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Abstract

We consider the initial-boundary value problem in hyperbolic thermoelasticity with sec-
ond sound in a three-dimensional exterior domain. The low frequency expansion of solutions
to the corresponding stationary resolvent problem is given and the limit to the classical ther-
moelastic problem is investigated.

1 Introduction

In this paper, we consider the low frequency expansion of the resolvent problem correspending to
linear thermoelasticity with second sound in a three-dimensional exterior domain. The modeling
of the second sound effect turns the classical hyperbolic-parabolic thermoelastic system in a
purely hyperbolic one with a damping term. Thus the physical paradox of infinite propagation
of heat pulses is removed.

Let Ω be an exterior domain in R3 with C1,1 boundary Γ. The linear hyperbolic thermoelastic
system with second sound in Ω is formulated as follows:

utt − µ∆u− (µ + λ)∇div u + β∇θ = 0
θt + γdiv q + δdiv ut = 0
τ0qt + q + κ∇θ = 0 (1.1)

in Ω× (0,∞) subject to the initial condition:

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), q(x, 0) = q0(x) in Ω

As boundary condition in this paper, we consider the Dirichlet condition:

u = 0, θ = 0 on Γ× (0,∞)

Here, µ, β, γ, δ and κ are positive constants while λ is a constant such that 2µ + λ > 0, and
u and q are three vectors of unknown functions while θ is a unknown scalar function. τ0 > 0
is the so-called relaxation parameter, while τ0 = 0 leads to the classical hyperbolic-parabolic
thermoelastic equations in Ω:

utt − µ∆u− (µ + λ)∇div u + β∇θ = 0
θt − γκ∆θ + δdiv ut = 0 (1.2)
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0AMS subject classification: 35 L 50, 74 F 05, 74 G 50

1



in Ω× (0,∞) subject to the initial condition:

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω

and the boundary condition:

u = 0, θ = 0 on Γ× (0,∞)

For a survey on results in classical thermoelasticity see [7], for a survey on hyperbolic heat
conduction models see [1]. Results on the well-posedness both for linear and nonlinear thermoe-
lasticity with second sound in one or three dimensions, and on the time-asymptotic behavior
for bounded domains or for the Cauchy problem are given in and [8, 9, 5, 4, 16, 10, 11] also
the references therein. The time-asymptotic behavior in exterior domains for the system with
second sound has not yet been studied. For this purpose the low frequency expansion for the as-
sociated resolvent problem is of interest. For an expansion in classical thermoelasticity (τ0 = 0)
see [2].

We are interested in the low frequency expansion of the corresponding resolvent problems
to (1.1) and (1.2), which is especially important to investigate the decay property of solutions
to (1.1) and (1.2) as time goes to infinity, cp. [6, 12, 13, 14, 15].

Moreover, we will discuss some convergence property of the resolvent as τ0 tends to zero.
We remark that it has been observed ([3]) for other systems that the behavior for τ0 > 0 and
that for τ0 = 0 might be quite different. Here we show that the systems are close to each other.

To state our results precisely, we consider the resolvent problem corresponding to (1.1) and
(1.2), which is formulated as follows:

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in Ω
kθ + γdiv q + δkdiv u = g in Ω
τ0kq + q + κ∇θ = h in Ω

u = 0, θ = 0 on Γ (1.3)

and

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in Ω
kθ − γκ∆θ + δkdiv u = g in Ω

u = 0, θ = 0 on Γ, (1.4)

respectively.
As main results we shall obtain the low frequency expansion in Theorem 3.3 and Theorem

3.4, and the conclusion in Section 4 on the continuous dependence of the parameter τ0.
The paper is organized as follows: In Section 2 we consider the spectral analysis for the

Cauchy problem where Ω is all of R3, in Section 3 the case of an arbitrary exterior domain Ω is
considered, and in Section 4 the conclusion on the dependence of the relaxation parameter τ0

is presented.

2



2 Spectral analysis of the thermoelastic equations with second
sound for Ω = R3

In this section, we consider the resolvent problem in all of R3:

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in R3

kθ + γdiv q + δkdiv u = g in R3

τ0kq + q + κ∇θ = h in R3 (2.1)

From the third equation of (2.1) we have

q = (τ0k + 1)−1(h− κ∇θ) (2.2)

and therefore, inserting this formula into the second equation in (2.1), we have

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in R3

kθ − γκ(τ0k + 1)−1∆θ + δkdiv u = g − γ(τ0k + 1)−1div h in R3 (2.3)

Therefore, for the simplicity instead of (2.3) we consider the following equation:

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in R3

kθ − γκ(τ0k + 1)−1∆θ + δkdiv u = g in R3 (2.4)

To solve (2.4), we introduce the Helmholtz decomposition. In general, given f = t(f1, f2, f3) ∈
Lp(R3)1, we set

g = Pf = F−1
ξ [P̂ (ξ)f̂(ξ)](x)

π = Qf = F−1
ξ

[
− iξ · f̂(ξ)

|ξ|2
]
(x) (2.5)

where f̂ = F [f ] and F−1 stand for the Fourier transform and its inversion formula, respectively;
P̂ (ξ) is the 3× 3 matrix given by the formula:

P̂ (ξ) =
(
δj` −

ξjξ`

|ξ|2
)
, δj` =

{
1 j = `,

0 j 6= `

and · stands for the usual inner product in R3. Using these symbols, we have

f = Pf +∇Qf (2.6)

In particular, we know from Fourier multiplier theorems that

div Pf = 0, ‖Pf‖
Lp(R3)

≤ C‖f‖
Lp(R3)

(2.7)

provided that 1 < p < ∞.
Applying P and Q in (2.4) and using the fact that div u = ∆Qu,we have

k2Pu− µ∆Pu = Pf in R3

k2Qu− (2µ + λ)∆Qu + βθ = Qf in R3

kθ − γκ(τ0k + 1)−1∆θ + δk∆Qθ = g in R3 (2.8)

1tM denotes the transposed M
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We can solve the first equation of (2.8) easily. In fact, we have

Pu = F−1
ξ

[ P̂ (ξ)f̂(ξ)
k2 + µ|ξ|2

]
(x) (2.9)

On the other hand, to solve the 2nd and 3rd equations in (2.8), for the notational simplicity we
set

w = Qu, F = Qf, G = g (2.10)

And then, we have

k2w − (2µ + λ)∆w + βθ = F

kθ − γκ(τ0k + 1)−1∆θ + δk∆w = G (2.11)

in R3. Note that w and θ are both scalor functions, so that (2.11) is a 2 system of partial
differential equations. Applying the Fourier transform to (2.11), we have 2 system of linear
equations:

(k2 + (2µ + λ)|ξ|2)ŵ(ξ) + βθ̂(ξ) = F̂ (ξ)

(k + γκ(τ0k + 1)−1|ξ|2)θ̂(ξ)− δk|ξ|2ŵ(ξ) = Ĝ(ξ)

Setting

Âk(ξ) =
(

k2 + (2µ + λ)|ξ|2 β
−δk|ξ|2 k + γκ(τ0k + 1)−1|ξ|2

)
we finally arrive at the linear equation:

