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Abstract: We consider vibrating systems of hyperbolic Timoshenko type that are coupled to a heat
equation modeling an expectedly dissipative effect through heat conduction. While proving exponential
stability under the Fourier law of heat conduction, it turns out that the coupling via the Cattaneo law
does not yield an exponentially stable system. This seems to be the first example that a removal of
the paradox of infinite propagation speed inherent in Fourier’s law by changing to the Cattaneo law
distroys the exponential stability property. Actually, for systems with history, the Fourier law keeps the
exponential stability known for the pure Timoshenko system without heat conduction, but introducing

the Cattaneo coupling even destroys this property.

1 Introduction

The classical model for the propagation of heat turns into the well-known equations for the
temperature 6 (difference to a fixed constant reference temperature) and the heat flux vector q,

Ht—l—ﬂdivq:() (11)

and
q+kVO=0 (1.2)

with positive constants 3, k. Relation (1.2) represents the assumed Fourier’s law of heat con-
duction and, plugged into (1.1), yields the parabolic heat equation

0, — BrA0 = 0. (1.3)

Adding initial conditions and, for example, Dirichlet boundary conditions for § we obtain the
exponential decay of solutions to (1.3), the associated one parameter semigroup is exponentially
stable.

The model using Fourier’s law inhibits the physical paradox of infinite propagation speed
of signals. For some applications like working with very short laser pulses in laser cleaning of
computer chips, see the references in [14], it is worth while thinking of another model removing
this paradox, but still keeping the essentials of a heat conduction process. One such model —
for a survey compare Chandrasekharaiah [2], for general Cattaneo models cp. Oncii and Moodie
[13] — is given by the simplest Cattaneo law replacing Fourier’s law (1.2),

Tqr+q+ kYO =0 (1.4)
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now regarding the heat flux vector as another function to be determined through the differential
equation and initial and, in case, boundary conditions. The positive parameter 7 is the relaxation
time describing the time lag in the response of the heat flux to a gradient in the temperature.
Combining (1.1) and (1.4) we obtain the hyperbolic, damped wave equation

70y + 0, — BrAO = 0. (1.5)

Again, we obtain the well-known exponential stability. That is, both models, Fourier and
Cattaneo, exhibit the same qualitative behavior, they both lead to exponentially stable systems
for pure heat conduction.

There are many coupled systems describing both the elastic behavior of a system as well
as simultaneously the heat conduction within the system. Such thermoelastic systems have
been treated by many authors, for a survey on classical thermoelasticity — classical here also
indicating that the Fourier law for heat conduction is used — see e.g. [7]. It has been shown that
spacially one-dimensional systems are, under appropriate boundary conditions or normalizations,
exponentially stable in bounded reference configurations. In three space dimensions the same
holds for radially symmetric situations.

This has been extended to models where the Fourier law is replaced by the Cattaneo law in
[14, 15, 10, 5]. Moreover, it has been shown in the one-dimensional frame work, that, for real
materials, the decay rates (type of the associated semigroup) of solutions to the both models
are very close to each other, see [6], and that, again for real materials in the model of pulsed
laser heating, differences for the displacement or the displacement gradient are of order 10~5m
and 1071%n, respectively, cp. [5].

These observations nourish the expectation that always both models lead to exponential
stability (or both do not). We shall demonstrate for Timoshenko type systems that Fourier’s
law might predict exponential stability, while Cattaneo’s law does not. This observation seems to
be new and, maybe, unexpected. It turns out that for Timoshenko systems with history which
are known to decay exponentially due to the history the introduction of a heat conduction
via Fourier keeps this exponential decay property while the Cattaneo model even destroys this
property.

The first system we consider is the following coupling of two wave equations of Timoshenko
type with heat conduction

prow — k(e +9)s = 0 in (0,00) x (0, L) (1.6)

P2t — by + k(P + 1) + 66 0 in (0,00) x (0,L) (L.7)
P30t + G + 0ty 0 in (0,00) x (0, L) (1.8)

T+ Pg+0, = 0 in (0,00) x (0,L) (1.9)

with positive constants p1, k, p2, b, 9, ps3, 5.

The case 7 = 0 represents Fourier’s law, and 7 > 0 Cattaneo’s law. The functions ¢, v, 0
and ¢ depend on (¢,z) € [0,00) x [0, L] and model the transverse displacement of a beam with
reference configuration (0, L) C R, the rotation angle of a filament, the temperature difference
and the heat flux, respectively, cp. [8].

Additionally we have initial conditions

4,0(0, ) = $0, (1025(07 ) = @1, ¢(0> ) = 1o, ¢t(07 ) =1,



0(07 ) = o, Q(O, ) =qo in (O7L) (110)
(the last one for ¢ only if 7 > 0), and boundary conditions

90('70) = (p(-,L) = ﬂ)z('70) = %('J) = 9('30) = 0('7L) =0 in (Oa OO) (1'11)

It was shown in [11] that for 7 = 0, i.e. assuming Fourier’s law, the system is exponentially

stable if and only if
pPL_ P2
k b
holds. If the term 66, in (1.7) is replaced by a control function b(z)i¢, b > 0, then Soufyane

[16] proved the exponential stability of the linearized system if and only if (1.12) holds, that is,

(1.12)

if and only if the wave speeds associated to (1.6), (1.7), respectively, are equal.
A weaker type of dissipation, also being presented only in the equation (1.7) for ¢, was considered

t
in [1] replacing §6, by a memory term [ g(t — $)t,.(s, x)ds. For exponential type kernels g the
0

exponential stability follows again if and only if (1.12) holds.

Here we consider a dissipation through a coupling to a heat equation. The coupling is direct
only for the rotation angle ) in (1.7) while the coupling to ¢ is only given indirectly in (1.6).
For 6 = 0 the equations (1.6), (1.7) build an energy conserving purely hyperbolic system. For
0 # 0 and 7 = 0, our system (1.6)—(1.9) is of hyperbolic-parabolic type, while for 7 > 0 it is
damped, purely hyperbolic.

We shall prove that, under the same condition (1.12), the system is no longer exponentially
stable under Cattaneo’s law where 7 > 0. Thus the behavior under the Fourier law is essentially
different from the behavior under Cattaneo’s law, which, for the question of stability might not
have been expected.

