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Abstract: We consider vibrating systems of hyperbolic Timoshenko type that are coupled to a heat
equation modeling an expectedly dissipative effect through heat conduction. While proving exponential
stability under the Fourier law of heat conduction, it turns out that the coupling via the Cattaneo law
does not yield an exponentially stable system. This seems to be the first example that a removal of
the paradox of infinite propagation speed inherent in Fourier’s law by changing to the Cattaneo law
distroys the exponential stability property. Actually, for systems with history, the Fourier law keeps the
exponential stability known for the pure Timoshenko system without heat conduction, but introducing
the Cattaneo coupling even destroys this property.

1 Introduction

The classical model for the propagation of heat turns into the well-known equations for the
temperature θ (difference to a fixed constant reference temperature) and the heat flux vector q,

θt + β div q = 0 (1.1)

and
q + κ∇θ = 0 (1.2)

with positive constants β, κ. Relation (1.2) represents the assumed Fourier’s law of heat con-
duction and, plugged into (1.1), yields the parabolic heat equation

θt − βκ∆θ = 0. (1.3)

Adding initial conditions and, for example, Dirichlet boundary conditions for θ we obtain the
exponential decay of solutions to (1.3), the associated one parameter semigroup is exponentially
stable.

The model using Fourier’s law inhibits the physical paradox of infinite propagation speed
of signals. For some applications like working with very short laser pulses in laser cleaning of
computer chips, see the references in [14], it is worth while thinking of another model removing
this paradox, but still keeping the essentials of a heat conduction process. One such model —
for a survey compare Chandrasekharaiah [2], for general Cattaneo models cp. Öncü and Moodie
[13] — is given by the simplest Cattaneo law replacing Fourier’s law (1.2),

τqt + q + κ∇θ = 0 (1.4)
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now regarding the heat flux vector as another function to be determined through the differential
equation and initial and, in case, boundary conditions. The positive parameter τ is the relaxation
time describing the time lag in the response of the heat flux to a gradient in the temperature.
Combining (1.1) and (1.4) we obtain the hyperbolic, damped wave equation

τθtt + θt − βκ∆θ = 0. (1.5)

Again, we obtain the well-known exponential stability. That is, both models, Fourier and
Cattaneo, exhibit the same qualitative behavior, they both lead to exponentially stable systems
for pure heat conduction.

There are many coupled systems describing both the elastic behavior of a system as well
as simultaneously the heat conduction within the system. Such thermoelastic systems have
been treated by many authors, for a survey on classical thermoelasticity — classical here also
indicating that the Fourier law for heat conduction is used — see e.g. [7]. It has been shown that
spacially one-dimensional systems are, under appropriate boundary conditions or normalizations,
exponentially stable in bounded reference configurations. In three space dimensions the same
holds for radially symmetric situations.

This has been extended to models where the Fourier law is replaced by the Cattaneo law in
[14, 15, 10, 5]. Moreover, it has been shown in the one-dimensional frame work, that, for real
materials, the decay rates (type of the associated semigroup) of solutions to the both models
are very close to each other, see [6], and that, again for real materials in the model of pulsed
laser heating, differences for the displacement or the displacement gradient are of order 10−5m

and 10−10m, respectively, cp. [5].
These observations nourish the expectation that always both models lead to exponential

stability (or both do not). We shall demonstrate for Timoshenko type systems that Fourier’s
law might predict exponential stability, while Cattaneo’s law does not. This observation seems to
be new and, maybe, unexpected. It turns out that for Timoshenko systems with history which
are known to decay exponentially due to the history the introduction of a heat conduction
via Fourier keeps this exponential decay property while the Cattaneo model even destroys this
property.

The first system we consider is the following coupling of two wave equations of Timoshenko
type with heat conduction

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,∞)× (0, L) (1.6)

ρ2ψtt − bψxx + k(ϕx + ψ) + δθx = 0 in (0,∞)× (0, L) (1.7)

ρ3θt + qx + δψtx = 0 in (0,∞)× (0, L) (1.8)

τqt + βq + θx = 0 in (0,∞)× (0, L) (1.9)

with positive constants ρ1, k, ρ2, b, δ, ρ3, β.
The case τ = 0 represents Fourier’s law, and τ > 0 Cattaneo’s law. The functions ϕ, ψ, θ

and q depend on (t, x) ∈ [0,∞)× [0, L] and model the transverse displacement of a beam with
reference configuration (0, L) ⊂ R, the rotation angle of a filament, the temperature difference
and the heat flux, respectively, cp. [8].

Additionally we have initial conditions

ϕ(0, ·) = ϕ0, ϕt(0, ·) = ϕ1, ψ(0, ·) = ψ0, ψt(0, ·) = ψ1,
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θ(0, ·) = θ0, q(0, ·) = q0 in (0, L) (1.10)

(the last one for q only if τ > 0), and boundary conditions

ϕ(·, 0) = ϕ(·, L) = ψx(·, 0) = ψx(·, L) = θ(·, 0) = θ(·, L) = 0 in (0,∞) (1.11)

It was shown in [11] that for τ = 0, i.e. assuming Fourier’s law, the system is exponentially
stable if and only if

ρ1

k
=
ρ2

b
(1.12)

holds. If the term δθx in (1.7) is replaced by a control function b̄(x)ψt, b̄ > 0, then Soufyane
[16] proved the exponential stability of the linearized system if and only if (1.12) holds, that is,
if and only if the wave speeds associated to (1.6), (1.7), respectively, are equal.
A weaker type of dissipation, also being presented only in the equation (1.7) for ψ, was considered

in [1] replacing δθx by a memory term
t∫
0
g(t− s)ψxx(s, x)ds. For exponential type kernels g the

exponential stability follows again if and only if (1.12) holds.
Here we consider a dissipation through a coupling to a heat equation. The coupling is direct
only for the rotation angle ψ in (1.7) while the coupling to ϕ is only given indirectly in (1.6).
For δ = 0 the equations (1.6), (1.7) build an energy conserving purely hyperbolic system. For
δ 6= 0 and τ = 0, our system (1.6)–(1.9) is of hyperbolic-parabolic type, while for τ > 0 it is
damped, purely hyperbolic.

We shall prove that, under the same condition (1.12), the system is no longer exponentially
stable under Cattaneo’s law where τ > 0. Thus the behavior under the Fourier law is essentially
different from the behavior under Cattaneo’s law, which, for the question of stability might not
have been expected.

Then we can even add another kind of dissipation given through a history term. We look at
the extended system in (0,∞)× (0, L),

ρ1ϕtt − k(ϕx + ψ)x = 0 (1.13)

ρ2ψtt − bψxx +
∞∫
0

g(s)ψxx(t− s, ·)ds+ k(ϕx + ψ) + δθx = 0 (1.14)

ρ3θt + qx + δψtx = 0 (1.15)

τqt + βq + θx = 0 (1.16)

where the integral term in (1.14) represents a history term with an exponentially decaying kernel
g, cp. [3] for the purely hyperbolic system (1.13), (1.14) without heat conduction, and [1] for
finite history without heat conduction. It will be demonstrated that the system is exponentially
stable for τ = 0 if and only if (1.12) holds, while it is not exponentially stable if τ > 0.

Since the system without heat conduction, the pure Timoshenko beam equation ((1.13),
(1.14), δ = 0), is exponentially stable, see [3]), (cp. [1] for finite history), this means that the
Fourier model of heat conduction preserves the exponential stability of the model, while the —
still assumed to have a dissipative effect — Cattaneo model destabilizes in the sense that it is
no longer exponentially stable. This discovered phenomenon seems to be unexpected and may
have consequences for other hyperbolic heat conduction models.

The paper is organized as follows: In Section 2 we shall look at the Timoshenko system (1.6)–
(1.9) and prove that it is not exponentially stable for the Cattaneo law (τ > 0) even if (1.12)
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holds. The Timoshenko system with history (1.13)–(1.16) is shown to be not exponentially
stable under Cattaneo’s law (τ > 0) in Section 3, and to be exponentially stable under the
Fourier law in Section 4.