Âk(ξ)
[
ŵ(ξ)
θ̂(ξ)

]
=

[
F̂ (ξ)
Ĝ(ξ)

]
(2.12)

To obtain the low frequency expansion in R3, we start with the analysis of the inverse matrix
of Âk(ξ). We have

det Âk(ξ) = (2µ + λ)γκ(τ0k + 1)−1|ξ|4 + ((2µ + λ + δβ)k + γκ(τ0k + 1)−1k2)|ξ|2 + k3

= (2µ + λ)γκ(τ0k + 1)−1P̃ (t, k) (t = |ξ|2) (2.13)

where we have set

P̃ (t, k) =t2 + ((2µ + λ)γκ)−1(τ0k + 1)[(2µ + λ + δβ)k + γκ(τ0k + 1)−1k2]t

+ ((2µ + λ)γκ)−1(τ0k + 1)k3

=t2 +
(2µ + λ + δβ

(2µ + λ)γκ
(τ0k + 1)k +

k2

2µ + λ

)
t +

(τ0k + 1)k3

(2µ + λ)γκ

We start with the following lemma.

Lemma 2.1. Let P̃ (t, k) be the polynomial defined as above. Then, there exist two functions
µj(k, τ0) (j = 1, 2) such that

P̃ (t, k) = (t + µ1(k, τ0))(t + µ2(k, τ0))

µ1(k, τ0) =
2µ + λ + δβ

(2µ + λ)γκ
k +

∞∑
j=1

s1
j (τ0)
j!

kj+1

µ2(k, τ0) =
1

2µ + λ + δβ
k2 +

∞∑
j=1

s2
j (τ0)
j!

kj+2
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Here, s1
j (τ0) and s2

j (τ0) are polynomials in τ0 and the expansion formulas converge absolutely
when |k| ≤ k0 and |τ0| ≤ 1 for some positive constant k0 which is independent of τ0.

Proof. To obtain the formula for µ1(k, τ0), we set t = ks, and then we have

s2 +
2µ + λ + δβ

(2µ + λ)γκ
s + k

{( 1
2µ + λ

+
2µ + λ + δβ

(2µ + λ)γκ
τ0

)
s +

1
(2µ + λ)γκ

}
+ k2 τ0

(2µ + λ)γκ
= 0 (2.14)

If we set

s(k, τ0) = −2µ + λ + δβ

(2µ + λ)γκ
+

∞∑
j=1

s1
j (τ0)kj

we have s1
j (τ0) = (j!)−1s(j)(0, τ0), and therefore differentiating (2.14) j times, setting k = 0 in

the resultant equation and writting s(j)(0, τ0) = s(j) (j ≥ 1) for simplicity, we have

2s(0, τ0)s(j) + 2
j−1∑
`=1

(
j − 1

`

)
s(j−`)s(`) +

2µ + λ + δβ

(2µ + λ)γκ
s(j)

+ j
( 1

2µ + λ
+

2µ + λ + δβ

(2µ + λ)γκ
τ0

)
s(j−1) +

δ1j

(2µ + λ)γκ
+

2δj2τ0

(2µ + λ)γκ
= 0

Since
2s(0, τ0) +

2µ + λ + δβ

(2µ + λ)γκ
= −2µ + λ + δβ

(2µ + λ)γκ

we have

s(j) =
(2µ + λ)γκ

2µ + λ + δβ

{
2

j−1∑
`=1

(
j − 1

`

)
s(`)s(j−`) + j

( 1
2µ + λ

+
2µ + λ + δβ

(2µ + λ)γκ
τ0

)
s(j−1)

+
δ1j

(2µ + λ)γκ
+

2δj2τ0

(2µ + λ)γκ

}
where we have set

δ1j =

{
1 j = 1
0 j 6= 1

, δ2j =

{
1 j = 2
0 j 6= 2

From this formula we see that s(j) are polynomials in τ0 for all j ≥ 1, which implies the assertion
for µ1(k, τ0) = ks1(k, τ0).

To obtain the formula for µ2(k, τ0), we set t = k2s, and then we have

2µ + λ + δβ

(2µ + λ)γκ
s +

1
(2µ + λ)γκ

+ k
{

s2 +
( 1

2µ + λ
+

2µ + λ + δβ

(2µ + λ)γκ
τ0

)
s +

τ0

(2µ + λ)γκ

}
= 0 (2.15)

If we set

s2(k, τ0) = − 1
2µ + λ + δβ

+
∞∑

j=1

s2
j (τ0)kj
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differentiating (2.15) j times and setting k = 0 in the resultant equation, we have

2µ + λ + δβ

(2µ + λ)γκ
s
(j)
2 (0, τ0)

+ j
( d

dk

)j−1{
s2(k, τ0)2 +

( 1
2µ + λ

+
2µ + λ + δβ

(2µ + λ)γκ

)
s2(k, τ0) +

τ0

(2µ + λ)γκ

} ∣∣∣
k=0

= 0

from which the assertion for µ2(k, τ) follows analogously. This completes the proof of the
lemma.

Now, we shall give a solution formula. Since

Âk(ξ)−1 =
1

det Âk(ξ)

(
k + γκ(τ0k+)−1|ξ|2 −β

δk|ξ|2 k2 + (2µ + λ)|ξ|2
)

det Âk(ξ) = (2µ + λ)γκ(τ0k + 1)−1P (|ξ|2, k)

we have

ŵ(ξ) =
1

(2µ + λ)γκP̃ (|ξ|2, k)
[{(τ0k + 1)k + γκ|ξ|2}F̂ (ξ)− β(τ0k + 1)Ĝ(ξ)]

θ̂(ξ) =
τ0k + 1

(2µ + λ)γκP̃ (|ξ|2, k)
{δk|ξ|2F̂ (ξ) + (k2 + (2µ + λ)|ξ|2)Ĝ(ξ)} (2.16)

From (2.6) and (2.10), we have u(x) = Pu(x) +∇Q(x) = Pu(x) +∇w(x), and then using (2.9)
and (2.16) we have

û(ξ) =
P̂ (ξ)f̂(ξ)
k2 + µ|ξ|2

+
iξ

(2µ + λ)γκP̃ (|ξ|2, k)
[{(τ0k + 1)k + γκ|ξ|2}F̂ (ξ)− β(τ0k + 1)Ĝ(ξ)] (2.17)

Recalling (2.5) and (2.10) and denoting the j-th component of P̂ (ξ)f̂(ξ) by P̂ (ξ)f̂(ξ)|j , we have

P̂ (ξ)f̂(ξ)|j = f̂j(ξ)−
3∑

`=1

ξiξ`

|ξ|2
f̂`(ξ), F̂ (ξ) = Q̂f(ξ) = −i

3∑
`=1

ξ`f̂`(ξ)
|ξ|2

, Ĝ(ξ) = ĝ(ξ)

finally we arrive at the following formulas:

ûj(ξ) =
f̂j(ξ)

k2 + µ|ξ|2
−

3∑
`=1

ξjξ`

(k2 + µ|ξ|2)|ξ|2
f̂`(ξ) +

3∑
`=1

(τ0k + 1)kξjξ`

(2µ + λ)γκP̃ (|ξ|2, k)|ξ|2
f̂`(ξ)

+
3∑

`=1

ξjξ`

(2µ + λ)P̃ (|ξ|2, k)
f̂`(ξ)−

iβ(τ0k + 1)ξj

(2µ + λ)γκP̃ (|ξ|2, k)
ĝ(ξ)

θ̂(ξ) = −i

3∑
`=1

(τ0k + 1)δkξ`

(2µ + λ)γκP̃ (|ξ|2, k)
f̂`(ξ) +

(τ0k + 1)k2

(2µ + λ)γκP̃ (|ξ|2, k)
ĝ(ξ) +

(τ0k + 1)|ξ|2

γκP̃ (|ξ|2, k)
ĝ(ξ)

(2.18)

From (2.18) we have the following theorem.

