Stability for a transmission problem in
thermoelasticity with second sound*

Hugo D. Fernandez Sare, Jaime E. Munoz Rivera and Reinhard Racke

Abstract: We consider a semilinear transmission problem for a coupling of an elastic and a
thermoelastic material. The heat conduction is modeled by Cattaneo’s law removing the physical
paradox of infinite propagation speed of signals. The damped, totally hyperbolic system is shown
to be exponentially stable.

1 Introduction

Systems consisting of a purely elastic part and another thermoelastic part with a transmission
taking place at the boundary between the two parts naturally rise the question whether the
dissipation being present through heat conduction in the thermoelastic part is sufficient to
(exponentially) stabilize the whole system.

In contrast, if the elastic system is augmented by interior friction or friction type boundary
conditions, then this dissipation is strong enough to yield exponential stability, cp. [3, 4, 6, 7, 8].

For the coupling of an elastic part, say with reference configuration € := (L1, Ls) C R, to
a thermoelastic part € := (0, L1) U (Lo, L3), with 0 < L; < Ly < L3, Marzocchi, Mutioz Rivera
and Naso [5] proved the exponential stability modeling the vibrations in €; by a wave equation,
and modeling the vibrations and the thermal behavior by classical thermoelasticity. The latter
means that the classical Fourier law is used for the relation between the heat flux ¢ and the
temperature gradient 6., leading to the known paradox of infinite propagation speed of signals
in the system. Their system corresponds to the case 7 = 0 (and f2 = 0) in the following system
where Fourier’s law is replaced by Cattaneo’s law (7 > 0).

Thus we study the following transmission problem for the displacement u = u(t,x) in €,
the displacement v = wv(t,z) in ;, the temperature difference (relative to a fixed reference
temperature) 6 = (¢, x), and the heat flux ¢ = ¢(¢, x), the latter two both in €:

Ut — QUzg + 30 + fi(u) =0 in (0,00) x Q (1.1)
01 + gz + Ougy + f2(0) =0 in (0,00) x (1.2)
T¢t+q+ kb, =0 in (0,00) x Q (1.3)

v —bugy =0 in (0,00) x (1.4)
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with initial conditions

u(0,-) =ug, w(0,-) =w1, 6(0,) =0, ¢(0,) =qo inQ (1.5)
v(0,:) =vo, v(0,) =wv; inYy (1.6)

and boundary conditions (transmission conditions) for t € (0,00), j = 1,2,

u(t,0) = u(t, Ls) = 0(t,0) = 0(t,Ly) = 0 (1.7)
q(t; L) =q(t, Lz) = 0
U(t, LJ) = ’U(t, Lj), ozux(t, L]) - ﬂe(t, L]) = bvx(t, L]) (19)

Here a, 3,7, 6, T, k, b are positive constants, and the smooth nonlinearities fi, fo are assumed to
satisfy for s € R:

Sfl(s) >0, ’f](s)‘ S:“jb‘? J=12 (110)
with constants pq, po > 0.
The case 7 = 0, fo = 0 corresponds to the system in [5]. The right-hand sides considered there
are here assumed to be zero just for simplicity.
On the level of pure heat conduction Fourier’s law leads to the standard parabolic equation for
the temperature,

075 - ’Yﬂex:c =0

while Cattaneo’s law leads to a damped wave equation

7Oy + 0y — VKOzz = 0.

In both cases one has exponential stability. Also for classical thermoelastic boundary value
problems, both Fourier’s and Cattaneo’s law yield exponential stability, cp. [2, 9]. But the
conclusion that this equivalence should always happen is wrong; recent investigations in [1] show
Timoshenko type systems where a coupling to heat conduction is modeled by Fourier’s law gives
exponential stability, while a coupling via Cattaneo’s law does (surprisingly) not. Therefore, it
is a priori an open question whether the system (1.1) — (1.9) is exponentially stable, despite the
knowledge on the case 7 = 0 from [5]. We shall give a positive answer to this question here using
appropriate energy functionals, also allowing additionally fo # 0. Moreover, the limit 7 — 0 is
studied comparing the two systems.

The paper is organized as follows. In Section 2 we demonstrate the global well-posedness of a
solution to (1.1) — (1.9). Section 3 contains the proof of the main result on exponential stability.
In Section 4 the limit 7 — 0 is considered.