2 Timoshenko without history — non-exponential stability for

Cattaneo’s law

We consider here the initial-boundary value problem (1.6)–(1.11) for the Timoshenko system
without history under Cattaneo’s law, i.e. τ > 0,

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,∞)× (0, L)

ρ2ψtt − bψxx + k(ϕx + ψ) + δθx = 0 in (0,∞)× (0, L)

ρ3θt + qx + δψtx = 0 in (0,∞)× (0, L)

τqt + βq + θx = 0 in (0,∞)× (0, L)

(2.1)

ϕ(0, ·) = ϕ0, ϕt(0, ·) = ϕ1, ψ(0, ·) = ψ0, ψt(0, ·) = ψ1,

θ(0, ·) = θ0, q(0, ·) = q0 in (0, L)
(2.2)

ϕ(·, 0) = ϕ(·, L) = ψx(·, 0) = ψx(·, L) = θ(·, 0) = θ(·, L) = 0 in (0,∞). (2.3)

Still assuming the condition (1.12) that was already necessary (and there sufficient) for expo-
nential stability in the Fourier case (τ = 0),

ρ1

k
=
ρ2

b
(2.4)

we shall demonstrate that exponential stability is no longer given. For this purpose we rewrite
the system as evolution equation for U = (ϕ,ϕt, ψ, ψt, θ, q)′ ≡ (u1, u2, u3, u4, u5, u6)′. Then U

formally satisfies
Ut = A1U, U(0) = U0

where U0 := (ϕ0, ϕ1, ψ0, ψ1, θ0, q0)′, and A1 is the (yet formal) differential operator

A1 :=



0 Id 0 0 0 0

k
ρ1
∂2

x 0 k
ρ1
∂x 0 0 0

0 0 0 Id 0 0

− k
ρ2
∂x 0 b

ρ2
∂2

x − k
ρ2
Id 0 − δ

ρ2
∂x 0

0 0 0 − δ
ρ3
∂x 0 − 1

ρ3
∂x

0 0 0 0 − 1
τ ∂x −β

τ Id


.

Let
H1 := H1

0 (0, L)× L2(0, L)×H1
∗ (0, L)× L2

∗(0, L)× L2(0, L)× L2(0, L)
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be the Hilbert space with

L2
∗(0, L) :=

{
v ∈ L2(0, L) |

L∫
0

v(x) dx = 0
}
, H1

∗ (0, L) :=
{
v ∈ H1(0, L) |

L∫
0

v(x) dx = 0
}

and norm given by

||U ||2H1
= ||(u1, u2, u3, u4, u5, u6)||2H1

= ρ1||u2||2L2 + ρ2||u4||2L2 + b||u3
x||2L2 + k||u1

x + u3||2L2 + ρ3||u5||2L2 + τ ||u6||2L2 .

The domain of the operator A1 is given by

D(A1) :=
{
U ∈ H1 | u1 ∈ H2(0, L), u2 ∈ H1

0 (0, L), u3 ∈ H2(0, L), u3
x ∈ H1

0 (0, L),

u4 ∈ H1
∗ (0, L), u5 ∈ H1

0 (0, L), u6 ∈ H1(0, L)
}
.

It is not difficult to prove that the operator A1 is the infinitesimal generator of a C0 contraction
semigroup, cp. Section 3.

We shall use the following well-known result from semigroup theory (see e.g. [9, Theorem
1.3.2]).

Lemma 2.1 A semigroup of contractions {etA}t≥0 in a Hilbert space with norm ‖ · ‖ is expo-
nentially stable if and only if

(i) the resolvent set %(A) of A contains the imaginary axis

and

(ii) lim sup
λ→±∞

‖(iλId−A)−1‖ <∞

hold.

Hence it suffices to show the existence of sequences (λn)n ⊂ R with limn→∞ |λn| = ∞, and
(Un)n ⊂ D(A1), (Fn)n ⊂ H, such that (iλnId−A1)Un = Fn is bounded and

lim
n→∞

‖Un‖H1 = ∞.

As Fn ≡ F we choose F := (0, sin(αλx), 0, cos(αλx), 0, 0)′, where

λ ≡ λn :=
nπ

αL
(n ∈ N) , α :=

√
ρ1

k
.

The solution U = (v1, v2, v3, v4, v5, v6)′ of (iλId−A1)U = F should satisfy

iλv1 − v2 = 0

iλv3 − v4 = 0

−λ2v1 − k

ρ1
v1
xx −

k

ρ1
v3
x = f2

−λ2v3 − b

ρ2
v3
xx +

k

ρ2
v1
x +

k

ρ2
v3 +

δ

ρ2
v5
x = f4

iλv5 +
1
ρ3
v6
x + iλ

δ

ρ3
v3
x = 0

iλv6 +
β

τ
v6 +

1
τ
v5
x = 0.

(2.5)
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This can be solved by
v1(x) = A sin(αλx), v3(x) = B cos(αλx)

v5(x) = C sin(αλx), v6(x) = D cos(αλx)

where A, B, C , D depend on λ and will be determined explicitly in the sequel. Note that this
choice is just compatible with the boundary conditions. System (2.5) is equivalent to finding
A,B,C,D such that

−λ2A+
k

ρ1
α2λ2A− k

ρ1
αλB = 1 (2.6)

−λ2B +
b

ρ2
α2λ2B − kα

ρ2
λA+

k

ρ2
B − δα

ρ2
λC = 1 (2.7)

iλC +
α

ρ3
λD + i

δα

ρ3
λ2B = 0 (2.8)

iλD +
β

τ
D − α

τ
λC = 0. (2.9)

We have from (2.9)

D =
αλ

(iτλ+ β)
C. (2.10)

Combining (2.10) and (2.8) yields

C =
λδα(iτλ+ β)

iα2λ− ρ3(iτλ+ β)
B. (2.11)

On the other hand, by the definition of α, we obtain from (2.6)

B = − ρ1

kαλ
. (2.12)

Let Θ := bρ1

ρ2k − 1. Then, using (2.11) and (2.12) in (2.7) we have

Θλ2B +
k

ρ2
B − kα

ρ2
λA− λ2δ2α2(iτλ+ β)

[iα2λ− ρ3(iτλ+ β)] ρ2
B = 1. (2.13)

Using (2.12) in (2.13) results in

kαλ

ρ2
A = −Θλ

ρ1

kα
− ρ1

ρ2αλ
− 1 +

λδ2α(iτλ+ β)ρ1

[iα2λ− ρ3(iτλ+ β)] ρ2k

that is, using α =
√

ρ1

k ,

A = −Θ
ρ2

k
− 1
λ2

− ρ2√
ρ1kλ

+ P (λ)

where

P (λ) :=
δ2(iτλ+ β)ρ1

[iα2λ− ρ3(iτλ+ β)] k2
with lim

λ→∞
λ|P (λ)| = ∞.

Recalling that v2 = iλv1 = iλA cos(αλx) we get

v2(x) =
(
−Θ

iλρ2

k
− i

λ
− iρ2√

ρ1k
+ iλP (λ)

)
cos(αλx).
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Note that

||v2||L2 =
( ∫ L

0
|v2|2dx

)1/2

=
√
L

2

∣∣∣∣∣−Θ
λρ2

k
− 1
λ
− ρ2√

ρ1k
+ λP (λ)

∣∣∣∣∣
≥ −

√
L

2

∣∣∣ 1
λ

+
ρ2√
ρ1k

∣∣∣︸ ︷︷ ︸
bounded as λ→∞

+
√
L

2

∣∣∣∣P (λ)−
(ρ2

b
− ρ1

k

) b
k

∣∣∣∣λ
which implies (even) for ρ1

k = ρ2

b

lim
λ→∞

||Un||H1 ≥ lim
λ→∞

||v2||L2 = ∞.

Thus we have proved

Theorem 2.2 The Timoshenko system (2.1)–(2.3) is not exponentially stable under Cattaneo’s
law, (even) under the assumption (2.4) — in contrast to the situation with the Fourier law
(τ = 0).

Remark. We mention that we could have a similar statement for the following set of boundary
conditions replacing (2.3),

ϕx(·, 0) = ϕx(·, L) = ψ(·, 0) = ψ(·, L) = q(·, 0) = q(·, L) = 0 in (0,∞)

cp. Sections 3 and 4, where we shall deal with this boundary condition to demonstrate that all
arguments mutatis mutandis apply to both set of boundary conditions.

3 Timoshenko with history — non-exponential stability for Cat-

taneo’s law

Here we consider the Timoshenko system (1.13)–(1.16) with history and the Cattaneo law (τ >
0), and we prove that it is not exponentially stable even if we assume (1.12),

ρ1

k
=
ρ2

b
. (3.1)

First we again give a reformulation as first-order evolution system. The second-order differential
equations are

ρ1ϕtt − k(ϕx + ψ)x = 0

ρ2ψtt − bψxx +
∞∫
0

g(s)ψxx(x, t− s) ds+ k(ϕx + ψ) + δθx = 0

ρ3θt + qx + δψxt = 0

τqt + βq + θx = 0.