Theorem 2.2. Let 1 < q < ∞ and 0 < τ0 ≤ 1. Then, for any small ε > 0 there exist a constant
σ0 > 0 depending on ε and an operator Sk ∈ Anal (Uσ0,ε,B(Lq(R3)3 × Lq(R3),W 2

q (R3)3 ×
W 2

q (R3))) such that for any (f, g) ∈ Lq(R3)3 × Lq(R3) , (u, θ) = Sk(f, g) solves equation (2.4).
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Here, for two Banach spaces X and Y , B(X, Y ) denotes the set of all bounded linear operators
from X into Y , Uσ0,ε denotes an open set in C defined by the formula:

Uσ0,ε = {k ∈ C \ {0} | | arg k| ≤ (π/2)− ε, |k| ≤ σ0}

and Anal (Uσ0,ε, X) denotes the set of all holomorphic functions defined on Uσ0,ε with their
values in X.

Proof. In view of Lemma 2.1, we see that for any small ε > 0, there exists a constant cε > 0
depending only on ε such that

|µ|ξ|2 + k2| ≥ cε(µ|ξ|2 + |k|2)

provided that | arg k| ≤ (π/2) − ε. In view of Lemma 2.1,we also see that there exist positive
numbers σ0 and cε depending on ε such that

|P̃ (|ξ|2, k)| ≥ cε(|ξ|2 + |k|)(|ξ|2 + |k|2)

provided that | arg k| ≤ (π/2)− ε and |k| ≤ σ0 whenever 0 < τ0 ≤ 1. Therefore, if we define an
operator Sk by the formula:

Sk(f, g) = (F−1
ξ [û1],F−1

ξ [û1],F−1
ξ [û1],F−1

ξ [θ̂])

where ûj(ξ) (j = 1, 2, 3) and θ̂(ξ) are functions given in (2.18), then applying the Fourier
multiplier theorem, we see that Sk is a holomorphic function with respect to k ∈ {k ∈ C | Re k >
0 and |k| < σ0 } with values in B(Lq(R3)3 × Lq(R3),W 2

q (R3)3 ×W 2
q (R3)) and (u, θ) = Sk(f, g)

solves (2.4) for (f, g) ∈ Lq(R3)3 × Lq(R3).

Now, we shall discuss some expansion formula of Sk in a neighborhood of the origin: k = 0
of a complex plane, which can be done by shrinking the definition domain of Sk and widening
the range of Sk in a suitable sense (see Vainberg [13, 14, 15]). Main theorem will be stated in
the end of this section. To give an expansion formula for Sk, we shall give several lemmas in
what follows.

Lemma 2.3. Let Re
√

a > 0. Then, we have

F−1
ξ

[ 1
|ξ|2 + a

]
(x) =

e−
√

a|x|

4π|x|
, F−1

ξ

[ 1
|ξ|2

]
(x) =

1
4π|x|

(2.19)

F−1
ξ

[ 1
(|ξ|2 + a)|ξ|2

]
(x) =

1
4π
√

a
− |x|

8π
+
√

a|x|2

8π

∫ 1

0
(1− θ)2e−θ

√
a|x| dθ (2.20)

Proof. The formulas in (2.19) are well-known, so that we may omit its proof.
Since

1
(|ξ|2 + a)|ξ|2

=
−1
a

( 1
|ξ|2 + a

− 1
|ξ|2

)
by (2.19) we have

F−1
ξ

[ 1
(|ξ|2 + a)|ξ|2

]
(x) = − 1

4π|x|a

(
e−
√

a|x| − 1
)

Making an integration by parts two times, we have

e−
√

a|x| − 1 =
∫ 1

0

d

dθ
e−θ

√
a|x| dθ = −

√
a|x|

∫ 1

0
e−θ

√
a|x| dθ
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= −
√

a|x|{[−(1− θ)e−θ
√

a|x|]10 −
√

a|x|
∫ 1

0
(1− θ)e−θ

√
a|x| dθ}

= −
√

a|x|+ (
√

a|x|)2
∫ 1

0
(1− θ)e−θ

√
a|x| dθ

= −
√

a|x|+ 1
2
(
√

a|x|)2 − 1
2
(
√

a|x|)3
∫ 1

0
(1− θ)2e−θ

√
a|x| dθ (2.21)

Therefore, we have

F−1
ξ

[ 1
(|ξ|2 + a)|ξ|2

]
(x) = − 1

4π|x|a

[
−
√

a|x|+ 1
2
a|x|2 − 1

2
a3/2|x|3

∫ 1

0
(1− θ)2e−θ

√
a|x| dθ

]
=

1
4π
√

a
− |x|

8π
+
√

a|x|2

8π

∫ 1

0
(1− θ)2e−θ

√
a|x| dθ

This shows (2.20), which completes the proof of the lemma.

Lemma 2.4. When Re k > 0, we have the following formulas:

F−1
ξ

[ 1
k2 + µ|ξ|2

]
(x) =

1
4πµ|x|

− k

4πµ3/2

∫ 1

0
e−θ(k/

√
µ)|x| dθ (2.22)

F−1
ξ

[ ξjξ`

(k2 + µ|ξ|2)|ξ|2
]
(x) =

1
8πµ

(δj`

|x|
− xjx`

|x|3
)

+ kGj`(k, |x|) (2.23)

where we have set

Gj`(k, |x|) =
−1

8πµ3/2

∫ 1

0
(1− θ)2

{
2δj` − (k/

√
µ)θ

(
3
xjx`

|x|
+ δj`|x|

)
+ θ2(k/

√
µ)2xjx`

}
e−θ(k/

√
µ)|x| dθ (2.24)

Proof. Since k2 + µ|ξ|2 = µ(|ξ|2 + (k/
√

µ)2), by (2.19) with a = k/
√

µ we have

F−1
ξ

[ 1
k2 + µ|ξ|2

]
(x) =

e−(k/
√

µ)|x|

4π|x|µ

By (2.21) we have

e−(k/
√

µ)|x| = 1− (k/
√

µ)|x|
∫ 1

0
e−θ(k/

√
µ)|x| dθ

Summing up, we have proved (2.19).
To prove (2.23), using (2.20) we observe that

F−1
ξ

[ ξjξ`

(k2 + µ|ξ|2)|ξ|2
]
(x) = − 1

µ

∂2

∂xj∂x`
F−1

ξ

[ 1
(|ξ|2 + (k/

√
µ)2)|ξ|2

]
(x)

