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Jaime E. Muñoz Rivera and Reinhard Racke

Abstract: We consider the Timoshenko system in a bounded domain (0, L) ⊂ R1. The system
has an indefinite damping mechanism, i.e. with a damping function a = a(x) possibly changing
sign, present only in the equation for the rotation angle. We shall prove that the system is still
exponentially stable under the same conditions as in the positive constant damping case, and
provided a =

∫ L
0 a(x) dx > 0 and ‖a − a‖L2 < ε, for ε small enough. The decay rate will be

described explicitly.
In the arguments, we shall also give a new proof of exponential stability for the constant

case a ≡ a. Moreover, we give a precise description of the decay rate and demonstrate that
the system has the spectrum determined growth (SDG) property, i.e. the type of the induced
semigroup coincides with the spectral bound for its generator.

1 Introduction

Here we will consider the system

ρ1ϕtt − k(ϕx + ψ)x = 0 in (0,∞)× (0, L), (1.1)

ρ2ψtt − bψxx + k(ϕx + ψ) + a(x)ψt = 0 in (0,∞)× (0, L), (1.2)

with positive constants ρ1, k, ρ2, b, γ, ρ3, κ together with initial conditions

ϕ(0, ·) = ϕ0, ϕt(0, ·) = ϕ1, ψ(0, ·) = ψ0, ψt(0, ·) = ψ1, θ(0, ·) = θ0 in (0, L),(1.3)

and boundary conditions

ϕ(t, 0) = ϕ(t, L) = ψx(t, 0) = ψx(t, L) = 0 in (0,∞). (1.4)

It models the transverse displacement ϕ of a beam with reference configuration (0, L) ⊂ R1

and the rotation angle ψ of a filament. The well-posedness of (1.1)–(1.4) is standard, cp.

[20].
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There is a damping mechanism present (only) in one equation, (1.2), given by a(x)ψt,

where a ∈ L∞((0, L)) may change sign, but will satisfy

a :=
1

L

L∫
0

a(x)dx > 0. (1.5)

For strictly positive a it was shown by Soufyane [20] that the system is exponentially

stable if and only if
ρ1

k
=
ρ2

b
(1.6)

holds1. That is under this condition the damping in only one equation is strong enough

for the exponential decay of the associated energy

E(t) :=
1

2

L∫
0

(ρ1ϕ
2
t + ρ2ψ

2
t + bψ2

x + k|ϕx + ψ|2)(t, x)dx

≡ E(t, ϕ, ψ)

(mostly dropping (t, x) in the sequel). In the author’s paper [1] the damping aψt could be

replaced by a memory term
t∫
0
g(t− s)ψxxds, and in [14] by a coupling to a heat equation,

see also [15] for nonlinear systems.

Already for the wave equation

utt − uxx + a(x)ut = 0,

with Dirichlet boundary conditions, it is a subtle issue to see whether an indefinite damp-

ing with the function a just satisfying (1.5) still leads to exponential stability, and which

additional conditions have to be added, respectively. The non-dissipative case with indef-

inite a seems to have been posed first by Chen, Fulling, Narcovich and Sun [3] where it

was conjectured that the energy

E0(t) =

L∫
0

(u2
t + u2

x)(t, x)dx

decays exponentially if

∃ γ > 0 ∀n = 1, 2, . . . :

L∫
0

a(x) sin2(nπx/L)dx ≥ γ

holds. Later Freitas [6] found that the latter condition on the moments is not sufficient

to guarantee exponential stability when ‖a‖L∞ is large, but replacing a by εa, Freitas and

1In [12] it was pointed out that this conditions for real materials never holds, but the analysis gives
inside for various problems.

2



Zuazua [8] proved that when a is of bounded variation and the condition on the moments

holds, then there is ε∗ = ε∗(a) such that for all ε ∈ (0, ε∗) the energy decays indeed

exponentially. This result was extended to a differential equation of the type

utt − uxx + εa(x)ut + b(x)u = 0 (1.7)

by Benaddi and Rao [2]. K. Liu, Z. Liu and Rao [10] gave an abstract treatment of these

results under certain conditions on the abstract damping operator. An extension to higher

space dimensions was presented by Liu, Rao and Zhang [11], for unbounded domains see

the recent work of Freitas and Krejčǐŕık [7].

In [16] the authors could show that is sufficient to require just

‖a− a‖L2 small enough. (1.8)

There it was also shown the there are certain pairs (a, L) with possibly negative moments
L∫
0
a(x) sin2(nπx/L)dx but still leading to exponential decay. An extension to the type of

equation (1.7) was given by Menz [13].

Fo the Timoshenko system under consideration, we shall demonstrate that the condi-

tions (1.5)–(1.8) are sufficient to yield exponential stability.

