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Abstract: We consider initial boundary value problems for the equations of isotropic elasticity for several

mixed boundary conditions in infinite wave guides, as well as Maxwell equations. With the help of

decompositions of the displacement field into divergence- and curl-free parts, respectively, which are

compatible with the boundary conditions, we obtain sharp decay rates for the solutions. The decomposed

systems correspond to the second-order Maxwell equations for the electric and the magnetic field with

electric and magnetic boundary conditions, respectively.

1 Introduction

We start considering the equations of elasticity

utt − µ∆u− (µ+ λ)∇∇∗u = f (1.1)

for the displacement vector u : [0,∞) × Ω → Rn, n = 2, 3, arising for isotropic media (cf. [9]),
in domains Ω ⊂ Rn with infinite boundaries of waveguide type, that is,

Ω = Rl ×B, B ⊂ Rn−l bounded,

where 1 ≤ l ≤ n− 1. Following are the typical examples:
n = 2, l = 1 : Infinite strip.
n = 3, l = 2 : Domain between two planes.
n = 3, l = 1 : Infinite cylinder with cross section B ⊂ R2 having a smooth boundary ∂B.

The differential equations (1.1) for u are completed by initial conditions

u(t = 0) = u0, ut(t = 0) = u1 (1.2)

and by the boundary conditions (1.7) or (1.9) below.
In our paper [15], in particular, the classical (nonlinear) wave equation for the scalar function

v,
vtt −∆v = g(v, vt,∇v,∇vt,∇2v), (1.3)

was investigated together with initial conditions and the Dirichlet boundary condition

v(t, ·) = 0 on ∂Ω.
0AMS subject classification: 35 L 70, 35 Q 60, 74 B 20
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Sharp decay rates of solutions to the linearized problem (g = 0 or g = g(t, x)) were proved,
yielding interesting new phenomenon, and then nonlinear well-posedness results could be proved
under some conditions on the nonlinearity g.

Now formulating the corresponding Dirichlet boundary conditions for the displacement vec-
tor,

u(t, ·) = 0 on ∂Ω,

does not allow for carrying over the methods from [15], this already out of the simple reason that
a decomposition of the Laplacean ∆ as ∆ = ∆′+∆′′ according to the decomposition of the space
variable into x = (x′, x′′) ∈ Rl × B is not possible for the operator E := −µ∆ − (µ + λ)∇∇∗

because of the mixing of components in the ∇∇∗-part.
On the other hand, if we think for a moment of the Cauchy problem Ω = Rn, the well-known

decomposition of vector fields into its curl-free and divergence-free components, respectively,(
(L2(Rn)

)n = ∇H1(Rn)⊕D0(Rn) (1.4)

where D0(Rn) denotes the divergence-free fields, leads to a decomposition of the displacement
into

u = upo + us

which decomposes the differential equation (1.1) (f = 0),

utt − µ∆u− (µ+ λ)∇∇∗u = 0

into two classical wave equations for the two projections:

upo
tt − (2µ+ λ)∆upo = 0, us

tt − µ∆us = 0. (1.5)

But for our problem, a decomposition into curl- and divergence-free parts is not compatible with
the Dirichlet boundary condition.

Our observation is that we can study several interesting boundary conditions and find ap-
propriate decompositions into curl-free and divergence-free components, respectively. Here are
some examples, more are given in Section 3.

Consider a strip in R2: Ω = R× (0, 1) and the boundary condition

u1(t, ·) = ∂~nu2(t, ·) = 0 on ∂Ω (1.6)

where u1, u2 denote the components of u, and ∂~n denotes the normal derivative, ~n denoting
the exterior normal, which is given by ~n = (0,±1)∗ in this example. The boundary conditions
(1.6) correspond to an elastic movement on the boundary where the movement into the normal
direction is free, but the object does not move into the x1-direction (no shear movement).

We recall the following formulae for vector functions H and scalar functions h, respectively,

∇×H = ∂1H2 − ∂2H1, ∇× h = (∂2h,−∂1h)∗
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Then the formula for the vector Laplacean,

∆ = ∇∇∗ −∇×∇×

holds in both space dimensions n = 2, 3, and we have correspondingly

~n×H = ~n1H2 − ~n2H1, ~n× h = (~n2h,−~n1h)∗.

Now we observe that we can reformulate the boundary conditions (1.6) equivalently as

~n(·)× u(t, ·) = 0, ∇∗u(t, ·) = 0 on ∂Ω. (1.7)

As second example we consider in the strip the boundary conditions

u2(t, ·) = ∂~nu1(t, ·) = 0 on ∂Ω (1.8)

which represents a mere shear movement at the boundary, i.e. a free movement into the x1-
direction, but no movement in the normal direction. This boundary condition is now equivalent
to

~n(·)u(t, ·) = 0, ~n(·)× (∇× u(t, ·)) = 0 on ∂Ω. (1.9)

As third and fourth examples we consider the domain between two plates in three space dimen-
sions: Ω = R2 × (0, 1) and the boundary conditions

u1(t, ·) = u2(t, ·) = ∂~nu3(t, ·) = 0 on ∂Ω, (1.10)

or
∂~nu1(t, ·) = ∂~nu2(t, ·) = u3(t, ·) = 0 on ∂Ω, (1.11)

respectively. The third example (1.10) represents a mere movement into the normal direction, no
shear movement, while the fourth one (1.11) represents a mere shear movement at the boundary.
It turns out that the boundary conditions (1.10) are equivalent to the ones formulated in (1.7),
and the conditions (1.11) are equivalent to those in (1.9). Therefore, we will concentrate on
these boundary conditions (1.7) and (1.9), respectively, also for infinite cylinders in R3. For a
more detailed discussion of the boundary conditions see Section 3.

We prove that the boundary conditions are compatible with certain (different) decomposi-
tions of L2 into spaces of curl-free and diverengence-free functions, respectively, see Section 2.
If we denote the associated decomposition of u by u = upo + us, then for β ∈ {po, s}

uβ
tt − τ∆uβ = fβ (1.12)

with τ ∈ {2µ + λ, µ}, and uβ satisfies one of the boundary conditions (1.7), (1.9). This means
that upo, us are solutions of the second-order Maxwell equations together with the so-called
electric and magnetic boundary condition, respectively, cf. [26, 27, 28]. It is important that
for solutions of the maxwell equations these boundary conditions split up in a way such that
appropriate boundary conditions at the boundary of the cross section B appear (which was
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trivial for Dirichlet boundary conditions, for example). Therefore we are able to carry over
considerations for the pure wave equation under Dirichlet’s boundary condition from [15] for
each of the subsystems for upo and us.

Combining the results for upo and us we obtain rates of decay for the solution u. For
those components uk of u, where the boundary conditions do not cause null spaces and hence
stationary solutions in the cross section, the decay in the strip or the domain between two planes
is the same as for the Cauchy problem, that is in absence of the obstacles. If the domain is an
infinite cylinder, we loose order one half; in terms of the decay of the L∞-norm this means that

‖uk(t, ·)‖L∞ ≤ const · t−l/2 as t→∞.

This decay rate is the same as was observed in [15] for the pure wave equation. For all other
components uj of u we obtain

‖uj(t, ·)‖L∞ ≤ const · t−(l−1)/2 as t→∞.

