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Abstract: In this note we compare two different mathematical hyperbolic models in dual-phase-

lag heat conduction proposed by Tzou, and we ask for the parameter regions where stability can

be expected. It is demonstrated that the parameter regions for the two lag-parameters τq and

τθ are different for the two models. That is, for certain parameters, in one model stability is

expected while for the other one it is known that it is not stable. The first apparent contradiction

is contrasted with the fact that known values for real materials (several metals are considered

here) are in a range where both models predict stability or non-stability, respectively. Still, as

a conclusion, one model should be considered only in a restricted parameter region.

1 Introduction

There are several hyperbolic theories of heat conduction, also called theories of second

sound, where the propagation of heat is modeled with finite propagation speed, in contrast

to the classical model using Fourier’s law leading to infinite propagation speed of heat

signals, see the survey by Chandrasekharaiah [1] or the books of Müller and Ruggeri [4]

and Jou et al. [3].

In 1995, Tzou [11] proposed a theory of heat conduction,

θt + div q = 0 (1.1)
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with temperature θ and heat flux vector q, in which the Fourier law is replaced by an

approximation of the equation

q(x, t + τq) = −k∇θ(x, t + τθ), τq > 0, τθ > 0, (1.2)

where k > 0, and τq is the phase-lag of the heat flux and τθ is the phase-lag of the gradient

of the temperature. The relation (1.2) states that the gradient of temperature at a point

in the material at time t + τθ corresponds to the heat flux vector at the same point at

time t + τq. The delay time τθ is caused by microstructural interactions such as phonon

scattering or phonon-electron interactions. The delay τq is interpreted as the relaxation

time due to fast-transient effects of thermal inertia. The corresponding thermoelastic

model was proposed in [1]. Instead of Fourier’s law, being equivalent to assuming

τq = τθ = 0,

and leading to the classical parabolic equation of heat conduction together with the phy-

sical paradoxon of infinite propagation speed, we consider the model proposed by Tzou

[11], where a second-order approximation for q and a first-order approximation for θ is

used, turning (1.2) into

q + τqqt +
τ 2
q

2
qtt = −k∇θ − kτθ∇θt, (1.3)

and hence turning (1.1) into the following hyperbolic equation for the temperature:

τ 2
q

2
θttt + τqθtt + θt = k∆θ + kτθ∆θt. (1.4)

In this note, we discuss all the possibilities proposed, up to now, for the dual-phase-lag

heat conduction theory. The equation (1.3) is the Taylor expansion of the equation (1.1)

up to the first order with respect to the parameters τθ and up to the second order with

respect to τq. This derivation produces a hyperbolic equation. We note that in the absence

of the supply terms, equation (1.4) agrees (see [12], p.3234) with the hyperbolic equation

obtained for the two-step radiation heating model proposed by Qiu and Tien [6].

A natural question is the determination of the time parameters τq and τθ. We believe

that mathematical analysis could help to reveal several conditions on the parameters. One

condition to be satisfied by a heat conduction equation is the stability of its solutions.

We recall that a system is stable if solutions are bounded for all times. Otherwise, we

say that the system is unstable. That is the solution becomes unbounded when time

increases. Therefore, we expect that the parameters which define a heat equation must

be such that the system is stable. This note is addressed to clarify this aspect in the case

of the dual-phase-lag theories.
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For the equation (1.4), together with appropriate initial and boundary conditions,

Quintanilla [7] has shown that the system is (even exponentially) stable if

x :=
τθ

τq

>
1

2
(1.5)

holds, and that it is not (exponentially) stable if

x <
1

2
(1.6)

holds. The case x = 1 is not discussed explicitly in [7] but is expected to lead to expo-

nential stability, cp. Section 2. The exponential stability has also been shown for one-

dimensional corresponding systems of dual-phase-lag thermoelasticity, see the author’s

papers [8, 9].

