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Abstract: We consider the Cauchy problem in nonlinear thermoelasticity with second sound in one space
dimension. Due to Cattaneo’s law, replacing Fourier’s law for heat conduction, the system is hyperbolic.
We first investigate the local well-posedness as a strictly hyperbolic system, and then discuss the relation
between energy estimates for non-symmetric hyperbolic systems and well-posedness. For the global small
solution we describe the long time behavior and obtain decay rates of the L2-norm.

1 Introduction

The nonlinear system of thermoelasticity in Rn where heat conduction is modeled by Cattaneo’s law is
given by differential equations for the displacement vector u = u(t, x) ∈ Rn, the temperature T = T (t, x),
and the heat flux q = q(t, x) ∈ Rn, t ≥ 0, x ∈ Rn. First we have the balance law of linear momentum in
the absence of exterior forces,

ρutt − divS = 0 (1.1)

where ρ is the material density and assumed to be equal to one in the sequel; S is the Piola-Kirchhoff
stress tensor. Second we have the balance of energy in the absence of external heat supplies as

εt − tr{SFt}+ divq = 0 (1.2)

where ε denotes the internal energy, tr(·) stands for the trace of a matrix, and F is the deformation
gradient,

F = 1 +∇u

Denoting by η the specific entropy we get by

ψ := ε− Tη

the free energy. The first constitutive assumption, namely that S, ε, η (and ψ) are functions of (∇u, θ, q,∇θ),
where

θ = T − T0

denotes the temperature difference, T0 > 0 the constant reference temperature — we shall assume ho-
mogeneity, i.e. no extra dependence on x — is turned into the following relations after the second law of
thermodynamics resp. the dissipation principle are applied (cp. [1, 2, 8, 15])

ψ = ψ(∇u, θ, q)

is independent of ∇θ, and

η = η(∇u, θ, q) = −ψθ(∇u, θ, q), S = S(∇u, θ, q) = ψ∇u(∇u, θ, q) (1.3)
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Using this, (1.2) turns into

(θ + T0){a(∇u, θ, q)θt − tr[Sθ · ∇ut]}+ div q = b(∇u, θ, q)qt (1.4)

where
a := −ψθθ, b := (θ + T0)ψθq − ψq (1.5)

For the heat flux, Cathaneo’s law is assumed,

τ(∇u, θ)qt + q + k(∇u, θ)∇θ = 0 (1.6)

with the tensor of relaxation times τ and the heat conductivity tensor k. (1.6) is replacing the Fourier
law

q + k∇θ = 0 (1.7)

formally arising from (1.6) by setting τ = 0, and then leading to the classical hyperbolic-parabolic-system
for (u, θ) of thermoelasticity, cp. [8]. Here we use Cattaneo’s law (1.6) avoiding the paradox of infinite
propagation speed, and leading to a hyperbolic system (1.1), (1.4), (1.6) for (u, θ, q). We shall consider
the one-dimensional Cauchy problem, i.e. (1.1), (1.4), (1.6) for n = 1, together with initial conditions

u(t = 0) = u0, ut(t = 0) = u1, θ(t = 0) = θ0, q(t = 0) = q0 (1.8)

In one space dimension (1.1), (1.4), (1.6) turn into the following, using P := (ux, θ, q) as abbreviation,

utt − a1(P )uxx + a2(P )θx + σ1(P )qx = 0 (1.9)

θt + a3(P )utx + a4(P )qx + σ2(P )θx + a5(P )q = 0 (1.10)

qt + a6(ux, θ)θx + a7(ux, θ)q = 0 (1.11)

where
a1 := Sux

, a2 = −Sθ, a3 =
Sθ

ψθθ
, σ1 = −Sq, a4 =

−1
(θ + T0)ψθθ

(1.12)

a5 =
−b

τ(θ + T0)ψθθ
, a6 =

k

τ
, a7 =

1
τ
, σ2 =

−bk
τ(θ + T0)ψθθ

(1.13)

where we assume |θ| < T0 which will be a posteriori justified for the global small solution. The precise
assumptions on the coefficients will be given in section 2, they are the natural ones from the physical
model like a1 > 0, and so on.
First we shall be interested in the local well-posedness for (1.8) - (1.11), for data (ux, ut, θ, q)(t = 0) in
W s,2(R1), the usual Sobolev space with s > 3

2 . A local existence result was stated in the work of Tarabek
[19], just with a hint to the paper of Hughes, Kato and Marsden [7] which needs some explanation, at
least in the way we present a proof below.
For initial-boundary value problems in bounded reference configurations (intervals) Ω ⊂ R1, local exis-
tence theorems were stated in [15] and by Messaoudi and Said-Houari [12]; these are justified a posteriori
by the possibility of proving appropriate (exponential type) energy estimates there.
We shall demonstrate here that the system (1.9) - (1.11) is strictly hyperbolic provided |σ1| is small
enough for which, in turn, |(ux, θ, q)| being small is sufficient because we have