Then we can even add another kind of dissipation given through a history term. We look at
the extended system in (0,00) x (0, L),

(1.13)
(1.14)
(1.15)
(1.16)

. prow = k(pe +)e =
P2t — bhgy + /9(8)1/19390(15 — 8, )ds + k(pz +v¥)+ 60, =
0

p39t + q: + (hptz
T+ Bq+ 0, =

14

o o o O

where the integral term in (1.14) represents a history term with an exponentially decaying kernel
g, cp. [3] for the purely hyperbolic system (1.13), (1.14) without heat conduction, and [1] for
finite history without heat conduction. It will be demonstrated that the system is exponentially
stable for 7 = 0 if and only if (1.12) holds, while it is not exponentially stable if 7 > 0.

Since the system without heat conduction, the pure Timoshenko beam equation ((1.13),
(1.14), § = 0), is exponentially stable, see [3]), (cp. [1] for finite history), this means that the
Fourier model of heat conduction preserves the exponential stability of the model, while the —
still assumed to have a dissipative effect — Cattaneo model destabilizes in the sense that it is
no longer exponentially stable. This discovered phenomenon seems to be unexpected and may
have consequences for other hyperbolic heat conduction models.

The paper is organized as follows: In Section 2 we shall look at the Timoshenko system (1.6)—
(1.9) and prove that it is not exponentially stable for the Cattaneo law (7 > 0) even if (1.12)



holds. The Timoshenko system with history (1.13)—(1.16) is shown to be not exponentially
stable under Cattaneo’s law (7 > 0) in Section 3, and to be exponentially stable under the
Fourier law in Section 4.

2 Timoshenko without history — non-exponential stability for

Cattaneo’s law

We consider here the initial-boundary value problem (1.6)—(1.11) for the Timoshenko system
without history under Cattaneo’s law, i.e. 7 > 0,

P1Ptt — k(ﬁpm + w)x = 0 in (07 OO) X (07 L)
pgwtt — bwmp + k'(SOx + w) + 5937 =0 in (0, OO) X (0, L) (2 1)
P30t + Gz + 0, = 0 in (0, OO) X (0, L) '
T+ 0q+0, = 0 in (0,00) x (0, L)
SO(O? ) = %0, QOt(Oa ) = ¥1, w(oa ) = o, ¢t(07 ) =1y, (2 2)
9(07 ) = o, Q(Oa ) =qo In (O7L) '
(p(-,O) - 90('7L) = wz('ao) - q/Jm("L) - 9('70) = 9('7[’) =0 in (0,00). (2'3)

Still assuming the condition (1.12) that was already necessary (and there sufficient) for expo-
nential stability in the Fourier case (1 = 0),

% - % (2.4)

we shall demonstrate that exponential stability is no longer given. For this purpose we rewrite
the system as evolution equation for U = (¢, ¢s, %, ¢, 0,q)" = (ul,u? u?,u*, u® u®). Then U

formally satisfies
U =AU, U(0)=U

where Uy := (¢0, ¢1, %0, Y1, 60, q0)’, and A; is the (yet formal) differential operator

0 Id 0 0 0 0
k 92 k
ka2 0 £ 0, 0 0 0
0 0 0 1d 0 0
Avi= k b 92 k 6
) 1
0 0 0 -39, 0 —Lo,
0 0 0 o -lo, -Lrd

Let
Hy := Hy(0,L) x L*(0, L) x H}(0,L) x L2(0,L) x L*(0, L) x L*(0, L)



be the Hilbert space with

L L
£3(0,L) = {v e 12(0, L) | /1) . HY0,L) = {ve H'(0,L) | /v
0 0
and norm given by
1011, = ! ool ut o uf)| R,

= plle?|[f2 + pollu®|[F2 +0l[u3|[F2 + kllug + (|72 + psl|u®[[72 + 7[[u) 7.
The domain of the operator A; is given by
D(A) = {UeH|ul € H0,L), u? € H}(0,L), u* € H*(0, L), u} € H(0, L),

u' € HY(0,L), u® € H}(0,L), u® € H'(0,L)}.

It is not difficult to prove that the operator A; is the infinitesimal generator of a Cy contraction
semigroup, cp. Section 3.

We shall use the following well-known result from semigroup theory (see e.g. [9, Theorem
1.3.2]).

Lemma 2.1 A semigroup of contractions {e"}1>¢ in a Hilbert space with norm || - || is expo-
nentially stable if and only if

(i) the resolvent set o(A) of A contains the imaginary axis

and
(ii) limsup ||(iX[d — A)~Y| < oo
A—Fo0
hold.
Hence it suffices to show the existence of sequences (\,), C R with lim, .o |A\n| = 00, and

(Up)n € D(A1), (Fp)n C H, such that (i\,Id — Ay)U, = F}, is bounded and
T [Vl = o0,

As F,, = F we choose F := (0,sin(aAz), 0, cos(aAx),0,0)’, where

—y . nm P
)\_)\n.—aL (neN), a: -
The solution U = (v!,v?,v3,v*,v>,08) of (iA\Id — A;)U = F should satisfy
it —v?2 = 0
iz —vt = 0
ozt o R ks
o TT o1 T
SIS SO SN SLI. (2.5)
P2 p2 © p2 P2
5. L6, 0 3
IAv +—vm+z)\—vm =0
P3 P3
ixv® += Bl v2 = 0.
’7—



This can be solved by
vl(z) = Asin(alz), v¥(z) = Bcos(alz)

v?(x) = Csin(adz), v5(z) = D cos(alz)

where A, B, C', D depend on A and will be determined explicitly in the sequel. Note that this
choice is just compatible with the boundary conditions. System (2.5) is equivalent to finding

A, B,C, D such that

—N2A+ ﬁoﬁA?A - EoMB =1
P1 P1
b k ko6
B+ 2a?B-a+ B % = 1
P2 P2 P2 P2
e+ “ap+idp = o
P3 P3
i+ D% = o
T T

We have from (2.9)

aA
D= m(}’.

Combining (2.10) and (2.8) yields

o Ada(itA + ()
Cda?\ — p3(itA+ )
On the other hand, by the definition of «, we obtain from (2.6)

__
ka’

Let © := % — 1. Then, using (2.11) and (2.12) in (2.7) we have

k ko N25202(iTA + B)
ONB+ —B— ~—AA — — , B=1
p2 P2 [ia® X — p3(iTA + B)] p2
Using (2.12) in (2.13) results in
ka)\A _ ol A2a(iTA + B)p1
p2 ka  paad [ia? X\ — p3(iTA + )] p2k

that is, using a = /2L,
p2 1 P2
A=-0—=— = — P(A
F e Yo T
8 (iTA + B)p1
[ia?X — p3(itA + B)] k2
Recalling that v? = i\v! = i\A cos(a\r) we get

where

P(A) =

2 i)\pQ 7 in 3
—(—e¥P2 FiAP :
v (x) ( ) p N ok i (A)) cos(aAr)

6

with )\lim AP(N)| = 0.