Moreover, we shall precisely describe the best rate of decay d0 for the energy in the

estimate

∃ d0 > 0 ∃C0 > 0 ∀ t ≥ 0 : E(t) ≤ C0E(0)e−2d0t. (1.9)

for the constant coefficient case a = a. This is related the result to be proved here that

the system has the so-called spectrum determined growth property (SDG property); that

is, after having reformulated the system as a first-order system (see Section 2) Vt = AV .

with a C0-semigroup generator A in an appropriate Hilbert space, we shall prove that the

type of the semigroup, the growth abscissa ω0(A), equals the spectral bound ωσ(A),

ω0(A) = ωσ(A). (1.10)

Here, in general, the type of a C0-semigroup generator G is defined as

ω0(G) = lim
t→∞

ln ‖eGt‖
t

= inf
t>0

ln ‖eGt‖
t

, (1.11)

and the spectral bound is given as the least upper bound for the real parts of the values

in the spectrum σ(G) of G,

ωσ(G) = sup {Reλ | λ ∈ σ(G)}. (1.12)

For a discussion of the SDG property see the work of Prüss [18], Huang [9] and Renardy

[19]. We shall prove the SDG property for our system using a characterization given by

Prüss [18] or Huang [9], saying

ω0(G) = inf {ω ∈ R | ∃M = M(ω) ∀λ,Reλ ≥ ω : ‖(λ−G)−1‖ ≤M}. (1.13)
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To prove our results for A, we shall regard it as a perturbation of A, where A , as above,

represents the same system but with a(x) being replaced by a (the) constant a > 0. This

corresponds to a previously discussed constant damping in one equation, cp. [20, 15].

Here it will be demonstrated that it yields exponential stability — first another proof of

this known result using (1.13), but second and additionally showing that

ω0(A) = ωσ(A) (1.14)

holds, and in determining ωσ(A) explicitly. An explicit representation of the inverse

(λ− A)−1 and a sophisticated analysis of ‖(λ− A)−1‖ will yield the result. Then a fixed

point argument for A, where (1.8) will describe the contraction precisely, will be used.

We remark that a stronger requirement of the smallness of ‖a‖L∞ as discussed for

wave equations by other authors, see [8, 2, 11] could be treated in an even easier way for

our system too.

Summarizing, our new contributions are, assuming (1.6),

• to show that in the positive constant damping case, the system has the SDG prop-

erty, and to give for this situation a precise computation of the rate of decay (and

the type of the semigroup),

• to show that also for the case of possibly indefinite damping, the system is still

exponentially stable, for small ‖a− a‖L2 .

The paper is organized as follows. In Section 2 we shall formulate the semigroup setting,

in Section 3 we discuss the constant coefficient case yielding the SDG property there, and

in Section 4 we finish the discussion of the original indefinite problem obtaining the result

on exponential stability.

2 The semigroup setting

We rewrite the initial-boundary value problem (1.1)–(1.4) as a first-order system for V :=

(ϕ, ϕt, ψ, ψt)
′, where the prime is used to denote the transpose. Then V satisfies

Vt = AV, V (t = 0) = V0, (2.1)

where V0 := (ϕ0, ϕ1, ψ0, ψ1)
′ and A is the (formal) differential operator

A =


0 1 0 0

k/ρ1∂
2
x 0 k/ρ1∂x 0

0 0 0 1

−k/ρ2∂x 0 b/ρ2∂
2
x − k/ρ2 −a/ρ2

 . (2.2)

Let

H := H1
0 ((0, L))× L2((0, L))×H1((0, L))× L2((0, L))
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be the Hilbert space with norm given by

‖V ‖2
H = ‖(φ1, φ2, ψ1, ψ2)′‖2

H

≡ ρ1‖φ2‖2
L2 + b‖ψ1

x‖2
L2 + k‖φ1

x + ψ1‖2
L2 + ρ2‖ψ2‖2

L2 .

Then A, formally given in (2.2), with domain

D(A) := {V ∈ H | φ1 ∈ H2((0, L)), φ2 ∈ H1
0 ((0, L)), ψ1 ∈ H2((0, L)),

ψ1
x ∈ H1

0 ((0, L)), ψ2 ∈ L2((0, L))},

generates a semigroup {etA}t≥0. We observe that for a solution (ϕ, ψ) to (1.2)–(1.4), and

the corresponding V , the norm ‖V (t)‖2
H equals twice the energy E(t) of (ϕ, ψ) defined by

E(t) :=
1

2

L∫
0

(ρ1|ϕt|2 + ρ2|ψt|2 + b|ψx|2 + k|ϕx + ψ|2)(t, x)dx. (2.3)

Replacing the function a = a(x) in (1.2) by the constant a, we write A for the arising

constant coefficient operator instead of A. We shall first give in the next section a precise

description of the spectrum of A, and we show that the SDG property holds for A.