σ1(0, 0, 0) = 0. (1.14)

Observe that σ1 6= 0 perturbs the more or less given symmetric-hyperbolic structure of (1.9) - (1.11)
when σ1 = 0. The term σ1qx (actually: (1.9)) not appearing for pure heat conductions allowed Coleman,
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Hrusa and Owen [3] to conclude the local well-posedness from the symmetric-hyperbolic setting.
The possibility of proving local existence for nonlinear hyperbolic systems is closely related to the possi-
bility of proving energy estimates in Hs-norms, which can be guaranteed for symmetrizable hyperbolic
systems, cp. the work of Taylor [20, Chapter 5], or Kato [9, 10].
In Section 2 we shall prove the strict hyperbolicity of (1.9) - (1.11), and in Section 3 we look at a (linear)
model example that will illustrate the interplay between energy estimates and well-posedness, giving
insight into possible future extensions to higher space dimensions.
Having given the global solution for small data (ux, ut, θ, q)(t = 0) in H2 from Tarabek [19], we shall
describe in Section 4 the asymptotic behavior of V (t) ≡ (ux, ut, θ, q)(t) as time t→∞.
For the corresponding linearized system Yang and Wang [24], also W. Wang and Z. Wang [21], gave decay
rates for Lq-norms of V (t) (cp. also Wang and Yang [23] in three space dimensions).
For the nonlinear system, based on the experience with the classical system and Fourier’s law, see
[4, 5, 6, 8], one has to expect the formation of singularities for large data, while small data should
lead to global solutions and a polynomial decay of Lq-norms, see [8] for a survey. The propagation of sin-
gularities has been discussed by the authors both for Fourier’s and for Cattaneo’s law, cp. [16, 17, 18, 22].
The considerations for the classical (Fourier) case use special divergence forms of the nonlinearities, cp.
[8], which are not given for the general Cattaneo law. Therefore, we restrict ourselves to a linear Cattaneo
law

τ0qt + q + κθx = 0

where τ0, κ > 0 are constants. As a result we shall obtain that the L2-norm of V (t) decays of order
(1 + t)−

1
4 .

We use standard Sobolev spaces W s,p(R), s ∈ N0, 1 ≤ p ≤ ∞, with norm || · ||s,p, and || · ||p := || · ||0,p in
Lp(R).

2 Local well-posedness

Here we consider the Cauchy problem (1.8) - (1.11), i.e.

utt − a1(P )uxx + a2(P )θx + σ1(P )qx = 0 (2.1)

θt + a3(P )utx + a4(P )qx + σ2(P )θx + a5(P )q = 0 (2.2)

qt + a6(ux, θ)θx + a7(ux, θ)q = 0 (2.3)

u(0, x) = u0(x), ut(0, x) = u1(x), θ(0, x) = θ0(x), q(0, x) = q0(x), x ∈ R (2.4)

where
P = (ux, θ, q)

and the coefficients

a1 = Sux
, a2 = −Sθ, a3 =

Sθ

ψθθ
, σ1 = −Sq, a4 =

−1
(θ + T0)ψθθ

(2.5)

a5 =
−b

τ(θ + T0)ψθθ
, a6 =

k

τ
, a7 =

1
τ
, σ2 =

−bk
τ(θ + T0)ψθθ

(2.6)

σ1(0) = 0, σ2(0) = 0, a5(0) = 0 (2.7)

satisfy the physically natural assumptions that a1, a2 · a3, a4 · a6, τ, k are positive, that is, there are
a0
1, a

0
23, a

0
46, τ

0, k0 > 0 such that for all P = (ux, θ, q) we have

a1(P ) ≥ a0
1, a2(P )a3(P ) ≥ a0

23, a4(P )a6(P ) ≥ a0
46 (2.8)
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τ(ux, θ) ≥ τ0, k(ux, θ) ≥ k0. (2.9)

In view of the later global small data result we remark that it would be sufficient to require (2.8), (2.9)
for small |P |; moreover, we assume |θ| < T0.
Transforming (2.1) - (2.4) into a first-order system for

V := (ux, ut, θ, q)′

Vt +


0 −1 0 0
−a1 0 a2 σ1

0 a3 σ2 a4

0 0 a6 0


︸ ︷︷ ︸

=:A(V )

∂xV +


0 0 0 0
0 0 0 0
0 0 0 a5

0 0 0 a7


︸ ︷︷ ︸

=:B(V )

V = 0 (2.10)

V (t = 0) = V0 := (u0,x, u1, θ0, q0)′ (2.11)

we notice that if σ1 = 0 then (2.10) could be turned into a symmetric-hyperbolic system, cp. [3] for
the case of pure heat conduction with second sound, and then the local well-posedness would follow
immediately.
Here we shall show that (2.10) is strictly hyperbolic if |σ1| is small enough which is satisfied if |V | is small
enough since σ1(0) = 0 by (2.7).

Lemma 2.1 There is δ > 0 such that for all P with |P | < δ (2.10) is strictly hyperbolic.