2 Global well-posedness

Here, we can follow [5] to prove the unique global existence of a solution to (1.1) - (1.9). The
new appearance of the nonlinearity fs in (1.2) requires a solution concept of strong solutions.
Let

HYQ) = {we HY(Q) | w(0) = w(ls) =0},
HE(Q) = {we HY(Q) | w(li) =w(Ly) =0},
Vo= {(w) € HYQ) x H' () | u(Ly) = v(Ly),j = 1,2},



Definition 2.1 Let T > 0 and I := [0,T]. Then we call (u,v,0,q) a weak solution to (1.1) -
(1.9), for (ug,vo) € V,u1,00,q0 € L*(2), if

(u,v) € L®(I,V),  (ug,v;) € L(I, L*(Q) x L*()) (2.1)
0 c L™(I,L*(Q), qcL>®I,L*N)) (2.2)
and one has
T T
/ / (udt + Qs — B0y + f1(w)dydadt + / / {vwy + bugw, Ydadt (2.3)
Q Q 0 O

= [{w16(0.) — won(0 }w+/wW ) — voe(0, )}
Q

T
[ [1=00 42000~ buste + fo@)}drdt = [{806(0,) + duo ¥(0,)}dz (24)
Q Q

Q
T
//{_QXt+QX+1€9Xz}d$dt = /qax(O, -)dx (2.5)
Q Q (951

for all (¢, w) € C*(1,V) with ¢(T,-) = ¢¢(T,-) = 0,w(T,-) = w(T,-) =0, v € C*(I,H}(Q))
with Y(T,-) = ¢(T,-) =0, and all x € C*(I, HL(Q)) with x(T,-) = x+(T,-) = 0.

Definition 2.2 A weak solution is called a strong solution if
(u,v) € CUI, (H*(Q) x H*(Q))NV)NCHI,V)NC*(I,L*())
6 € CO(I, HL () N CH(I,L*(Q)), g€ C°(I,(Hp(2)) N CH(I, L*()). (2.7)
Then we have the following result about existence and uniqueness of solutions

Theorem 2.1 Let (ug,v9) € (H*(Q) x H*(Q) NV,0p € H}(Q),q0 € HR(Y) satisfying the
compatibility condition

augz(Lj) — BOo(L;) = bvo(Lj), j=1,2.
Then there is a unique strong solution (u,v,0,q) to (1.1) — (1.9).

Proof. We sketch the proof since the Faedo-Galeskin method works as in [5]. Let {(¢;, w;)|j €
N} be an orthonormal (in L?) basis (ONB) in (H2(Q) x H2(Q)) NV, let {;]j € N} be an ONB
in H2(Q) N HE(Q), and let {&|7 € N} be an ONB in H2(Q) N H5(9). In the ansatz

N N
z) =Y aj(t)pi(x), oV (tz) =) di(t)w;(x)
j=1

j=1
N N

OV (t,x) = bi(t)p;(x), ¢V (tz) = p(t)g(x)
j=1 j=1
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the set {a;,d;,b;,p;|lj = 1,...,N} is determined by solving the system of nonlinear ordinary
differential equations given by requiring, for j =1, ..., N,

[ubs + ol oo — 00V 00 + RN )pide = 0 (28)
Q
/vgwj +boolNw;de = 0 (2.9)
1971
/ OV s + g + Sl + f2(0N)de = 0 (2.10)
Q
/rqivxj + ¢V + k0N p;de = 0. (2.11)
Q

Initial data are given as usual, e.g.

o0

a;(0) =ap, where wug(z)= Z aégoj(x).
j=1

Then a unique solution {a;,bj,d;,p;|lj = 1,..., N} exists in [0,Tn] for some Ty < T. The
following estimates prove Ty = T (arbitrary). Let

Fi(s) ::/fl(r)dr (2.12)
0

Multiplying (2.8) by xdaj(t), (2.9) by xdd}(t), (2.10) by £3b;(t) and (2.11) by Byp;(t), integra-
tion and summation over j = 1,..., N yields

%EN(t) < —y / V2, — / F2(0N)0V de < const.EN (1) (2.13)
Q Q
where
1
EN({t) = 3 /{/@5|ui\7\2 + a/€5|uiv|2 + 268 Fy(u™) + 6810V 2 + m8|¢Y |*Ydx
Q
+/{/€5|vgv|2 + BroN Py, (2.14)
Q1

By (2.13) we get the following boundedness

(u™,v™) bounded in L®(I,V)
(uNv)) bounded in L%
0" bounded in L>®

¢ bounded in L%°(I, L*(Q)).