If we suppose additionally that the curl-free and diverengence-free parts of the data u0, u1, f are
orthogonal to the null spaces, then all components of u show the better decay.

We remark that the knowledge of the decay rates of the linear system is an important tool
in solving the corresponding nonlinear systems, cp. [15].

Linear and nonlinear wave equations (1.3) (extending to Klein-Gordon type) in waveguides
providing sharp decay rates and giving global well-posedness results were first studied in our
paper [15], then improvements leading to more admissible nonlinearities were given by Metcalfe,
Sogge and Stewart [17]. Conical sets with infinite boundaries instead of waveguides were the
subject of Dreher [6] proving decay rates in the linear situation. A discussion of resonance
behavior in waveguides was given for classical wave equations and for Maxwell’s equations by
Werner [29, 30, 31], for elasticity with Dirichlet boundary conditions see Lesky [14]. Anisotropic
situations like cubic or rhombic media were studied by Stoth, see [23] and [25], see also Doll
[5], leading to interesting effects in comparison to the special isotropic case. The local energy
decay of solutions to the linearized problem in exterior domains and for Dirichlet type boundary
conditions was investigated by Iwashita and Shibata [8] and Dan [4].

The special boundary conditions (1.7) and (1.9), respectively, were considered in different
contexts for bounded domains or in exterior domains — not in waveguides — in our work
[21, 22, 24], see Section 2.

Summarizing our new contributions, we present the first results on sharp decay rates for
solutions to initial boundary value problems for systems in elasticity as well as for classical
Maxwell systems in infinite waveguides. The essential ingredients are various decompositions of
the vector fields in appropriate spaces that are compatible with the boundary conditions, and
extensions of techniques from the scalar wave equation case [15].

The paper is organized as follows: In Section 2 we formulate the setting, in particular
we introduce appropriate spaces and discuss the decompositions. In Section 3 the boundary
conditions are characterized with examples. Section 4 collects the necessary background in
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elliptic theory for the Laplacean resp. Maxwell operator with respect to the boundary conditions
under investigation. The main results on the decay rates for the Maxwell and the elastic systems
are given in Section 5 (f = 0) and in Section 6 (f = f(t, x)), respectively.

2 Spaces and well-posedness

The starting point is the system of (homogeneous, isotropic) elasticity (2.1)–(2.3), or (2.1), (2.2),
(2.4), respectively:

utt − µ∆u− (µ+ λ)∇∇∗u = f, (2.1)

where u : R × Ω → Rn, n = 2, 3, with the Lamé constants λ, µ satisfying µ > 0, 2µ + nλ > 0
(cf. [9]), and

Ω = Rl ×B, B ⊂ Rn−l bounded,

with 1 ≤ l ≤ n− 1. The superscript ∗ denotes transposition, e.g. ∇∗ is the divergence operator.
f : R × Ω → Rn is assumed to be smooth; further assumptions on the topology of B will be
given Section 4.

The differential equations (2.1) for u are completed by initial conditions

u(t = 0) = u0, ut(t = 0) = u1 (2.2)

and either the boundary conditions

~n(·)× u(t, ·) = 0, ∇∗u(t, ·) = 0 on ∂Ω (2.3)

or the boundary conditions

~n(·)u(t, ·) = 0, ~n(·)× (∇× u(t, ·)) = 0 on ∂Ω. (2.4)

The well-posedness of the system (2.1), (2.2) with the boundary condition (2.3) has been studied
by Leis [11], cp. also [22] for exterior domains or [24]. For the well-posedness in case of boundary
conditions (2.4) see [21, 24]. We remark that after the following decompositions into divergence-
and curl-free components, respectively, the two arising subsystems are well-posed based on the
knowledge for Maxwell’s equations, thus giving another direct well-posedness argument.

First we consider the boundary condition (2.3), and we use the following decomposition of
L2 = (L2(Ω))n:

L2 = ∇H1
0 (Ω)⊕D0(Ω)

where D0(Ω) denotes the fields with divergence zero.
The decomposition follows from the projection theorem and decomposes u into

u = upo + us, upo ∈ ∇H1
0 (Ω), us ∈ D0(Ω). (2.5)

The compatibility of the boundary conditions (2.3) with the decomposition (2.5) is reflected in
the decoupling of the differential equation for u and the decoupling of the boundary conditions
as follows. us satisfies

us
tt + µ∇×∇× us = fs, ∇∗us = 0, (2.6)

5



us(t = 0) = u0,s, us
t (t = 0) = u1,s, (2.7)

~n(·)× us(t, ·) = 0 on ∂Ω. (2.8)

The boundary condition (2.8) will be satisfied in the weak sense,

us(t, ·) ∈ R0(Ω)

where R0(Ω) generalizes the classical boundary condition,

R0(Ω) := {v ∈ L2 |∇ × v ∈ L2, and ∀F ∈ L2, ∇× F ∈ L2 : 〈v,∇× F 〉 = 〈∇ × v, F 〉}

with 〈·, ·〉 denoting the inner product in L2 and corresponding norm ‖ · ‖. R0(Ω) equals the
completion of C∞0 -fields with respect to the norm ‖ · ‖R := (‖ · ‖2 + ‖∇ × ·‖2)1/2, cf. [12, 21].
upo satisfies

upo
tt − (2µ+ λ)∇∇∗upo = fpo, upo ∈ ∇H1

0 (Ω), (2.9)

upo(t = 0) = u0,po, upo
t (t = 0) = u1,po, (2.10)

~n(·)× upo(t, ·) = 0, ∇∗upo(t, ·) = 0 on ∂Ω. (2.11)

We remark that the boundary condition ~n(·)×upo
∂Ω = 0 is satisfied in the weak sense automatically

since upo ∈ ∇H1
0 (Ω) ⊂ R0(Ω), the boundary condition ∇∗upo(t, ·)∂Ω = 0 is also defined in the

usual weak sense: ∇∗u(t, ·) ∈ H1
0 (Ω).

Thus, we obtain for β ∈ {po, s} that

uβ
tt − τβ ∆uβ = fβ, (2.12)

uβ(t = 0) = u0,β , uβ
t (t = 0) = u1,β , (2.13)

~n(·)× uβ(t, ·) = 0, ∇∗uβ(t, ·) = 0 on ∂Ω (2.14)

with

τβ :=

{
2µ+ λ if β = po,

µ if β = s.
(2.15)

Note that τβ > 0 by our assumptions µ > 0, 2µ+ nλ > 0.
The initial boundary value problem (2.12)–(2.14) is of Maxwell type corresponding to the

second order equation for the electric field with so-called electric boundary conditions, see [26,
27, 28, 12]. The existence theory is well-known. It has also been studied in [11, 22, 24]. In [22]
exterior domains were studied and polynomial decay rates were given, while in [24] bounded
domains and the question of exponential stability under the presence of thermal damping were
discussed.