3 The constant coefficient case

Since it is not difficult to see that the inverse of the operator A is compact, we have to

determine the eigenvalues of A in a way that allows us to determine ωσ(A) and to estimate

the resolvent operators uniformly. Therefore, let

(A− λ)W = 0

with λ ∈ C \ {0} and W ∈ D(A). Then W = (ϕ, λϕ, ψ, λψ)′, and (ϕ, ψ) satisfy

ρ1λ
2ϕ− k(ϕx + ψ)x = 0 in (0, L), (3.1)

ρ2λ
2ψ − bψxx + k(ϕx + ψ) + aλψ = 0 in (0, L), (3.2)

together with the boundary conditions

ϕ(0) = ϕ(L) = ψx(0) = ψx(L) = 0. (3.3)

Observing the boundary conditions, we can reduce the system for (ϕ, ψ) to a single one

for ϕ by differentiating (3.1) and using (3.2), yielding

bkϕxxxx − [(kρ2 + bρ1)λ
2 + kaλ]ϕxx + (ρ2λ

2 + aλ+ k)ρ1λ
2ϕ = 0, (3.4)

ϕ(0) = ϕ(L) = ϕxx(0) = ϕxx(L) = 0. (3.5)
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For (3.4), (3.5), we have a complete orthonormal system of eigenfunctions: ϕj(x) =√
2
L

sin(θjx) with θj := (jπ)/L. Then λ = λj has to satisfy

P (λ, θj) ≡ ρ1ρ2λ
4 + aρ1λ

3 + [(kρ2 + bρ1)θ
2
j + kρ1]λ

2 + kaθ2
jλ+ bkθ4

j = 0.

Dividing by ρ1ρ2λ
2 we find

λ2 +
a

ρ2

λ+ [(
k

ρ1

+
b

ρ2

)θ2
j +

k

ρ2

] +
ka

ρ1ρ2

θ2
j

1

λ
+

bk

ρ1ρ2

θ4
j

1

λ2
= 0.

Rearranging terms we get

λ2 +
bk

ρ1ρ2

θ4
j

1

λ2
+ [(

k

ρ1

+
b

ρ2

)θ2
j +

k

ρ2

] +
a

ρ2

{
kθ2

j

ρ1

1

λ
+ λ

}
= 0 (3.6)

Now assuming and using the identity (1.6), and defining

y :=
kθ2

j

ρ1

1

λ
+ λ, (3.7)

we obtain from (3.6)

y2 +
a

ρ2

y +
k

ρ2

= 0. (3.8)

This implies

y ≡ y1,2 = − a

2ρ2

±

√√√√ a2

4ρ2
2

− k

ρ2

. (3.9)

Multiplying (3.7) by λ we get

λ2 − λy +
kθ2

j

ρ1

= 0, (3.10)

implying

λ =
y

2
±

√√√√y2

4
−
kθ2

j

ρ1

. (3.11)

Therefore the following set

B :=

y2 ±
√√√√y2

4
−
kθ2

j

ρ1

| y = − a

2ρ2

±

√√√√ a2

4ρ2
2

− k

ρ2

, θj =
jπ

L
, j ∈ N

 (3.12)

is the candidate for the (point) spectrum of A. For λj ∈ B, a possible eigenfunction W

has the form Wj = const.(ϕj, λjϕj, ψj, λjψj)
′, where ψj is determined from (3.1), (3.2) as

ψj = ψj(x) = const.
bρ1θjλ

2
j + bkθ3

j − kθj

k(ρ2λ2
j + k + aλj)

cos(θjx),

provided

ρ2λ
2
j + k + aλj 6= 0. (3.13)
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The validity of (3.13) can be seen as follows.

Observing (3.8), (3.13) and

λj = λr
j , r = 1, 2, 3, 4

with

λ1,2
j =

y1

2
±

√√√√y2
1

4
−
kθ2

j

ρ1

, λ3,4
j =

y2

2
±

√√√√y2
2

4
−
kθ2

j

ρ1

(3.14)

we have to show

λr
j 6= ym for r = 1, 2, 3, 4 and m = 1, 2

Let w.l.o.g. m = 1. Then, by (3.8), (3.13) we immediately have λ1
j 6= y1, λ

2
j 6= y1. The

assumption λ3
j = y1 is equivalent to

y2

2
+

√√√√y2
2

4
−
kθ2

j

ρ1

= y1 (3.15)

We can exclude the case that a2 = 4ρ2k, because this would imply that λ1
j = λ3

j = y1, a

contradiction. For the case that a2 > 4ρ2k we conclude

0 > y1 > y2 >
y2

2
+

√√√√y4
2

4
−
kθ2

j

ρ1

= y1

again a contradiction (
√
. . . being imaginary is impossible too).

In the last case that a2 < 4ρ2k, we conclude√√√√y2
2

4
−
kθ2

j

ρ1

= y1 −
y2

2
=
−a+ i

√
4ρ2k − a2

4ρ2

implying, after taking squares and comparing the imaginary part,

8a
√

4ρ2k − a2 = 0,

or 4ρ2k = a2, again a contradiction.