(3.2)

Let
η(t, s, x) := ψ(t, x)− ψ(t− s, x), t, s ≥ 0 (3.3)
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then we have

ρ1ϕtt − k(ϕx + ψ)x = 0 (3.4)

ρ2ψtt −
(
b−

∞∫
0

g(s)ds
)
ψxx −

∞∫
0

g(s)ηt
xx(s, x)ds+ k(ϕx + ψ) + δθx = 0 (3.5)

ρ3θt + qx + δψxt = 0 (3.6)

τqt + βq + θx = 0 (3.7)

ηt + ηs − ψt = 0 (3.8)

η(·, 0, ·) = 0 (3.9)

where equation (3.8) is obtained differentiating (3.3). The initial conditions are given by

ϕ(0, ·) = ϕ0, ϕt(0, ·) = ϕ1, ψ(0, ·) = ψ0, ψt(0, ·) = ψ1, θ(0, ·) = θ0,

q(0, ·) = q0, η(0, s, ·) = ψ0 − ψ(−s, ·) =: η0(s, ·) in (0, L), s ≥ 0,
(3.10)

where the history is considered as an initial value. The boundary conditions are given by

ϕx(·, 0) = ϕx(·, L) = ψ(·, 0) = ψ(·, L) = q(·, 0) = q(·, L) = 0 in (0,∞). (3.11)

Concerning the kernel g we assume the following hypotheses (t ≥ 0),

g(t) > 0, ∃k0, k1, k2 > 0 : −k0g(t) ≤ g′(t) ≤ −k1g(t), |g′′(t)| ≤ k2g(t) (3.12)

b̃ := b−
∫ ∞

0
g(s)ds > 0. (3.13)

Remark. The associated energy term is given by

E(t) :=
1
2

L∫
0

ρ1ϕ
2
t + ρ2ψ

2
t + b̃ψ2

x + k|ϕx + ψ|2 + ρ3θ
2 + τq2 +

∞∫
0

g(s)|ηx|2 ds

 dx
which is reflected in the norm of ‖U(t)‖H in the semigroup formulation now following. Let

U := (ϕ,ϕt, ψ, ψt, θ, q, η)′ := (u1, u2, u3, u4, u5, u6, u7)′. (3.14)

Then we formally have
Ut = A2U, U(0) = U0 (3.15)

where U0 := (ϕ0, ϕ1, ψ0, ψ1, θ0, q0, η0)′ and A2 is the formal differential operator

A2 :=



0 Id 0 0 0 0 0

k
ρ1
∂2

x 0 k
ρ1
∂x 0 0 0 0

0 0 0 Id 0 0 0

− k
ρ2
∂x 0 b̃

ρ2
∂2

x − k
ρ2
Id 0 − δ

ρ2
∂x 0 1

ρ2

∫∞
0 g(s)∂

2
x(·, s)ds

0 0 0 − δ
ρ3
∂x 0 − 1

ρ3
∂x 0

0 0 0 0 − 1
τ ∂x −β

τ Id 0

0 0 0 Id 0 0 −∂s



.

8



Let

H2 = H1
∗ (0, L)× L2

∗(0, L)×H1
0 (0, L)× L2(0, L)× L2

∗(0, L)× L2(0, L)× L2
g(R

+,H1
0 )

where L2
g(R+,H1

0 ) denotes the Hilbert space of H1
0 -valued functions on R+, endowed with the

inner product

〈ϕ,ψ〉L2
g(R+,H1

0 ) =
L∫

0

∞∫
0

g(s)ϕx(s, x)ψx(s, x)dsdx.

Then H2, with norm

||U ||2H2
= ρ1||u2||2L2 + ρ2||u4||2L2 + b̃||u3

x||2L2 + k||u1
x + u3||2L2 + ρ3||u5||2L2

+τ ||u6||2L2 + ||u7||2L2
g(R+,H1

0 )

is a Hilbert space. The domain of the operator A2 is now given by

D(A2) :=
{
U ∈ H2 | u1 ∈ H2(0, L), u1

x ∈ H1
0 (0, L), u2 ∈ H1

∗ (0, L), u4 ∈ H1
0 (0, L),

u5 ∈ H1
∗ (0, L), u6 ∈ H1

0 (0, L), b̃u3 +
∞∫
0

g(s)u7(s, ·)ds ∈ H2(0, L) ∩H1
0 (0, L),

u7
s ∈ L2

g(R
+,H1

0 ), u7(0, x) = 0 (x ∈ (0, L))
}
.

We shall prove

Lemma 3.1 The operator A2 is the infinitesimal generator of a C0-semigroup of contractions.

Proof. First we note that A2 is dissipative, because for any U ∈ D(A2) we have

Re〈A2U,U〉H2 =
1
2

L∫
0

∞∫
0

g′(s)|u7
x|2 ds dx− β

L∫
0

|u6|2 dx

≤ −k1

2

L∫
0

∞∫
0

g(s)|u7
x|2 ds dx− β

L∫
0

|u6|2 dx ≤ 0.

Now we show that 0 ∈ %(A2). For any F = (f1, f2, f3, f4, f5, f6, f7)′ ∈ H2, consider the
following equation,

A2U = F (3.16)

that is,

u2 = f1 (3.17)

k(u1
x + u3)x = ρ1f

2 (3.18)

u4 = f3 (3.19)

b̃u3
xx +

∞∫
0

g(s)u7
xx(·, s) ds− k(u1

x + u3)− δu5
x = ρ2f

4 (3.20)

−u6
x − δu4

x = ρ3f
5 (3.21)

−βu6 − u5
x = τf6 (3.22)

−u7
s + u4 = f7. (3.23)
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From (3.17) and (3.19) we can get a unique u2 ∈ H1
∗ (0, L) and u4 ∈ H1

0 (0, L), respectively.
Then, from (3.21) we have

u6 = −δu4 − ρ3

x∫
0

f5(y)dy

where u6(0) = u6(L) = 0, that is we get a unique u6 ∈ H1
0 (0, L). Also, from (3.23), we can

determine

u7 = su4 −
s∫

0

f7(ξ)dξ.

It is clear that u7(0, ·) = 0 and u7
s ∈ L2

g(R+,H1
0 ). To prove that u7 ∈ L2

g(R+,H1
0 ), let T, ε > 0

be arbitrary. Using (3.12) we have

T∫
ε

|g(s)|||u7
x||2L2ds ≤ − 1

k1

T∫
ε

g′(s)||u7
x||2L2ds

≤ − 1
k1
g(T )||u7

x(T )||2L2 +
1
k1
g(ε)||u7

x(ε)||2L2 +
2
k1

T∫
ε

g(s)〈u7
x(s), u7

xs(s)〉L2ds

≤ 1
k1
g(ε)||u7

x(ε)||2L2 +
1
2

T∫
ε

g(s)||u7
x||2L2ds+

2
k2

1

T∫
ε

g(s)||u7
xs||2L2ds

that is

T∫
ε

|g(s)|||u7
x||2L2ds ≤ 2

k1
g(ε)||u7

x(ε)||2L2 +
4
k2

1

T∫
ε

g(s)||u7
xs||2L2ds. (3.24)

Since using the hypotheses on g and the properties of u7, we have

1
k1
g(ε)||u7

x(ε)||2L2 −→ 0 as ε→ 0

we obtain from (3.24), letting T →∞ and ε→ 0,

||u7||2L2
g

≤ 4
k2

1

∞∫
0

g(s)||u7
xs||2L2ds <∞.

Therefore u7 ∈ L2
g(R+;H1

0 ). On the other hand, from (3.22) we have that u5 is uniquely given
by

u5 = −
x∫

0

(
βu6(y) + τf6(y)

)
dy +

1
L

L∫
0

x∫
0

(
βu6(y) + τf6(y)

)
dy dx

that is, u5 ∈ H1
∗ (0, L). Also, from (3.18) we have that

u1
x + u3 =

ρ1

k

x∫
0

f2(y)dy ∈ H1
0 (0, L) (3.25)
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then from (3.20)

b̃u3
xx +

∞∫
0

g(s)u7
xx(·, s) ds = G (3.26)

where G := k(u1
x + u3) + δu5

x + ρ2f
4 ∈ L2(0, L). By standard elliptic theory we obtain a unique

b̃u3 +
∞∫
0

g(s)u7(·, s) ds ∈ H2(0, L) ∩H1
0 (0, L)

satisfying (3.26). Since u7 ∈ L2
g(R+;H1

0 ), we conclude from the last equation that u3 ∈ H1
0 (0, L).

Again from (3.25) we can get a unique u1 ∈ H2(0, L)∩H1
∗ (0, L) such that u1

x ∈ H1
0 (0, L). Thus

the unique solvability of (3.16) with U = (u1, u2, u3, u4, u5, u6, u7)′ ∈ D(A2) is proved. Moreover,
it is now obvious that there is a positive constant K, being independent of U , such that

||U ||H2≤K||F ||H2 .