=
1

8πµ

∂2

∂xj∂x`
|x| − k

8πµ3/2

∂2

∂xj∂x`
|x|2

∫ 1

0
(1− θ)2e−θ(k/

√
µ)|x| dθ

]
To proceed we observe that

∂

∂xj
|x| = xj

|x|
,

∂2

∂xj∂x`
|x| =

δj`

|x|
− xjx`

|x|3
,

∂

∂xj
|x|2 = 2xj ,
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∂2

∂xj∂x`
|x|2 = 2δj`,

∂

∂xj
e−θ(k/

√
µ)|x| = −θ(k/

√
µ)

xj

|x|
e−θ(k/

√
µ)|x|,

∂2

∂xj∂x`
e−θ(k/

√
µ)|x| = −θ(k/

√
µ)

(δj`

|x|
− xjx`

|x|3
)
e−θ(k/

√
µ)|x| + θ2(k/

√
µ)2

xjx`

|x|2
e−θ(k/

√
µ)|x|

In particular, we have

∂2

∂xj∂x`

[
|x|2e−θ(k/

√
µ)|x|

]
=

{
2δj` − 4

xjx`

|x|
θ(k/

√
µ)− θ(k/

√
µ)

(
δj`|x| −

xjx`

|x|

)
+ θ2(k/

√
µ)2xjx`

}
e−θ(k/

√
µ)|x|

=
{

2δj` − (k/
√

µ)θ
(
3
xjx`

|x|
+ δj`|x|

)
+ θ2(k/

√
µ)2xjx`

}
e−θ(k/

√
µ)|x|

Therefore, defining Gj`(k, |x|) by the formula (2.24), we have (2.23), which completes the proof
of the lemma.

In the following two lemmas, we treat the other terms.

Lemma 2.5. Let P̃ (t, k) and µj = µj(k, τ0) be the same functions as in Lemma 2.1. Set

H`(x) = |x|2
∫ 1

0
(1− θ)2e−θµ`(k,τ0)1/2|x| dθ, ` = 1, 2 (2.25)

Then, we have the following formulas:

F−1
ξ

[ 1
P̃ (|ξ|2, k)

]
(x) =

1

4π(µ1/2
1 + µ

1/2
2 )

− |x|
8π

+
µ

3/2
1 H1(x)− µ

3/2
2 H2(x)

8π(µ1 − µ2)
(2.26)

F−1
ξ

[ iξj

P̃ (|ξ|2, k)

]
(x) = − xj

8π|x|
+

µ
3/2
1

8π(µ1 − µ2)
∂H1

∂xj
(x)− µ

3/2
2

8π(µ1 − µ2)
∂H2

∂xj
(x) (2.27)

F−1
ξ

[ −ξjξ`

P̃ (|ξ|2, k)

]
(x) = −

δj`

8π|x|
+

xjx`

8π|x|3
+

µ
3/2
1

8π(µ1 − µ2)
∂2H1

∂xj∂x`
(x)− µ

3/2
2

8π(µ1 − µ2)
∂2H2

∂xj∂x`
(x)

(2.28)

F−1
ξ

[ |ξ|2

P̃ (|ξ|2, k)

]
(x) =

1
4π|x|

− µ
1/2
1

4π

∫ 1

0
e−θµ

1/2
1 |x| dθ − µ2

4π(µ1/2
1 + µ

1/2
2 )

+
µ2

8π
|x| − µ

3/2
1 µ2

8π(µ1 − µ2)
H1(x) +

µ
5/2
2

8π(µ1 − µ2)
H2(x) (2.29)

Lemma 2.6. Let P̃ (t, k) and µj = µj(k, τ0) be the same functions as in Lemma 2.1. Set

Hm
` (x) =

∫ 1

0
(1− θ)2θme−θµ`(k,τ0)1/2|x| dθ, ` = 1, 2, m = 0, 1, 2. (2.30)

Then, we have

F−1
ξ

[ −ξjξ`

P̃ (|ξ|2, k)|ξ|2
]
(x) =

−1
8π(µ1 − µ2)

[
2δj`(

√
µ1H

0
1 (x)−√µ2H

0
2 (x))

−
(
3
xjx`

|x|
+ δj`|x|

)
(µ1H

1
1 (x)− µ2H

1
2 (x)) + xjx`(µ

3/2
1 H2

1 (x)− µ
3/2
2 H2

2 (x))
]

(2.31)
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A Proof of Lemma 2.5 To obtain (2.26), we write

1
P̃ (|ξ|2, k)

=
1

(|ξ|2 + µ1)(|ξ|2 + µ2)
=

1
µ2 − µ1

[ 1
|ξ|2 + µ1

− 1
|ξ|2 + µ2

]
=

µ1

µ1 − µ2

1
(|ξ|2 + µ1)|ξ|2

− µ2

µ1 − µ2

1
(|ξ|2 + µ2)|ξ|2

By (2.20) we have (2.26) immediately. From (2.26), we have (2.27) and (2.28) by the following
observation:

F−1
ξ

[ iξj

P̃ (|ξ|2, k)

]
(x) =

∂

∂xj
F−1

ξ

[ 1
P̃ (|ξ|2, k)

]
(x)

= − xj

8π|x|
+

µ
3/2
1

8π(µ1 − µ2)
∂H1

∂xj
(x)− µ

3/2
2

8π(µ1 − µ2)
∂H2

∂xj
(x)

F−1
ξ

[ −ξjξ`

P̃ (|ξ|2, k)

]
(x) =

∂2

∂xj∂x`
F−1

ξ

[ 1
P̃ (|ξ|2, k)

]
(x)

=
∂

∂x`

[
− xj

8π|x|
+

µ
3/2
1

8π(µ1 − µ2)
∂H1

∂xj
(x)− µ

3/2
2

8π(µ1 − µ2)
∂H2

∂xj
(x)

]
= −

δj`

8π|x|
+

xjx`

8π|x|3
+

µ
3/2
1

8π(µ1 − µ2)
∂2H1

∂xj∂x`
(x)− µ

3/2
2

8π(µ1 − µ2)
∂2H2

∂xj∂x`
(x)

To show (2.29), we write

|ξ|2

P̃ (|ξ|2, k)
=

|ξ|2

(|ξ|2 + µ1)(|ξ|2 + µ2)
=

|ξ|2 + µ2 − µ2

(|ξ|2 + µ1)(|ξ|2 + µ2)
=

1
|ξ|2 + µ1

− µ2

P̃ (|ξ|2, k)

Combining (2.19) and (2.26) and writing

e−µ
1/2
1 |x| = 1− µ

1/2
1 |x|

∫ 1

0
e−θµ

1/2
1 |x| dθ

we have (2.29). This completes the proof of Lemma 2.5.