Altogether we proved (3.13) and hence

Theorem 3.1 Assume (1.6). Then

σ(A) =

y2 ±
√√√√y2

4
−
kθ2

j

ρ1

| y = − a

2ρ2

±

√√√√ a2

4ρ2
2

− k

ρ2

, θj =
jπ

L
, j ∈ N


Next we determine ωσ(A) explicitly.

Case I: a2 ≥ 4ρ2k.

This implies

y1/2 ∈ R, 0 > y1 ≥ y2
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hence

max
j∈N

max
r=1,2,3,4

Reλr
j = Re

y1

2
+

√√√√y2
1

4
− kθ2

1

ρ1


=
−a+

√
a2 − 4ρ2k

4ρ2

+ Re

√√√√√−a+
√
a2 − 4ρ2k

8ρ2

2

− kπ2

ρ1L2
< 0 (3.16)

Case II: a2 < 4ρ2k.

Then

y1/2 =
−a± i

√
4ρ2k − a2

2ρ2

≡ ψ1 ± iψ2, ψj ∈ R. (3.17)

Let ξj :=
kθ2

j

ρ1
, then √

y2
1

4
− ξj ≡ α+ iβ, α, β ∈ R, α ≥ 0

with

α2 − β2 =
ψ2

1 − ψ2
2

4
− ξj, 2αβ =

ψ1ψ2

2
implying

α4 − (
ψ2

1 − ψ2
2

4
− ξj)α

2 − ψ2
1 − ψ2

1

16
= 0,

that is

α =

√√√√√1

2

(
ψ2

1 − ψ2
2

4
− ξj

)
+

√√√√1

4

[
ψ2

1 − ψ2
2

4
− ξj

]2

+
ψ2

1 − ψ2
2

16
(3.18)

observing

ψ2
1 − 42

2 =
a2 − (4ρ2k − a2)

4ρ2
2

, ψ2
14

2
2 =

a2

4ρ2
2

(
4ρ2k − a2

4ρ2
2

)
we conclude form (3.14), (3.17) and (3.18)

max
r=1,2,3,4

Reλr
j = − a

2ρ2

+

√√√√√d1 − ξj
2

+

√√√√(d1 − ξj
2

)2

+ d2 (3.19)

where

d1 :=
ψ2

1 − ψ2
2

4
, d2 :=

ψ2
1ψ

2
2

16
.

Since x 7−→ f(x) :=

√
d1−x

2
+

√(
d1−x

2

)2
+ d2 takes for x ≥ ξ1 = kπ2

ρ1L2 its Maximum in ξ1,

we have from (3.19)

max
j∈N

max
r=1,2,3,4

Reλr
j = − a

2ρ2

+

√√√√√√√
1

2

( a

2ρ2

)2

− 4ρ2k − a2

4ρ2
2

− kπ2

ρ1L2


︸ ︷︷ ︸

=:z

+

√√√√z2 +
a

4ρ2
2

(4ρ2k − a2)

4ρ2
2

< 0. (3.20)
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Summarizing the cases I, II we conclude from (3.16), (3.20)

Theorem 3.2 Assume (1.6). Then

0 > ωσ(A) = max
j∈N

max
r=1,2,3,4

Reλr
j

given in (3.16) if a2 ≥ 4ρ2k, and given in (3.20) if a2 < 4ρ2k, respectively.

Finally, we shall investigate ‖(λ−A)−1‖ for Reλ > ωσ and demonstrate the SDG property.

Let λ ∈ C, Reλ ≥ ωσ + ε for some ε > 0. The equation

(λ− A)W = F

implies W = (ϕ, λϕ− F 1, ψ, λψ − F 3)′ and (ϕ, 4) solve

ρ1λ
2ϕ− k(ϕx + ψ)x = f1 (3.21)

ρ2λ
2ϕ− bψxx + k(ϕx + ψ) + aλψ = f2, (3.22)

ϕ(0) = ϕ(L) = ψx(0) = ψx(L) = 0, (3.23)

where

f1 := ρ1F
2 + ρ1λF

1, f2 := ρ2F
4 + ρ2λF

3 + aF 3. (3.24)

The boundary conditions admit the expansions

ϕ(x) =
∞∑

j=1

gjvj(x), ψx =
∞∑

j=1

hjwj(x) (3.25)

where

vj(x) :=

√
2

L
sin(θjx), wj(x) :=

√
2

L
cos(θjx), θj :=

jπ

L
(3.26)

Then we obtain from (3.21), (3.22), (3.25) the relations

(ρ1λ
2 + kθ2

j )gj + kθjhj = f1,j, (3.27)

kθjgj + (ρ2λ
2 + bθ2

j + aλ+ k)hj = f2,j, (3.28)

where (f1,j)j and (f2,j)j denote the Fourier coefficients of f1 and f2, respectively.

We compute

gj =
f1,j(ρ2λ

2 + aλ+ bθ2
j + k)− f2,j kθj

ρ1ρ2λ2(y2 + a
ρ2
y + k

ρ2
)

, (3.29)

hj =
−kθjf1,j + f2,j(ρ1λ

2 + kθ2
j )

ρ1ρ2λ2(y2 + a
ρ2
y + k

ρ2
)

, (3.30)

where we used the transformation as in (3.5) – (3.7).