Proof: We have to show that the four eigenvalues of A(V ) are real and distinct. These eigenvalues are
the zeros of

hσ(λ) := det(λIC4 −A(V ))

= λ4 − σ2λ
3 − (a2a3 + a4a6 + a1)λ2 − (a3a6σ1 − a1σ2)λ+ a1a4a6

where σ := (σ1, σ2). We have

hσ(±∞) = +∞, hσ(0) = a1a4a6 > 0 (2.12)

by assumption (2.8).
Let

µ± := ±
√
a1

then
µ− < 0 < µ+ (2.13)

and
hσ(µ±) = −

√
a1(

√
a1 a2a3 ± σ1a3a6) ≡ −

√
a1 ·Q (2.14)

Assuming without loss of generality
∃K > 0 : |P | ≤ K (2.15)

we conclude that there exist ā0
3, ā

0
6 > 0 such that for all P with |P | ≤ K we have

|a3(P )| ≤ ā0
3, |ā6(P )| ≤ ā0

6 (2.16)
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which implies, using (2.8),

Q ≥
√
a1 a2a3 − |σ1| |a3| |a6|

≥
√
a0
1 a

0
23 − |σ1| ā0

3 ā
0
6

≥
√
a0
1 a

0
23

2
(2.17)

if

|σ1| ≤ σ0 :=

√
a0
1 a

0
23

2 ā0
3 ā

0
6

(2.18)

which, by (2.7), is satisfied if
|P | = |(ux, θ, q)| ≤ δ = δ(σ0) (2.19)

By (2.14), (2.17), (2.19) we thus have

∃ δ > 0 ∀ P, |P | ≤ δ : hσ(±µ) < 0 (2.20)

Then the combination of (2.12), (2.20), observing (2.13) yields that hσ has four distinct real zeros if
|P | ≤ δ = δ(σ0).
Q.e.d.
We remark that with the special choice of µ± it was possible to give a detailed estimate for σ0 in (2.18),
depending on the coefficient functions, hence also an estimate for δ appearing in Lemma 2.1 is possible
depending on σ1, cp. (2.19).
The strict hyperbolicity of (2.10) now implies the local well-posedness, see e.g. [20, chapter 5], it also
implies that (2.10) is symmetrizable. Thus we conclude

Theorem 2.2 Let s ≥ 2. Then there is δ > 0 such that for data V0 ∈W s,2(R) with ||V0||s,2 < δ there is
a unique local solution V to (2.10), (2.11) in some time interval [0, T ] with

V ∈ C0([0, T ],W s,2(R)) ∩ C1([0, T ],W s−1,2(R)),

and T = T (||V0||s,2) > 0. Moreover, δ is determined by (2.18), (2.19).

In [19] a local well-posedness result is stated with a hint to the work of Hughes, Kato and Marsden [7];
we believe that additional comments there would have been necessary and, in turn, presented our results
above.

3 On the relation energy estimates — well-posedness

It is well known that the possibility of proving a local well-posedness result in W s,2-spaces — for rather
general (hyperbolic) evolution equations — is strongly connected to proving energy estimates in the
W s,2-norm, and in proving the well-posedness plus energy estimates for associated linear systems, cp.
Taylor’s book [20] and the work of Kato [9, 10].
We shall illustrate this with a linear model example associated to our nonlinear system (2.1) - (2.4).
This will not only give insight into the relation ” energy estimate — well-posedness ” but might be also
a starting point for proving the local well-posedness in more than one space dimension, where we have
to expect multiple eigenvalues (because of the elastic part) and hence then could not argue with strict
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hyperbolicity.
The model problem is, cp. (2.1) - (2.4), the following linear Cauchy problem,

utt − uxx + θx + σ1qx = 0 (3.1)

θt + utx + qx + σ2θx = 0 (3.2)

qt + θx + q = 0 (3.3)

u(t = 0) = u0, ut(t = 0) = u1, θ(t = 0) = θ0, q(t = 0) = q0 (3.4)

where σ1, σ2 are real constants. Defining V := (ux, ut, θ, q)′ we transform (3.1) - (3.4) into

Vt +AV = 0, V (t = 0) = V 0 := (u0,x, u1, θ0, q0)′ (3.5)

with, formally,

A =


0 −1 0 0
−1 0 1 σ1

0 1 σ2 1
0 0 1 0

 ∂x +


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


We shall prove that A, as operator

A : D(A) := (W 1,2(R))4 ⊂ (L2(R))4 ≡ H → H (3.6)

generates a C0-semigroup in H, where the inner product in H will be a modified L2 inner product. This
modification will be suggested by the following energy estimate for a (time-dependent) solution to (3.1)
- (3.4), hence demonstrating the connections, energy estimates — well-posedness — generator property,
clearly.
So, assume that we have an appropriate solution (u, θ, q) to (3.1) - (3.4). Then multiply (3.1) by ut,
(3.2) by θ, and (3.3) by q, respectively, and intergrate in L2(R). We obtain

d

dt

{1
2

∫
R

(u2
t + u2

x + θ2 + q2)dx
}

+
∫
R

q2dx+ σ1

∫
R

qxutdx = 0 (3.7)