This implies that 0 ∈ %(A2). Since A2 is dissipative, it follows that A2 is the infinitesimal
generator of a contraction semigroup in H2.

Q.e.d.

Finally we show that the original second-order system (3.2) and the evolution equation (3.15),
using the transformations (3.3), (3.14), are fully equivalent. In fact, it is clear by construction
that the solution of the system (3.2), with the notation (3.14), satisfies (3.15). On other hand,
let U = (u1, u2, u3, u4, u5, u6, u7)′ be the solution to (3.15). Then we conclude

u1
t = u2 (3.27)

u3
t = u4 (3.28)

ρ1u
1
tt − k(u1

x + u3)x = 0

ρ2u
3
tt − b̃u3

xx −
∞∫
0

g(s)u7
xx(x, s)ds+ k(u1

x + u3) + δu5
x = 0

ρ3u
5
t + u6

x + δu3
xt = 0

τu6
t + βu6 + u5

x = 0

u7
t + u7

s − u3
t = 0. (3.29)

Therefore, (u1, u3, u5, u6, u7)′ is a solution of the system (3.4)–(3.8). Then, by uniqueness of
solutions,

(u1, u3, u5, u6, u7) = (ϕ,ψ, θ, q, η) ∈ H1
∗ (0, L)×H1

0 (0, L)× L2
∗(0, L)× L2(0, L)× L2

g(R
+,H1

0 )

with condition η(·, 0, ·) = 0, and, using (3.27), (3.28), we have that the solution U of the evolution
problem (3.15) is also a solution of (3.4)–(3.9). Then the evolution equation (3.15) is fully
equivalent to the system (3.4)–(3.9). That η satisfies the equality (3.3) easily follows observing
that the characteristic lines of equation (3.29) are given by Γ(s) = (Γ1(s),Γ2(s)) = (s, s + c),
where c is a constant. Therefore, using (3.28), we have

ηs(Γ(s), ·) = ψt(Γ2(s), ·).
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By integration over [0, s] and using η(·, 0, ·) = 0 we have η(s, s+c, ·) = ψ(s+c, ·)−ψ(c, ·). Then,
putting c = t− s our conclusion on the equivalence of (3.2) and (3.15) follows.

Now we are going to prove that the system is not exponentially stable, where we shall need
the following Lemma from [3], cp. [4].

Lemma 3.2 Let us suppose that g satisfies the conditions (3.12) and let us assume that

lim
s→0

√
s g(s) = 0.

Then there exists C > 0 such that

∣∣∣λ ∞∫
0

g(s)e−iλsds
∣∣∣ ≤ C

uniformly in λ ∈ R.

As in Section 2, using Lemma 2.1, to show the non-exponential stability it is sufficient to find
sequences (λn)n ⊂ R with limn→∞ |λn| = ∞, and (Un)n ⊂ D(A2), (Fn)n ⊂ H2, such that
(iλnId−A2)Un = Fn is bounded and

lim
n→∞

‖Un‖H2 = ∞.

As Fn ≡ F we choose F := (0, cos(αλx), 0, sin(αλx), 0, 0, 0)′, where

λ ≡ λn :=
nπ

αL
(n ∈ N), α :=

√
ρ1

k
.

The solution U ≡ (v1, v2, v3, v4, v5, v6, v7)′ to (iλId−A2)U = F , should satisfy

iλv1 − v2 = 0

iλv3 − v4 = 0

−λ2v1 − k

ρ1
v1
xx −

k

ρ1
v3
x = f2

−λ2v3 − b

ρ2
v3
xx +

b0
ρ2
v3
xx −

1
ρ2

∞∫
0

g(s)v7
xx(x, s) ds+

k

ρ2
v1
x +

k

ρ2
v3 +

δ

ρ2
v5
x = f4

iλv5 +
1
ρ3
v6
x + iλ

δ

ρ3
v3
x = 0

iλv6 +
β

τ
v6 +

1
τ
v5
x = 0

iλv7 + v7
s − iλv3 = 0.

(3.30)

where b0 :=
∞∫
0
g(s)ds. This can be solved by

v1(x) = A cos(αλx), v3(x) = B sin(αλx),

v5(x) = C cos(αλx), v6(x) = D sin(αλx), v7(x, s) = ϕ(s) sin(αλx)
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where A, B, C, D, ϕ(s) depend on λ and will be determined explicitly in the sequel. Note that
this choose is just compatible with the boundary conditions. System (3.30) is equivalent to

−λ2A+
k

ρ1
α2λ2A− k

ρ1
αλB = 1 (3.31)

−λ2B +
b

ρ2
α2λ2B − b0

ρ2
α2λ2B +

α2λ2

ρ2

∞∫
0

g(s)ϕ(s)ds− k

ρ2
αλA+

k

ρ2
B − δα

ρ2
λC = 1 (3.32)

iλC +
α

ρ3
λD + i

δα

ρ3
λ2B = 0 (3.33)

iλD +
β

τ
D − α

τ
λC = 0 (3.34)

iλϕ(s) + ϕ′(s)− iλB = 0. (3.35)

From (3.34) we have

D =
αλ

(iτλ+ β)
C. (3.36)

Combining (3.36) and (3.33) we get

C =
λδα(iτλ+ β)

iα2λ− ρ3(iτλ+ β)
B. (3.37)

On the other hand, by the definition of α =
√

ρ1

k , we obtain from (3.31)

B = − ρ1

kαλ
. (3.38)

Since η(·, 0, ·) = 0 we have that ϕ(0) = 0, then solving (3.35) we get

ϕ(s) = B −Be−iλs. (3.39)

From (3.39) we get

∞∫
0

g(s)ϕ(s)ds =
∞∫
0

g(s)[B −Be−iλs] ds = Bb0 −B

∞∫
0

g(s)e−iλs ds. (3.40)

Let Θ := bρ1

ρ2k − 1. Then, using (3.37),(3.38) and (3.40) in (3.32) we obtain

kαλ

ρ2
A = −Θλα+

α3λ

ρ2

 ∞∫
0

g(s)e−iλs ds

− kα

ρ2λ
− 1 +

λδ2α3(iτλ+ β)
[iα2λ− ρ3(iτλ+ β)] ρ2

that is, using α =
√

ρ1

k ,

A = −Θ
ρ2

k
+
α2

k

 ∞∫
0

g(s)e−iλs ds

− ρ2

kαλ
− 1
λ2

+ P (λ)

where

P (λ) :=
δ2(iτλ+ β)ρ1

[iα2λ− ρ3(iτλ+ β)] k2
with lim

λ→∞
λ|P (λ)| = ∞. (3.41)
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Remark. We observe that to conclude (3.41) it is essential that the coupling parameter δ is
different from zero.

Recalling that v2 = iλv1 = iλA cos(δλx) we get

v2(x) =

(
− iλ

ρ2

k
Θ +

iρ1

k2
λ

∞∫
0

g(s)e−iλs ds− iρ2

kα
− i

λ
+ iλP (λ)

)
cos(δλx).

Note that

||v2||L2 =
( L∫

0

|v2|2 dx
)1/2

=
√
L

2

∣∣∣∣∣− λ
ρ2

k
Θ +

ρ1

k2
λ

∞∫
0

g(s)e−iλs ds− ρ2

kα
− 1
λ

+ λP (λ)

∣∣∣∣∣
≥ −

√
L

2

∣∣∣− 1
λ
− ρ2√

ρ1k
+
ρ1

k2
λ

∞∫
0

g(s)e−iλs ds
∣∣∣

︸ ︷︷ ︸
bounded as λ→∞

+
√
L

2

∣∣∣∣P (λ)−
(ρ2

b
− ρ1

k

) b
k

∣∣∣∣λ

and using Lemma 3.2, we get

lim
λ→∞

||Un||2H2
≥ lim

λ→∞
||v2||2L2 = ∞

which completes our conclusion summarized in

Theorem 3.3 The Timoshenko system with history (3.2),(3.10)–(3.11) is not exponentially
stable under Cattaneo’s law, (even) under the assumption (3.1).

This result is in contrast to the exponential stability under the Fourier law, assuming (3.1), which
we shall prove in the last section. The more it is interesting to notice that it also contrasts the
known (see [3], cp. [1] for finite history) exponential stability for the case that there is no heat
conduction. This means that the Fourier model of heat conduction preserves the exponential
stability of the model, while the — still assumed to have a dissipative effect — Cattaneo model
destabilizes in the sense that it is no longer exponentially stable.

Technically in the proof, this effect can be seen in (3.41), see the remark following there.