If we now turn to the boundary condition (2.4), we use the following decomposition

L2 = R0(Ω)⊕∇×R0(Ω),
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where R0(Ω) denotes the fields with vanishing rotation. Note in the case n = 2 that R0(Ω) has
to be taken as a space of scalar-valued functions and equals H1

0 (Ω). u is now decomposed into

u = upo + us, upo ∈ R0(Ω), us ∈ ∇×R0(Ω). (2.16)

The same argument as above yields that

uβ
tt − τβ ∆uβ = fβ , (2.17)

uβ(t = 0) = u0,β, uβ
t (t = 0) = u1,β , (2.18)

~n(·)× (∇× uβ(t, ·)) = 0, ~n(·)uβ(t, ·) = 0 on ∂Ω (2.19)

for β ∈ {po, s}.
The first part of the boundary condition is interpreted in the sense ∇ × us(t, ·) ∈ R0. The

second part ~nv = 0 on ∂Ω is formulated in L2 by saying v ∈ D0(Ω) with

D0(Ω) := {v ∈ L2 |∇∗v ∈ L2, and ∀ f ∈ H1(Ω) : 〈v,∇f〉 = −〈∇∗v, f〉},

D0(Ω) equals the completion of C∞0 -fields with respect to the norm ‖ ·‖D := (‖ ·‖2 +‖∇∗ · ‖2)1/2,
cf. [12, 21].

The initial boundary value problem (2.17)–(2.19) is of Maxwell type corresponding to the
second order equation for the magnetic field with so-called magnetic boundary conditions, see
[26, 27, 28, 12]. The existence theory is well-known.

Summarizing we have found that for both boundary conditions (2.3) and (2.4), respectively,
a decomposition of the displacement vector u = upo + us into a curl-free component upo and
a divergence-free component us is possible which is compatible with the boundary conditions
leading to similar systems for upo and us that correspond to Maxwell’s equations for the electric
field with electric boundary conditions in case of boundary condition (2.3), and to Maxwell’s
equations for the magnetic field with magnetic boundary conditions in case of boundary condi-
tion (2.4).

Consequently, in order to obtain decay rates for the displacement vector finally, we will
look at Maxwell’s equations under electric and magnetic boundary conditions, respectively, in
Section 5.

To realize the connection between the equations of elasticity with the boundary conditions
under investigation is a basic element of this paper. In the next section we examine examples
for the elastic boundary conditions in the typical situations.

3 The boundary conditions

We noticed that the boundary conditions for the displacement that are considered here, (2.3)
resp. (2.4), are just those well-known for Maxwell’s equations, the electric boundary condition
for the electric field resp. the magnetic boundary condition for the magnetic field. Here we
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examine the typical meaning of these boundary conditions in elasticity for the three types of
waveguides that arise in two and three space dimensions.

First we consider the two-dimensional case where we have essentially one situation, Ω being
a strip with cross section (0, 1) without loss of generality,

Ω = R× (0, 1) ⊂ R2.

The first boundary conditions are (2.3), i.e.

~n× u = 0, ∇∗u = 0 on ∂Ω. (3.1)

Observing in two resp. one space dimension(s) the rules for “×” between vectors (and scalars),
given in the introduction, we have from (3.1) equivalently on ∂Ω

−~n2u1 + ~n1u2 = 0,

∂1u1 + ∂2u2 = 0,

where ∂j = ∂/∂xj , j = 1, 2(, 3). Since ~n = (0,±1)∗ and ∂/∂~n = ±∂2, this is equivalent to

u1 = ∂~nu2 = 0 on ∂Ω, (3.2)

and hence represents a free movement in the normal direction and no shear movement. The
second boundary conditions are (2.4), i.e.

~nu = 0, ~n× (∇× u) = 0 on ∂Ω. (3.3)

Observing in two resp. one space dimension(s) the rules for the curl “∇×” given in the intro-
duction, we have from (3.3) equivalently on ∂Ω

~n1u1 + ~n2u2 = 0,

~n2(−∂2u1 + ∂1u2) = 0,

~n1(∂2u1 − ∂1u2) = 0,

or, equivalently,
∂~nu1 = u2 = 0 on ∂Ω. (3.4)

Hence (3.3) represents a free shear movement without movement in the normal direction.
Second, we consider the three-dimensional case n = 3 with l = 2 where we have essentially

one situation, Ω being the region between two plates. Without loss of generality we consider

Ω = R2 × (0, 1) ⊂ R3.

The first boundary conditions (3.1) are now equivalent on ∂Ω to

~n2u3 − ~n3u2 = 0,
~n3u1 − ~n1u3 = 0,
~n1u2 − ~n2u1 = 0,

∂1u1 + ∂2u2 + ∂3u3 = 0.

 (3.5)
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Observing ~n = (0, 0,±1)∗ and ∂/∂~n = ±∂3, this is equivalent to

u1 = u2 = ∂~nu3 = 0 on ∂Ω. (3.6)

This is the analogon to the two-dimensional version (3.2) representing a mere movement in the
normal direction, no shear movement.

The second boundary conditions (3.3) are equivalent on ∂Ω to

~n1u1 + ~n2u2 + ~n3u3 = 0,
~n2(∂1u2 − ∂2u1)− ~n3(∂3u1 − ∂1u3) = 0,
~n3(∂2u3 − ∂3u2)− ~n1(∂1u2 − ∂2u1) = 0,
~n1(∂3u1 − ∂1u3)− ~n2(∂2u3 − ∂3u2) = 0,

 (3.7)

or, equivalently,
∂~nu1 = ∂~nu2 = u3 = 0 on ∂Ω. (3.8)

This is the analogon to the two-dimensional version (3.4) and represents a free shear movement
without movement in the normal direction.

Third, we have the three-dimensional infinite cylinder (n = 3, l = 1),

Ω = R×B ⊂ R3,

where B ⊂ R2 is a bounded domain.
For the first boundary conditions (3.1) we obtain from (3.5), observing ~n = (0, ~n2, ~n3)∗,

u1 = 0, ~n2u3 − ~n3u2 = 0, ∂2u2 + ∂3u3 = 0 on ∂Ω. (3.9)

For the second boundary condition (3.3) we obtain from (3.7)

~n2u2 + ~n3u3 = 0, ~n2(∂1u2 − ∂2u1)− ~n3(∂3u1 − ∂1u3) = 0, ∂2u3 − ∂3u2 = 0 on ∂Ω. (3.10)

The boundary conditions (3.9) and (3.10), respectively, become more transparent for cylindri-
cally symmetrical domains. This is the following situation where Ω = R × B is a classical
cylinder, i.e. B is radially symmetrical which in turn means

x′′ ∈ B =⇒ ∀R ∈ O(2) : Rx′′ ∈ B

where O(n) will denote for n = 2, 3 the set of orthogonal n × n real matrices. The typical
examples are balls or annular domains. Let now Ω be a classical cylinder. We define

Definition 3.1 A vector field u : Ω → R3 is called cylindrically symmetrical, if

∀x1 ∈ R ∀x′′ = (x2, x3) ∈ B ∀R ∈ O(2) :

u1(x1, Rx
′′) = u1(x1, x

′′), (u2, u3)∗(x1, Rx
′′) = R(u2, u3)∗(x1, x

′′).
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That is, u is cylindrically symmetrical if, for fixed x1, the first component as a scalar, and the
second and third component together as a vector field are radially symmetrical in B, cp. for
example [9]. Therefore we have the following characterization (cp. [9, Lemma 4.5]),

Lemma 3.2 u : Ω → R3 is cylindrically symmetrical ⇐⇒ There exist functions h, φ : R× R+
0

such that for all (x1, x
′′) ∈ Ω

u1(x1, x
′′) = h(x1, r), (u2, u3)∗(x1, x

′′) = x′′φ(x1, r),

where r := |x′′| =
√
x2

2 + x2
3.