A Proof of Lemma 2.6 To show (2.31), we write

1
P̃ (|ξ|2, k)

=
−1

µ1 − µ2

[ 1
|ξ|2 + µ1

− 1
|ξ|2 + µ2

]
and then by (2.20) we have

F−1
ξ

[ −ξjξ`

P̃ (|ξ|2, k)|ξ|2
]
(x)

=
−1

8π(µ1 − µ2)
∂2

∂xj∂x`

{∫ 1

0
(1− θ)2|x|2

(√
µ1e

−θ
√

µ1|x| −√µ2e
−θ
√

µ2|x|
)

dθ
}

We observe that

∂

∂xj
|x|2 =2xj ,

∂2

∂xj∂x`
|x|2 = 2δj`,
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∂

∂xj

(√
µ1e

−θ
√

µ1|x| −√µ2e
−θ
√

µ2|x|
)

=− θ
xj

|x|

(
µ1e

−θ
√

µ1|x| − µ2e
−θ
√

µ2|x|
)

∂2

∂xj∂x`

(√
µ1e

−θ
√

µ1|x| −√µ2e
−θ
√

µ2|x|
)

=− θ
(δj`

|x|
− xjx`

|x|3
)(

µ1e
−θ
√

µ1|x| − µ2e
−θ
√

µ2|x|
)

+ θ2 xjx`

|x|2
(
µ

3/2
1 e−θ

√
µ1|x| − µ3/2e−θ

√
µ2|x|

)
By Leibniz’s formula, we have

F−1
ξ

[ −ξjξ`

P̃ (|ξ|2, k)|ξ|2
]
(x) =

−1
8π(µ1 − µ2)

∫ 1

0
(1− θ)2

[
2δj`

(√
µ1e

−θ
√

µ1|x| −√µ2e
−θ
√

µ2|x|
)

+ 4xj(−θ)
x`

|x|

(
µ1e

−θ
√

µ1|x| − µ2e
−θ
√

µ2|x|
)

+ |x|2(−θ)
(δj`

|x|
− xjx`

|x|3
)(

µ1e
−θ
√

µ1|x| − µ2e
−θ
√

µ2|x|
)

+ |x|2θ2 xjx`

|x|2
(
µ

3/2
1 e−θ

√
µ1|x| − µ

3/2
2 e−θ

√
µ2|x|

)]
dθ

=
−1

8π(µ1 − µ2)

[
2δj`(

√
µ1H

0
1 (x)−√µ2H

0
2 (x))−

(3xjx`

|x|
+ δj`|x|

)
(µ1H

1
1 (x)− µ2H

1
2 (x))

+ xjx`(µ
3/2
1 H2

1 (x)− µ
3/2
2 H2

2 (x))
]

This completes the proof of the lemma.

Applying Lemmas 2.4, 2.5 and 2.6 to (2.18), we have

uj(x) =
[ 1
4πµ|x|

− k

4πµ3/2

∫ 1

0
e−θ(k/

√
µ)|x| dθ

]
∗ fj −

3∑
`=1

[ 1
8πµ

(δj`

|x|
− xjx`

|x|3
)

+ kGj`(k, |x|)
]
∗ f`

+
1

8π(µ1 − µ2)

3∑
`=1

(τ0k + 1)k
(2µ + λ)γκ

[
2δj`

√
µ1H

0
1 (x)−√µ2H

2
2 (x)

−
(
3
xjx`

|x|
+ δj`|x|

)
(µ1H

1
1 (x)− µ2H

1
2 (x)) + xjx`(µ

3/2
1 H2

1 (x)− µ
3/2
2 H2

2 (x))
]
∗ f`

+
3∑

`=1

1
8π(2µ + λ)

[(δj`

|x|
− xjx`

|x|3
)
− 1

µ1 − µ2

(
µ

3/2
1

∂2H1

∂xj∂x`
(x)− µ

3/2
2

∂2H2

∂xj∂x`
(x)

)]
∗ f`

+
β(τ0k + 1)

8π(2µ + λ)γκ

[ xj

|x|
− 1

µ1 − µ2

(
µ

3/2
1

∂H1

∂xj
(x)− µ

3/2
2

∂H2

∂xj
(x)

)]
∗ g

θ(x) =
3∑

`=1

(τ0k + 1)δk
8π(2µ + λ)γκ

[ x`

|x|
− 1

µ1 − µ2

(
µ

3/2
1

∂H1

∂x`
(x)− µ

3/2
2

∂H2

∂x`
(x)

)]
∗ f`

+
(τ0k + 1)k2

(8π(2µ + λ)γκ

[ 2

µ
1/2
1 + µ

1/2
2

− |x|+ 1
µ1 − µ2

(
µ

3/2
1 H1(x)− µ

3/2
2 H2(x)

)]
∗ g

+
τ0k + 1
8πγκ

[ 2
|x|

− 2
√

µ1

∫ 1

0
e−θ

√
µ1|x| dθ − 2µ2

µ
1/2
1 + µ

1/2
2

+ µ2|x|

− 1
µ1 − µ2

(
µ

3/2
1 µ2H1(x)− µ

5/2
2 H2(x)

)]
∗ g
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Here and hereafter, ∗ stands for the usual convolution operator, namely

f ∗ g(x) =
∫

R3

f(x− y)g(y) dy =
∫

R3

f(y)g(x− y) dy

Let f ∈ L1,loc(R3) and g ∈ Lq(R3). Assume that 1 < q < ∞ and that g(x) = 0 for |x| ≥ R.
Then, by Hölder’s inequality we have

|f ∗ g(x)| ≤
∫
|y|≤R

|f(x− y)|g(y)| dy ≤
{∫

|y|≤R
|f(x− y)| dy

}1/q′{∫
|y|≤R

|f(x− y)||g(y)|q dy
}1/q

where q′ = q/(q − 1). Then, for any L > 0 we have∫
|x|≤L

|(f ∗ g)(x)|q dx ≤
∫
|x|≤L

[{∫
|y|≤R

|f(x− y)| dy
}q/q′

∫
|y|≤R

|f(x− y)||g(y)|q dy
]
dx

≤
{∫

|x|≤R+L
|f(x)| dx

}q/q′
∫
|y|≤R

(∫
|x|≤L

|f(x− y)| dx
)
|g(y)|q dy

≤
{∫

|x|≤L+R
|f(x)| dx

}1+(q/q′){∫
R3

|g(y)|q dy
}1/q

which implies that
‖f ∗ g‖

Lq(BL)
≤ ‖f‖

Lq(BL+R)
‖g‖

Lq(R3)

Moreover, by Lemma 2.1 we can write

√
µ1 = k1/2g11(k, τ0) + k3/2g12(k, τ0),

√
µ2 = kg21(k, τ0) + k2g22(k, τ0)

with some holomorphic functions gj`(k, τ0) which are defined on Uσ := {k ∈ C | |k| ≤ σ}. Here,
σ is a rather small positive number which is chosen independently of τ0 whenever 0 < τ0 ≤ 1.
From this observation, uj(x) and θ(x) depend on k ∈ Uσ analytically as W 2

q,loc(R3) function
provided that and (f, g) ∈ Lq(R3)3×Lq(R3) and (f, g) vanishes for |x| ≥ R. Moreover, we have

uj(x) =
1

4πµ|x|
∗ fj −

3∑
`=1

1
8πµ

(δj`

|x|
− xjx`

|x|3
)
∗ f` +

3∑
`=1

1
8π(2µ + λ)

(δj`

|x|
− xjx`

|x|3
)
∗ f`

+
β

8π(2µ + λ)γκ

xj

|x|
∗ g + O(|k|1/2)

θ(x) =
1

4πγκ|x|
∗ g + O(|k|1/2)

Summing up, we have proved the following theorem.