We have to estimate

L∫
0

|ϕx(y)|2dy,
L∫

0

|λϕ(y)|2dy,
L∫

0

|ϕx(y)|2dy,
L∫

0

|λϕ(y)|2dy, (3.31)
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in terms of ‖F‖2
X .

Rewriting

gj =
f1,j(ρ2λ

2 + bθ2
j )

ρ1ρ2λ2(y2 + a
ρ2
y + k

ρ2
)

+
f1,j(aλ+ k)− f2,j kθj

ρ1ρ2λ2(y2 + a
ρ2
y + k

ρ2
)

(3.32)

we hence first prove a bound for

I :=
θ2
j |ρ2λ

2 + bθ2
j |2

|ρ1ρ2λ2(y2 + a
ρ2

y + k
ρ2

)|2

which is uniform in j and λ, for Reλ ≥ ωσ + ε.

Observing (3.7) and the essential condition (1.6) again, we obtain

ρ2λ
2 + bθ2

j = ρ2λy (3.33)

we have

I =

∣∣∣∣∣∣ θ2
j y2

ρ1λ2(y2 + a
ρ2

y + k
ρ2

)2

∣∣∣∣∣∣
and since, by (3.7),

y

λ
=

kθ2
j

ρ1λ2
+ 1

implying
θ2

j

ρ1λ2
=

y

kλ
− 1 (3.34)

we have

I ≤

∣∣∣∣∣∣ y3

k · λ(y2 + a
ρ2

+ k
ρ2

)2

∣∣∣∣∣∣+
∣∣∣∣∣∣ y2

y2 + a
ρ2

+ k
ρ2

∣∣∣∣∣∣ ≡ I1 + I2 (3.35)

without loss of generality we assume |λ| ≥ 1. There is R0 > 0 such that for |y| ≥ R0 we

know ∣∣∣∣∣∣ y3

(y2 + a
ρ2

+ k
ρ2

)2

∣∣∣∣∣∣ ≤ 1 (3.36)

while in the compact set {y | (y) ≤ R0} the quadratic polynomial in y in the nominator

does not have a zero since Reλ ≥ ωσ + ε. Therefore there is a positive c = c(ε) such that

for (y) ≤ R0 we have ∣∣∣∣∣∣ y3

(y2 + a
ρ2

+ k
ρ2

)2

∣∣∣∣∣∣ ≤ c2(ε). (3.37)

Thus we can estimate I1, and similarly I2, uniformly to obtain

I ≤ c2(ε). (3.38)
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The remaining terms in the representation of gj in (3.32) are now estimated as follows.

II :=
θ2

j |aλ+ k|2

|ρ1ρ2λ2(y2 + a
ρ2

+ k
ρ2

)|2

≤
∣∣∣∣∣ a

ρ1ρ2

∣∣∣∣∣
2 ∣∣∣∣∣θj

λ

∣∣∣∣∣
2

1

|y2 + a
ρ2

+ k
ρ2
|2

+
k

|ρ1ρ2λ2(y2 + a
ρ2

+ k
ρ2

)|2

≤
∣∣∣∣∣ a

ρ1ρ2

∣∣∣∣∣
2 |y|

k|λ|
+

1

|y2 + a
ρ2

+ k
ρ2
|2

+
1

k

1

|y2 + a
ρ2

+ k
ρ2
|2

+
k

|λ|2

≤ const. (3.39)

where we used (3.34).

III :=
θ2
j

|ρ1ρ2λ2(y2 + a
ρ2

y + k
ρ2

)|2
≤ c

|λ|
(3.40)

c denoting as usual a positive constant that may vary from line to line, similarly c(ε).

The estimates (3.38) – (3.40) imply

|θjgj|2 ≤ c2(ε) (|f1,j|2 + |f2,j|2) (3.41)

The terms f1 and f2 contain λF 1 and λF 3, respectively. Observing

λF 1
j =

λ

θj

θjF
1
j =

λ

θj

(∂xF
1)j

and the fact that the factor | λ
θj
| does not affect the reasoning to obtain (3.41), we have

proved:
L∫

0

|ϕx(y)|2dy ≤ c2(ε) ‖F‖2
H (3.42)

where c(ε) depends at most on ε, not on λ for Reλ ≥ ωσ + ε.

Since λ = λ
θj
θj we obtain analogously

L∫
0

|λϕ(y)|2dy +

L∫
0

|ϕx(y)|2dy +

L∫
0

|λϕ(y)|2dy ≤ c2(ε) ‖F‖2
H (3.43)

hence we proved

∃c(ε) > 0 ∀λ,Reλ ≥ ωσ + ε ∀F ∈ H : ‖(λ− A)−1F‖H ≤ c(ε)‖F‖H

which implies by [9] or [18]:

Theorem 3.3 Assume (1.6). Then the SDG property holds for A, ω0(A) = ωσ(A).
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4 Exponential stability for indefinite damping

We return to the original system (1.1) – (1.4), or (2.1), with an indefinite damping a =

a(x). It will be shown that the system is exponential stable if ‖a− a‖L2 is small enough.