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)



Note that

L 1/2
W2 = ([ *Pd)

bounded as A—oo

which implies (even) for £t = £2
lim [[Up|l3, > lim |[v?|| 2 = oo,
A—00 A—00

Thus we have proved

Theorem 2.2 The Timoshenko system (2.1)-(2.3) is not exponentially stable under Cattaneo’s
law, (even) under the assumption (2.4) — in contrast to the situation with the Fourier law

(r=0).
Remark. We mention that we could have a similar statement for the following set of boundary

conditions replacing (2.3),

901(30) = ‘;Dz('vL) = ¢('70) = ¢('7L) = q(-,O) = Q('7L) =0 in (07 OO)

cp. Sections 3 and 4, where we shall deal with this boundary condition to demonstrate that all
arguments mutatis mutandis apply to both set of boundary conditions.

3 Timoshenko with history — non-exponential stability for Cat-
taneo’s law

Here we consider the Timoshenko system (1.13)—(1.16) with history and the Cattaneo law (7 >
0), and we prove that it is not exponentially stable even if we assume (1.12),

P1 P2
— P 1

First we again give a reformulation as first-order evolution system. The second-order differential

equations are

o p1ow — k(pe + )z = 0
prtbe = bhas + [9(5)alst = 5) ds + hlga + ) + 00, = 0 52
0 p30i + qe + 0 = 0
Tq+Pg+0, = 0.
Let
n(t,s,z) =t z) — Yt —s,z), t,s>0 (3.3)



then we have

N N prow = k(pe +¢)e = 0 (3-4)
poth — (b — /g(s)ds)z/;m — /g(s)nix(s, x)ds + k(og + ) +00, = 0 (3.5)
0 0
,03915 +qe+ 0y = 0 (36)
Tq + Bq + 0, 0 (3.7)
Tt + Ns — ¢t =0 (38)
77(‘7 0, ) =0 (39)
where equation (3.8) is obtained differentiating (3.3). The initial conditions are given by
80(07 ) = 0, QOt(O, ) = Y1, w(ou ) = 1/}07 wt(oa ) = 1/}17 6(07 ) - 907 (310)
Q(Ov ) = qo, 77(07 S, ) - 1/}0 - 1/}(_87 ) = 770(37 ) in (07 L)7 S 2 07
where the history is considered as an initial value. The boundary conditions are given by
9033('70) :Sox('vL) :’(/J(',O) :T/J(-,L) :q(-,O) :q('7L) =0 in (0,00) (3‘11)
Concerning the kernel g we assume the following hypotheses (¢ > 0),
g(t) >0, dko,ki,ke >0: —kog(t) < g’(t) < —klg(t), ]g”(t)\ < kgg(t) (3.12)
b:=b —/ g(s)ds > 0. (3.13)
0
Remark. The associated energy term is given by
1 L 0o
B(t) = 5/ 1o} + p2tit + 00T + klpo + 9 + p36” + 7¢* + /9(8)!%!2 dS} dx
0 0
which is reflected in the norm of |U(¢)||% in the semigroup formulation now following. Let
U = (907 Pty ﬂ)v ¢t) 97 q, 77)/ = (ulv ’LL27 U37 U47 U5, u6) u7)/' (314)
Then we formally have
U= AU, U(0) =10y (3.15)

where Uy := (0, ©1, %0, %1, 00, q0,m0)" and Az is the formal differential operator

0 Id 0 0 0 0 0
k 92 k
Loz 0 Lo, 0 0 0 0
0 0 0 Id 0 0 0
Ag = —p%@x 0 p%a,% — p%[d 0 —’%&K 0 p% I59(s)02(-, s)ds
[ 1
0 0 0 -29, 0 -Lo, 0
0 0 0 0 19, -Lrd 0
0 0 0 Id 0 0 —0



Let
Hy = H}(0,L) x L}(0,L) x Hy(0, L) x L*(0,L) x L2(0, L) x L*(0,L) x L2(R*, Hy)

where Lg (RT, H}) denotes the Hilbert space of H}-valued functions on R*, endowed with the
inner product

L

() rgae iy = [ Jo(s)pals,a)ie(s,a)dsdo.
00

Then Ho, with norm

103, = pullu®l[Z2 + pallul|[F2 + bllud] [z + kllug + u®||72 + p3llu’|2
+r|ull[Z2 + ||U7||%§(R+7H3)
is a Hilbert space. The domain of the operator As is now given by

D(Ay) = { UeMs|ule H20,L), ul € HY0, L), v* € HX0,L), u* € H}(0,L),
u’ € HY0,L), u® € H(0,L), bu® + /g(s)u7(s, Nds € H*(0, L) N HE(0, L),

ul € L2A(RY, H), u"(0,2) = 0 (z € (0,1))}.
We shall prove
Lemma 3.1 The operator Ay is the infinitesimal generator of a Cy-semigroup of contractions.

Proof. First we note that Ay is dissipative, because for any U € D(Az) we have

Loo L
1
Re(AU Uy = 5 [ 9l ds do— 6 [l do
00 0

Lo L
k
< —%//g(s)|u;|2 ds dz — 3 [|u®)? dz < 0.
00 0

Now we show that 0 € o(Az). For any F = (f1, f2, 3, f4, £2, f6, f7) € Ha, consider the
following equation,

AU = F (3.16)
that is,
w? = f! (3.17)
E(ul +u®), = pif? (3.18)
. ut = f3 (3.19)
b, + [g(s)ul (- s) ds — k(ul +u®) —6ud = pyft (3.20)
" —ul —sul = psf? (3.21)
—Bub —ud = 7f° (3.22)
—ul fut = f7 (3.23)



From (3.17) and (3.19) we can get a unique u? € H}(0,L) and u* € H}(0, L), respectively.
Then, from (3.21) we have

x
u® = —éut — py /f5(y)dy
0

where u%(0) = uS(L) = 0, that is we get a unique u® € H}(0,L). Also, from (3.23), we can

determine .
o= sut = [f1(€)ag
0

It is clear that «”(0,-) = 0 and u! € L2(R*, H}). To prove that u” € LZ(RT, Hy), let T,e > 0
be arbitrary. Using (3.12) we have