Partially integrating and using the differential equation (3.2) we get

σ1

∫
R

qxutdx = −σ1

∫
R

qutxdx = σ1

∫
R

qθtdx+ σ1

∫
R

qqxdx+ σ1σ2

∫
R

qθxdx

= σ1

∫
R

qθtdx+ σ1σ2

∫
R

qθxdx

=
d

dt

{
σ1

∫
R

qθdx
}
− σ1

∫
R

qtθdx+ σ1σ2

∫
R

qθxdx

Now using the differential equation (3.3) we conclude

σ1

∫
R

qxutdx =
d

dt

{
σ1

∫
R

qθdx
}

+ σ1

∫
R

θxθdx+ σ1

∫
R

qθdx

−σ1σ2
d

dt

{1
2

∫
R

q2dx
}
− σ1σ2

∫
R

q2dx

=
d

dt

{1
2

∫
R

(−σ1σ2q
2 + 2σ1qθ)dx

}
+ σ1

∫
R

qθdx− σ1σ2

∫
R

q2dx (3.8)
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Define
E(t) :=

1
2

∫
R

(u2
t + u2

x + θ2 + (1− σ1σ2)q2 + 2σ1qθ)dx (3.9)

which is a positively definite quadratic form if

σ1σ2 + σ2
1 < 1. (3.10)

Combining (3.7), (3.8) we get

d

dt
E(t) = −(1− σ1σ2)

∫
R

q2dx−
∫
R

σ1qθdx ≤ cE(t) (3.11)

with a positive constant c = c(σ1, σ2).

From (3.11), we conclude
0 ≤ E(t) ≤ ectE(0) (3.12)

that is, we have a first a priori estimate. In the present linear case we could get the corresponding a
priori estimate for (u, θ, q) in W s,2-norms by differentiating (3.1) - (3.3), with respect to x. Now we turn
to the evolution system (3.5) for V . Motivated by (3.12) and the definition of E(t) in (3.9) we choose
the following inner product in H = (L2(R))4:

〈V,W 〉H :=
∫
R

(V 1W 1 + V 2W 2 + V 3W 3 + (1− σ1σ2)V 4W 4 + σ1V
3W 4 + σ1V

4W 3)dx

with associated norm || · ||H.
By assumption (3.10), it is indeed an inner product and equivalent to the standard inner product in
L2(R). For a solution V = V (t) we thus well have

E(t) =
1
2
||V (t)||2H

Because of the expected energy estimate (3.11) we expect

|〈AV (t), V (t)〉H| ≤
c

2
||V (t)||2H

to hold true. Requiring further 4σ2
1 + 3σ1σ2 ≤ 3, we can prove

Lemma 3.1 For V ∈ D(A) we have

|〈AV, V 〉H| ≤
3
2
||V ||2H

Proof:

〈AV, V 〉H = −
∫
R

V 2
x V

1dx−
∫
R

(V 1
x − V 3

x − σ1V
4
x )V 2dx

+
∫
R

(V 2
x + σ2V

3
x + V 4

x )V 3dx+ (1− σ1σ2)
∫
R

(V 3
x + V 4)V 4dx

+ σ1

∫
R

(V 2
x + σ2V

3
x + V 4

x )V 4dx+ σ1

∫
R

(V 3
x + V 4)V 3dx

= (1− σ1σ2)
∫
R

|V 4|2dx+ σ1

∫
R

V 3V 4dx
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This implies

|〈AV, V 〉H| ≤
3
2
||V ||2H

when 4σ2
1 + 3σ1σ2 ≤ 3. Q.e.d.

As a consequence we have for d > 3
2 and d1 := d− 3

2 :

〈(A− d)V, V 〉H ≤ −d1||V ||2H (3.13)

Theorem 3.2 The operator A generates a C0-semigroup if 3σ1σ2 + 4σ2
1 ≤ 3.

Proof: By the previous lemma and (3.13) it is sufficient to show that the range of (A− d) satisfies

R(A− d) = H (3.14)

if d > 3
2 is sufficiently large. Since R(A− d) = R(A− d) the orthogonal decomposition

H = R(A− d) ⊕ N(A∗ − d)

holds, where A∗ denotes the adjoint of A in H, and N denotes the nullspace. Thus it is, observing (3.13),
sufficient to show that the domains of A and A∗ satisfy

D(A) = D(A∗) (3.15)