Our initial-boundary value problem with differential equation (2.1) and f = 0, initial conditions
(2.2) and boundary conditions (2.3) resp. (2.4) turns out to be cylindrically invariant, we have

Lemma 3.3 Let Ω be cylindrically symmetrical. If the data u0, u1 are cylindrically symmetrical,
then the solution u(t, ·) to (2.1), (2.2), (2.3) resp. (2.4), f = 0, is cylindrically symmetrical for
all t ≥ 0.

Proof: Let R = (rij)1≤i,j≤2 ∈ O(2), and let

R̃ :=

 1 0 0
0 r11 r12

0 r21 r22

 .

Then R̃ ∈ O(3). Set for t ≥ 0, x = (x1, x
′′) ∈ Ω

v(t, x) := R̃∗u(t, R̃x).

Since

vtt(t, x) = R̃∗utt(t, R̃x), ∆v(t, x) = R̃∗(∆u)(t, R̃x), ∇∇∗v(t, x) = R̃∗(∇∇∗u)(t, R̃x)

we conclude that v satisfies the same differential equation as u. Since the initial data are
cylindrically symmetrical we have

v(0, ·) = u0, vt(0, ·) = u1,

and hence v has the same initial values as u. By the uniqueness of solutions it only remains to
show that v satisfies the same boundary conditions as u, that is the invariance of the boundary
conditions under cylindrical symmetry.

For the first boundary conditions (2.3) this can be seen as follows: First note that(
~n2(x1, Rx

′′)
~n3(x1, Rx

′′)

)
= R

(
~n2(x1, x

′′)
~n3(x1, x

′′)

)

and by ~n1 = 0
~n(R̃x) = R̃ ~n(x). (3.11)
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This implies

~n(x)× R̃∗u(t, R̃x) =
(
R̃∗R̃ ~n(x)

)
× R̃∗u(t, R̃x)

= det(R) R̃∗
((
R̃ ~n(x)

)
× u(t, R̃x)

)
= det(R) R̃∗

(
~n(R̃x)× u(t, R̃x)

)
= 0 on ∂Ω

by ~n× u = 0 on ∂Ω. Hence we have proved

~n× v(t, ·) = 0 on ∂Ω. (3.12)

A short calculation shows that ∇∗
(
R̃∗u(t, R̃x)

)
= (∇∗u)(t, R̃x). Therefore we have

∇∗v(t, x) = (∇∗u)(t, R̃x) = 0 on ∂Ω (3.13)

because of the boundary conditions given for u. This proves that v satisfies the same boundary
condition (2.3) as u.

For the second boundary condition (2.4) it is easy to see that on ∂Ω

~n(x)v(t, x) =
(
R̃ ~n(x)

)
u(t, R̃x) = ~n(R̃x)u(t, R̃x) = 0 (3.14)

holds. Using
∇×

(
R̃∗u(t, R̃x)

)
= det(R) R̃∗ (∇× u)(t, R̃x)

we obtain in the same way

~n(x)× (∇× v(t, x)) = R̃∗
(
~n(R̃x)× (∇× u)(t, R̃x)

)
= 0 on ∂Ω (3.15)

With (3.14) and (3.15) we have that v satisfies the same boundary condition (2.4) as u. This
finishes the proof of Lemma 3.3.

Q.e.d.

For a cylindrically symmetrical solution

u(t, x1, x
′′) =

(
h(t, x1, r)
x′′φ(t, x1, r)

)

we can rewrite the second boundary condition (2.4) as

hr = 0, φ = 0, (3.16)

or
∂~nu1 = u2 = u3 = 0, (3.17)

cp. (3.6). The first boundary boundary condition (2.3) can be rewritten for a cylindrically
symmetrical solution as

h = 0, 2φ+ rφr = 0, (3.18)

the latter following from ∂2u2 + ∂3u3 = 0. (3.18) represents a kind of Robin type boundary
condition for (u2, u3).
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We finally remark that the boundary conditions (2.3) for elasticity were already studied
by Weyl1 [33]; in particular, he investigated the asymptotic distribution of eigenvalues of the
associated stationary problem, cp. the next section.

4 Elliptic estimates

We write
x = (x′, x′′) ∈ Ω = Rl ×B,

∆ =
n∑

j=1

∂2
j , ∆′ =

l∑
j=1

∂2
j , ∆′′ =

n∑
j=l+1

∂2
j .

Let
A : D(A) ⊂ L2(Ω) → L2(Ω),

D(A) := W 2,2(Ω) ∩W 1,2
0 (Ω), Aϕ := −∆ϕ,

where we use standard notations for Sobolev spaces (cp. [1]), similarly

A′ : D(A′) ⊂ L2(Rl) → L2(Rl),

D(A′) := W 2, 2(Rl), A′ϕ := −∆′ϕ,

A′′ : D(A′′) ⊂ L2(B) → L2(B),

D(A′′) := W 2, 2(B) ∩W 1, 2
0 (B), A′′ϕ := −∆′′ϕ.

The operators A, A′, A′′ are selfadjoint, A′′ is positive definite with compact inverse, having a
complete orthogonal set (wj)j∈N of eigenfunctions corresponding to positive eigenvalues (λj)j∈N

being arranged such that

0 < λ1 ≤ λ2 ≤ · · · ≤ λj →∞, as j →∞.

The spectrum of A′ resp. A is purely continuous and consists of

σ(A′) = [0,∞), σ(A) = [λ1,∞),

cp. e.g. [13]. The following lemma is taken from Section 2 in our previous work [15].

Lemma 4.1 (Lp-regularity for the Laplace operator) Let j ∈ N0, ϕ ∈ D(A), 1 < p < ∞, ϕ ∈
Lp(Ω), Aϕ ∈W j, p(Ω). Then it holds

‖ϕ‖W 2+j, p(Ω) ≤ c‖Aϕ‖W j, p(Ω),

where c is a positive constant at most depending on j and p.
1Weyl gave a motivation as follows: “Sie [the boundary condition (2.3)] wird für uns dadurch wesentlich,

dass sie nach dem Schema �Elastischer Körper −→ Fresnels elastischer Aether −→ elektromagnetischer

Aether� den Uebergang von der Elastizitätstheorie zur Potentialtheorie zu Wege bringt.”
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In the case n ≤ 4 the assumption ϕ ∈ Lp(Ω) can be omitted. This can be seen approximating
ϕ by ϕk(x) := ψ(x′

k )ϕ(x), where ψ denotes a cut-off function with respect to the unbounded
variable x′ ∈ Rl. Then ϕk ∈ Lp(Ω) ∩D(A) and ‖Aϕk −Aϕ‖Lp(Ω) → 0. This proves:

Corollary 4.2 Let n ≤ 4, j ∈ N0, ϕ ∈ D(A), 1 < p <∞, Aϕ ∈W j, p(Ω). Then ϕ ∈W 2+j,p(Ω)
and

‖ϕ‖W 2+j, p(Ω) ≤ c‖Aϕ‖W j, p(Ω),

where c is a positive constant at most depending on j and p.

