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Abstract

The paper is concerned with linear thermoelastic plate equations in a domain Ω:

utt + ∆2u+ ∆θ = 0 and θt −∆θ −∆ut = 0 in Ω× (0,∞),

subject to Dirichlet boundary condition: u|Γ = Dνu|Γ = θ|Γ = 0 and initial condition:
(u, ut, θ)|t=0 = (u0, v0, θ0) ∈W 2

p,D(Ω)×Lp×Lp. Here, Ω is a bounded or exterior domain in
Rn (n ≥ 2). We assume that the boundary Γ of Ω is a C4 hypersurface and we define W 2

p,D

by the formula: W 2
p,D = {u ∈ W 2

p | u|Γ = Dνu|Γ = 0}. We show that for any p ∈ (1,∞),
the associated semigroup {T (t)}t≥0 is analytic. Moreover, if Ω is bounded, then {T (t)}t≥0

is exponentially stable.

1 Introduction

Let Ω be a bounded domain or an exterior domain (domain with bounded complement) in Rn

(n ≥ 2), the boundary Γ of which is a C4 hypersurface. In this paper, we consider initial
boundary value problem of linear thermoelastic plate equations:

utt + ∆2u+ ∆θ = 0 and θt −∆θ −∆ut = 0 in Ω× R+ (1.1)

subject to the initial condition:

u(x, 0) = u0(x), ut(x, 0) = v0(x), θ(x, 0) = θ0(x) (1.2)

and Dirichlet boundary condition:

u|Γ = Dνu|Γ = θ|Γ = 0, (1.3)

where Dν =
∑n

j=1 νjDj (Dj = ∂/∂xj) and ν = (ν1, . . . , νn) denotes the unit outer normal to
Γ. In (1.1), u stands for a mechanical variable denoting the vertical displacement of the plate,
while θ stands for a thermal variable describing the temperature relative to a constant reference
temperature θ̄. Since the equations (1.1) represent the transfer of the mechanical energy to the
thermal energy through coupling, we expect that total energy of the system decays, because of
the thermal damping. In fact, when Ω is a bounded reference configuration, the exponential
stability of the associated semigroup under several different kind of boundary conditions have
been proved by Kim [4], Munõz Rivera and Racke [14], Liu and Zheng [12], Avalos and Lasiecka
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[1], Lasiecka and Triggiani [5, 6, 7, 8] and Shibata [19]. But, a more significant aspect that the
equations (1.1) have is that the associated semigroup is analytic. Namely, although the first
equations in (1.1) is a simple dispersive equation (the product of two Schrödinger equations),
the effect from the heat equation through coupling is strong enough to have analyticity of the
total system. This fact was first proved by Liu and Renardy [9] and then it has been studied
by Russell [17], Liu and Liu [10], Liu and Yong [11], Munõz Rivera and Racke [15] in the L2 or
Hilbert space setting (see also the book of Liu and Zheng [13] for a survey).

The original equations derived by Lagnese [3] describing the motion and transfer of the
energy of thermo-elastic plate is non-linear and it is widely accepted that the Lp approach
is more relevant to handle with the non-linear problem under less regularity assumption and
compatibility condition on initial data in the Lp setting. Concerning the generation of Lp

analytic semigroup and its decay property for linear thermoelastic plate equations, Denk and
Racke [2] studied the Cauchy problem for (1.1) in the whole space Rn and Naito and Shibata
[16] studied the initial boundary value problem for (1.1) with Dirichlet boundary condition in
the half-space Rn

+.
The purpose of this paper is to study the generation of an Lp analytic semigroup and its

decay property when the reference configuration Ω is a bounded domain or an exterior domain
in Rn (n ≥ 2). To formulate the problem (1.1) – (1.3) in the semigroup setting, introducing the
unknown function v = ut, we rewrite it in the matrix form:

Ut = AU in Ω× R+, U |t=0 = U0, (1.4)

where we have set

U =

uv
θ

 , U0 =

u0

v0
θ0

 , A =

 0 1 0
−∆2 0 −∆

0 ∆ ∆

 . (1.5)

To solve initial boundary value problem (1.4) with (1.3), we consider the corresponding resolvent
problem:

(λI −A)U = F in Ω (1.6)

subject to the boundary condition (1.3), where I denotes the n × n unit matrix. To state
our main result precisely, we introduce several spaces and some symbols at this point. For a
general domain O, Lp(O) and Wm

p (O) stand for the usual Lebesgue space and Sobolev space,
respectively, m ∈ N0, 1 < p <∞.. Let ‖ ‖