Theorem 2.7. Let 1 < q < ∞, 0 < ε < π/2, 0 < τ0 ≤ 1 and R > 0. Let σ0 and Sk be the same
number and solution operator as in Theorem 2.2, respectively. Set

Lq,R(R3) = {(f, g) ∈ Lq(R3)3 × Lq(R3) | (f, g) vanishes for |x| > R }
Wq,loc(R3) = W 2

q,loc(R3)3 ×W 2
q,loc(R3)

Then, there exist a σ (0 < σ ≤ σ0) and Gj(k) ∈ Anal (Uσ,B(Lq,R(R3),Wq,loc(R3))) (j = 0, 1)
such that when (f, g) ∈ Lq,R(R3), Gk(f, g) = (k1/2G0(k)+G1(k))(f, g) solves equation (2.4) for
k ∈ Uσ and Gk(f, g) = Sk(f, g) for k ∈ Uσ,ε.
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Moreover, if we set (u0, θ0) = G1(0)(f, g), then (u0, θ0) ∈ Wq,loc(R3) and (u0, θ0) solves the
equation

−µ∆u− (µ + λ)∇div u0 + β∇θ0 = f in R3

−κγ∆θ0 = g in R3 (2.32)

and

u0,j(x) =
1

4πµ|x|
∗ fj −

3∑
`=1

1
8πµ

(δj`

|x|
− xjx`

|x|3
)
∗ f` +

3∑
`=1

1
8π(2µ + λ)

(δj`

|x|
− xjx`

|x|3
)
∗ f`

+
β

8π(2µ + λ)γκ

xj

|x|
∗ g

θ0(x) =
1

4πγκ|x|
∗ g (2.33)

To end this section, we shall derive the solutions formula (2.33) to the equation (2.32)

directly. Since
1

4π|x|
is a fundamental solution to −∆, we see that

∆2
(
−|x|

8π

)
= δ(x) in R3 (2.34)

Therefore, we formally define F−1
[ 1
|ξ|4

]
(x) = −|x|

8π
, below. To solve (2.32), we apply P and Q

to (2.32), and then we have

−µ∆Pu = Pf in R3

−(2µ + λ)∆Qu + βθ = Qf in R3

−κγ∆θ = g in R3 (2.35)

Applying the Fourier transform to (2.35) and using (2.5), we have

µ|ξ|2P̂ u(ξ) = P̂ (ξ)f̂(ξ)

(2µ + λ)|ξ|2Q̂u(ξ) + βθ̂(ξ) = − iξ · f̂(ξ)
|ξ|2

γκ|ξ|2θ̂(ξ) = ĝ(ξ)

and therefore we have

θ̂(ξ) =
1

γκ|ξ|2
ĝ(ξ)

(P̂ u)j(ξ) =
1

µ|ξ|2
f̂j(ξ)−

3∑
`=1

ξjξ`

µ|ξ|4
f̂`(ξ)

Q̂u(ξ) =−
3∑

`=1

iξ`

(2µ + λ)|ξ|4
f̂`(ξ)−

β

(2µ + λ)γκ|ξ|4
ĝ(ξ)

Using the formulas: F−1
[ 1
|ξ|2

]
(x) =

1
4π|x|

and F−1
[ 1
|ξ|4

]
(x) = − |x|

8π|x|
, we have

θ(x) =
1

4πγκ

( 1
|x|

∗ g
)
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Puj(x) =
1

4πµ|x|
∗ fj −

1
8πµ

3∑
`=1

∂2

∂xj∂x`
(|x| ∗ f`)

=
1

4πµ|x|
∗ fj −

3∑
`=1

1
8πµ

(δj`

|x|
− xjx`

|x|3
)
∗ f`

Qu(x) =
3∑

`=1

1
8π(2µ + λ)

∂

∂x`
(|x| ∗ f`) +

β

8π(2µ + λ)γκ
(|x| ∗ g)

=
3∑

`=1

1
8π(2µ + λ)

( x`

|x|
∗ f`

)
+

β

8π(2µ + λ)γκ
(|x| ∗ g)

Recalling that u = Pu +∇Qu, finally we have the following solution formula to (2.32):

uj(x) =
1

4πµ|x|
∗ fj −

3∑
`=1

1
8πµ

(δj`

|x|
− xjx`

|x|3
)
∗ f` +

3∑
`=1

1
8π(2µ + λ)

(δj`

|x|
− xjx`

|x|3
)
∗ f`

+
β

8π(2µ + λ)γκ

xj

|x|
∗ g

θ(x) =
1

4πγκ|x|
∗ g

Of course, this formula coincides with (2.33).

3 Spectral analysis of the thermoelastic equations with second
sound in Ω ⊂ R3

In this section, we consider the resolvent problem:

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in Ω
kθ + γdiv q + δkdiv u = g in Ω

τ0kq + q + κ∇θ = h in Ω (3.1)

subject to the boundary condition:

u = θ = 0 on Γ (3.2)

where Γ denotes the boundary of Ω of C1,1 class. Since q = (1+ τ0k)−1(h−κ∇θ), inserting this
formula into the second equation of (3.1) we have

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in Ω

kθ − γκ(τ0k + 1)−1∆θ + δkdiv u = g − γ(τ0k + 1)−1div h in Ω

subject to the boundary condition (3.1). Therefore, for the simplicity we consider the following
boundary value problem below:

k2u− µ∆u− (µ + λ)∇div u + β∇θ = f in Ω

kθ − γκ(τ0k + 1)−1∆θ + δkdiv u = g in Ω
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u = θ = 0 on Γ (3.3)

We shall discuss the low frequency expansion of solutions to (3.3) in this section, which cor-
responding to Theorem 2.7 in section 2. For this purpose, we shall construct a parametrix of
(3.3). Let R > 0 be a fixed large number such that R3 \ Ω ⊂ BR = {x ∈ R3 | |x| < R}. Set

Lq,R(Ω) = {(f, g) ∈ Lq(Ω)3 × Lq(Ω) | (f, g) vanishes for |x| > R }
W2

q,loc(Ω) = W 2
q,loc(Ω)3 ×W 2

q,loc(Ω)

Let σ, Sk, G0(k) and G1(k) be the same constant and operators as in Theorem 2.7 and set

Gk = k1/2G0(k) + G1(k) (3.4)

We always assume that 0 < τ0 ≤ 1 throughout this section. By Theorem 2.7, we know that
given (f, g) ∈ Lq,R(R3), Gk(f, g) solves equation (2.4) for k ∈ Uσ and that Gk(f, g) = Sk(f, g)
for k ∈ Uσ,ε. In particular, Gk(f, g) ∈ W 2

q (R3)4 whenever k ∈ Uσ,ε, because it follows from
Theorem 2.2 that Sk(f, g) ∈ W 2

q (R3)4. We also know that

G0(k), G1(k) ∈ Anal(Uσ,B(Lq,R(R3),W2
q,loc(R3)))