(a) Fix V ∈ D(A), and let ϕ ∈ D(A) be arbitrary. Then

〈Aϕ, V 〉H = −
∫
R

ϕ2
xV

1dx−
∫
R

(ϕ1
x − ϕ3

x − σ1ϕ
4
x)V 2dx

+
∫
R

(ϕ2
x + σ2ϕ

3
x + ϕ4

x)V 3dx+ (1− σ1σ2)
∫
R

(ϕ3
x + ϕ4)V 4dx

+σ1

∫
R

(ϕ2
x + σ2ϕ

3
x + ϕ4

x)V 4dx+ σ1

∫
R

(ϕ3
x + ϕ4)V 3dx

=
∫
R

ϕ1V 2
x dx+

∫
R

ϕ2(V 1
x − V 3

x − σ1V
4
x )dx

+
∫
R

ϕ3 (−V 2
x − σ2V

3
x − V 4

x − σ1V
3
x )︸ ︷︷ ︸

=:f1

dx

+
∫
R

ϕ4 (−σ1V
2
x − V 3

x + (1− σ1σ2)V 4 − σ1V
4
x + σ1V

3)︸ ︷︷ ︸
=:f2

dx (3.16)

This should equal
〈ϕ, F 〉H (= 〈ϕ,A∗V 〉H then)

for some F ∈ H. That is, we can choose

F 1 := V 2
x , F 2 := V 1

x − V 3
x − σ1V

4
x (3.17)

and shall determine F 3, F 4 as solutions to

F 3 + σ1F
4 = f1 (3.18)

σ1F
3 + (1− σ1σ2)F 4 = f2 (3.19)
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Since σ2
1 + σ1σ2 6= 1 the system (3.18), (3.19) is uniquely solvable,

F 3 =
1

1− (σ2
1 + σ1σ2)

(
(σ2

1 + σ1σ2 − 1)V 2
x + (σ2

1 + σ1σ2 − 1)V 4
x +

(σ2
1σ2 + σ1σ

2
2 − σ2)V 3

x − σ2
1V

3 − (σ1 − σ2
1σ2)V 4

)
(3.20)

F 4 =
1

1− (σ2
1 + σ1σ2)

(
σ1V

3 + (1− σ1σ2)V 4 −
(
1− (σ2

1 + σ1σ2)
)
V 3

x

)
(3.21)

Thus we have proved
D(A) ⊂ D(A∗) (3.22)

and obtained a formal representation of A∗ as

A∗ =


0 ∂x 0 0
∂x 0 −∂x −σ1∂x

0 −∂x (σ2
1σ2+σ1σ2

2−σ2

1−(σ2
1+σ1σ2)

∂x − σ2
1

1−(σ2
1+σ1σ2)

) (−∂x − σ1−σ2
1σ2

1−(σ2
1+σ1σ2)

)

0 0 (−∂x + σ1
1−(σ2

1+σ1σ2)
) 1−σ1σ2

1−(σ2
1+σ1σ2)

 (3.23)

(b) Now fix V ∈ D(A∗). Then there is F ∈ H such that

∀ϕ ∈ D(A) : 〈Aϕ, V 〉H = 〈ϕ, F 〉H (3.24)

(i) Taking ϕ = (ϕ1, 0, 0, 0)′, ϕ1 ∈ C∞0 (R), then from (3.24)

−
∫
R

ϕ1
xV

2dx =
∫
R

ϕ1F 1

hence
V 2 ∈W 1,2(R) (3.25)

(ii) Taking ϕ = (0, ϕ2, 0, 0, )′, ϕ2 ∈ C∞0 (R), then from (3.24)

−
∫
R

ϕ2
xV

1dx+
∫
R

ϕ2
xV

3dx+
∫
R

ϕ2
xσ1V

4dx =
∫
R

ϕ2F 2dx

implying
−V 1 + V 3 + σ1V

4 ∈W 1,2(R) (3.26)

(iii) Taking ϕ = (0, 0, ϕ3, 0, )′, ϕ3 ∈ C∞0 (R), then from (3.24)∫
R

ϕ3
xV

2dx+ σ2

∫
R

ϕ3
xV

3dx+
∫
R

ϕ3
xV

4dx+
∫
R

ϕ3
xσ1V

3dx =
∫
R

ϕ3(F 3 + σ1F
4)dx

implying, using (3.18),
V 4 + (σ1 + σ2)V 3 ∈W 1,2(R) (3.27)

(iv) Taking ϕ = (0, 0, 0, ϕ4), ϕ4 ∈ C∞0 (R), then from (3.24)∫
R

σ1ϕ
4
xV

2dx+
∫
R

ϕ4
xV

3dx+ (1− σ1σ2)
∫
R

ϕ4V 4dx+ σ1

∫
R

ϕ4
xV

4dx+ σ1

∫
R

ϕ4V 3dx

=
∫
R

ϕ4((1− σ1σ2)F 4 + σ1F
3)dx

implying
V 3 + σ1V

4 ∈W 1,2(R). (3.28)
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(3.27), (3.28) determine V 3, V 4 (pointwise first) since σ2
1 + σ1σ2 6= 1, cp. (3.18) - (3.21), and we

conclude
V 3, V 4 ∈W 1,2(R) (3.29)

This combined with (3.26) yields
V 1 ∈W 1,2(R) (3.30)

By (3.25), (3.29), (3.30) we have proved

V ∈ (W 1,2(R))4 = D(A)

that is
D(A∗) ⊂ D(A) (3.31)

(3.22), (3.31) yield (3.15) hence (3.14), and the proof of Theorem 3.2 is finished.