Weak-* convergence leads to a limit (u, v, 6, q). By the lemma of Aubin ([10, p.97]) we conclude
that
uy —u ae in I x



and then
fiw) — fi(u) weakly in  L*(I, L*()).

If fo = 0 this would suffice to conclude that (u,v,0,q) is a weak solution, by letting N — oo
in (2.8) — (2.11). For f» # 0 we differentiate (2.8) — (2.11) with respect to ¢ and get a priori

estimates also for
[ 167 .
Q

f2(8N) — f2(0)

and we recognize that (u,v,6,q) is a weak, and then strong solution. The uniqueness is proved

finally allowing to conclude

as follows:

Let (u*,v*,0%,q*) := (u1 —u2,v1 —v2, 61 — 02, g1 — q2) be the difference of two strong solutions.
Substracting the differential equations, then multiplying by uy, v}, 0%, and ¢*, respectively, one
obtains for

1 1
P(t) := 5 /{né|uﬂ2 + ou<;5|u;|2 + ﬁﬁ\@*\z + Tvﬂ\q*|2}dx + 3 /{n5|vf|2 + bmé\v;|2}d:z
Q 1951
that
d *|2 *
SPW) < =y [lqPde— [(fiw) - fle)uids
Q Q

—/(f2(91) — f2(02))0"dx

Q
< cP(t)

for some constant ¢ > 0, implying P = 0, since P(0) = 0. This yields u* = 0, v* = 0, §* = 0,
and ¢* = 0.

Q.E.D.

3 Exponential stability

For the proof of exponential stability we may assume without loss of generality that
y==k, (=06 (3.1)

Otherwise, a multiplication of (1.2) by p2 := k/v and of (1.1) by p1 := (dx)/(57) yields the
desired equality (3.1), and the additional constructs ps in front of ;, and p; in front of uy can
be dealt with in the energies below in an obvious manner.

Let (u,v,0,q) be a strong solution to (1.1) — (1.9). Let

1 1
E\(t) = 3 /{uf +au? +60? + 17¢* + 2F (u) }da + 3 /{vf + bv}da
Q 9
= El(u,’(},e,q)



Eq(t) = Ei(ug,ve, 6, q:) —2/1[71(th)al~’C

Q
E(t) == Ei(t) + Ea(t).
We have
%El(t) _ / dr — / F2(0)0dz
Q Q
%Eg(t) = —/qtzda?—/fé(&)H?daﬁ—/f{(u)ututtdx. (3.2)
o Q Q

The technical difficulty in comparison to [5] consists in the fact that 6, is no longer equivalent
to ¢ but only to the highest derivative ¢;. This can be overcome as follows.
Multiplying equation (1.2) by u,; we obtain

dt

d d
pn /«9uxtd9& — [Quit)oa + /quttd:n + [kquat]oa — /@—/qumdx—i-
O Q Q

+n/qtum+5/u§tda:+/f2(9)umdaz = 0,
Q Q

Q
implying
d
g/{ﬁuxt — mqum}dx = —5/uitdx—/9xuttdm—ﬂ/qtumdx—/fg(G)uxtdx
Q Q Q Q Q

+0(t, L1 )ug(t, L1) — 0(t, Lo)uw(t, Lo)
+rq(t,0)ug(t,0) — kq(t, L3)uz(t, L3). (3.3)

Muliplying (1.1) by w and (1.2) by v, respectively we get, using (1.10) for f,

d
%{/utudm+/vtvd$} < /u?dx—i—/vfdw—a/uidx—b/vid:v—6/91ud$
Q 1951 Q 951 Q 1951 Q

+860(t, L1)u(t, L1) — 06(t, La)u(t, Ls). (3.4)

