ds (7.11)

+ exp(−γT )(τq(f
2(t) + τqf(T )ḟ(T ) +

τ 2
q

2
ḟ 2(T ))− (τq(f

2(0) + τqf(0)ḟ(0) +
τ 2
q

2
ḟ 2(0)).

If we define

Mγ(z) =
1

2

∫ T

0

∫
R(z)

exp(−γs)
(
ρ(u̇iu̇i +

τ 4
q

4

...
u i

...
u i) + µ(ui,jui,j +

τ 4
q

4
üi,jüi,j)

+(λ+ µ)(ur,rus,s +
τ 4
q

4
ür,rüs,s)

)
dV ds

+
γτq
2

∫ T

0

∫
R(z)

exp(−γs)
(
ρ(u̇iu̇i + τqu̇iüi +

τ 2
q

2
üiüi) + µ(ui,jui,j + τqui,ju̇i,j +

τ 2
q

2
u̇i,ju̇i,j)

+(λ+ µ)(ur,rus,s + τqur,ru̇s,s +
τ 2
q

2
u̇r,ru̇s,s)

)
dV ds, (7.12)

we obtain the estimate

Mγ(z) ≤ Eγ(0) exp
(
− γ−1β−1

γ z
)
, (7.13)

which is a spatial decay estimate.
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