We define the two Maxwell operators M1, M2 with

Mj : D(Mj) ⊂ L2 → L2

by

D(M1) := {u ∈ L2 |u ∈ R0(Ω), ∇∗u ∈ H1
0 (Ω), ∆u ∈ L2} (4.1)

D(M2) := {u ∈ L2 |u ∈ D0(Ω), ∇× u ∈ R0(Ω), ∆u ∈ L2}, (4.2)

Mju := −τ∆u, (4.3)

where τ will be either of µ, (2µ + λ). We have from [30, 31] that Mj is a positive self-adjoint
operator with purely continuous spectrum

σ(Mj) = [α,∞)

where α satisfies

α

{
>

=

}
0 if

{
j=1 and B is simply connected
j=2 or B is multiply connected

}
. (4.4)

The following assertion is an extension from Kozono and Yanagisawa [10], where the case of a
bounded domain is studied.

Lemma 4.3 (Lp-regularity for the Maxwell operators) Let m ∈ N0, u ∈ D(Mj), j = 1, 2,
1 < p <∞, u ∈ Lp(Ω), Mju ∈Wm,p(Ω). Then it holds u ∈Wm+2,p(Ω) and

‖u‖W m+2,p(Ω) ≤ c ‖(Mj + 1)u‖W m,p(Ω),

where c is a positive constant at most depending on m and p (and j).

As for the case of the classical wave equation (“scalar ∆-operator with Dirichlet boundary
conditions”) previously studied in [15], we will need knowledge on the eigenvalue distribution
for the different operators acting on the bounded cross section B. It is important that the original
boundary conditions in Ω split up into reasonable boundary conditions for the components in
the cross section.

We have the following six cases: space dimensions n = 2, 3, 1 ≤ l ≤ n − 1, boundary
conditions (2.3), (2.4). We know from Section 2 that the decompositions u = upo +us according
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to (2.5) resp. (2.16) carry over the boundary conditions (2.3) resp. (2.4) to both upo and us,
while the elastic operator Aj is turned into the Laplace operator. That is we will have to
check what kind of boundary conditions arise for the components in the cross section. For these
boundary conditions we need the distributions of the eigenvalues (ρm)m of the Laplace operator,
not necessarily taking into account the subspaces where the vector functions live in, but just
in all of L2, and in ascending order as usual. Let N(ρ) denote the number of eigenvalues ρm

satsifying ρm ≤ ρ.
Case I: n = 2, l = 1, boundary conditions (2.3):

By (3.2) we need the behavior for the Dirichlet and Neumann boundary conditions in B = (0, 1),
which is well-known:

ρm = (mπ)2, N(ρ) ∼ ρ
1
2 ,

with m = 1, 2, . . . for the Dirichlet condition, and m = 0, 1, 2, . . . for the Neumann condition on
∂B.

Case II: n = 2, l = 1, boundary conditions (2.4):
By (3.4) we have the same situation as in case I.

Case III: n = 3, l = 2, boundary conditions (2.3):
By (3.6) we have the same situation as in case I.

Case IV: n = 3, l = 2, boundary conditions (2.4):
By (3.8) we have the same situation as in case I.

Case V: n = 3, l = 1, boundary conditions (2.3):
By (3.9) we have for fixed x′ ∈ R at ∂B the Dirichlet condition for u1(x′, ·) and the boundary
conditions (2.3) for the components (u2, u3)(x′, ·) and the normal vector ( ~n2, ~n3)(x′, ·). For the
Dirichlet condition we have the well-known estimate, see [2], going back to Weyl [32, 33]:

N(ρ) ∼ ρ
2
2

implying
ρm ≥ cm

2
2 ,

where c > 0 is independent of m.
For the boundary condition (2.3) we have the same result. This was proved first by Weyl

[32, 33] for a three-dimensional domain and extended by Mehra [16] to the two-dimensional
situation, the situation we encounter here.

Case VI: n = 3, l = 1, boundary conditions (2.4), cylindrical symmetry:
The boundary conditions (3.10) give the boundary conditions (2.4) for fixed x′ ∈ R at ∂B for
the components (u2, u3)(x′, ·) and the normal vector ( ~n2, ~n3)(x′, ·). The condition for u1 is not
separated in general, but for the assumed cylindrical symmetry we get the Neumann boundary
condition for u1(x′, ·), and the Dirichlet boundary condition for u2, u3, see (3.17). Hence we
obtain the same asymptotics for the eigenvalues as in case V.

Summarizing we have:
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Lemma 4.4 The eigenvalues (ρm)m for the Laplace-operator studied in the cross section B

under the different boundary conditions arising in the cases I–VI satisfy

ρm ≥ cm
2

n−l

where c > 0 is independent of m.

We remark that the Laplace operator is studied in certain subspaces of L2 according to the
decomposition of u into upo + us, and maybe under radial symmetry. Still the estimate on the
lower bound for ρj in Lemma 4.4 remains valid for these subspaces, in some cases not being
sharp, compare e.g. the distribution of the eigenvalues of the Dirichlet Laplace operator for the
radially symmetrical case of the unit disk in R2 with N(ρ) ∼ ρ

1
2 , as in the one-dimensional case,

while N(ρ) ∼ ρ
2
2 for a general two-dimensional bounded domain, see [2].

5 The decay of solutions, f = 0

In the first part of this section we study Maxwell’s equation for the electric and magnetic field,
respectively, with right-hand side f = 0. In the second part we apply the results obtained to
the original elastic system with f = 0. Results for non-vanishing right-hand side will be given
in the next section.

Let z : [0,∞)× Ω → Rn be the solution of Maxwell’s equation

ztt − τ∆z = 0, (5.1)

where τ > 0, together with initial conditions

z(t = 0) = z0, zt(t = 0) = z1 (5.2)

and either electric boundary conditions (2.3), i.e.

~n(·)× z(t, ·) = 0, ∇∗z(t, ·) = 0 on ∂Ω, (5.3)

or magnetic boundary conditions (2.4), i.e.

~n(·)z(t, ·) = 0, ~n(·)× (∇× z(t, ·)) = 0 on ∂Ω. (5.4)

We consider again the six cases n = 2, 3, 1 ≤ l ≤ n− 1, boundary conditions (5.3), (5.4), having
been denoted by I–VI in Section 4.

Cases I, II, III, IV, VI: n = 2 or n = 3, l = 2 or n = 3, l = 1 with boundary conditions
(5.4) and cylindrical symmetry:
By (3.2), (3.4), (3.6), (3.8) and (3.17), respectively, we observe that all components satisfy either
the Dirichlet or the Neumann boundary condition, and that at least one component satisfies the
Dirichlet boundary condition and at least one the Neumann boundary condition. Thus we obtain
from [15, Thm. 3.3 plus Remark] the decay rates for the ‖zk(t, ·)‖Lq(Ω)-norm (2 ≤ q ≤ ∞) of
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the components of the solution, see the following Theorem. In case of the Dirichlet condition
we obtain the rate t−l/2 for ‖zk(t, ·)‖L∞(Ω), while for the Neumann condition this only holds on
the space orthogonal to the null space of the Neumann operator (the constant in B), otherwise
we have the rate t−(l−1)/2).