Mulitplying (1.2) by 6; we get
d
e /qﬂxdl‘ _ —/efd:c _ ﬁ/qtﬂxdz‘ - 5/uxt0td:v _ /fg(G)thm. (3.5)
Q Q Q Q Q
Muliplying (1.1) by wuy, yields
—jt/utumdx = —a/ufmdaz—|—/uitdx—|—5/c9xumd$—|—/f1(u)umdx.
Q Q Q Q Q
*ut(t, Ll)uxt(t, Ll) + ut(t, Lg)’u,xt(t, LQ) (36)



Let p; be a piecewise linear function on  being a straight line joining p;(0) > 0 to p1(L) < 0
n (0,L), and a straight line joining p1(L2 > 0) to p1(Ls) < 0 on (Lg, L3).
A differentiation of (1.1) with respect to t and a multiplication by piu,; yields

d 1 1
7 /pluttumd:c = _i/plx(utt —|—au dx + = 5 {pl(uft +au§t)}aﬂ
Q
—5/thpluxtda;—/f{(u)utpluxtda?. (3.7)
Q Q
Mulitplying (1.2) by p16,¢ gives
d B 1 1 5 K2 o 1 k2 9
_Hﬂ /pl%vexda: — 2 b1, :ve + - 2 [pl(gt + 791)} 50 - 27_!]71,3:0336&5
—|—a/f2(0)p19zdm—/fé(@)pletexd:v. (3.8)
Q Q
Combining (3.7) and (3.8) we obtain
d 1 9 9 9 K2 9 K
% /{pluttumt - "Qpl%:ex - f2(9)p1935}d1' = 5 [pl (utt + auy,; + Ht + 7935)} 59 + ; pleezdx

Q

=:J1(t)

—/ é(e)etpl%dﬂf—/f{(u)utpluxtdﬂv-
Q

Q
1 2
—3 / p1a(ul + aul, + 07 + —Hi)dm‘ (3.9)
Q
Analogously, let po be a straight line joining pa(L1) < 0 to p2(Lg) > 0 on Q4. Then we have
d 1 1
7 /vttpgvmtdx = i{pg(v?t + bv%t)]agl ~3 /pgw(vft + bv?,)dz. (3.10)
Ql Q1
—_———

::Jz(t)

From (3.9) and (3.10), respectively, we obtain

d
SN0 < —di[ud(t, L) + gyt Lo) + (8, 0) + uly(t, L) + (¢, L)
U2yt Lg) + 03 (t, Ln) + OF(t, L) + 02(1,0) + 02(t, Lo)]
s / (W2, + u2, + 02 + 62)dz + dy / o0, (3.11)
Q Q

d
Zh(l) < ds |[uf,(t, Lo) +u2y(t, L) + 6 (t, Lo)] —d4/(v§t+v§t)dx,
971

implying

omh)} < Gt L)+ (e L) + B0 L) —ds [(h+12)de, (312)
951



where dy, ds, ... (will) denote positive constants (u1, o in (1.10) are assumed to be less than a
fixed constant, since they will be chosen small enough later on). The estimates (3.11), (3.12)

imply

RO+ 5mn®} < [ L) + L)+ 2,(0,0) + it L) + (e, La)

+uly(t, L) + 67 (t, L1) + 07(t, Lo) + 02(t,0) + 02(t, Lo) |

—ds /(vft + v%t)d:c + dg /(uiw + Uit + 03 + Oi)da:. (3.13)
(951 Q

We conclude from (3.5)
d
—4kK dgdt/qﬁwdm < —2d6/9t2+d7/\qtﬁw\daﬂ—i-d7/u§tdx+d7/9§dm. (3.14)
Q Q Q
Combining (3.13) and (3.14), and denoting

di
T(t) = () + L Jy(t) — 4w dg/qéxd:r
2d; J

as well as the boundary terms in (3.13) by B(t), we conclude

d d
() < ——IB() d5/(vt2t+vgt)dx—d6/9t2dx
Q1 Q
tds / (2, + 2, + 02 + ¢?)dx. (3.15)
Q

We get from (3.6) for 1 > 0 and some C¢, denoting a positive constant depending on &1,

d
dt/utumdx < —5 u dx—l—STls[ (2, L1)+u A (t, L2>}
Q Q
implying
d —4dg -
&{ o /utumdac} < *2d8 /uixdx + E [uit(t, Ll) -+ uit(t7 LZ)]
Q Q
4u1d
+% /“idfﬂ +C, /(u;?ct +63)dz. (3.16)
Q Q