Lp(O)
and ‖ ‖

Wm
p (O)

denote their norms. For a general
domain O with C1 boundary ∂O, we introduce the spaces W 2

p,0(O) and Wm
p,D(O) (m = 2, 4) as

follows:
W 2

p,0(O) = {u ∈W 2
p (O) | u|∂O = 0},

Wm
p,D(O) = {u ∈Wm

p (D) | u|∂O = Dνu|∂O = 0} (m = 2, 4),
(1.7)

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂O and Dν =
∑n

j=1 νjDj . Let Hp(O)
and Dp(O) be the spaces defined by the following formulas:

Hp(O) = {F = T (f, g, h) | f ∈W 2
p,D(O), g ∈ Lp(O), h ∈ Lp(O)},

Dp(O) = {U = T (u, v, θ) | u ∈W 4
p,D(O), v ∈W 2

p,D(O), θ ∈W 2
p,0(O)}.

(1.8)

Here and hereafter, TM denotes the transposed of M . We define the norms ‖ · ‖Hp(O) and
‖ · ‖Dp(O) by the following formulas:

‖F‖Hp(O) = ‖f‖
W2

p (O)
+ ‖(g, h)‖

Lp(O)
(F = T (f, g, h) ∈ Hp(O)),

‖U‖Dp(O) = ‖u‖
W4

p (O)
+ ‖(v, θ)‖

W2
p (O)

(U = T (u, v, θ) ∈ Dp(O)).
(1.9)
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Let Ap be an operator whose domain is Dp(Ω) and its operation is defined by the formula:

ApU = AU for U ∈ Dp(Ω). (1.10)

Then, we have the following theorem.

Theorem 1.1. Let 1 < p < ∞. Then, Ap generates an analytic semigroup {Tp(t)}t≥0 on
Hp(Ω).

Moreover, if Ω is a bounded domain, then {Tp(t)}t≥0 is exponentially stable, that is there
exists a positive constant σ such that

‖Tp(t)F‖Hp(Ω) ≤ Ce−σt‖F‖Hp(Ω)

for any t > 0 and F ∈ Hp(Ω) with some constant C independent of t and F .

Theorem 1.1 immediately follows from the following theorem concerning the anaylysis of the
resolvent of Ap.

Theorem 1.2. Let 1 < p <∞. Let ρ(Ap) be the resolvent set of Ap. Let

C+ = {λ ∈ C | Reλ ≥ 0}

where C denotes the set of all complex numbers. Then, we have the following two assertions.
(1) Assume that Ω is a bounded domain. Then, ρ(Ap) ⊃ C+.

Moreover, there exists a constant C depending on p and Ω such that for any λ ∈ C+ and
F ∈ Hp(Ω) there holds the estimate:

|λ|‖(λI −Ap)−1F‖Hp(Ω) + ‖(λI −Ap)−1F‖Dp(Ω) ≤ C‖F‖Hp(Ω).

(2) Assume that Ω is an exterior domain. Then, ρ(Ap) ⊃ C+ \ {0}.
Moreover, for any λ0 > 0 there exists a constant C depending on λ0, p and Ω such that for

any λ ∈ C+ with |λ| ≥ λ0 and F ∈ Hp(Ω) there holds the estimate:

|λ|‖(λI −Ap)−1F‖Hp(Ω) + ‖(λI −Ap)−1F‖Dp(Ω) ≤ C‖F‖Hp(Ω).

Since Theorem 1.1 follows from Theorem 1.2 immediately (cf. Vrabie [21, Proof of Theorem
7.1.1], we shall only prove Theorem 1.2 in what follows.

We remark that replacing the Dirichlet boundary conditions (1.3) by the boundary condi-
tions

u|Γ = ∆u|Γ = θ|Γ = 0 (1.11)

usually simplifies the situation, cf. [16, Sec.6] or [9], and hence allows to obtain similar theorems
as presented above.

The paper is organized as follows: In section 2, we quote results due to Naito and Shibata
[16] concerning the resolvent problem in Rn and Rn

+. In section 3, we treat the resolvent problem
in the bent half space. In section 4, we prove the a priori estimate for the resolvent problem
in a general bounded or exterior domain whose boundary is assumed to be a C3,1, compact
hypersurface. In section 5, we shall show Theorem 1.2 when Ω is a bounded domain. In section
6, we shall show Theorem 1.2 when Ω is an exterior domain.
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2 On a resolvent estimate in Rn and Rn
+.