Case V: n = 3, l = 1, boundary conditions (5.3):
By (3.9) we have for fixed x′ ∈ R at ∂B the Dirichlet condition for z1(t, x′, ·) and the boundary
conditions (5.3) for the components (z2, z3)(t, x′, ·) and the normal vector ( ~n2, ~n3)(x′, ·). There-
fore z1 can be treated as before, and for (z2, z3) the methods from [15] carry over, we sketch the
steps:
The null space of M ′′

1 — denoting M1 as operator in B instead of Ω now — equals R0(B) ∩
R0(B)∩D0(B), the dimension of which is 1, hence being generated by some w0 = w0(x′′) ∈ R2,
see e.g. [18, 19, 20, 28]. Let (wm)m denote the eigenfunctions of M1 (in B) with eigenvalues
(ρm)m, m = 0, 1, 2, . . . , with ρ0 = 0 and 0 < ρ1 ≤ ρ2 ≤ . . .. Set z̃ := (z2, z3) = (z2, z3)(t, x′, x′′)
and

vm(t, x′) := 〈z̃(t, x′, ·), wm〉L2(B),

for m ∈ N ∪ {0}. Then vm satisfies

vm,tt −∆′vm + ρmvm = 0 in [0,∞)× R1, (5.5)

vm(0, x′) = v0
m(x′) := 〈z̃(0, x′, ·), wm〉L2(B), in R1, (5.6)

vm,t(0, x′) = v1
m(x′) := 〈z̃t(0, x′, ·), wm〉L2(B), in R1. (5.7)

Thus vm satisfies a Klein-Gordon equation in R1 for m ≥ 1, and a pure wave equation (ρ0 = 0)
for m = 0. Hence we have for m ≥ 1 the decay of vm in L∞ of order t−1/2, and for v0 no decay.

Expanding z̃ into a Fourier series with respect to the (wm)m in L2(B) one can get the decay
rate for z̃ from that of the vm, here using Lemma 4.4 in a series argument, as in [15]. The L2-L2

energy estimate is also given, so we obtain the Lp-Lq-decay by interpolation. In this single case
V, the interpolation result seems not yet to be given in the literature, but is expected to hold,
cp. Guidetti [7] for the interpolation argument. The extension to the boundary conditions (5.3)
we take as hypothesis here.

We summarize our results, using the estimates for wave equations from [15]. In order to have
one unified result for all cases, we introduce a condition reflecting possible parts in the arising
null spaces in case of the Neumann boundary condition and the electric boundary condition in
case V.
Condition (N): The initial data z0(x′, ·), z1(x′, ·) from (5.2) satisfy for every fixed x′ ∈ Rl that
their projections onto the null spaces of the operator’s part in cross-direction (constant functions
for the Neumann condition in cases I,II,III,IV,VI; in case V: span {w0}) vanish.

Theorem 5.1 (Maxwell systems, f = 0) Assume condition (N). Let z be the unique solution
to (5.1)–(5.3) or (5.1), (5.2) and (5.4), and let 2 ≤ q ≤ ∞, 1/p+ 1/q = 1. Let

K2 :=
[n
2

]
+
[
n− l

2

]
+ 3, K3 :=

[
l + 3

2

]
+
[
n− l + 1

2

]
,
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and
z0 ∈ D(MK2/2

j ) ∩WK2+K3+1, 1(Ω),

z1 ∈ D(M (K2−1)/2
j ) ∩WK2+K3, 1(Ω),

j = 1, 2 corresponding to boundary condition (5.3) and (5.4), respectively. Then z satisfies

‖(z(t), zt(t),∇z(t))‖Lq(Ω) ≤
c

(1 + t)(1−
2
q
) l
2

‖(z0, z1,∇z0)‖W Ñp, p(Ω)
,

where

Ñp :=

{
(1− 2

q )(K2 +K3) if q ∈ {2,∞},
[(1− 2

q )(K2 +K3)] + 1 if 2 < q <∞,

and c depends at most on q and B.

In view of the applications to corresponding nonlinear systems, we remark that we have in
Theorem 5.1 a real decay of the L∞-norm like t−r, with r > 0, in the cases III and IV always
(r = 1 if condition (N) is satisfied, r = 1/2 otherwise), and in the other cases (only) if condition
(N) is satisfied, then with r = 1/2.

Now let u be the solution to the original system (2.1), (2.2) with boundary condition (2.3)
or (2.4), respectively. As in Section 2, we decompose u = upo + us according to

L2(Ω) = Hpo ⊕Hs (5.8)

where Hpo and Hs are determined in the given decompositions in (2.5) resp. (2.16), which
themselves depend on the choice of boundary conditions (2.3) resp. (2.4). Then in each case

z := uβ, β ∈ {po, s}

satisfies (5.1), (5.2) and (5.3) or (5.4), respectively (cp. (2.7)–(2.10) and (2.17)–(2.19)). The
initial data for z are given by the projections of u0, u1 onto the spaces Hpo and Hs, respectively:

z0 = P pou0, z1 = P pou1 if β = po and z0 = P su0, z1 = P su1 if β = s. (5.9)

We apply the result of Theorem 5.1 and obtain for u (e.g.), and q <∞,

‖u(t, ·)‖Lq(Ω) ≤ ‖upo(t, ·)‖Lq(Ω) + ‖us(t, ·)‖Lq(Ω)

≤ c

(1 + t)(1−
2
q
) l
2

(
‖(P pou0, P pou1,∇P pou0)‖

W Ñp, p(Ω)
+

‖(P su0, P su1,∇P su1)‖
W Ñp, p(Ω)

)
.

Thus we have proved, defining the elasitic operators E1, E2 as follows,

Ej : D(Ej) ⊂ L2 → L2

by

D(E1) := {u ∈ L2 |u ∈ R0(Ω), ∇∗u ∈ H1
0 (Ω), (µ∆ + (µ+ λ)∇∇∗)u ∈ L2} (5.10)

D(E2) := {u ∈ L2 |u ∈ D0(Ω), ∇× u ∈ R0(Ω), (µ∆ + (µ+ λ)∇∇∗)u ∈ L2}, (5.11)

Eju := (µ∆ + (µ+ λ)∇∇∗)u, (5.12)
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Theorem 5.2 (Elastic systems, f = 0) Assume that the initial data z0 = P pou0, z1 = P pou1

and z0 = P su0, z1 = P su1 satisfy condition (N). Let u be the unique solution to (2.1)–(2.3)
resp. to (2.1), (2.2, (2.4), and let 2 ≤ q <∞, 1/p+ 1/q = 1. Let

K2 :=
[n
2

]
+
[
n− l

2

]
+ 3, K3 :=

[
l + 3

2

]
+
[
n− l + 1

2

]
,

and
u0 ∈ D(EK2/2

j ) ∩WK2+K3+1, 1(Ω),

u1 ∈ D(E(K2−1)/2
j ) ∩WK2+K3, 1(Ω),

j = 1, 2 corresponding to boundary condition (5.3) and (5.4), respectively. Then u satisfies

‖(u(t), ut(t),∇u(t))‖Lq(Ω) ≤
c

(1 + t)(1−
2
q
) l
2

(
‖(P pou0, P pou1,∇P pou0)‖

W Ñp, p(Ω)
+ ‖(P su0, P su1,∇P su0)‖

W Ñp, p(Ω)
,
)

where

Ñp :=

{
(1− 2

q )(K2 +K3) if q ∈ {2,∞},
[(1− 2

q )(K2 +K3)] + 1 if 2 < q <∞,

and c depends at most on q and B.