T

T
1
JlotMiads <~ [yl

T
1 1
< o DIREDIE + ol + 1 (/ ).l (5)) pads
1 1 ’ 2 ’
< @U@ +5 oI ullfads + 55 [o(s)llali][Fads
]ﬁl 2 kl
that is
T T
Jla@lllifads < Emmw<mp+wjkﬂmnpw (3:24)

Since using the hypotheses on ¢ and the properties of u”, we have

1

gl — 0 as 0
1

we obtain from (3.24), letting 7' — oo and € — 0,

[e.0]

7
Wl < o [o@ il fads < .
0

| -

Therefore u” € Lg(R+; H}). On the other hand, from (3.22) we have that u° is uniquely given
by

T

u5:—/(ﬁu6( )+ 7f5() dy+L /ﬁu —i—TfG(y))dy dx

0
that is, u® € H(0,L). Also, from (3.18) we have that

xr
ub =B [Py € H(0,1) (3.25)

10



then from (3.20)

l;uiw + /g(s)uzm(-, s)ds =G (3.26)
0

where G := k(ul +u?) + dud + pof* € L%(0, L). By standard elliptic theory we obtain a unique
bu® + /g(s)u7(‘, s)ds € H*(0,L)n Hg(0,L)
0

satisfying (3.26). Since u’ € LZ(R™; Hy), we conclude from the last equation that u* € Hg(0, L).
Again from (3.25) we can get a unique u' € H?(0, L) N H1(0, L) such that ul € H(0,L). Thus
the unique solvability of (3.16) with U = (u!, u?, u3, u*, u®,ub, u") € D(As) is proved. Moreover,

it is now obvious that there is a positive constant K, being independent of U, such that
U |#z < K F |31,

This implies that 0 € o(Az). Since Ajs is dissipative, it follows that Ay is the infinitesimal
generator of a contraction semigroup in Ho.

Q.E.D.

Finally we show that the original second-order system (3.2) and the evolution equation (3.15),
using the transformations (3.3), (3.14), are fully equivalent. In fact, it is clear by construction
that the solution of the system (3.2), with the notation (3.14), satisfies (3.15). On other hand,

let U = (u',u? u?,u*, u® u®,u")" be the solution to (3.15). Then we conclude

up = u? (3.27)
3 _ 4
up = u (3.28)
00 prug, — k(uy + )y = 0
paud — bud — /g(s)u;x(m, s)ds + k(ul +u®) +6ud = 0
0
pauj +ul +oud, = 0
Tul + pub +ud = 0
ul +ul —up = 0. (3.29)

Therefore, (u',u?,u’, ub u”) is a solution of the system (3.4)—(3.8). Then, by uniqueness of
solutions,

(uh, u?,u®,ul ') = (¢,9,0,q,m) € HI(0,L) x Hy(0,L) x L2(0,L) x L*(0, L) x L2(R*, Hy)

with condition 7(-,0,-) = 0, and, using (3.27), (3.28), we have that the solution U of the evolution
problem (3.15) is also a solution of (3.4)—(3.9). Then the evolution equation (3.15) is fully
equivalent to the system (3.4)—(3.9). That n satisfies the equality (3.3) easily follows observing
that the characteristic lines of equation (3.29) are given by I'(s) = (I''(s),I'%(s)) = (s,s + ¢),
where ¢ is a constant. Therefore, using (3.28), we have

ns(L(s), ) = ¥e(T2(s), ).

11



By integration over [0, s] and using 7(+, 0, -) = 0 we have n(s,s+c¢, ) = ¥(s+c, ) —(c,-). Then,
putting ¢ = ¢ — s our conclusion on the equivalence of (3.2) and (3.15) follows.

Now we are going to prove that the system is not exponentially stable, where we shall need
the following Lemma from [3], cp. [4].

Lemma 3.2 Let us suppose that g satisfies the conditions (3.12) and let us assume that
liIT(l) Vsg(s)=0.
S—>

Then there exists C > 0 such that
’)\/g(s)e_i)‘sds‘ < C
0

uniformly in A € R.

As in Section 2, using Lemma 2.1, to show the non-exponential stability it is sufficient to find
sequences (A,), C R with lim, o [An| = o0, and (U,), C D(As), (F,), C Hsa, such that
(iApId — A9)U,, = F, is bounded and

lim ||Up]lx, = .
n—oo
As F,, = F we choose F := (0, cos(aAz),0,sin(a\x),0,0,0)’, where

=\ =7 = P
)\_)\n.faL (neN), a: e

The solution U = (v',v?,v3,v*, v, 0%, 0v7) to (iA[d — A2)U = F, should satisfy

il —v?2 = 0
iz —vt = 0
k k
DI LIS DA S )
b b 17 ko k5 8
—A\2p3 — gvgx + —Zvix s /g(s)v;x(x, s) ds + gv; + gv‘g + gvg = f4 (3.30)
0
1 5
ix® 4+ —o8 fid—vd = 0
p3 P3
1
iAvs + EUG +Zvd =0
T T
i’ + ol —idvd = 0.

o0
where by := [g(s)ds. This can be solved by
0

vl(z) = Acos(alz), v3(z) = Bsin(aAz),

v®(x) = Ccos(adz), v9(z) = Dsin(adz), v'(z,s) = ¢(s)sin(alz)

12



where A, B, C, D, ¢(s) depend on A and will be determined explicitly in the sequel. Note that

this choose is just compatible with the boundary conditions. System (3.30) is equivalent to

“\2A+ ﬁaWA — ﬁaAB =1

P1 P1

b b 2)2 7 k k
2B+ Za2a2B - Xa2p2p 4 & /g(s)go(s)ds _Paaar BB %o =1
p2 P2 P2 P2 P2
IO+ Cap+i%YNB =0
P3 P3
i+ 2D %axc=0
T T

idp(s) + ¢'(s) —iAB = 0.
From (3.34) we have
oA
=—C
(iTA + B)

Combining (3.36) and (3.33) we get

_ Aa(itA+p)

a2 — p3(itA + B3)

On the other hand, by the definition of o = /4%, we obtain from (3.31)

__ P
ka)’

Since n(-,0,-) = 0 we have that ¢(0) = 0, then solving (3.35) we get
@(s) = B — Be ™,