As Tzou notes in his paper [12, p. 3237]: From a consistent mathematical point of

view, the second-order expansions in τθ and τq should also involve a second-order time

derivative in τ 2
θ . . . resulting in an equation of parabolic type.

Thus, taking second-order approximations both for the temperature and the heat flux,

we have to replace (1.3) by

q + τqqt +
τ 2
q

2
qtt = −k∇θ − kτθ∇θt − k

τ 2
θ

2
∇θtt (1.7)

which turns (1.1) into the following equation for the temperature:

τ 2
q

2
θttt + τqθtt + θt = k∆θ + kτθ∆θt + k

τ 2
θ

2
∆θtt. (1.8)

For the two equations (1.4) and (1.8) we shall compare the possible regions for (τθ, τq) to

yield stability. We shall see that they are essentially different, that is, there is an open

set of parameter values for which in one system stability is expected while in the other it

has been proved that there is no stability.

As a consequence of a unique physical behavior, for real materials with these parameter

values, only one of the models can be justified. Fortunately, it turns out that for classes of

materials as metals like copper, silver, gold or lead, for which the parameter values have

been determined, the values are in the set where both models predict the same.

The paper is organized as follows: In Section 2 we review the results by Quintanilla [7]

on (exponential) stability for the system (1.4) in terms of the eigenvalues of the character-

istic polynomial. The investigation of the system (1.8), also in terms of the eigenvalues,

is done in Section 3. The comparison is presented in Section 4.
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2 The model (1.4) revisited

In [7] it was shown by energy methods that the system governed by the differential equa-

tion (1.4) for Dirichlet boundary conditions is exponentially stable provided (1.5) holds,

and, using the Hurwitz criterion, that it is not exponentially stable if (1.6) holds.

The conditions (1.5), (1.6) can be easily understood looking, as in [7, Sec. 5], at the

roots of the characteristic polynomial associated to (1.4), where we denote by (λn)n the

eigenvalues of the Laplace operator −∆ for Dirichlet boundary conditions in a bounded

reference configuration Ω:

β3 +
2

τq

β2 +
2 + 2kτθλn

τ 2
q

β +
2kλn

τ 2
q

= 0. (2.1)

That is, if we look for solutions of the equation (1.4) of the form exp(βt)Φn(x), where Φn

is the eigenfunction to the eigenvalue λn of the problem

∆Φn + λnΦn = 0, in Ω, Φn = 0, on ∂Ω,

then β satisfies the equation (2.1), and purely imaginary β = iα, α real, would express

oscillatory behavior.

By the Hurwitz criterion, all three roots of the polynomial

β3 + l1β
2 + l2β + l3 = 0

have negative real parts if and only if

lj > 0, j = 1, 2, 3, l1l2 > l3 (2.2)

holds. For (2.1) this conditions turns into

λnk(
2τθ

τq

− 1) +
2

τq

> 0

which is not satisfied uniformly in λn if and only if (1.6) holds. That is, we have recalled

the characterization of exponential stability from [7].

We remark that the discussion of the eigenvalues and looking for the supremum of the

real parts to be strictly less than zero, is in general not sufficient for the corresponding

system (semigroup) to be exponentially stable. For infinite dimensional systems, in con-

trast to ordinary differential equations, the supremum of the spectrum does not describe

the so-called type of the semigroup, cp. the discussion in [5, 10] and the references therein.

But for appropriate boundary conditions, it can be shown by special analysis, as for ther-

moelasticity with second sound under the Cattaneo model, see [2], that the type of the

semigroup is really determined by the supremum of the real parts of the spectrum. Our

discussion of stability in the next sections continues in the discussion of the spectrum.
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3 The model (1.8)

Now we turn to the second model represented by the differential equation (1.8). The

characteristic polynomial now reads as

β3 + (
2

τq

+
kτ 2

θ λn

τ 2
q

)β2 + (
2

τ 2
q

+
2kτθλn

τ 2
q

)β +
2kλn

τ 2
q

= 0, (3.1)

and by the criterion (2.2) the following inequality has to hold uniformly in λn:

λ2
n

[
k2τ 3

θ

τ 2
q

]
︸ ︷︷ ︸

=:A

+λn

[
k(

τ 2
θ

τ 2
q

− 1 +
2τθ

τq

)

]
︸ ︷︷ ︸

=:B

+
2

τq︸︷︷︸
=:C

> 0. (3.2)

Since A and C are strictly positive, a sufficient condition is to have B ≥ 0 which turns

into
τθ

τq

≥
√

2− 1 (3.3)

which is already a condition being different from (1.5) and gives a larger expectation for

stability since
√

2− 1 < 1
2
.

Now let B < 0, i.e. let x <
√

2− 1. Then we expect stability if

f(y) := Ay2 + By + C > 0, (3.4)

uniformly in λn, i.e. if the largest zero (if there is any real zero at all) of the polynomial

f is less than the smallest eigenvalue λ1.

Case I:

B2 < 4AC (3.5)

In this case f does not have real zeros, hence (3.4) is satisfied. The condition (3.5) is

equivalent to

g(x) := x4 − 4x3 + 2x2 − 4x + 1 < 0 (3.6)

where x denotes as before the ration τθ

τq
. The zeros of g as a polynomial in x are

x̃1 = i, x̃2 = −i, x̃3 = 2 +
√

3, x̃4 = 2−
√

3.

Hence, in view of (3.5), x has to satisfy

2−
√

3 < x < 2 +
√

3.

That is, for values (τθ, τq) with

x > 2−
√

3 (3.7)

we are already in the expected region of stability.
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Case II:

B2 ≥ 4AC (3.8)

In this case we have to consider the region where x ≤ 2−
√

3, and to see when the largest

positive zero of f is less than λ1. This is equivalent to

−B +
√

B2 − 4AC < 2Aλ1,

or

B2 − 4AC < (2Aλ1 + B)2

or, equivalently again,

x4 − 4x3 + 2x2 − 4x + 1 < (x2(1 + 2kτθλ1) + 2x− 1)2.

Hence

h(x) := x2
(
(2kτθλ1)

2 + 4kτθλ1)
)

+ 8(1 + kτθλ1)x− 4kτθλ1 > 0 (3.9)

is a necessary and sufficient condition. The zeros x̂1/2 of h as a polynomial in x are

x̂1/2 =
±

√
(1 + kτθλ1)2 + (kτθλ1)2 + (kτθλ1)3 − (1 + kτθλ1)

kτθλ1(1 + kτθλ1)
.

Since x̂2 < 0 we obtain from (3.9) the following condition on x:

x >

√
(1 + kτθλ1)2 + (kτθλ1)2 + (kτθλ1)3 − (1 + kτθλ1)

kτθλ1(1 + kτθλ1)
. (3.10)

This condition can be a real restrictive condition, e.g. for τq being large in comparison to

τθ. On the other hand, the right-hand side of (3.10) tends to zero if λ1 tends to zero, as

well as if λ1 tends to infinity. This means, that for a fixed material, the condition (3.10) is

satisfied if the domain is small or large enough, since the smallest eigenvalue depends on

the size of the domain. For example, in one space dimension, if the domain is the interval

(0, L) with L > 0, one has

λn =
n2π2

L2
.

That is, for a fixed material we have

∃ l0, L0 > 0 ∀ L 6∈ [l0, L0] : (3.10) holds. (3.11)

We remark that a condition of the last type is known e.g. for equations of the type

wt − wxx − µw = 0, in (0,∞)× (0, L),
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where µ > 0, and for Dirichlet boundary conditions. We have (exponential) stability if

and only if

µ < λ1 =
π2

L2
.