4 Timoshenko with history — exponential stability for Fourier’s

law

Here we consider the Timoshenko system (1.13)–(1.16) with history and the Fourier law (τ = 0),
and we prove that it is exponentially stable if and only if (1.12) holds. For τ = 0 we can elimate
q easily and obtain the following differential equation for θ,

ρ3θt − β̃θxx + δψxt = 0

14



where β̃ := β−1 > 0. Then, introducing η as in the previous section in (3.3), we have the
differential equations

ρ1ϕtt − k(ϕx + ψ)x = 0

ρ2ψtt −
(
b−

∞∫
0

g(s)ds
)
ψxx −

∞∫
0

g(s)ηxx(x, s)ds+ k(ϕx + ψ) + δθx = 0

ρ3θt − β̃θxx + δψxt = 0

ηt + ηs − ψt = 0

with inital conditions

ϕ(0, ·) = ϕ0, ϕt(0, ·) = ϕ1, ψ(0, ·) = ψ0, ψt(0, ·) = ψ1, θ(0, ·) = θ0,

q(0, ·) = q0, η(0, s, ·) = ψ0 − ψ(−s, ·) =: η0(s, ·) in (0, L) s ≥ 0

and boundary conditions

ϕx(·, 0) = ϕx(·, L) = ψ(·, 0) = ψ(·, L) = θx(·, 0) = θx(·, L) = 0 in (0,∞).

Again transforming to a first-order system we obtain for

U := (ϕ,ϕt, ψ, ψt, θ, η)′ ≡ (u1, u2, u3, u4, u5, u6)′

Ut = A3U, U(0) = U0

where A3 is formally given by

A3 :=



0 Id 0 0 0 0
k
ρ1
∂2

x 0 k
ρ1
∂x 0 0 0

0 0 0 Id 0 0

− k
ρ2
∂x 0 b̃

ρ2
∂2

x − k
ρ2
Id 0 − δ

ρ2
∂x

1
ρ2

∞∫
0
g(s)∂2

x(s, ·)ds

0 0 0 − δ
ρ3
∂x

β̃
ρ3
∂2

x 0

0 0 0 Id 0 −∂s


.

Let us denote by

H3 := H1
∗ (0, L)× L2

∗(0, L)×H1
0 (0, L)× L2(0, L)× L2

∗(0, L)× L2
g(R

+,H1
0 ).

It is easy to see that H3 together with the norm

||U ||2H3
= ρ1||u2||2L2 + ρ2||u4||2L2 + b̃||u3

x||2L2 + k||u1
x + u3||2L2 + ρ3||u5||2L2 + ||u6||2L2

g(R+,H1
0 )

is a Hilbert space. The domain of the operator A3 is defined by

D(A3) =
{
U ∈ H3 | u1 ∈ H2(0, L), u1

x ∈ H1
0 (0, L), u2 ∈ H1

∗ (0, L), u4 ∈ H1
0 (0, L),

u5
x ∈ H1

0 (0, L), b̃u3 +
∞∫
0

g(s)u6(x, s)ds ∈ H2(0, L) ∩H1
0 (0, L),

u6
s ∈ L2

g(R
+,H1

0 ), u6(0, x) = 0, (x ∈ (0, L))
}
.

As in Section 3 we can prove that A3, being dissipative with 0 ∈ %(A3), generates a contraction
semigroup.
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4.1 Exponential stability for ρ1

k
= ρ2

b

In this subsection we will show that the system is exponentially stable infinity provided the
condition

ρ1

k
=
ρ2

b
(4.1)

holds. Once more we use Lemma 2.1, and we have to check if the following two conditions hold,

iR ⊂ %(A3) (4.2)

and
∃ C > 0 ∀ λ ∈ R : ||(iλId−A3)−1||H3 ≤ C. (4.3)

First we will show (4.2) using contradiction arguments. In fact, suppose that (4.2) is not true.
Then (cp. [9, p.25]) there exists ω ∈ R, a sequence (βn)n ⊂ R with βn → ω, |β| < |ω| and a
sequence of functions

Un = (u1
n, u

2
n, u

3
n, u

4
n, u

5
n, u

6
n)′ ∈ D(A3) with ||Un||H3 = 1 (4.4)

such that, as n→∞,
iβnUn −A3Un −→ 0 in H3 (4.5)

that is,

iβnu
1
n − u2

n −→ 0 in H1
∗ (0, L) (4.6)

iβnρ1u
2
n − k(u1

n,x + u3
n)x −→ 0 in L2

∗(0, L) (4.7)

iβnu
3
n − u4

n −→ 0 in H1
0 (0, L) (4.8)

iβnρ2u
4
n − b̃u3

n,xx −
∞∫
0
g(s)u6

n,xx(·, s) ds+ k(u1
n,x + u3

n) + δu5
n,x −→ 0 in L2(0, L) (4.9)

iβnρ3u
5
n − β̃u5

n,xx + δu4
n,x −→ 0 in L2

∗(0, L) (4.10)

iβnu
6
n + u6

n,s − u4
n −→ 0 in L2

g(R+,H1
0 ). (4.11)

Taking the inner product of (4.5) with Un in H3 and then taking its real part yields

−Re〈A3Un, Un〉H3 = −1
2

L∫
0

∞∫
0

g′(s)|u6
n,x|2 ds dx+ β̃

L∫
0

|u5
n,x|2 dx −→ 0.

Using the hypotheses on g we have that

u6
n −→ 0 in L2

g(R
+,H1

0 ), (4.12)

u5
n −→ 0 in H1

∗ (0;L) ↪→ L2(0, L). (4.13)

Then, using (4.4), we have that

ρ1||u2
n||2L2 + ρ2||u4

n||2L2 + β̃||u3
n,x||2L2 + k||u1

n,x + u3
n||2L2 −→ 1. (4.14)
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On the other hand, taking the inner product of (4.6) with ρ1u
2
n in L2

∗(0, L) and (4.7) with ρ1u
1
n

in L2
∗(0, L), repectively, yields

iρ1βn(u1
n, u

2
n)L2 − ρ1||u2

n||2L2 −→ 0

and

iρ1βn(u2
n, u

1
n)L2 − k(u1

n,x + u3
n, u

1
n,x)L2 −→ 0.

Adding and taking the real part we get

kRe(u1
n,x + u3

n, u
1
n,x)L2 − ρ1||u2

n||2L2 −→ 0. (4.15)

Analogously, taking the inner product of (4.8) with ρ2u
4
n in L2(0, L) and (4.9) with u3

n in L2(0, L),
repectively, yields

iρ2βn(u3
n, u

4
n)L2 − ρ2||u4

n||2L2 −→ 0 (4.16)

and

iρ2βn(u4
n, u

3
n)L2 + b̃||u3

n,x||2L2 +
∞∫
0

g(s)(u6
n,x, u

3
n,x)L2 ds

+k(u1
n,x + u3, u3

n)L2 + δ(u5
n,x, u

3
n)L2 −→ 0. (4.17)

Note that from (4.12), (4.13) we have

∞∫
0

g(s)(u6
n,x, u

3
n,x)L2 ds+ δ(u5

n,x, u
3
n)L2 −→ 0,

this used in (4.17) results in

iρ2βn(u4
n, u

3
n)L2 + b̃||u3

n,x||2L2 + k(u1
n,x + u3

n, u
3
n)L2 −→ 0. (4.18)

Adding (4.16) and (4.18) and taking real part, we get

−ρ2||u4
n||2L2 + b̃||u3

n,x||2L2 + kRe(u1
n,x + u3

n, u
3
n)L2 −→ 0 (4.19)

and adding (4.15) with (4.19) we have

b̃||u3
n,x||2L2 + k||u1

n,x + u3
n||2L2 − ρ1||u2

n||2L2 − ρ2||u4
n||2L2 −→ 0. (4.20)

Consequently, from (4.14) and (4.20) we deduce that

b̃||u3
n,x||2L2 + k||u1

n,x + u3
n||2L2 −→ 1

2
(4.21)

ρ1||u2
n||2L2 + ρ2||u4

n||2L2 −→ 1
2
. (4.22)
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Also, it is clear that s 7→ 1
β2

n
u4

n ∈ L2
g(R+;H1

0 ). Then multiplying (4.11) with 1
β2

n
u4

n in L2
g(R+;H1

0 )
gives

i(u6
n,
u4

n

βn
)L2

g
+

1
β2

n

(u6
n,s, u

4
n)L2

g
− 1
β2

n

(u4
n, u

4
n)L2

g
−→ 0. (4.23)