From (3.39) we get

ﬁ(s)go(s)ds = 7;(3)[3 — Be™ ] ds = Bby — Bﬁ(s)e
0 0 0

Let © := Lk 1. Then, using (3.37),(3.38) and (3.40) in (3.32) we obtain

P2 5

. . I
that is, using a = /4%,

2 o0
P2 « —i\s P2 1
= —=— —_ _— = — P
A O . + ’ (/g(s)e ds) ron 2 +

0

where

52(iTA + B)p1

PO = [i02X — ps(itA + B)] k2

13

9 7 ko A62a3(iTA + B)
L A=-06\ +— / e~ ds 14 — ,
) ( 7 ) ph o fia?X— ps(iTA+ B)] po

with  lim A|P(Y)| =

(3.31)

(3.32)

(3.33)

(3.34)
(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)



Remark. We observe that to conclude (3.41) it is essential that the coupling parameter § is
different from zero.
Recalling that v? = i\v! = i\A cos(6)\z) we get

u%w=<_A”@+WU/ )e~iAs ds — Zm—A+AHM»m®M)
(6%

Note that

L
1/2
e = ( flo? do)
0

\ézi )\p2®+ p].)\/ ,l)\sds

— ——+AP(A
L2 S+ <>’

I, 1 b
> YE_Ll_ p A/ —WM+J’ ”—M)P
2 |l "X eE T

k
bounded as A\—oco

and using Lemma 3.2, we get
. 2 . 2112 _
lim (U3, > lim [Jo?][2 = oo
A—00 A—00
which completes our conclusion summarized in

Theorem 3.3 The Timoshenko system with history (3.2),(3.10)-(3.11) is not exponentially
stable under Cattaneo’s law, (even) under the assumption (3.1).

This result is in contrast to the exponential stability under the Fourier law, assuming (3.1), which
we shall prove in the last section. The more it is interesting to notice that it also contrasts the
known (see [3], cp. [1] for finite history) exponential stability for the case that there is no heat
conduction. This means that the Fourier model of heat conduction preserves the exponential
stability of the model, while the — still assumed to have a dissipative effect — Cattaneo model
destabilizes in the sense that it is no longer exponentially stable.

Technically in the proof, this effect can be seen in (3.41), see the remark following there.

4 Timoshenko with history — exponential stability for Fourier’s
law

Here we consider the Timoshenko system (1.13)—(1.16) with history and the Fourier law (7 = 0),
and we prove that it is exponentially stable if and only if (1.12) holds. For 7 = 0 we can elimate
q easily and obtain the following differential equation for 6,

p39t - Bearx + (hbact =0

14



where § := ' > 0. Then, introducing 1 as in the previous section in (3.3), we have the
differential equations

prow —k(pe +¢)s = 0

poa = (b= [9(5)ds) e — [9(ual $)ds + (o + ) + 60, = 0
0 0 -
/039t - 59:5:5 + 5¢xt = 0
Ne+ns — Yy =

with inital conditions

(,0(0, ) = ®o, 9075(07 ) = ¥1, ¢(0> ) = 1o, ¢t(07 ) =1, 0(07 ) = b,

Q(Oa ) = 4o, 77(07 S, ) = 1/}0 - 1/’(_37 ) = 770(57 ) in (07 L) S Z 0
and boundary conditions
4,03&('70) = ‘pI(WL) - w(70) = ¢(,L) = 955(70) = 01’(7[/) =0 in (07 OO)
Again transforming to a first-order system we obtain for
U:= (807 @tﬂ/} wtae 77) ('LL U‘Z U’3 ’LL4 'LL5 u6)
Ut = A3U7 U(O) = UO

where Ajz is formally given by

0 Id 0 0 0 0

k 92 k

£z 0 Lo, 0 0 0
0 0 0 Id 0 0

.,43 = 00

X8, 0 b Loy - & 0 -2a, X Ofg(s)ag(s, )ds
0 0 0 —%ax L2 0
0 0 0 Id 0 —d,

Let us denote by
Hs = H}(0,L) x L2(0,L) x Hj(0,L) x L*(0,L) x LZ(0, L) x LZ(R", Hp).
It is easy to see that Hj3 together with the norm
WU1Be = orllu?l3a + palllZa + Blled] 2 + klJub + w122 + pslle®l 13 + 12 e
is a Hilbert space. The domain of the operator Ajs is defined by
D(As) = {UeMy|u' € H0,L), ul € HY(0,L), u* € H(0,L), u* € H}(0, L),

ud € H (0, L), bu® + /q(s)u6(:c, s)ds € H*(0,L) N H(0, L),

ul € L2(RY, H), u9(0,2) =0, (€ (0,L1)) }.

As in Section 3 we can prove that Ajs, being dissipative with 0 € o(A3), generates a contraction
semigroup.

15



4.1 Exponential stability for &' = £

In this subsection we will show that the system is exponentially stable infinity provided the
condition
P1 P2
APz 4.1
i (4.1)

holds. Once more we use Lemma 2.1, and we have to check if the following two conditions hold,
iR C o(A3) (4.2)

and
FC>0VAER: ||(GAd— A3) Y|, < C. (4.3)

First we will show (4.2) using contradiction arguments. In fact, suppose that (4.2) is not true.
Then (cp. [9, p.25]) there exists w € R, a sequence (8,), C R with £, — w, |f| < |w| and a
sequence of functions

Up = (ub,u? ud ub ud ul) € D(As) with  ||Unllp, = 1 (4.4)

n» 'n’ 'n’ 'n) 'n 'n

such that, as n — oo,

16, Up — A3U, — 0 in Hj3 (4.5)

that is,
iBpul —u2 — 0 in H(0,L) (4.6)
iBnprul — k(uy, o + u)e — 0 in L2(0,L) (4.7)
iBpud —ut — 0 in H(0,L) (4.8)
i Bppoul — U fg s)uS 1o (-, 8) ds + k(up, , +up) +6ul , — 0 in L*(0,L) (4.9)
iBup3ul — Bud 4, +0us, — 0 in L(0,L) (4.10)

4

iBpud +ub  —up — 0 in LZ(RT Hy). (4.11)

Taking the inner product of (4.5) with U, in H3 and then taking its real part yields

L
—Re(A3U,, Uy) - // )ud . |* ds dx + B/|u§mj|2 de — 0.
0

Using the hypotheses on g we have that

uy — 0 in LZ(R' Hp), (4.12)
udb — 0 in HN0;L) — L*(0,L). (4.13)
Then, using (4.4), we have that

+ k. +upllfs — 1. (4.14)

pilluzl[Z2 + pallunlF2 + Blluy,

16



On the other hand, taking the inner product of (4.6) with pju2 in L2(0, L) and (4.7) with pju}
in L2(0, L), repectively, yields

Zplﬁﬂ( na n) 2_p1||u37,”%2 — 0
and

Zplﬂn( Ups 111)L2_k( +un7u}1x)L — 0.