As an auxiliary problem, we consider the boundary value problem:

−µ∆U − (µ + λ)∇div U + β∇Θ = f in ΩR+5

−κγ∆Θ = g in ΩR+5

U = Θ = 0 on ∂ΩR+5 (3.5)

where ΩR+5 = Ω ∩ BR+5 and ∂ΩR+5 denotes the boundary of ΩR+5 which is given by the
formula: ∂ΩR+5 = SR+5∪Γ with SR+5 = {x ∈ R3 | |x| = R+5}. It is well-known that equation
(3.5) admits a unique solution (U,Θ) ∈ W 2

q (ΩR+5)3 ×W 2
q (ΩR+5) for any (f, g) ∈ Lq(ΩR+5)3 ×

Lq(ΩR+5). We define a linear operator T : Lq(ΩR+5)3 × Lq(ΩR+5) → W 2
q (ΩR+5)3 ×W 2

q (ΩR+5)
by the formula: T (f, g) = (U,Θ). Let ϕ = ϕ(x) be a function in C∞

0 (R3) such that ϕ(x) = 1
for |x| ≤ R + 2 and ϕ(x) = 0 for |x| ≥ R + 3. Given a function f defined on Ω, f0 denotes the
zero extension of f to the whole space and Rf the restriction of f to ΩR+5. Now, let us define
the operator Ak by the formula:

Ak(f, g) = (1− ϕ)Gk(f0, g0) + ϕT (Rf,Rg)

for (f, g) ∈ Lq,R(Ω) and we write Ak(f, g) = (A1
k(f, g), A2

k(f, g)) = (uk, θk). Since Gk(f0, g0)
and T (Rf,Rg) satisfy equations (2.4) and (3.5), replacing (f, g) by (f0, g0) and (Rf,Rg),
respectively, we have

k2uk − µ∆uk − (µ + λ)∇div uk + β∇θk = f + B1
k(f, g) in Ω

kθk − γκ(τ0k + 1)−1∆θk + δkdiv uk = g + B2
k(f, g) in Ω

uk = θk = 0 on Γ (3.6)

where we have set

B1
k(f, g) =ϕk2U + µ{2(∇uk −∇U)(∇ϕ) + (∆ϕ)(uk − U)}

+ (µ + λ){∇[(∇ϕ) · (uk − U)] + (∇ϕ)(div uk − div U)}+ β(∇ϕ)(θk −Θ)

B2
k(f, g) =ϕkΘ + γκ(τ0k + 1)−1[(∇ϕ) · (∇θk −∇Θ) + (∆ϕ)(θk −Θ)]− δk(∇ϕ) · (uk − U)
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We see that Bj
k(f, g) (j = 1, 2) are compact operators on Lq,R(Ω), because they belong to

W 1
q (Ω)4 and vanish for |x| > R + 3. Set Bk(f, g) = (B1

k(f, g), B2
k(f, g)) and

Pk(u, θ) = (−µ∆u− (µ + λ)∇div u + β∇θ, −γκ(τ0k + 1)−1∆θ + δkdiv u)

for the sake of notational simplicity. By Theorem 2.7 and (3.6) we see that

(k2uk, kθk) + PkAk(f, g) = (I + Bk)(f, g) in Ω, Pk(f, g) = (0, 0) on Γ. (3.7)

and
lim
k→0

‖Bk(f, g)−B0(f, g)‖Lq(Ω) = 0 (3.8)

where I denotes the identity operator on (Lq,R(Ω))4. If we show the existence of the inverse
operator (I + Bk)−1 of I + Bk on (Lq,R(Ω))4, then Ak(I + Bk)−1 is the solution operator of
(3.3). In view of (3.8), to prove the existence of (I + Bk)−1 it suffices to show the existence of
(I + B0)−1. Therefore, the main task of this section is to prove the following lemma.

Lemma 3.1. Let 1 < q < ∞. Then, (I +Bk)−1 exists as a bounded linear operator on Lq,R(Ω).

Proof. Since B0 is a compact operator on (Lq,R(Ω))4, to prove the lemma it suffices to show
the injectivity of I + B0. Let (f, g) be in Lq,R(Ω) such that (I + B0)(f, g) = 0. By (3.7) with
k = 0 we see that

P0A0(f, g) = (0, 0) in Ω, A0(f, g) = (0, 0) on Γ. (3.9)

Set (u, θ) = A0(f, g), and then we can write (3.9) componentwise as follows:

−µ∆u− (µ + λ)∇div u + β∇θ = 0 in Ω
γκ∆θ = 0 in Ω
u = θ = 0 on Γ (3.10)

Moreover, by (2.33) in Theorem 2.7 we have

uj(x) =
1

4πµ|x|
∗ f0,j −

3∑
`=1

1
8πµ

(δj`

|x|
− xjx`

|x|3
)
∗ f0,` +

3∑
`=1

1
8π(2µ + λ)

(δj`

|x|
− xjx`

|x|3
)
∗ f0,`

+
β

8π(2µ + λ)γκ

xj

|x|
∗ g0 (3.11)

θ(x) =
1

4πγκ|x|
∗ g0 (3.12)

for |x| ≥ R + 3, because A0(f, g) = G1(0)(f0, g0) for |x| ≥ R + 3. Here and hereafter, we write
f0 = t(f0,1, f0,2, f0,3). To complete the proof of the lemma, we shall use the following well-known
facts.

Theorem 3.2. Let 1 < q < ∞. (1) Let θ ∈ W 2
q,loc(Ω) satisfy the homogeneous equation:

∆θ = 0 in Ω, θ = 0 on Γ

and the radiation condition:

θ(x) = O(|x|−1), ∇θ(x) = O(|x|−2) as |x| → ∞ (3.13)
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then θ must vanish identically.
(2) Let u ∈ W 2

q,loc(Ω)3 satisfies the homogeneous equation:

−µ∆u− (µ + λ)∇div u = 0 in Ω, u = 0 on Γ (3.14)

and the radiation condition:

u(x) = O(|x|−1), ∇u(x) = O(|x|−2) as |x| → ∞ (3.15)

then u must vanish identically.