Q.e.d.

Thus (3.5), respectively (3.1) - (3.4), is well-posed,

V (t) = e−AtV0

and the connections illustrated in this section might be useful for the consideration of the local well-
posedness in several space dimensions.

4 Decay rates of global solutions

Having settled the local well-posedness of the nonlinear system (2.10) - (2.11) in Theorem 2.2, we can
now take the global existence theorem from Tarabek([19]), yielding

Theorem 4.1 ([19]) Let s ≥ 2. Then there is δ > 0 such that for data V0 ∈ W s,2(R) with ||V0||s,2 < δ

there exists a unique global solution V to (2.10), (2.11) satisfying

V ∈ C0
(
[0,∞),W s,2(R)

)
∩ C1

(
[0,∞),W s−1,2(R)

)
and

∃K > 0, ∀ t ≥ 0 : ||V (t)||s,2 ≤ K||V0||s,2.

The last estimate is implicitly contained in [19]. There the case s = 2 is studied but standard techniques
yield s ≥ 2 arbitrary. Tarabek also proved that ||V (t)||1,∞ and ||∇V (t)||2 tend to zero as t → ∞. But
the rates of decay were not given. Here we shall give polynomial decay rates for the solution. This will be
based on the knowledge of the asymptotic behavior of solutions to the corresponding linearized system
which we can take from the work of Yang & Wang [23] and of W. Wang & Z. Wang [21]. Then suitable
a priori estimates have to be proved in the spirit of the method described in general in [14], and already
used in classical (hyperbolic-parabolic) thermoelasticity now connected to Cattaneo’s law.
We can rewrite the differential equations (1.9) - (1.11) as follows

utt − αuxx + βθx = h1 (4.1)

θt + γqx + δutx = h2 (4.2)

τ0qt + q + κθx = h3 (4.3)
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where (cp. (1.12), (1.13))

α := Sux
(0, 0, 0), β := −Sθ(0, 0, 0), γ := a4 (0, 0, 0) (4.4)

δ := a3 (0, 0, 0), κ := τ0a6 (0, 0, 0), τ0 := τ(0, 0) (4.5)

h1 := (S(ux, θ, q)− αux + βθ)x (4.6)

h2 := (γ − a4)qx + (δ − a3)utx − σ2θx − a5q (4.7)

h3 := τ0

{( 1
τ0
− 1
τ

)
q +

( κ
τ0
− k

τ

)
θx

}
. (4.8)

One knows
σ1(0, 0, 0) = 0, σ2(0, 0, 0) = 0, a5(0, 0, 0) = 0. (4.9)

Defining
V := (

√
ακδ ux, ut, θ, q)′

we obtain
A0Vt +A1Vx +BV = F̃ (V, Vx), V (0) = V0 := (

√
ακδ u0,x, u1, θ0, q0)′ (4.10)

where

A0 :=


1 0 0 0
0 κδ 0 0
0 0 βκ 0
0 0 0 βγτ0

 , A1 :=


0 −

√
ακδ 0 0

−
√
ακδ 0 βκδ 0
0 βκδ 0 βκγ

0 0 βκγ 0



B :=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 βγ

 , F̃ :=


0

κδh1

βκh2

βγh3


We have from (4.4) - (4.9)

F̃ (0, 0) = 0, F̃(V,Vx)(0, 0) = 0 (4.11)

The linearized system, i.e. for F̃ = 0, is solved by

V (t) = etRV0

where
R := −(A0)−1 (A1∂x +B)

generates a C0-semigroup on D(R) := (W 1,2(R))4 ⊂ (L2(R))4. Then the solution to (4.10) is represented
in general by

V (t) = etRV0 +

t∫
0

e(t−r)RF (V, Vx)(r) dr (4.12)

where
F := (A0)−1F̃ (4.13)

The asymptotic behavior of the L2-norm of the solution to the linearized problem is described by

Lemma 4.2 Let F = 0. Then there are constants c, c1 > 0 such that for all t ≥ 0:
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(i)
||∂l

x V (t)||2 ≤ c
{
e−c1t||∂l

x V0||2 + (1 + t)−
2l+1

4 ||V0||1
}

(l = 0, 1)

(ii)
||∂t V (t)||2 ≤ c

{
e−c1t||V0||1,2 + (1 + t)−

3
4 ||V0||1

}
(iii)

||V4(t)||2 ≤ c
{
e−c1t||V0||1,2 + (1 + t)−

3
4 ||V0||1

}
This lemma follows from the results of Yang & Wang [24], in particular from the expansions of the
characteristic values; cp. similar results for classical thermoelasticity in [8, Thm.3.6], going back to
Kawashima [11].
The proofs of the L2-decay results in classical nonlinear thermoelasticity (Fourier’s law) repeatedly used
the divergence forms of the differential equations arising from the balance law for the momentum (1.1)
and for the energy (1.2). The same structure is not present in Cattaneo’s law. Therefore, we restrict
ourselves to a special case, namely we assume that τ and k are constant functions,