Adding and taking the real part we get
kRe(u) . +ud, uh )2 — p1||ud][22 — 0. (4.15)

n’» 'n,r

Analogously, taking the inner product of (4.8) with pguit in L?(0, L) and (4.9) with u3 in L2(0, L),
repectively, yields

ip2n (i, ) 2 — p2|upllz: — 0 (4.16)

and
Z,OQﬁn( Ups n)L2 + bHun mHLQ +/g nx?uiI)LQ ds

+k( +u u )L2+5( U,z i)ﬂ — 0. (417)

Note that from (4.12), (4.13) we have

/g nac’ nx L2 ds+5( U,z ?l)LZ — 0,

this used in (4.17) results in

Zp?ﬁn( Un, n)L2 + bHun xHLQ + k( Un,z + un?“i)L — 0. (418)
Adding (4.16) and (4.18) and taking real part, we get
*p2|‘un’|L2 +b||unx||L2 +kR6( nx+un7u§1)L2 — 0 (419)
and adding (4.15) with (4.19) we have
bl[upy ol[72 + Kllun o + udl[72 — prllunl|F2 = pallupllF: — 0. (4.20)
Consequently, from (4.14) and (4.20) we deduce that
- 1
bl o2 + Fllun g +udl[7: — 3 (4.21)
2112 4012 1
pllIBe + pallidlzs — . (422)

17



Also, it is clear that s — éufl € L%(R"; Hj). Then multiplying (4.11) with éu% in L2(R*; Hy)

gives

4

. U 1 1

Z(ug’ 571)[]3 + 2(U1617S,’LL;LL)L2 - 52( ﬁ’ zrlL)Lg 0. (423)
n n

Using (4.8) we have that 1,6% is bounded in H}(0, L), and using (4.13) we get that the first term
of (4.23) converges to zero. This yields

ud 17
boll 51y — g o)t by ds — 0 (424)
"0

oo
where by := f g(s) ds. We now prove that the second term in (4.24) converges to zero. In fact,

using again that ﬁ% is bounded in H{ (0, L), (3.12) and (4.12) we have

/g HldS

1 o0
|—2 Jols) (S ub) gy s

n ‘ﬁn
< Fo 6 d
< Wnl” nHH 9(s)|[un ()| gy ds
0
kovbo | up

Therefore, we can deduce from (4.24) that

u4
. 0 in H}0,L)

Bn

it follows from (4.8) that

ul — 0 in H0,L), (4.26)

n
and using (4.26) in (4.21) we get

1
Bl +udlf — . (4.27)

We want to show that this is a contradiction if the basic condition (4.1) holds.
Multiplying (4.9) by (uj, , +u3) in L*(0, L) we have
o0
iBpa(uy s, + ud)ge + (Bud, 4 [o(5)u o (15) ds, (uh o + o)

Fhllun g+ iz + 0 oy tn e + )2 — 0. (4.28)
Note that by (4.13) we have that the last term of (4.28) converges to zero. Then we get

[e.o]
iBupa(uby b+ u)pa + (B [o(s)uo15) ds, (uh 1))

k|l Ul — 0. (4.29)

18



Also, multiplying (4.7) by (b Uy, o+ fg( Jub (-, s) ds) in L*(0, L) results in

_Ziﬁn b na: +/g dS U ) - nx+/g (urlz,x—i_ui)I)LQ
0. (4.30)

Then, adding (4.29) and (4.30), we obtain

o0
. .P1 >
it w4 )2 — L+ oI ) i 2) e Rl 0
0
— 0. (4.31)

On the other hand, multiplying (4.6) by pouz, (4.8) by ipa3,u and (4.8) by pgu »in L2(0, L),
respectively, yields

_ZﬁnPQ( Up,s 711 x)L2 - PQ( ;LN u?’b,a})[ﬂ — 0 (432)
pQ‘ ‘un‘ ’L2 + ’LﬁnPQ( Ups %)L2 — 0 (433)
_ZﬂnPQ( Up,s % a:)L2 + pQ( ;lw U?L,ZL‘)L2 — 0. (4‘34)

Since u3 — 0 in H{ (0, L) < L?(0, L), we obtain from (4.33)

iBnp2 (U, up)pz — 0. (4.35)

Adding (4.31), (4.32), (4.34) and (4.35), we deduce that

a1~ 1B [o(5)08a(8) s )+ Rl +
0 0. (4.36)
Now, from (4.11) we have
ot g + Uy —Upy — O in LI(RYL?)
then, multiplying by ftu? in LZ(R% L?) results in

. Pl pP1 p1bo
zﬂn?(ug’m, U2)L£2](R+;L2) + ?(ug,szaUQ)Lg(R"';LQ) — T(ufw,uZ)Lz — 0. (4.37)

Using similar arguments used in (4.25) we can conclude
(un,sz, UQ)LE (]R*;LQ) — 0
then it follows from (4.37) that

p1bo

? (ui}x,uz)Lz — 0. (4.38)
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Multiplying (4.8) by —2%42 in L2(0,L) yields

prb b
i6n 10( 32 Vo + P04 u?)e — 0 (4.39)

n,T L n,T)

then, adding (4.38) and (4.39), we get

b
iﬁn%(u?’,u?a,)g — 0. (4.40)

Finally, adding (4.36) and (4.40), we obtain

p1b .p1bo
*ZﬁnPZ( Up, ?LCE)LQ Jrlilgn( Up, nm)L2 + T n(ui’ui,x)LQ +k‘|u111,w+ui”%2 — 0,

and using that b=0b—by > 0, we obtain

pL P2
(2 P2 ) (02 gz + Mg+l — 0

=0

that is
kllu, . +upl|7a — 0

which is contradiction to (4.27). Thus (4.2) is proved.
To complete the result about exponential stability we now prove (4.3). Note again that the
resolvent equation (iAld — A3)U = F € H3 is given by

it —u? = f! (4.41)

ixpu? — k(ul +u), = pif? (4.42)

iud —ut = 3 (4.43)

izpout — bud, — /g(s)ugm(-, s)ds + k(ul +u®) +0ud = pof? (4.44)
0

iApsu® — Pul, +6uy = p3f® (4.45)

il ful —ut = f° (4.46)

oo
where by := [g(s)ds, b:=b— by > 0. To prove (4.3) we will use a series of Lemmas.
0

Lemma 4.1 Let us suppose that the conditions (3.12) and (3.13) on g hold. Then there exists
a positive constant C, being independent of F' such that