Using (4.8) we have that u4
n

βn
is bounded in H1

0 (0, L), and using (4.13) we get that the first term
of (4.23) converges to zero. This yields

b0||
u4

n

βn
||2H1

0
− 1
β2

n

∞∫
0

g(s)(u6
n,s, u

4
n)H1

0
ds −→ 0 (4.24)

where b0 :=
∞∫
0
g(s) ds. We now prove that the second term in (4.24) converges to zero. In fact,

using again that u4
n

βn
is bounded in H1

0 (0, L), (3.12) and (4.12) we have∣∣∣∣∣∣− 1
β2

n

∞∫
0

g(s)(u6
n,s, u

4
n)H1

0
ds

∣∣∣∣∣∣ =
1
|βn|

∣∣∣∣∣∣−
∞∫
0

g′(s)(u6
n,
u4

n

βn
)H1

0
ds

∣∣∣∣∣∣
≤ k0

|βn|
||u

4
n

βn
||H1

0

∞∫
0

g(s)||u6
n(s)||H1

0
ds

≤ k0

√
b0

|βn|
||u

4
n

βn
||H1

0
||u6

n||L2
g

−→ 0. (4.25)

Therefore, we can deduce from (4.24) that

u4
n

βn
−→ 0 in H1

0 (0, L)

it follows from (4.8) that

u3
n −→ 0 in H1

0 (0, L), (4.26)

and using (4.26) in (4.21) we get

k||u1
n,x + u3

n||2L2 −→ 1
2
. (4.27)

We want to show that this is a contradiction if the basic condition (4.1) holds.
Multiplying (4.9) by (u1

n,x + u3
n) in L2(0, L) we have

iβnρ2(u4
n, u

1
n,x + u3

n)L2 + (b̃u3
n,x +

∞∫
0

g(s)u6
n,x(·, s) ds, (u1

n,x + u3
n)x)L2

+k||u1
n,x + u3

n||2L2 + δ(u5
n,x, u

1
n,x + u3

n)L2 −→ 0. (4.28)

Note that by (4.13) we have that the last term of (4.28) converges to zero. Then we get

iβnρ2(u4
n, u

1
n,x + u3

n)L2 + (b̃u3
n,x +

∞∫
0

g(s)u6
n,x(·, s) ds, (u1

n,x + u3
n)x)L2

+k||u1
n,x + u3

n||2L2 −→ 0. (4.29)
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Also, multiplying (4.7) by 1
k (b̃u3

n,x +
∞∫
0
g(s)u6

n,x(·, s) ds) in L2(0, L) results in

−iρ1

k
βn(b̃u3

n,x +
∞∫
0

g(s)u6
n,x(·, s) ds, u2

n)L2 − (b̃u3
n,x +

∞∫
0

g(s)u6
n,x(·, s) ds, (u1

n,x + u3
n)x)L2

−→ 0. (4.30)

Then, adding (4.29) and (4.30), we obtain

iβnρ2(u4
n, u

1
n,x + u3

n)L2 − i
ρ1

k
βn(b̃u3

n,x +
∞∫
0

g(s)u6
n,x(·, s) ds, u2

n)L2 + k||u1
n,x + u3

n||2L2

−→ 0. (4.31)

On the other hand, multiplying (4.6) by ρ2u
4
n, (4.8) by iρ2βnu

3
n and (4.8) by −ρ2u

2
n,x in L2(0, L),

respectively, yields

−iβnρ2(u4
n, u

1
n,x)L2 − ρ2(u4

n, u
2
n,x)L2 −→ 0 (4.32)

β2
nρ2||u3

n||2L2 + iβnρ2(u4
n, u

3
n)L2 −→ 0 (4.33)

−iβnρ2(u3
n, u

2
n,x)L2 + ρ2(u4

n, u
2
n,x)L2 −→ 0. (4.34)

Since u3
n → 0 in H1

0 (0, L) ↪→ L2(0, L), we obtain from (4.33)

iβnρ2(u4
n, u

3
n)L2 −→ 0. (4.35)

Adding (4.31), (4.32), (4.34) and (4.35), we deduce that

−iβnρ2(u3
n, u

2
n,x)L2 − i

ρ1

k
βn(b̃u3

n,x +
∞∫
0

g(s)u6
n,x(·, s) ds, u2

n)L2 + k||u1
n,x + u3

n||2L2

−→ 0. (4.36)

Now, from (4.11) we have

iβnu
6
n,x + u6

n,sx − u4
n,x −→ 0 in L2

g(R
+, L2)

then, multiplying by ρ1

k u
2
n in L2

g(R+;L2) results in

iβn
ρ1

k
(u6

n,x, u
2)L2

g(R+;L2) +
ρ1

k
(u6

n,sx, u
2)L2

g(R+;L2) −
ρ1b0
k

(u4
n,x, u

2)L2 −→ 0. (4.37)

Using similar arguments used in (4.25) we can conclude

ρ1

k
(u6

n,sx, u
2)L2

g(R+;L2) −→ 0

then it follows from (4.37) that

ρ1b0
k

(u4
n,x, u

2)L2 −→ 0. (4.38)
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Multiplying (4.8) by −ρ1b0
k u2

n,x in L2(0, L) yields

iβn
ρ1b0
k

(u3, u2
n,x)L2 +

ρ1b0
k

(u4
n,x, u

2)L2 −→ 0 (4.39)

then, adding (4.38) and (4.39), we get

iβn
ρ1b0
k

(u3, u2
n,x)L2 −→ 0. (4.40)

Finally, adding (4.36) and (4.40), we obtain

−iβnρ2(u3
n, u

2
n,x)L2 + i

ρ1b̃

k
βn(u3

n, u
2
n,x)L2 + i

ρ1b0
k
βn(u3

n, u
2
n,x)L2 + k||u1

n,x + u3
n||2L2 −→ 0,

and using that b̃ = b− b0 > 0, we obtain

iβnb
( ρ1

k
− ρ2

b︸ ︷︷ ︸
=0

)
(u3

n, u
2
n,x)L2 + k||u1

n,x + u3
n||2L2 −→ 0

that is

k||u1
n,x + u3

n||2L2 −→ 0

which is contradiction to (4.27). Thus (4.2) is proved.
To complete the result about exponential stability we now prove (4.3). Note again that the

resolvent equation (iλId−A3)U = F ∈ H3 is given by

iλu1 − u2 = f1 (4.41)

iλρ1u
2 − k(u1

x + u3)x = ρ1f
2 (4.42)

iλu3 − u4 = f3 (4.43)

iλρ2u
4 − b̃u3

xx −
∞∫
0

g(s)u6
xx(·, s) ds+ k(u1

x + u3) + δu5
x = ρ2f

4 (4.44)

iλρ3u
5 − β̃u5

xx + δu4
x = ρ3f

5 (4.45)

iλu6 + u6
s − u4 = f6 (4.46)

where b0 :=
∞∫
0
g(s)ds , b̃ := b− b0 > 0. To prove (4.3) we will use a series of Lemmas.

Lemma 4.1 Let us suppose that the conditions (3.12) and (3.13) on g hold. Then there exists
a positive constant C, being independent of F such that

ρ3

L∫
0

|u5
x|2 dx+

L∫
0

∞∫
0

g(s)|u6
x|2 dsdx ≤ C‖U‖H3‖F‖H3 .
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Proof. Multiplying (4.42) by u2 (in L2(0, L)) we get

iλρ2

L∫
0

|u2|2 dx+ k

L∫
0

(u1
x + u3)u2

x dx = ρ1

L∫
0

f2u2 dx

and, using equation (4.41),

iλρ2

L∫
0

|u2|2 dx− iλk

L∫
0

(u1
x + u3)u1

x dx = ρ1

L∫
0

f2u2 dx+ k

L∫
0

(u1
x + u3)f1

x dx. (4.47)

On the other hand, multiplying equation (4.44) by u4 and integration over [0, L] we get

iλρ2

L∫
0

|u4|2 dx+ b̃

L∫
0

u3
xu

4
x dx+

L∫
0

∞∫
0

g(s)u6
xu

4
x dsdx︸ ︷︷ ︸

=:I1

+ k

L∫
0

(u1
x + u3)u4 dx

︸ ︷︷ ︸
=:I2

+δ
L∫

0

u5
xu4 dx

= ρ2

L∫
0

f4u4 dx.