Of course, we keep the basic assumptions (1.5) and (1.6), i.e. we assume

a =
1

L

L∫
0

a(y)dy > 0 (4.1)

and
ρ1

k
=
ρ2

b
. (4.2)

Theorem 4.1 Assume (4.1) and (4.2). Then there is τ > 0 such that if ‖a − a‖L2 < τ

the system (2.1) is exponentially stable, that is, the energy E, defined in (2.3), to the

initial boundary value problem (1.1) – (1.4) satisfies

∃ d > 0 ∃ C > 0 ∀t ≥ 0 : E(t) ≤ Ce−2dtE(0).

Proof: Recalling [9, 18] again, it suffices to show that for sufficiently small τ > 0 and

for λ with Re λ ≥ ωσ + ε, for some ε > 0 such that ωσ + ε < 0, (λ−A)W = F is uniquely

solvable for any F ∈ H, and ‖W‖H ≤ C ‖F‖H with a constant C > 0 at most depending

on τ and ε. A fixed point argument will be used. To solve

(λ−A)W = F

is equivalent to solving

(λ− A) W = F + (A− A)W

= F − (a− a)BW

with

B :=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1/ρ2

 .

Let Reλ > ωσ, then W should satisfy W = (ϕ, λϕ−F 1, ψ, λψ−F 3)′ with (ϕ, ψ) satisfying,

cp. (3.21) – (3.24),

ρ1λ
2ϕ− k(ϕx + ψ)x = f1, (4.3)

ρ2λ
2ψ − bψxx + k(ϕx + ψ) + aλψ = (a− a)λψ + f2, (4.4)

ϕ(0) = ϕ(L) = ψx(0) = ψx(L) = 0, (4.5)

where

f1 := ρ1F
2 + ρ1λF

1, f2 := ρ2F
4 + ρ2λF

3 + aF 3. (4.6)
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(4.4) can be rewritten as

ψxx − (
ρ2λ

2 + aλ+ k

b︸ ︷︷ ︸
≡α2

)ψ =
k

b
ϕx +

a− a

b
λψ − 1

b
f2. (4.7)

Let Nα(g) denote the solution v to the Neumann problem

vxx − α2v = g, vx(0) = vx(L) = 0.

This is well defined if α2 6= − j2π2

L

2
, for j = 0, 1, 2, . . ., which is guaranteed if

Reλ > −Re
−a+

√
a2 − 4ρ1k

2ρ1

=: z0. (4.8)

The sufficiency of (4.8) can be seen from

α2 = −j
2π2

L2
⇔ λ =

−a±
√
a2 − 4ρ1(k + bj2π2

L2 )

2ρ1

.

Thus, (4.7) can be written as

ψ = Nα

(
k

b
ϕx +

a− a

b
λψ − 1

b
f2

)
, (4.9)

hence (4.3), (4.4) turn into

ρ1λ
2ϕ− k(ϕx + ψ)x = f1, (4.10)

ρ2λ
2ψ − bψxx + k(ϕx + ψ) + aλψ =

(a− a)λ

{
k

b
Nα(ϕx) +

λ

b
Nα((a− a)ψ)− 1

b
Nα(f2)

}
+ f2. (4.11)

For (v, w) let

G(v, w) :=
k

b
Nα(vx) +

λ

b
Nα((a− a)w)− 1

b
Nα(f2)

and consider the mapping

P : H1
0 ((0, L))×H1((0, L)) −→ H1

0 ((0, L))×H1((0, L)),

(v, w) 7→ (ϕ, ψ),

defined as solution (ϕ, ψ) to

ρ1λ
2ϕ− k(ϕx + ψ)x = f1, (4.12)

ρ2λ
2ψ − bψxx + k(ϕx + ψ) + aλψ = (a− a)λG(v, w) + f2, (4.13)

ϕ(0) = ϕ(L) = ψx(0) = ψx(L) = 0 (4.14)
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which is well defined since λ ∈ %(A). As a norm in the space of definition of P we define

‖(v, w)‖2
λ :=

L∫
0

ρ1|λv|2 + ρ2|λw|2 + b|wx|2 + k|vx + w|2dx.