In order to remove the projections in the estimate of the last theorem we need to know the
continuity of the projections P β onto the space Hβ, β ∈ {po, s}, in the Sobolev space WN,p(Ω),

‖P βv‖W N,p ≤ const ‖v‖W N,p . (5.13)

For bounded domains we could refer for 1 < p < ∞ to Kozono and Yanagisawa [10], where
the case N = 0 is discussed in detail. For our waveguides, we first present a proof for the
decomposition (2.5), used for the boundary conditions (2.3).

Theorem 5.3 Let 1 < p <∞, m ∈ N. Let

X :=
(
L2(Ω) ∩Wm,p(Ω)

)n
, Y := ∇H1

0 (Ω) ∩ (Wm,p(Ω))n , Z := D0(Ω) ∩ (Wm,p(Ω))n

with natural norm ‖ · ‖W m,p(Ω) + ‖ · ‖L2(Ω). Then we have the direct sum decomposition

X = Y ⊕ Z

and the projections PY onto Y and PZ onto Z, respectively, are continuous.

Proof: First, using the Poincaré inequality, we observe that

∇H1
0 (Ω) = ∇H1

0 (Ω),

and that X is a Banach space, and Y and Z are subspaces. Let u ∈ X, then the decomposition
(2.5) in L2 yields

u = u1 + u2, u1 = ∇g ∈ ∇H1
0 (Ω), u2 ∈ D0.
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g can be determined by solving

∆g = ∇∗u, g ∈ H1
0 (Ω),

the solution g of which has (elliptic) regularity g ∈Wm+1,p(Ω) (cp. Corollary 4.2). Hence

u1 ∈Wm,p(Ω).

Then u2 = u− u1 ∈ Wm,p(Ω) too. This proves the direct decomposition X = Y + Z. To prove
the continuity of the projections it is now sufficient to show the closedness of Y and Z (cp. [3,
p.189]). But this easily follows for Y using the Poincaré estimate again, and for Z using the
definition of D0.

Q.e.d.

In the application to the estimate of u in Theorem 5.2 we note that 1 < p ≤ 2 and m = Ñp ≥ n
2 .

Then we obtain from Theorem 5.3 and Sobolev’s inequality

‖P βuj‖W m,p ≤ c
(
‖uj‖W m,p + ‖uj‖L2

)
≤ c ‖uj‖W m,p . (5.14)

Now we give a corresponding result in the case n = 2 for the decomposition (2.16), used for
the boundary condition (2.4). We remark that the case n = 3 remains open.

Theorem 5.4 Suppose that n = 2 and that 1 < p <∞, m ∈ N,

u ∈Wm,p(Ω) ∩ {u | ∇ × u ∈ L2(Ω)}.

Then P βu ∈Wm,p(Ω), and there is a constant c > 0 independent of u such that

‖P βu‖W m,p ≤ c ‖u‖W m,p (β ∈ {po, s}).

Proof: Let g be the (scalar-valued) solution to

−∆g = ∇× u, g ∈ H1
0 (Ω) = R0(Ω).

Then

∇× (u−∇× g) = ∇× u−∇×

(
∂2g

−∂1g

)
= ∇× u−∆g = 0

and hence u−∇× g ∈ R0(Ω). This implies

u = (u−∇× g) +∇× g, u−∇× g ∈ R0(Ω), ∇× g ∈ ∇×R0(Ω)

which means that

P pou = ∇× g ∈Wm,p(Ω), P su = u−∇× g ∈Wm,p(Ω),

using elliptic regularity. Now we obtain from Corollary 4.2 that

‖P pou‖W m,p ≤ ‖g‖W m+1,p ≤ c‖∇ × u‖W m−1,p ≤ c‖u‖W m,p .
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The boundedness of P s follows from P su = u− P pou.

Q.e.d.

Using Theorems 5.3 and 5.4, we immediately conclude from Theorem 5.2:

Theorem 5.5 (Elastic systems, f = 0) Assume that the initial data z0 = P pou0, z1 = P pou1

and z0 = P su0, z1 = P su1 satisfy condition (N). Let u be the unique solution to (2.1)–(2.3)
resp. to (2.1), (2.2), (2.4), in the latter case assuming n = 2, and let 2 ≤ q <∞, 1/p+1/q = 1.
Let

K2 :=
[n
2

]
+
[
n− l

2

]
+ 3, K3 :=

[
l + 3

2

]
+
[
n− l + 1

2

]
,

and
u0 ∈ D(EK2/2

j ) ∩WK2+K3+1, 1(Ω),

u1 ∈ D(E(K2−1)/2
j ) ∩WK2+K3, 1(Ω),

j = 1, 2 corresponding to boundary condition (5.3) and (5.4), respectively. Then u satisfies

‖(u(t), ut(t),∇u(t))‖Lq(Ω) ≤
c

(1 + t)(1−
2
q
) l
2

‖(u0, u1,∇u0)‖
W Ñp, p(Ω)

,

where

Ñp :=

{
(1− 2

q )(K2 +K3) if q ∈ {2,∞},
[(1− 2

q )(K2 +K3)] + 1 if 2 < q <∞,

and c depends at most on q and B.

6 The decay of solutions, general f = f(t, x)

As in [15] we have to overcome the difficulty that one cannot directly apply Duhamel’s principle of
the variation of constants because of the boundary conditions to be observed. Here, additionally,
one has operators that may have zero in the spectrum, cp (4.4). Therefore we have to extend the
approach in [15] in the following way which works analogously for any operator being bounded
from below.

Let A be any of the operators Mj defined in Section 4, j = 1, 2. We first look for estimates
of the solution u : [0,∞) → Rn to

utt +Au = f, (6.1)

u(t) ∈ D(A), (6.2)

u(0, ·) = u0, ut(0, ·) = u1, (6.3)

u ∈
2K+2⋂
j=0

Cj
(
[0,∞),W 2K+2−j,2(Ω)

)
, (6.4)

where K ∈ N. If the solution exists, the following necessary conditions have to be satisfied:

f ∈
2K⋂
j=0

Cj
(
[0,∞),W 2K−j,2(Ω)

)
(6.5)
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and

uk ∈ D(A) ∩W 2K+2−j,2(Ω) for k = 0, 1, . . . , 2K, u2K+1 ∈ D(A1/2), u2K+2 ∈ L2(Ω); (6.6)

here u0, u1 denote the given data and inductively

uj := f (j−2)(0)−Auj−2 for j = 2, . . . , 2K + 2, (6.7)

which means that uj = ∂j
t u(0, ·).

Now suppose that (6.5) and (6.6) hold and that u is solution of (6.1) – (6.4). We define the
invertible Operator B := A+ 1 on D(B) := D(A) and rewrite (6.1) as

(∂2
t − 1)u+Bu = f. (6.8)

Then we can do the same trick used in section 4 of [15], we only have to replace the operator
∂2

t by (∂2
t − 1). In particular we set

v := (−B)−K(∂2
t − 1)Ku. (6.9)

By induction with respect to k we conclude from (6.8) that

(−B)−k(∂2
t − 1)ku =

k−1∑
j=0

(−B)−(j+1)(∂2
t − 1)jf + u

and

v =
K−1∑
j=0

(−B)−(j+1)(∂2
t − 1)jf + u. (6.10)

Hence v is the solution of
vtt +Av = (−B)−K(∂2

t − 1)Kf, (6.11)

v(t) ∈ D(A), (6.12)

v(0, ·) = v0 :=
K−1∑
j=0

(−B)−(j+1)(∂2
t − 1)jf(0) + u0, (6.13)

vt(0, ·) = v1 :=
K−1∑
j=0

(−B)−(j+1)(∂2
t − 1)j∂tf(0) + u1, (6.14)

v ∈
2⋂

j=0

Cj
(
[0,∞),W 2K+2−j,2(Ω)

)
, (6.15)

where (6.15) follows from (6.4), (6.9) and elliptic regularity theory, cp. Lemma 4.3.
On the other hand, if v is the solution of (6.11) – (6.15), then set

ũ := v −
K−1∑
j=0

(−B)−(j+1)(∂2
t − 1)jf (6.16)
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As in the proof of Theorem 4.1 in [15] we can show that ũ solves (6.1) – (6.3), and (6.4) follows
from (6.15) and (6.5) by ũtt = f −Aũ. Then ũ = u by uniqueness of the solution.