Substituting u4 given by (4.46), (4.43), into I1 and I2 we get

iλρ2

L∫
0

|u4|2 dx− iλb̃

L∫
0

|u3
x|2 dx− iλ

L∫
0

∞∫
0

g(s)|u6
x|2 dsdx− iλk

L∫
0

(u1
x + u3)u3 dx

+
L∫

0

∞∫
0

g(s)u6
xu

6
xs ds+ δ

L∫
0

u5
xu

4 dx = ρ2

L∫
0

f4u4 dx+ b̃

L∫
0

u3
xf

3
x dx+ k

L∫
0

(u1
x + u3)f3 dx

+
L∫

0

∞∫
0

g(s)u6
xf

6
x dsdx. (4.48)

Also, multiplying equation (4.45) by u5 we obtain

iλρ3

L∫
0

|u5|2 dx+ β̃

L∫
0

|u5
x|2 dx− δ

L∫
0

u4u5
x dx = ρ3

L∫
0

f5u5 dx. (4.49)

Adding (4.47), (4.48) and (4.49), using (3.12) and taking the real part our conclusion follows.

Q.e.d.

Lemma 4.2 With the same hypotheses as in Lemma 4.1 there exists C > 0 such that

ρ2

L∫
0

|u4|2 dx ≤ C‖U‖H3‖F‖H3 + C‖U‖1/2
H3
‖F‖1/2

H

(
‖u3

x‖L2 + ‖u1
x + u3‖L2

)
.

21



Proof. Multiplying (4.44) by
∞∫
0
g(s)u6 ds in L2(0, L) we get

iλρ2

L∫
0

∞∫
0

g(s)u6u4 dsdx

︸ ︷︷ ︸
=:I3

+b̃
L∫

0

∞∫
0

g(s)u6
xu

3
x dsdx+

L∫
0

∣∣∣ ∞∫
0

g(s)u6
x ds

∣∣∣2 dx

+k
L∫

0

∞∫
0

g(s)(u1
x + u3)u6 dsdx− δ

L∫
0

∞∫
0

g(s)u6
xu

5 dsdx = ρ2

L∫
0

∞∫
0

g(s)u6f4 dsdx.

From Lemma 4.1 we obtain

L∫
0

∣∣∣ ∞∫
0

g(s)u6
x ds

∣∣∣2 dx ≤ ∞∫
0

g(s)ds
L∫

0

∞∫
0

g(s)|u6
x|2 dsdx ≤ C‖U‖H‖F‖H3

and

Re

δ
L∫

0

∞∫
0

g(s)u6
xu

5 dsdx

 ≤ C‖U‖H‖F‖H3 .

Substituting iλu6 given by (4.45) into I3, using

Re
{ L∫

0

∞∫
0

g(s)u6
su

4 dsdx
}
≤ ρ2

2

L∫
0

|u4|2 dx+ C

L∫
0

∞∫
0

|g′(s)||u6
x|2ds dx

and using (3.12), our conclusion now immediately follows from Lemma 4.1.

Q.e.d.

Lemma 4.3 With the same hypotheses as in Lemma 4.1, for any ε1 > 0 there exists Cε1 > 0,
at most depending on ε1, such that

b̃

L∫
0

|u3
x|2 dx ≤ Cε1‖U‖H‖F‖H3 + Cε1‖U‖

1/2
H3
‖F‖1/2

H ‖u1
x + u3‖L2 + ε1ρ1‖u2‖2

L2 .

Proof. Multiplying of (4.44) by u3 yields

iλρ2

L∫
0

u4u3 dx

︸ ︷︷ ︸
=:I4

+b̃
L∫

0

|u3
x|2 dx+

L∫
0

∞∫
0

g(s)u6
xu

3
x dsdx

+k
L∫

0

(u1
x + u3)u3 dx+ δ

L∫
0

u5
xu

3 dx = ρ2

L∫
0

f4u3 dx.
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Substituting iλu3 given by (4.43) into I4 we get

b̃

L∫
0

|u3
x|2 dx+ k

L∫
0

(u1
x + u3)u3 dx = ρ2

L∫
0

|u4|2 dx

−
L∫

0

∞∫
0

g(s)u6
xu

3
x dsdx+ δ

L∫
0

u5u3
x dx+ ρ2

L∫
0

f4u3 dx+ ρ2

L∫
0

u4f3 dx. (4.50)

On other hand, multiplying (4.42) by
x∫
0
u3(y)dy we get

iλρ1

L∫
0

u2

 x∫
0

u3(y)dy

 dx

︸ ︷︷ ︸
=:I5

−k
L∫

0

(u1
x + u3)x

 x∫
0

u3(y)dy

 dx = ρ1

L∫
0

f2

 x∫
0

u3(y)dy

 dx. (4.51)

Using (4.43) in I5, we have

I5 = −ρ1

L∫
0

u2

 x∫
0

u4(y)dy

 dx− ρ1

L∫
0

u2

 x∫
0

f3(y)dy

 dx.

Substituting this into (4.51) we obtain

k

L∫
0

(u1
x + u3)u3 dx = ρ1

L∫
0

u2

 x∫
0

u4(y)dy

 dx+ ρ1

L∫
0

u2

 x∫
0

f3(y)dy

 dx

+ρ1

L∫
0

f2

 x∫
0

u3(y)dy

 dx. (4.52)

Finally, using (4.52) into (4.50) and using that

Re
{
ρ1

L∫
0

u2

x∫
0

u4(y)dy dx
}

≤ ε1ρ1‖u2‖2
L2 + Cε1ρ2‖u4‖2

L2

taking real part (and using the Lemmas 4.2 and 4.1) our conclusion follows.

Q.e.d.

Our next step is to estimate the term ||u1
x + u3||2L2 . Here we shall use condition (4.1).

Lemma 4.4 With the same hypotheses as in Lemma 4.1, together with condition (4.1), for any
ε2 > 0 there exists Cε2 > 0, at most depending on ε2, such that

k

L∫
0

|u1
x + u3|2 dx ≤ Cε2‖U‖H3‖F‖H3 + (ε1 + ε2) ρ1‖u2‖2

L2 ,

where ε1 is given in Lemma 4.3.
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Proof. Multiplying (4.44) by u1
x + u3 we have

iλρ2

L∫
0

u4(u1
x + u3) dx+ k

L∫
0

|u1
x + u3| dx+ δ

L∫
0

u5
x(u1

x + u3) dx

+
L∫

0

[
b̃u3

x +
∞∫
0

g(s)u6
x ds

]
(u1

x + u3)x dx

︸ ︷︷ ︸
=:I6

= ρ2

L∫
0

f4(u1
x + u3) dx.

Substituting (u1
x + u3)x given by (4.42) into I6 we get

iλρ2

L∫
0

u4u1
x dx︸ ︷︷ ︸

=:I7

+ iλρ2

L∫
0

u4u3 dx

︸ ︷︷ ︸
=:I8

−iλ b̃ρ1

k

L∫
0

u3
xu

2 dx+ k

L∫
0

|u1
x + u3|2 dx

+δ
L∫

0

u5
x(u1

x + u3) dx−iλρ1

k

L∫
0

∞∫
0

g(s)u6
xu

2 dsdx

︸ ︷︷ ︸
=:I9

−ρ1

k

L∫
0

∞∫
0

g(s)u6
xf

2 dsdx− b̃ρ1

k

L∫
0

u3
xf

2 dx

= ρ2

L∫
0

f4(u1
x + u3) dx. (4.53)

Substituting u1 given by (4.41) and u4 given by (4.43) into I7 we obtain

I7 = −iλρ2

L∫
0

u3u2
x dx− ρ2

L∫
0

u4f1
x dx+ ρ2

L∫
0

f3u2
x dx. (4.54)

Using (4.43) we get

I8 = −ρ2

L∫
0

|u4|2 dx− ρ2

L∫
0

u4f3 dx. (4.55)

Finally, a substitution of u6 given by (4.46) yields

I9 =
ρ1

k

L∫
0

∞∫
0

g(s)u6
xsu

2 ds dx− ρ1b0
k

L∫
0

u4
xu

2 dx− ρ1

k

L∫
0

∞∫
0

g(s)f6
xu

2 ds dx.

From (4.43) we can rewrite I9 as

I9 = −ρ1

k

L∫
0

∞∫
0

g′(s)u6
xu

2 ds dx− iλ
ρ1b0
k

L∫
0

u3
xu

2 dx+
ρ1b0
k

L∫
0

f3
xu

2 dx

−ρ1

k

L∫
0

∞∫
0

g(s)f6
xu

2 ds dx. (4.56)
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Using (4.54)–(4.56) in (4.53) we obtain

iλb
( ρ1

k
− ρ2

b︸ ︷︷ ︸
=0

) L∫
0

u3u2
x dx+ k

L∫
0

|u1
x + u3|2 dx = ρ2

L∫
0

|u4|2 dx− δ

L∫
0

u5
x(u1

x + u3) dx

+
ρ1

k

L∫
0

∞∫
0

g′(s)u6
xu

2 ds dx+
ρ1b̃

k

L∫
0

u3
xf

2 dx+
ρ1

k

L∫
0

∞∫
0

g(s)u6
xf

2 dsdx+ ρ2

L∫
0

f4(u1
x + u3) dx

+ρ2

L∫
0

u4f3 dx+ ρ2

L∫
0

u4f1
x dx+ (ρ2 −

ρ1b0
k

)
L∫

0

f3
xu

2 dx+
ρ1

k

L∫
0

∞∫
0

g(s)f6
xu

2 dsdx.