τ ≡ τ0, k ≡ κ (4.14)

that is, Cattaneo’s law is the linear one:

τ0qx + q + κθx = 0 (4.15)

This assumption implies that in (4.3)
h3 = 0 (4.16)

and for the remaining nonlinearities h1, h2 in (4.1), (4.2) we are able to carry over the considerations
from classical thermoelasticity. We shall also exploit that the free energy ψ and the internal energy have
the form

ψ(ux, θ, q) = ψ0(ux, θ) + ψ1(ux, θ)q2 (4.17)

e(ux, θ, q) = e0(ux, θ) + e1(ux, θ)q2 (4.18)

with suitable ψ0, ψ1, e0, e1, see [13]. Then we shall prove

Theorem 4.3 Let V0 ∈ W 3,2(R) ∩ L1(R), and m0 := ||V0||3,2 + ||V0||1. For sufficiently small m0 there
is c > 0 such that for t ≥ 0, the solution V to (4.10) satisfies

||V (t)||1,2 ≤ c (1 + t)−
1
4 ·mo

Proof: With
V = (

√
ακδ ux, ut, θ, q)

we have
Vt −RV = F (V, Vx)

and, by (4.16),
F (V, Vx) = (0, h1, h2, 0).

The fact that F vanishes quadratically in zero, cp. the next lemma, is not sufficient despite the linear
decay behavior like that of a heat equation, because terms like ”V · Vx” appear, cp. Zheng & Chen
[25]. Therefore, we shall rewrite the nonlinearities in divergence form in order to be able to exploit the
better decay of derivatives in the later estimates for ||V (t)||2, a modification of the corresponding proof
in classical thermoelasticity, cp. [8].
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Lemma 4.4 (i)
h1(V, Vx) =

(
S(ux, θ, q)− αux + βθ

)
x
≡

(
h11(V )

)
x

(ii)

h2(V, Vx) =
([
θ + δux − γ{ε− ε(0, 0, 0) +

u2
t

2
}
])

t
+ γ(Sut)x ≡ (h21(V ))t + (h22(V ))x

(iii)
|h11(V )|, |h21(V )|, |h22(V )| ≤ c |V |2

(iv)
|h1(V, Vx)|, |h2(V, Vx)| ≤ c (|V |2 + |Vx|2) ( near V = 0)

Proof: For (i) compare (4.6). For (ii) we first have(
ε+

u2
t

2

)
t
= (Sut)x − qx (4.19)

which is, using (1.1), equivalent to (1.2).
It follows

θt + δ uxt + γ qx = θt + δ uxt + γ qx + γ

{(
Sut − q

)
x
−

(
ε+

u2
t

2

)
t

}
=

(
θ + δ ux − γ

{
ε− ε(0, 0, 0) +

u2
t

2

})
t

+ γ(Sut)x

which yields (ii) (cp.(4.2)).
|h11(V )|, |h22(V )| ≤ c |V |2

follows immediately from the definition of h11, h22 and from (4.4) and S(0, 0, 0) = 0 which is assumed
without loss of generality.
The estimates (iv) also are immediate consequences of (4.4) - (4.7), so it remains to investigate h21(V ).

h21(V ) = θ + δ ux − γ
{
ε− ε(0, 0, 0) +

u2
t

2

}
= θ + δ ux − γ

{
εux(0, 0, 0)ux + εθ(0, 0, 0) θ + εq(0, 0, 0) q

}
+O(u2

x + θ2 + q2 + u2
t )

Observing

εux
= ψux

+ (θ + T0) ηux
= S + (θ + T0)(−Sθ),

εθ = ψθ + η + (θ + T0) ηθ = −(θ + T0)ψθθ

as well as (4.18) and (4.4), (4.5) we obtain

γ εux
(0, 0, 0) = −γ T0 Sθ(0, 0, 0) = δ

γ εθ(0, 0, 0) = −γ T0 ψθθ(0, 0, 0) = 1

εq(0, 0, 0) = 0

hence
h21(V ) = O(u2

x + θ2 + q2 + u2
t ) = O(|V |2)

This proves Lemma 4.4. Q.e.d.