We shall prove that P has a fixed point (ϕ, ψ) provided ‖a− a‖L2 is small enough. This

fixed point is also a solution to (4.3) – (4.5), which can be seen as follows: Let (ϕ, ψ) be

this fixed point, and let

ψ̂ := G(ϕ, ψ) =
k

b
Nα(ϕx) +

λ

b
Nα((a− a)ψ)− 1

b
Nα(f2),

hence

ψ̂xx − α2ψ̂ =
k

b
ϕx +

λ

b
(a− a)ψ − 1

b
f2,

ψ̂x(0) = ψ̂x(L) = 0,

implying

ρ2λ
2ψ̂ − bψ̂xx + k(ϕx + ψ̂) + aλψ̂ = λ(a− a)ψ + f2. (4.15)

Since (ϕ, ψ) is a fixed point of P , we also have

ρ2λ
2ψ − bψxx + k(ϕx + ψ) + aλψ = λ(a− a)ψ̂ + f2. (4.16)

We conclude for the difference Ψ := ψ̂ − ψ

Ψxx − α2Ψ =
λ(a− a)

b
Ψ.

or

Ψ = Nα(
λ(a− a)

b
Ψ).

With the estimates for Nα to be proved below, we can conclude, with positive constants

c1, c2,

|Ψ| ≤ c1‖(a− a)Ψ‖L1 ≤ c1‖a− a‖L2‖Ψ‖L2 ,

hence

‖Ψ‖L2 ≤ c2‖a− a‖L2‖Ψ‖L2 ,

implying Ψ = 0 if ‖a− a‖L2 < 1/c2.

Now we shall prove that P is a contraction mapping provided ‖a−a‖L2 is small enough.

For this purpose let

(ϕj, ψj) := P (vj, wj), j = 1, 2,

and

(ϕ, ψ) := (ϕ1 − ϕ2, ψ1 − ψ2), (v, w) := (v1 − v2, w1 − w2).
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Then (ϕ, ψ), (v, w) satisfy (4.12) – (4.14) with f1 = f2 = 0. Multiplying (4.12) and (4.13)

by λϕ and λψ, respectively, and integrating we obtain

ρ1λ

L∫
0

|λϕ|2dx+ kλ

L∫
0

(ϕx + ψ)ϕxdx = 0,

ρ2λ

L∫
0

|λψ|2dx+ bλ

L∫
0

|ψx|2dx+ kλ

L∫
0

(ϕx + ψ)ψdx+ a

L∫
0

|λψ|2dx = λ

L∫
0

(a− a)Gλψdx.

Summing up we get

Reλ ‖(ϕ, ψ)‖2
λ + a

L∫
0

|λψ|2dx = Re

λ
L∫

0

(a− a)Gλψdx

 . (4.17)

Multiplying (4.13) by ϕx + ψ and integrating we get

ρ2λ
2

L∫
0

ψ(ϕx + ψ)dx+ b

L∫
0

ψx(ϕx + ψ)xdx+ k

L∫
0

|ϕx + ψ|2dx+ aλ

L∫
0

ψ(ϕx + ψ)dx =

λ

L∫
0

(a− a)G(ϕx + ψ)dx.

Using the assumption (4.2) on the coefficients we have

(ϕx + ψ)x =
ρ1

k
λ2ϕ =

ρ2

b
λ2ϕ

implying

k

L∫
0

|ϕx + ψ|2dx+ ρ2(λ
2 − λ

2
)
∫ L

0
ψ(ϕx + ψ)dx+ ρ2λ2

L∫
0

|ψ|2dx+ aλ

L∫
0

ψ(ϕx + ψ)dx =

λ

L∫
0

(a− a)G(ϕx + ψ)dx.

Then we conclude

k

2

L∫
0

|ϕx + ψ|2dx ≤ c

 L∫
0

|λψ|2dx+ |λ
L∫

0

(a− a)G(ϕx + ψ)dx|+ |λ
L∫

0

(a− a)Gλψdx|


(4.18)

where c will denote constants at most depending on the coefficients. We also used the fact

that it is sufficient to prove everything for λ such that Reλ ∈ [d0, d1] with some negative

d0 and some sufficiently large, but fixed d1.
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Multiplying (4.13) by ψ and integrating we obtain

ρ2λ
2

L∫
0

|ψ|2dx+ b

L∫
0

|ψx|2dx+ k

L∫
0

(ϕx + ψ)ψdx+ aλ

L∫
0

|ψ|2dx = λ

L∫
0

(a− a)Gψdx. (4.19)

It is not difficult to show that 0 ∈ %(A), hence

∃ z1 > 0 ∃ c1 > 0 ∀λ, |λ| ≤ z1 : λ ∈ %(A) ∧ ‖(λ−A)−1‖ ≤ c1. (4.20)

That is, we assume in the sequel w.l.o.g. |λ| ≥ z1. Then

L∫
0

|ψ|2 ≤ 1

z2
1

L∫
0

|λψ|2. (4.21)

Combining (4.19), (4.18) and (4.21) we get

b

L∫
0

|ψx|2dx ≤ c

|λ| L∫
0

|(a− a)||Gψ|dx+ |λ|
L∫

0

|(a− a)||G(ϕx + ψ)|dx+

L∫
0

|λψ|2dx+ |λ|2
L∫

0

|(a− a)||Gψ|dx

 . (4.22)