L Loo
po [P do+ [ [o(s)uSP? dsde < U1 Fe
0 00
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Proof. Multiplying (4.42) by u? (in L?(0, L)) we get

L L
iAp2 /|u2|2 dr+k [(ul + v dz = py /fzu2 dx
0 0

and, using equation (4.41),

L L L
iAp2 /|u2|2 dx — i\k /(u Hul de = py /f2u2 dx + k‘/(u L da. (4.47)
0

0 0

On the other hand, multiplying equation (4.44) by u* and integration over [0, L] we get

L Loo L L
iAp2 /\u4]2 dx + B/uiuiﬁ“ dx + //g(s)uguiﬁn dsdx+k /(u Nul de +6 [udug dx
0 0 0 0
=1 =1
L
= po /f4¥ dx.
0
Substituting u* given by (4.46), (4.43), into I; and Iy we get
L
z)\pg/| ut)? d — z/\b/| ul|? dx — z)\//g Wub|? dsdx — idk [(ul + ud)ud dx

0

L oo L
+//g stds%—é/ u4dx—p2/f4u4dﬂc+b/ f3d:c—|—k/(u 3Hf3 dx
00

0

+ //g(s)ugif dsdz. (4.48)
00

Also, multiplying equation (4.45) by u5 we obtain
L L L L
i\p3 /\u5]2 dx + B/\u2|2 dr — & [utud dx = p3 /f5$ dx. (4.49)
0 0 0 0

Adding (4.47), (4.48) and (4.49), using (3.12) and taking the real part our conclusion follows.
Q.E.D.

Lemma 4.2 With the same hypotheses as in Lemma 4.1 there exists C' > 0 such that

L
1/2 1/2
pa[lu' P dz < ClUglIFllses + CIUIGEIE3 (bl + g+ 2) -
0
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Proof. Multiplying (4.44) by [g(s)uS dsin L?(0, L) we get
0

Loo Loo L oo ,
iAp2 //g(s)@u4 dsdz +b //g(s)uj%ui dsdx + /‘/g(s)ug ds‘ dx
00 00 00

=:I3

Loo Loo Loo
+k /g (ul +u)ub dsdx —§ /g(s)u?iu“s dsdz = po //g(s)@f4 dsdz.
00 00
From Lemma 4.1 we obtain
o0 o0 Lo
[ ot af ae < [ gs)as [[o@lall? dsz < Uil Pl
0 0 00

and

Loo
Re{a [ sty dsdw} < Ul Fllres-
00

Substituting iAu® given by (4.45) into I3, using

//g Jubut dsdx <2 /] 42dx+C//]g (s)|[ub[*ds dx

and using (3.12), our conclusion now immediately follows from Lemma 4.1.

Q.E.D.

Lemma 4.3 With the same hypotheses as in Lemma 4.1, for any €1 > 0 there exists C., > 0,
at most depending on €1, such that

L
7 1/2 1/2
bfludf da < CoylUlndlFllrs + Ca UIEIFIR i + w2 + exp 3.

Proof. Multiplying of (4.44) by u? yields

L Loo

z/\pg/u u3 dx+b/| 3% da + /g ubu3 dsdx
0
=14

L L L
+k /(uglc + u)ud da + 5/ui$ dx = py /f4$ dx.
0 0 0
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Substituting iAu® given by (4.43) into I, we get

L L
/m\ dm—{-k:/(u + 3 u3dm—p2/]42dx
0 0
Loo L
- /g(s)uguig dsdr + 6 [u’ud dx + pa /f4$ dx + po /u4F dx.
0 0 0 0

x
On other hand, multiplying (4.42) by [ u3(y)dy we get
0

0 0 0 0

=:I5

Using (4.43) in I5, we have

Is = —m;m /LU2 (/IU4( )dy) dﬂ?—m/L 2 (if3(y)dy) dx.
0

0

Substituting this into (4.51) we obtain

k/L(ui, +ud uddr = p Lu2 (/xu‘*(y)dy) dx + p1 /Lu2 (i f3(y)dy) dx
0

0 0

Finally, using (4.52) into (4.50) and using that

L T

Re{ps [u? [wi)dy do} < il B + Coypallu -
0 0

taking real part (and using the Lemmas 4.2 and 4.1) our conclusion follows.

Q.E.D.

Our next step is to estimate the term ||u} + u®||3,. Here we shall use condition (4.1).

iAp1 /Lu2 (/xzﬁ(y)dy) dx —k /Iéui. + u?), (iu3(y)dy) dxr = p1 /Lf2 (7u3(y)dy) dx.
0

(4.50)

(4.51)

(4.52)

Lemma 4.4 With the same hypotheses as in Lemma 4.1, together with condition (4.1), for any

g9 > 0 there exists Ce, > 0, at most depending on €2, such that

L

Eflul +u de < CoallUlhal Pl + 1+ 22) prlla? 32,
0

where €1 is given in Lemma 4.3.
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Proof. Multiplying (4.44) by ul + u® we have

L L L
iAp2 /u4(ui +ud) dx + k:/|u31£ + 3| dm—i—é/ug(uglﬂ +u?) dx
0 0 0

L 00 L
+/[l~7u§ + /g(s)ug ds} (ul + u3), dx = po /f4(u§, +u3) dx.
0 0 0

=:Ig

Substituting (ul + u?), given by (4.42) into Is we get

L L . L
_ _ b _
iAp2 /u4u316 dx +iAp2 /u4u3 dx —i)\% /uiiﬂ dx + k:/|u315 +ud|? da
0 0 0 0
:;I7 2218

L L
bp1
+5/ 5 (ul + ud) dz —in2L //g ubu? dsdx——//g ub f2 dsdx — k: ud f2 dx

0

=:1g
L

= py /f4(u§ + ud) du. (4.53)

0

Substituting u' given by (4.41) and u* given by (4.43) into I; we obtain

L L
I7 = —iApo /u?’ui;{‘ dx — p2 /u4E dx + p2 /f?’uj% dx. (4.54)
0 0 0
Using (4.43) we get
L L
Is = —po /\u4]2 dx — ps /u4ﬁ dx. (4.55)
0 0

Finally, a substitution of u% given by (4.46) yields

b
//g Yl u? ds dx — Plko uqu:c— //g (5)fSu? ds du.