Continuing the proof of Theorem 4.3 we notice that, as a consequence of Lemma 4.4, we may rewrite F
as

F (V, Vx) =
(
0, h1(V, Vx), h2(V, Vx), 0

)′
=

(
0,

(
h11(V )

)
x
,

(
h21(V )

)
t
+

(
h22(V )

)
x
, O

)′
.
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Since W : t 7→ e(t−r)R
(
0, 0,

(
h21(V (r))

)
, 0

)′
solves

Wt −RW = 0, W (r) =
(
0, 0, h21(V (r)), 0

)′
we conclude

e(t−r)R
(
0, 0,

(
h21(V (r))

)
r
, 0

)′

= ∂r

(
e(t−r)R

(
0, 0,

(
h21(V (r))

)
, 0

)′)
+ ∂t

(
e(t−r)R

(
0, 0,

(
h21(V (r))

)
, 0

)′)
= ∂r

(
e(t−r)R

(
0, 0,

(
h21(V (r))

)
, 0

)′)
+R

(
e(t−r)R

(
0, 0,

(
h21(V (r))

)
, 0

)′)
= ∂r

(
e(t−r)R

(
0, 0,

(
h21(V (r))

)
, 0

)′)
− (A0)−1A1 ∂x e

(t−r)R
(
0, 0,

(
h21(V (r))

)
, 0

)′
−(A0)−1B e(t−r)R

(
0, 0,

(
h21(V (r))

)
, 0

)′
(4.20)

By the representation (4.12) we get, using (4.20),

V (t) = etRV0 +

t∫
0

{
∂xe

(t−r)R(0, h11, h22, 0)′

−(A0)−1A1∂xe
(t−R)(0, 0, h21, 0)′ − (A0)−1Be(t−r)R(0, 0, h21, 0)′

}
dr

+
[
e(t−r)R(0, 0, h21(V (r)), 0)′

]r=t

r=0
(4.21)

This representation will be used to estimate ||V (t)||2 while the simpler one given in (4.12) will be sufficient
to estimate ||∂xV (t)||2.
Let

M(t) := sup
0≤r≤t

(1 + r)
1
4 ||V (r)||1,2 (4.22)

By (4.21) and Lemma 4.2 we obtain

||V (t)||2 ≤ c(1 + t)−
1
4 (||V0||2 + ||V0||1) + c

t∫
0

{
e−c1(t−r) ||(h11, h22, h21)||1,2

+(1 + t− r)−
3
4 ||(h11, h22, h21)||1

}
dr + c ||h21(V )||2 (4.23)

c, c1, . . . denoting positive constants neither depending on t nor on V0.
Since

||(h11, h22, h21)||1,2(r) ≤ c||V ||1,2 ||V ||∞(r)

≤ c||V ||1,2 ||V ||1,2(r)

≤ c(1 + r)−
1
4M(r)||V0||2,2 (4.24)

the latter by Theorem 4.1, and since

||(h11, h22, h21)||1 ≤ c ||V ||22 ≤ c(1 + r)−
1
2M2(r) (4.25)
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we get

||V (t)||2 ≤ c (1 + t)−
1
4m0 + c

t∫
0

{
e−c1(t−r)(1 + r)−

1
4M(r)m0

+(1 + t− r)−
3
4 (1 + r)−

1
2M2(r)

}
dr + c (1 + t)−

1
4M(t)m0

≤ c (1 + t)−
1
4m0

(
1 +M(t)

)
+ c (1 + t)−

1
4

{
m0M(t) +M2(t)

}
· J

where

J = J(t) =

t∫
0

e−c1(t−r)(1 + r)−
1
4 (1 + t)

1
4 dr +

t∫
0

(1 + t− r)−
3
4 (1 + r)−

1
2 (1 + t)

1
4 dr

satisfies
sup
t≥0

J(t) <∞

(see Lemma 7.4 in [14]),
hence

||V (t)||2 ≤ c (1 + t)−
1
4

{
m0(1 +M(t)) +M2(t)

}
(4.26)

To estimate ||∂xV (t)||2 we use (4.12) directly and the Lemmas 4.2 and 4.4 to similarly conclude

||∂xV (t)||2 ≤ c (1 + t)−
3
4 (||V0||1,2 + ||V0||1) + c

t∫
0

{
e−c1(t−r)||(h1, h2)||1,2

+(1 + t− r)−
3
4 ||(h1, h2)||1

}
dr

≤ c (1 + t)−
3
4m0 + c

t∫
0

{
e−c1(t−r)(1 + r)−

1
4M(r)m0

+(1 + t− r)−
3
4 (1 + r)−

1
2M2(r)

}
dr

≤ c (1 + t)−
1
4

{
m0(1 +M(t)) +M2(t)

}
(4.27)

where the term ”||Vxx||∞” in the estimate for ||(h1, h2)||1,2 produces ||V0||3,2.
Combining (4.26), (4.27) we get

M(t) ≤ c2

{
m0(1 +M(t)) +M2(t)

}
Choosing

m0 ≤
c2
2

we obtain
M(t) ≤ 2c 2m0 + c 2M

2(t)

Since
M(0) ≤ cm0

it is a standard argument (cp. e.g. [14]) to conclude that — for sufficiently small m0 — we have

M(t) ≤ c 3

(c 3 being the smallest zero of f(x) = c 2x
2 − x+ 2 c 2m0) and then

||V (t)||1,2 ≤ c 4(1 + t)−
1
4m0
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which proves Theorem 4.3.
Q.e.d.
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