Adding (3.15), (3.16) we get for

Ta(t) = Jy(t) — 78/ (e + uy)dz
Q



that

d 1
ZN(t) < —5(di—e)B(t) —ds /(vft + v dx — d6/0§dx — dg /uixdm
971 Q Q
‘O, / (W2, + 02 + q2)dz + pudy / w2de. (3.17)
Q Q
Let
J5(t) :== /utud:v+ /vtvd:v.
Q 941
Then we get for €2 > 0 from (3.4)
d b
52%J5(t) < 52/ufdx—|—€2/vfdx - % uldr — g/vid:ﬁjtcgz /Hidzv. (3.18)
Q Q Q Q Q

With
J@(t) = J4(t) + &2 J5(t)

we conclude from (3.17), (3.18)

d 1
o) < —5(di—2)B(t) — ds /(vft +v3,)dx — dG/efda: — dg /ufmdaz
Q4 Q Q
— <oz252 — ,u1d9> /uida: — b% /vid:z: + e /u?da:
Q 191 Q
—|—52/de$ +Cq, /(uit +¢})dx + Cs\ o, /Hidx (3.19)
0 Q Q

The equation (3.3) implies for N > 0 that

d
N@ /(Hua;t — RQUgg)dx < —N¢6 / uitda: + %1 [u?t(t, L)+ uft(t, Lo) + uit(t, 0) + uit(t, Lg)}
Q Q

d
+2 / W2, dz + Ch e, / 02z + O s[2(1.0) + (1. Ls)] . (3.20)
Q Q

With
J7(t) = Js(t) + N/(Huxt — KQUgy )dz
Q
a combination of (3.19), (3.20) yields

d

1 d
ah(t) < —i(d1 — 2¢1)B(t) — ds /(v,?t +02,)dx — dg /et?dx — ;/ugxdx
Q Q Q

b
_(632 — ,u,ldg) /ui — % vidr — (N§ — C., — m)/uitdx +52/ufdm

2
Q Q Q Q
+eo /Utzdx +Cei o N /(9:% +¢?)dr + O, [qQ(t, 0) + ¢*(t, Lg)] (3.21)
Q Q



Observing
d
—g/vﬁtda; < dm/uitdx—dn/vfdx
Ql Q Q1

arising from
x

vi(t,x) = wuy(t, L) +/vxt(t,y)dy
Ly

we conclude from (3.21)

d 1
—J7(t) < —=(di —2e1)B(t) / (v3 + v2)dx — (d11 — €2) /vt dx
dt 2 2
951
- 20p— B [ 02 qw (952 _ 2
d6/0 5 /umdaj ( 5 uldg)/uxd:z:
Q
—b% vide — (NS — dyg — Cey — 1) /ugt(m
o Q

+eo /ufd:v +Cey o N /(0920 +¢?)dr + Cey N [qQ(t, 0) + ¢*(t, Lg)}. (3.22)
Q Q

Choosing first €1 such that d; —2e1 > 21, then NV such that N6 —dig — C — w1 > dys for some

dia > 0, then £5 such that di; — o > 41, and assuming 92 — pydg > %22, we get from (3.22)
d d d
—J7(t) < —j/(vft +v2)dx — d6/9t2dx - —S/uixdx
dt 2 2
o Q Q
dll 2 Oé€2 2 b62 2 2
—— [ vide — — [ uypder — — [ vidx — di2 [ uidx
2 4 2
o Q 0 Q

+eo /ufd:p +Czy o N /(9920 +¢?)dr + Cey v [qz(t, 0) + ¢*(t, Lg)] (3.23)
Q Q

Observing that for €5 > 0
€
Cgl,NqQ(t 0) = —Ce N /d dx < j/qidm—i—CEl,N@/qzd:c

2
Q Q

(analogously for C¢, n ¢*(t, L)) we conclude from (3.23)

d d
%Jﬂ ) < 25 (v + v2,)dx — d6/02dx - —/u dx
1951
di1 bea
—7 ’UtzdLU — T 2d — 7/U§dl' — dlg/uitd.ﬁ
(931 Q Q1 Q
+eo /ufdm + C) o0 Nes /(0:% + ¢ + ¢*)dx + 3 /qf,dx (3.24)
Q Q Q
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Using Poincaré’s estimate and equations (1.2), (1.3) we have