Multiplying (4.12) by λ
λ
ϕ and integrating we obtain

ρ1

L∫
0

|λϕ|2dx ≤ c

 L∫
0

|ϕx + ψ|2dx+

L∫
0

|ψ|2dx

 . (4.23)

We conclude from (4.18) and (4.23)

k

4

L∫
0

|ϕx + ψ|2dx+
ρ1k

4c

L∫
0

|λϕ|2dx ≤

c L∫
0

|λψ|2dx+ |λ
L∫

0

(a− a)G(ϕx + ψ)dx|+ |λ
L∫

0

(a− a)Gλψdx|

 (4.24)

Combining (4.22) and (4.24) we get

k

4

L∫
0

|ϕx + ψ|2dx+
ρ1k

4c

L∫
0

|λϕ|2dx+ b

L∫
0

|ψx|2dx ≤

c L∫
0

|λψ|2dx+ |λ
L∫

0

(a− a)G(ϕx + ψ)dx|+ |λ
L∫

0

(a− a)Gλψdx|

 (4.25)
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Multiplying (4.25) by a
2c

and combining it with (4.17) yields that there exists γ0 > 0 such

that we have

(Reλ+ γ0)‖(ϕ, ψ)‖2
λ ≤ c

(|λ|+ |λ|2)
L∫

0

|(a− a)||Gψ|dx+ |λ|
L∫

0

|(a− a)||G(ϕx + ψ)|dx

 .
(4.26)

It will now be demonstrated that the right-hand side R of (4.26) can be estimated by

|R| ≤ c‖a− a‖L2‖(ϕ, ψ)‖λ‖(v, w)‖λ. (4.27)

For this purpose we recall that

G(v, w) =
k

b
Nα(vx) +

λ

b
Nα((a− a)w).

We have the representation

Nα(g) = − 1

α

cosh(αx)

sinh(αL)

L∫
0

cosh(α(L− s))g(s)ds+
1

α

L∫
0

sinh(α(x− s))g(s)ds.

Decomposing α = a1 + ia2 and λ = γ + iη into its real and imaginary part, respectively,

we have

∃ β > 0 ∀λ,Reλ ∈ [d0, d1] : |a1| ≥ β, a2 = O(|η|), (|η| → ∞),

(cp. similar considerations in [16]). This allows us to conclude that

|Nα(vx)(s)| ≤ c‖vx‖L2 , |λ|2|Nα((a− a)w)(s)| ≤ c‖a− a‖L2‖λw‖L2 .

Thus

|λG(v, w)(s)| ≤ c‖(v, w)‖λ

which implies (4.27). Combining (4.26), (4.27) we get for

Reλ > γ0 (4.28)

the estimate

‖(ϕ, ψ)‖λ ≤ c‖a− a‖L2‖(v, w)‖λ ≤ d‖(v, w)‖λ (4.29)

for some d < 1 provided ‖a− a‖L2 is small enough. The thus existing unique fixed point

(ϕ, ψ) of P is the unique solution to (4.3)–(4.5), as explained above, and thus yields the

unique solution W to (λ−A)W = F through

W = (ϕ, λϕ, ψ, λϕ)′ + (0,−F 1, 0,−F 3)′

which implies, using (4.29),

‖(ϕ, ψ)‖λ ≤ ‖W‖H + ‖F‖H. (4.30)
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Let W̃ be the solution to (λ− A)W̃ = F , i.e.

W̃ = (ϕ̃, λϕ̃, ψ̃, λϕ̃)′ + (0,−F 1, 0,−F 3)′

with

(ϕ̃, ψ̃) = P ((0, 0))

Then we obtain, using (4.29), (4.30),

‖W‖H − ‖W̃‖H ≤ ‖W − W̃‖H = ‖(ϕ, ψ)− (ϕ̃, ψ̃)‖λ =

‖P ((ϕ, ψ))− P ((ϕ̃, ψ̃))‖λ ≤ d‖(ϕ, ψ)− (ϕ̃, ψ̃)‖λ ≤ d‖W‖H + d‖F‖H,

hence

‖W‖H ≤ 1

1− d
‖W̃‖H +

d

1− d
‖F‖H

≤ c‖F‖H

where we used

‖W̃‖H ≤ c‖F‖H

which is justified since λ ∈ %(A). Thus we have proved that for

Reλ > max{−γ0, z0}

where z0 is given in (4.8) and γ0 is given through (4.26), we have λ ∈ %(A) and the norm

of the inverse (λ−A)−1 is uniformly bounded in λ. This completes the proof of Theorem

4.1.

Q.e.d.

We remark that a = 1
L

L∫
0
a(x)dx could be replaced by any positive, fixed â yielding a result

for a situation near an exponentially stable situation (a(x) ≡ â). But since a depends on

a and tends to zero as ‖a‖L1 tends to zero (in particular if ‖a‖L∞ → 0), our result is not

just a perturbation result, because in the case a = 0 there is no energy decay.
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