Now, using (3.12) and the previous Lemmas, our claim follows.

Q.e.d.

Lemma 4.5 There exists C > 0 such that

ρ1

L∫
0

|u2|2 dx ≤ C‖U‖H3‖F‖H + 4k||u1
x + u3||2L2 .

Proof. Multiplying equation (4.42) by u1 we get

iλρ1

L∫
0

u2u1 dx

︸ ︷︷ ︸
=:I10

+k
L∫

0

(u1
x + u3)u1

x dx = ρ1

L∫
0

f2u1 dx.

Substitution of u1 given by (4.41) into I10 and taking real parts we get

ρ1

L∫
0

|u2|2 dx ≤ C‖U‖H3‖F‖H + 2k||u1
x + u3||2L2 + C||u3

x||2L2 .

Using Lemma 4.3, for ε1 sufficiently small, our conclusion follows.

Q.e.d.

Now we are in the position to prove the main result of this subsection.

Theorem 4.6 Let us assume hypothesis (3.12) and (3.13) on g and suppose that condition
(4.1) holds. Then the heat conducting Timoshenko system under the Fourier law is exponentially
stable.

Proof. It remains to show (4.3).
Let U = (u1, u2, u3, u4, u5, u6)′, F = (f1, f2, f3, f4, f5, f6)′ satisfy (4.41)–(4.46), then, from
Lemma 4.1, we get

ρ3||u5||2L2 + ||u6||2L2
g
≤ C||F ||H3 ||U ||H3 . (4.57)
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From Lemma 4.2, for ε2 > 0, there exists C1 := C1(ε2) > 0 such that

ρ2||u4||2L2 ≤ C1||F ||H3 ||U ||H3 +
b̃

2
||u3

x||2L2 +
ε2
2
k||u1

x + u3||2L2 . (4.58)

Also, from Lemma 4.3, we obtain

b̃||u3
x||2L2 ≤ Cε1 ||F ||H3 ||U ||H3 + ε1ρ1||u2||2L2 +

ε2
2
k||u1

x + u3||2L2 . (4.59)

Then, adding (4.58) and (4.59), we get

ρ2||u4||2L2 +
b̃

2
||u3

x||2L2 ≤ C2||F ||H3 ||U ||H3 + ε1ρ1||u2||2L2 + ε2k||u1
x + u3||2L2 . (4.60)

On other hand, from Lemma 4.4 we have

k||u1
x + u3||2L2 ≤ C4||F ||H3 ||U ||H3 + (ε1 + ε2)ρ1||u2||2L2 . (4.61)

Finally, from Lemma 4.5, we obtain

2(ε1 + ε2)ρ1||u2||2L2 ≤ 2(ε1 + ε2)C||F ||H3 ||U ||H3 + 8(ε1 + ε2)k||u1
x + u3||2L2 . (4.62)

Adding (4.61) and (4.62) we conclude(
1− 8(ε1 + ε2)

)
k||u1

x + u3||2L2 + (ε1 + ε2)ρ1||u2||2L2 ≤ C5||F ||H3 ||U ||H3 . (4.63)

From (4.57), (4.60) and (4.63), we obtain for ε1, ε2 sufficiently small, that there exists C > 0
independent of λ (and F,U) such that

||U ||2H3
≤ C||F ||2H3

,

this completes the proof.

Q.e.d.

4.2 Non-exponential stability for ρ1

k
6= ρ2

b

Now we shall prove that condition (4.1) is also necessary for exponential stability.

Theorem 4.7 Let us suppose that (4.1) does not hold. Then the heat conduction Timoshenko
system under the Fourier law is not exponentially stable.

Proof. As in Sections 2 and 3 it is sufficient to show that the solution of

(iλnId−A3)Un = Fn

satisfies
lim

n→∞
||Un||H3 = ∞

where

λ ≡ λn :=
nπ

αL
(n ∈ N), α :=

√
ρ1

k
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and F ≡ Fn := (0, cos(αλx), 0, sin(αλx), 0, 0)′. The solution Un ≡ U = (v1, v2, v3, v4, v5, v6)′

satisfies

iλv1 − v2 = 0
iλv3 − v4 = 0

−λ2v1 − k

ρ1
v1
xx −

k

ρ1
v3
x = f2

−λ2v3 − b

ρ2
v3
xx +

b0
ρ2
v3
xx −

1
ρ2

∞∫
0

g(s)v6
xx(x, s) ds+

k

ρ2
v1
x +

k

ρ2
v3 +

δ

ρ2
v5
x = f4

iλv5 − β̃

ρ3
v5
xx + iλ

δ

ρ3
v3
x = 0

iλv6 + v6
s − iλv3 = 0.

(4.64)

This can be solved by

v1(x) = A cos(αλx), v3(x) = B sin(αλx),

v5(x) = C cos(αλx), v6(x, s) = ϕ(s) sin(δλx)

where A, B, C, ϕ(s) depend on λ and will be determined explicitly in the sequel. Note that
this choice is again compatible with the boundary conditions. System (4.64) is equivalent to

−λ2A+
k

ρ1
α2λ2A− k

ρ1
αλB = 1 (4.65)

−λ2B +
b

ρ2
α2λ2B − b0

ρ2
α2λ2B +

α2λ2

ρ2

∞∫
0

g(s)ϕ(s)ds− k

ρ2
αλA+

k

ρ2
B − δα

ρ2
λC = 1 (4.66)

iλC +
β̃

ρ3
α2λ2C + i

δα

ρ3
λ2B = 0 (4.67)

iλϕ(s) + ϕ′(s)− iλB = 0. (4.68)

From (4.67) we have

C =
λδα

iβ̃α2λ− ρ3

B. (4.69)

On the other hand, by the definition of α, we have we obtain from (4.65)

B = − ρ1

kαλ
. (4.70)

Since v6(0) = 0, we have that ϕ(0) = 0, then solving (4.68) we get

ϕ(s) = B −Be−iλs. (4.71)

From (4.71) we get

∞∫
0

g(s)ϕ(s)ds =
∞∫
0

g(s)[B −Be−iλs] ds = Bb0 −B

∞∫
0

g(s)e−iλs ds. (4.72)
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Let Θ := bρ1

ρ2k − 1. Then, using (4.69),(4.70) and (4.72) into (4.66) we have

kαλ

ρ2
A = −Θλα+

α3λ

ρ2

 ∞∫
0

g(s)e−iλs ds

− kα

ρ2λ
− 1 +

λδ2α3

(iα2λβ̃ − ρ3)ρ2

that is, using α =
√

ρ1

k ,

A = −Θ
ρ2

k
+
α2

k

 ∞∫
0

g(s)e−iλs ds

− ρ2

kαλ
− 1
λ2

+
δ2α2

(iα2λβ̃ − ρ3)k
.

Recalling that v2 = iλv1 = iλA cos(δλx), we get

v2(x) =

(
− iλ

ρ2

k
Θ +

iρ1

k2
λ

∞∫
0

g(s)e−iλs ds− iρ2

kα
− i

λ
+

iλδ2α2

(iα2λβ̃ − ρ3)k

)
cos(δλx).

Observing

||v2||L2 =
( L∫

0

|v2|2 dx
)1/2

=
√
L

2

∣∣∣∣∣− λ
ρ2

k
Θ +

ρ1

k2
λ

∞∫
0

g(s)e−iλs ds− ρ2

kα
− 1
λ

+
λδ2α2

(iα2λβ̃ − ρ3)k

∣∣∣∣∣
≥ −

√
L

2

∣∣∣∣∣∣− 1
λ
− ρ2√

ρ1k
+
ρ1

k2
λ

∞∫
0

g(s)e−iλs ds+
λδ2α2

(iα2λβ̃ − ρ3)k

∣∣∣∣∣∣︸ ︷︷ ︸
bounded as λ→∞

+
√
L

2
| ρ2

b
− ρ1

k︸ ︷︷ ︸
6=0

| b
k
λ

and using Lemma 3.2, we obtain

lim
λ→∞

||Un||H3 ≥ lim
λ→∞

||v2||L2 = ∞

which completes the proof.

Q.e.d.
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