Note that the right-hand side of (6.11) satisfies boundary conditions as element of D(BK) =
D(AK). Analogously, v0 = B−K(∂2

t − 1)Ku(0, .) ∈ D(AK+1) and v1 = B−K(∂2
t − 1)K∂tu(0, .) ∈

D(AK+1/2) by (6.6). Therefore we can apply Duhamel’s principle and the results of the previous
section to obtain decay-estimates for v and hence for u. In the following we give only the results,
the remaining proofs can be carried over from section 4 of [15], here using the Lp-regularity for
the Maxwell operators Mj given in Lemma 4.3.

We say that (f, u0, u1) satisfies the compatibility condition of order K for the operator A, if
u0, u2 and uj defined by (6.7) satisfy

uk ∈ D(A) for k = 0, 1, . . . , 2K, u2K+1 ∈ D(A1/2). (6.17)

Moreover, we naturally extend condition (N) to non-zero f :
Condition (N): z0(x′, ·), z1(x′, ·) and f(t, x′, .) satisfy for every fixed t ≥ 0 and x′ ∈ Rl that
their projections onto the null spaces of the operator’s part in cross-direction (constant functions
for the Neumann condition in cases I,II,III,IV,VI; in case V: span {w0}) vanish.

Theorem 6.1 (Maxwell systems, Lp-Lq-decay)) Assume condition (N). Let K2,K3, d be defined
as in Theorem 5.1. Suppose

K ≥ K2 +K3 + 1
2

=
1
2

([n
2

]
+
[
l + 1

2

]
+ n− l + 1

)
,

f ∈
2K⋂
j=0

Cj
(
[0,∞,W 2K−j,2(Ω) ∩W 2K−j, 1(Ω)

)
,

z0 ∈W 2K+2,2(Ω) ∩W 2K+2,1(Ω), z1 ∈W 2K+1,2(Ω) ∩W 2K+1,1(Ω),

that (z0, z1, f) satisfies the compatibility condition of order 2K for the operator M1 or M2,
respectively, and that z is the unique solution of (5.1) – (5.3) or (5.1), (5.2), (5.4). Then for
every q ∈ [2,∞) and 1

q + 1
p = 1 the solution z satisfies

‖(z(t, ·), zt(t, ·),∇z(t, ·))‖Lq(Ω)

≤ c

(1 + t)(1−
2
q
) l
2

‖(z0, z1,∇z0)‖W 2K, p(Ω) +
2K−1∑
j=0

‖f (j)(0)‖W 2K−1−j, p(Ω)


+ c

∫ t

0

1

(1 + t− τ)(1−
2
q
) l
2

2K∑
j=0

‖f (j)(τ)‖Lp(Ω)dτ + c
2K−1∑
j=0

‖f (j)(t)‖W 2K−1−j, p(Ω) ,

where the constant c > 0 does not depend on z0, z1, f and t.

Finally, we obtain the general decay results for the elastic system (2.1)–(2.3)/(2.4), decom-
posing u and f into

u = upo + us, f = fpo + fs.
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Theorem 6.2 (Elastic systems, Lp-Lq-decay) Assume that the projections P pou0, P pou1, P pof

and P su0, P su1, P sf satisfy condition (N). Let K2,K3, d be defined as in Theorem 5.1. Suppose

K ≥ K2 +K3 + 1
2

=
1
2

([n
2

]
+
[
l + 1

2

]
+ n− l + 1

)
,

f ∈
2K⋂
j=0

Cj
(
[0,∞),W 2K−j,2(Ω) ∩W 2K−j, 1(Ω)

)
,

u0 ∈W 2K+2,2(Ω) ∩W 2K+2,1(Ω), u1 ∈W 2K+1,2(Ω) ∩W 2K+1,1(Ω),

that (u0, u1, f) satisfies the compatibility condition of order 2K, now for the operator E1 or E2,
respectively, and that u is the unique solution of (2.1)–(2.3) or (2.4), respectively. Then for
every q ∈ [2,∞) and 1

q + 1
p = 1 the solution u satisfies

‖(u(t, ·), ut(t, ·),∇u(t, ·))‖Lq(Ω)

≤ c

(1 + t)(1−
2
q
) l
2

(
‖(P pou0, P pou1,∇P pou0, P su0, P su1,∇P su0)‖W 2K, p(Ω)+

2K−1∑
j=0

‖P pof (j)(0), P sf (j)(0)‖W 2K−1−j, p(Ω)

+

c

∫ t

0

1

(1 + t− τ)(1−
2
q
) l
2

2K∑
j=0

‖P pof (j)(τ), P sf (j)(τ)‖Lp(Ω)dτ +

c
2K−1∑
j=0

‖P pof (j)(t), P sf (j)(t)‖W 2K−1−j, p(Ω) ,

where the constant c > 0 does not depend on u0, u1, f .

Using Theorems 5.3 and 5.4 we can remove the projection operators appearing in the last
theorem.

Theorem 6.3 (Elastic systems, Lp-Lq-decay) Assume condition (N). Let K2,K3, d be defined
as in Theorem 5.1. Suppose

K ≥ K2 +K3 + 1
2

=
1
2

([n
2

]
+
[
l + 1

2

]
+ n− l + 1

)
,

f ∈
2K⋂
j=0

Cj([0,∞),W 2K−j,2(Ω) ∩W 2K−j, 1(Ω)),

u0 ∈W 2K+2,2(Ω) ∩W 2K+2,1(Ω), u1 ∈W 2K+1,2(Ω) ∩W 2K+1,1(Ω),

that (u0, u1, f) satisfies the compatibility condition of order 2K, now for the operator E1 or E2,
respectively, and that u is the unique solution of (2.1)–(2.3) resp. to (2.1), (2.2), (2.4), in the
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latter case assuming n = 2. Then for every q ∈ [2,∞) and 1
q + 1

p = 1 the solution u satisfies

‖(u(t, ·), ut(t, ·),∇u(t, ·))‖Lq(Ω)

≤ c

(1 + t)(1−
2
q
) l
2

‖(u0, u1,∇u0)‖W 2K, p(Ω) +
2K−1∑
j=0

‖f (j)(0)‖W 2K−1−j, p(Ω)


+ c

∫ t

0

1

(1 + t− τ)(1−
2
q
) l
2

2K∑
j=0

‖f (j)(τ)‖Lp(Ω)dτ + c
2K−1∑
j=0

‖f (j)(t)‖W 2K−1−j, p(Ω) ,

where the constant c > 0 does not depend on u0, u1, f .
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