Summarizing the considerations of this section, we are in the regime of stability if

x =
τθ

τq

> 2−
√

3 (3.12)

or if

x ≤ 2−
√

3 and (3.10) holds, (3.13)

and the condition (3.10) is for one-dimensional domains (0, L) — for fixed (τθ, τq) —

satisfied if L is small enough or large enough, respectively; more generally in higher

dimensions: if the first eigenvalue of the Dirichlet Laplacian is small or large enough,

respectively.

Obviously, the characterization of the stability region is quite different from that of the

model discussed in the previous section. A comparison and conclusions for the modelling

and for real materials is following.

4 Comparisons

As shown in the last two sections there are regions, for which the model (1.4) predicts

non-stability while the model (1.8) predicts stability, for example (but not only) if

2−
√

3 < x <
1

2
(4.1)

Since the physical behavior is either stable or not, only one of the model can describe the

situation correctly. This problem becomes a void issue for applications only if for real

materials one is always in the region where both models predict the same behavior.

From the work of Tzou [12] (in [11] the values are given slightly different, but this

does not affect the reasoning), we take the following values for τθ and τq, measured in

picoseconds, for the metals copper, silver, gold and lead.

τθ τq

Cu 70.833 0.4648

Ag 89.286 0.7838

Au 89.286 0.7838

Pb 12.097 0.1720
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For the four metals the ratio x of the lag-parameters is (much) larger than 1
2
, i.e. we are

not in any ambiguous region. Thus for these examples both models are fine. Not knowing

the ratio x for all materials, it might be useful to keep the characterizations of our paper

in mind. Moreover, for numerical calculations the limiting regions of stability are also

good to know.

Finally, we remark that we can also compare the two models above with the situation

where a) both for the heat flux and for the temperature just a first-order approximation

is used:

q + τqqt = −k∇θ − kτθ∇θt, (4.2)

or where b) we take a first-order approximation for the heat flux, but a second-order

approximation for the temperature, i.e.

q + τqqt = −k∇θ − kτθ∇θt − k
τ 2
θ

2
∇θtt. (4.3)

In case a) the equation for θ resulting from (1.1), (4.2) is

τqθtt + θt = k∆θ + kτθ∆θt. (4.4)

It is worth recalling several recent contributions to this equation (see [13, 14, 15]). Here

the characteristic polynomial to this equation of viscoelastic type

β2 +
1 + kτθλn

τq

β +
kλn

τq

has two roots

β1/2 =
±

√
(1 + kτθ)2 − 4τqkλn − (1 + kτθ)

2τq

which have real parts being negative, uniformly in λn. That is, no condition arises on the

lag-parameters for stability.

In case b) we obtain for θ the differential equation

τqθtt + θt = k∆θ + kτθ∆θt + k
τθ

2
∆θtt (4.5)

with characteristic polynomial

β2 +
2(1 + kτθλn)

2τq + kτ 2
θ λn

β +
2k

2τq + kτ 2
θ λn

with two zeros

β1/2 =
±

√
(1 + kτθλn)2 − 2k(2τq + kτ 2

θ λn)− (1 + kτθλn)

2τq + kτ 2
θ λn

that are also have negative real parts which are bounded away from zero uniformly in λn.

That is, again we do not have any restriction for the ratio of the lag-parameters.
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5 Conclusion

In this short note we have analyzed the range of the parameters τθ and τq for different kind

of approximations in the dual-phase-lag theory in order to guarantee that the solutions

of the corresponding heat equation are stable. We have seen that:

1. When we approximate until first order in τq and until first or second order in τθ,

the system is always stable.

2. When we approximate until second order in τq and only until first order in τθ, the

system is stable if τθ/τq > 1/2 and unstable if τθ/τq < 1/2.

3. When we approximate until second order both in τθ and in τq, the system is stable

if τθ/τq > 2−
√

3. If τθ/τq < 2−
√

3 and the quotient x = τθ/τq satisfies condition (3.10),

we are also in the the stability regime.

4. Whenever τθ/τq > 1/2, the several models predict the same behavior.
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