From (4.43) we can rewrite Ig as

Loo L
— b
A //g’(s)ugu2 ds dz — i /ui p— /f3u2 dx
k k k
00 0
Loo
P1 679
—?//g(s)fxu ds dx. (4.56)
00
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Using (4.54)—(4.56) in (4.53) we obtain

L

L L L
i)\b(% — %) /u3u7§3 dx + k:ﬂu; +ud)? de = pgﬁu4|2 dx — 5/ui(u% +u3) dx
‘j?)—" 0 0 0 0

Loo
—I—%//g’(s Su2 ds dx + k/ f2da:+k//g 6f2dsdm+p2/f4u1+u3)dx
00

0

L L
+p2/u4ﬁda:+p2/ T dz + (p pl 0 /f3 2+ £ /g(s)f;j?dsdm.
0 0 00

Now, using (3.12) and the previous Lemmas, our claim follows.

Q.E.D.

Lemma 4.5 There exists C > 0 such that
L
prl|w*fP dz < ClU|lws || Fllp + 4k|Juy, + u®||7.
0

Proof. Multiplying equation (4.42) by u' we get

L
iAp1 /u ul da:—i—k:/(u + u®)ul do = py /f2u1 dzx.

0
\—,_/

=:I10
Substitution of u' given by (4.41) into I1p and taking real parts we get

L
prfl’)? de < ClUllnl1Flloe + 2kl ug + @®||72 + Ol |7
0

Using Lemma 4.3, for e sufficiently small, our conclusion follows.

Q.E.D.

Now we are in the position to prove the main result of this subsection.

Theorem 4.6 Let us assume hypothesis (3.12) and (3.13) on g and suppose that condition
(4.1) holds. Then the heat conducting Timoshenko system under the Fourier law is exponentially
stable.

Proof. It remains to show (4.3).
Let U = (u!,u?,u3,u,u®,ub), F = (f1, f2, 3, f4 f5, f9) satisfy (4.41)-(4.46), then, from
Lemma 4.1, we get

psllu’lZz + [[W®l[2s < ClIF |l |U 21 (4.57)

25



From Lemma 4.2, for 9 > 0, there exists C1 := Cy(e3) > 0 such that

b €9
pallulllze < CullFlbg Ul + Slluzlize + —kllug + |72 (4.58)
Also, from Lemma 4.3, we obtain
~ €2
blluzlize < CollFlll Ul + expullu®llze + 2 kllug + w72 (4.59)

Then, adding (4.58) and (4.59), we get

b
palut]|72 + §HU§|I%2 < Oo||F|lsUll3ty + e1p1[[u?|[72 + ekl lug, + u°||72. (4.60)
On other hand, from Lemma 4.4 we have

kllug +4’l[7e < CallFlls||Uls + (1 + e2)pr[u®] 2. (4.61)

Finally, from Lemma 4.5, we obtain
21 + e l[u?|[F2 < 2(e1 + 2)ClIF |3, |Ul 3ty + 8(e1 + e2)k|[ug + u?| |72 (4.62)

Adding (4.61) and (4.62) we conclude

(1 - 81 +22) Rl fug + w332 + (o1 +e)pullw?lFe < Chl|Fllaes Ul (4.63)

From (4.57), (4.60) and (4.63), we obtain for e, e9 sufficiently small, that there exists C' > 0
independent of A (and F,U) such that

U, < ClIF[3ys

this completes the proof.
Q.E.D.

4.2 Non-exponential stability for £ # £2

Now we shall prove that condition (4.1) is also necessary for exponential stability.

Theorem 4.7 Let us suppose that (4.1) does not hold. Then the heat conduction Timoshenko
system under the Fourier law is not exponentially stable.

Proof. As in Sections 2 and 3 it is sufficient to show that the solution of

(iAnId — A3)U, = F,,

satisfies
lim HUnHHa = 0
n—oo
where
nmw
A=\, =7 (neN), a:= %



and F = F, := (0, cos(aAz),0,sin(aAz),0,0). The solution U, = U = (v}, v? v3, v, 07, 00)

satisfies
il —v? =
ixvd — vt

k k
N —vix — —vil =

P1 P1

b bg 1 k k )
N — Ly —— g(s (z,s) ds + 7@ + —v* 4 =2 =

3 5
i — Sl iD=

P3 P3

iab 4+ 08 —ixd =

This can be solved by
vl(z) = Acos(alz), v3(z) = Bsin(aAz),

v*(x) = Ccos(adz), v5(z,s) = ¢(s)sin(6\x)

(4.64)

where A, B, C, ¢(s) depend on A and will be determined explicitly in the sequel. Note that

this choice is again compatible with the boundary conditions. System (4.64) is equivalent to

Eoz2)\2A - Ea)\B =1
P1 P1

—N\A +

2\2
g4 Lo Mg A /g( Jo(s)ds — Fara+ Fp %0 =1

P2 P2 P2 P2 P2 P2
3 )
ine s Zataze 1 i%%ep =
P3 P3

ixp(s) + ¢'(s) —iAB = 0.

From (4.67) we have
A
___ M B
iBa2\ — p3
On the other hand, by the definition of «, we have we obtain from (4.65)

P1
Cka\

Since v°(0) = 0, we have that (0) = 0, then solving (4.68) we get
¢(s) = B — Be ™,

From (4.71) we get

o0

/g(s)gp /g )[B — Be~™*] ds = Bby — B/ —iAs s,
0

0
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(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)



Let © := bpl — 1. Then, using (4.69),(4.70) and (4.72) into (4.66) we have

3 2,3
ka)\A__@)\ +7 /g Je= i g ko 14— /\(~5a
P2 ; CpA (1?3 — p3)p2

that is, using a = |/ 2%,

2 [ 2 9
P2 «Q —i\s P2 1 6“a
A=—0P2 % /se ) . e —
kT k (Og() ) ko X (ia2A8 — pa)k

Recalling that v? = iAv! = iXAcos(6)\z), we get

. . . 22
v3(z) = —)\p2®+w1)\/ Jemitegg 2 AT ) ).
ha X (ia2AB — p)k

Observing
7 1/2
lflle = ( fle?? do)
0
)\52 2
\F )\p2®+p1/\/ T e R —
)‘ (ia?AB — p3)k
| 1 T A6%02 L b
> —£ B +%)\/g(s)e_”\sd8—|—.~—a —@—ﬂ\—)\
2 A \/,Olk' k (za2)\ﬁ—p3)k 2 b k 'k
£0

bounded as A\—oo

and using Lemma 3.2, we obtain
lim ||Uy|3; > lim |[0?|]2 = oo
A—00 A—00

which completes the proof.

Q.E.D.
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