/u§d$ < dlg/ufxd:ﬂ,
Q

Q

and

/qux < dyy /(93 +u2,)dz + dis /(q2 +q)da.
Q Q Q

This combined with (3.24) yields for small e2,e3 (hence necessarily small y;)

d _ds 9 dg _dn
- < _ _°
dtJ5( ) < 5 (v3 +v2)dx d16/0 dx 5 /u dx > vid
o7} Q 9
be
—% uid:ﬁ — 72 /vgdx — d17/uitdm — dlg/u?dac
Q 951 Q Q
—dlg/qul' + C\ o0 Nes /(q2 + q¢7)dx. (3.25)
Q Q

For M > 0 we define the final Lyapunov functional £(t) as
L(t) = J7(t) + ME(t).

Using the equations (1.1) and (1.3) we can produce negative terms — f 02dx and — f u?,dr, and

we conclude from (3.2) and (3.25), for pg, po sufficiently small, and M large enough

%E(t) < —dx€(1). (3.26)

Since L(t) is equivalent to £(¢) for M sufficiently large, i.e. there are positive constants C, Cs
such that for all ¢ we have

CiE(t) < L(t) < CE(t)

we conclude from (3.26) as usual

E(t) < Che~%le(0)

for some constants dg, Cy > 0 being independent of the data. Thus we have proved

Theorem 3.1 If py,pu2 (from (1.10)) are sufficently small, the strong solution (u,v,0,q) to
(1.1) — (1.9) given in Theorem 2.1 decays exponentially i.e.

Jdy,Co >0 = E(t) < Che Dle(0) Yt >0

where Cy and dy are independent of the initial data.

4 The limit = — 0

As shown above, the qualitative behavior — exponential stability — is the same for the case
7 > 0 as for the case 7 = 0. Now we compare the two systems and show that the energy of the

11



difference is of order O(7?).
Let (u”,v7,07,q") denote the solution to (1.1) — (1.9) for 7 > 0, and let (u®,v°,6°, ¢°) denote
the solution for 7 = 0 with

¢ = —rbD.

We assume compatible initial data, i.e. the same data (ug,u1,vo,v1,60) and the compatibility
condition

qo = —1639075,;. (41)

Let
(’LAL,@, 07 (j) = (UT - uO>UT - Uov 07 — 90, qT - qO)

denote the difference of the solutions. Then (4, v, 6, §) satisfies

Qg — Qg + 005 + f1(u”) — fi(u®) = 0 (4.2)

Ot + Kl + Sligy + f2(07) — f2(6°) = 0 (4.3)
T+ G+ K0, = —1q)

= 7K (4.4)

by — bigy = 0 (4.5)

with zero initial conditions and boundary conditions (1.7) — (1.9). Let, for 0 < ¢ < T, the energy
term F(t) be defined as (cp. Eq(t))

1 /. . L[, .
Fi(t) = 5/u?+au§+02+7q2dx+ 2/U?+bv§dz‘.

941
Then, by (4.1) — (4.5), we have
d ) ) N L ) )
SR = - [ddr - / Oida + [(A(@) — L@ iuda + [ (f(67)  Fo(6°)dd
Q Q Q Q
< 3 . /|9 de—l—m/hf—u0||1lt|dx+,u2/|GT—90||é\dx
Q Q
< (t)

with a positive contant Cp essentially depending only on T'. Hence

t

22,2 7
Fi(t) < C’T/ 1 (r )dr—i—T//]HO 2dxdr,
0 0

implying

t

2

R < {9 | [ 08 awdrecr.
0 Q

12



Using the exponential stability result from [5] we know

¢
¥ 0 |2
¢ = sup |0, |“dzdr < oo,
t>0
0 Q

hence we conclude

Theorem 4.1 The first-order energy Fy of the difference of solutions to the Cattaneo system
(1 > 0) and the Fourier system (1 = 0) (1.1)- (1.9), with assumed compatibility (4.1), is of
order O(7?%), this is:

Vte[0,T] : Fi(t) =0(?) as 1 —0.
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