Since (f0, g0) vanishes for |x| > R + 3, it follows from (3.12) that θ satisfies the radiation
condition (3.13), so that by Theorem 3.2 we see that θ = 0. If we insert this into the first
equation of (3.10), then we see that u satisfies (3.14). Therefore, our task is to show that u also
satisfies (3.15) to conclude that u = 0. From (3.12), we have

0 =
1
|x|

∗ g0 =
∫

R3

g0(y)
|x− y|

dy

=
∫

R3

( 1
|x− y|

− 1
|x|

)
g0(y) dy +

1
|x|

∫
R3

g0(y) dy for |x| > R + 3 (3.16)

If we write
1

|x− y|
− 1
|x|

=
∫ 1

0

∂

∂θ

1
|x− θy|

dθ =
∫ 1

0

∑3
j=1(xj − θyj)yj

|x− θy|3
dθ

using the fact that g0(y) = 0 for |y| > R + 3, we have∣∣∣∫
R3

( 1
|x− y|

− 1
|x|

)
g0(y) dy

∣∣∣ ≤ CR|x|−2 for |x| > R + 4

which combined with (3.16) implies that∫
R3

g0(y) dy = 0. (3.17)

Therefore, if we write

β

8π(2µ + λ)γκ

xj

|x|
∗ g0 =

β

8π(2µ + λ)γκ

∫
R3

(xj − yj

|x− y|
− xj

|x|

)
g0(y) dy

in the formula (3.11), we see that

u(x) = O(|x|−1), ∇u(x) = O(|x|−2) as |x| → ∞

which combined with the assertion (2) of Theorem 3.2 implies that u(x) also vanishes identically.
Now, we have A0(f, g) = 0, from which it follows that

(1− ϕ)G0(f0, g0) + ϕT (Rf,Rg) = 0 in Ω (3.18)

If we write G0(f0, g0) = (u0, θ0) and T (Rf,Rg) = (U,Θ), then (3.18) reads as follows:

(1− ϕ)u0 + ϕU = 0, (1− ϕ)θ0 + ϕΘ = 0 in Ω (3.19)
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Since ϕ(x) = 1 for |x| ≤ R + 2 and ϕ(x) = 0 for |x| ≥ R + 3, from (3.19) we have

u0 = 0, θ0(x) = 0 for |x| ≥ R + 3 (3.20)
U = 0, Θ(x) = 0 for |x| ≤ R + 2 (3.21)

Note that (u0, θ0) ∈ W 2
q,loc(R3)4 and (U,Θ) ∈ W 2

q (ΩR+5)4 satisfy the equations:{
−µ∆u0 − (µ + λ)∇div u0 + β∇θ0 = f0 in R3

−κγ∆θ0 = g0 in R3
(3.22)


−µ∆U − (µ + λ)∇div U + β∇Θ = Rf in ΩR+5

−κγ∆Θ = Rg in ΩR+5

U = Θ = 0 on ∂ΩR+5,
(3.23)

respectively. If we set (U0,Θ0)(x) = (U,Θ)(x) for x ∈ ΩR+5 and (U0,Θ0)(x) = (0, 0) for
x ∈ R3 \ Ω, then by (3.21) and (3.23) we have (U0,Θ0) ∈ W 2

q (BR+5)4 and

−µ∆U0 − (µ + λ)∇div U0 + β∇Θ0 = f0 in BR+5

−κγ∆Θ0 = g0 in BR+5

U0 = Θ0 = 0 on SR+5 (3.24)

From (3.20) and (3.22) it follows that the restriction of (u0, θ0) to BR+5 also satisfies (3.24),
which combined with the uniqueness of solutions to (3.24) implies that (u0, θ0) = (U0,Θ0) in
BR+5, that is (u0, θ0) = (U,Θ) in ΩR+5. Plunging this into (3.19), we have

0 = u0 + ϕ(U − u0) = u0, 0 = θ0 + ϕ(Θ− θ0) = θ0 in Ω

which implies that (f, g) = 0 immediately. This completes the proof of the lemma.

Combining Lemma 3.1 and (3.8), we see that there exists a small σ′ (0 < σ′ ≤ σ) such that

(I + Bk)−1 = (I − (I + B0)−1(B0 −Bk))−1(I + B0)−1 = {
∞∑

j=0

((I + B0)−1(B0 −Bk))j}(I + B0)−1

when k ∈ C and |k| < σ′. Moreover, Ak(I + Bk)−1 is a solution operator to (3.3) and the ana-
lytical property of Ak(I +Bk)−1 inherits from that of Gk mentioned in Theorem 2.7. Therefore,
setting Hk = Ak(I + Bk)−1, we have the following theorem.

Theorem 3.3. Let 1 < q < ∞ and 0 < τ0 ≤ 1. Let R be a large fixed number such that
R3 \ Ω ⊂ BR. Then, there exists a small number σ′ (0 < σ′ ≤ σ) and an operator Hk ∈
B(Lq,R,W2

q,loc(Ω)) for each k ∈ Uσ′ = {k ∈ C | |k| ≤ σ′} such that Hk(f, g) satisfies equation
(3.3) for any (f, g) ∈ Lq,R(Ω) and k ∈ Uσ′ has the expansion formula:

Hk = k1/2H0(k) + H1(k) for k ∈ Uσ′

where H0
k , H1

k ∈ Anal(Uσ′ ,B(Lq,R,W2
q,loc(Ω))).

Since Sk = Gk for k ∈ Uσ,ε, we see that Ak(I +Bk)−1(f, g) ∈ W 2
q (Ω)4 provided that (f, g) ∈

Lq,R and k ∈ Uσ,ε. And therefore, combining the whole space solution with Ak(I + Bk)−1(f, g)
by cut-off technique we have the following theorem.
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Theorem 3.4. Let 1 < q < ∞, 0 < ε < π/2 and 0 < τ0 ≤ 1. Let σ′ > 0 be the same constant
as in Theorem 3.3. Then, there exists an operator Tk ∈ Anal (Uσ′,ε,B(Lq(Ω)4,W 2

q (Ω)4) such
that Tk(f, g) satisfies equation (3.3) for any (f, g) ∈ Lq(Ω)4 and k ∈ Uσ′,ε.

Proof. Let k ∈ Uσ′,ε. Let ϕ ∈ C∞
0 (R3) be a cut-off function such that ϕ(x) = 1 for |x| ≤ R + 2

and ϕ(x) = 1 for |x| ≥ R + 3. For any (f, g) ∈ Lq(R3)4, we set (v, κ) = (1−ϕ)Sk(f0, g0), where
(f0, g0) denotes the zero extension of (f, g) to the whole space. Obviously, (v, κ) ∈ W 4

q (Ω) and
satisfies the equation:

(k2v, kκ) + Pk(v, κ) = (f, g) + (F,G) in Ω, Pk(u, θ) = (0, 0) on Γ.

for some (F,G) ∈ Lq,R(Ω). If we set (w,ω) = Ak(I +Bk)−1(F,G), then as noted after Theorem
3.3, (w,ω) ∈ W 2

q (Ω)4. Therefore, (u, θ) = (v, κ) − (w,ω) ∈ W 2
q (Ω)4 and (u, θ) solves equation

(3.3). In the above argument, obviously the dependence of (u, θ) on k ∈ Uσ′,ε is holomorphic,
which completes the proof of the theorem.

4 Concluding Remark

Employing the same argument, we can show the theorems corresponding to Theorems 3.3 and
3.4 in the classical thermoelastic case (cf. (1.4)). Moreover, in view of Lemma 2.1 we see
that the solution operators Hk constructed in Theorem 3.3 and Tk in Theorem 3.4 depend on
τ0 ∈ (0, 1] continuously, so that we can take the limit of Hk and Tk as τ0 → 0, which converges
to the corresponding operators of the classical thermoelastic equations in the operator norm
of B(Lq,R(Ω),W2

q,loc(Ω)) when k ∈ Uσ′ and B(Lq(Ω)4,W 2
q (Ω)4) when Re k > 0 and |k| < σ′,

respectively.
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