In this section, we shall quote results obtained by Naito and Shibata [16] concerning the resolvent
problem in the whole space Rn and its half space Rn

+ which is defined by the formula: Rn
+ =

{x = (x1, . . . , xn) ∈ Rn | xn > 0}, whose boundary is the set {x = (x1, . . . , xn) ∈ Rn | xn = 0}.
Note that

W 2
p,0(Rn) = W 2

p (Rn), Wm
p,D(Rn) = Wm

p (Rn),

W 2
p,0(Rn

+) = {u ∈W 2
p (Rn

+) | u|xn=0 = 0},
Wm

p,D(Rn
+) = {u ∈Wm

p (Rn
+) | u|xn=0 = Dnu|xn=0 = 0} (m = 2, 4).

Theorem 2.1. Let 1 < p <∞. Set

Σε = {λ ∈ C \ {0} | | arg λ| < π − ε}. (2.1)

Then, there exists an ε (0 < ε < π/2) such that for any F = T (f, g, h) ∈ Hp(Rn) and λ ∈ Σε

there exists a unique U = T (u, v, θ) ∈ Dp(Rn) which solves the resolvent problem:

(λI −A)U = F in Rn (2.2)

uniquely and satisfies the estimates :

2∑
j=0

|λ|
2−j
2 ‖(∇j+2u,∇jv,∇jθ)‖

Lp(Rn)
≤ C‖(∇2f, g, h)‖

Lp(Rn)
,

1∑
j=0

|λ|
4−j
2 ‖∇ju‖

Lp(Rn)
≤ C‖(|λ|f, g, h)‖

Lp(Rn)
.

(2.3)

Here and hereafter,

∇1u = ∇u = (D1u, . . . ,Dnu), ∇ju = (Dα
xu | |α| = j) (j ≥ 2)

Dju = ∂u/∂xj , D
α
xu = Dα1

1 · · ·Dαn
n u (α = (α1, . . . , αn) ∈ Nn

0 ),

N denotes the set of all natural numbers and N0 = N ∪ {0}.

Theorem 2.2. Let 1 < p < ∞ and let C+ be the same as in Theorem 1.2. Then for any
λ ∈ C+ \ {0} and F = T (f, g, h) ∈ Hp(Rn

+), there exists a U = T (u, v, θ) ∈ Dp(Rn
+) which solves

the resolvent problem:
(λI −A)U = F in Rn

+ (2.4)

uniquely and satisfies the estimate:

2∑
j=0

|λ|
2−j
2 ‖(∇j+2u,∇jv,∇jθ)‖

Lp(Rn
+)
≤ C‖(∇2f, g, h)‖

Lp(Rn
+)
,

1∑
j=0

|λ|
4−j
2 ‖∇ju‖

Lp(Rn
+)
≤ C‖(|λ|f, g, h)‖

Lp(Rn
+)
.
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3 On a resolvent problem in a bent half space

Let ω : Rn−1 → R be a bounded function in C3,1 class whose derivatives up to order 4 are all
essentially bounded in Rn−1. Let Hω be a bent half space defined by the formula:

Hω = {x = (x1, . . . , xn) ∈ Rn | xn > ω(x′) (x′ = (x1, . . . , xn−1) ∈ Rn−1)}.

∂Hω denotes the boundary of Hω, which is given by the formula:

∂Hω = {x = (x1, . . . , xn) ∈ Rn | xn = ω(x′) (x′ = (x1, . . . , xn−1) ∈ Rn−1)}.

ν(x) denotes the unit outer normal to ∂Hω, which is defined by the formula:

ν(x) = (∇′ω,−1)/
√

1 + |∇′ω|2, ∇′ω = (D1ω, . . . ,Dn−1ω).

We shall prove the following theorem in this section.

Theorem 3.1. Let 1 < p <∞. Then, there exist numbers δ and λ0 with 0 < δ ≤ 1 and λ0 ≥ 1
such that if ‖∇′ω‖

L∞(Rn−1)
≤ δ, then for any λ ∈ C+ with |λ| ≥ λ0, F = T (f, g, h) ∈ Hp(Hω)

there exists a unique U = T (u, v, θ) ∈ Dp(Hω) which solves the equation:

(λI −A)U = F in Hω (3.1)

and satisfies the estimate:

2∑
j=0

|λ|
2−j
2 (‖u‖

W
2+j
p (Hω)

+ ‖(v, θ)‖
W

j
p (Hω)

) ≤ C{ ‖f‖
W2

p (Hω)
+ ‖(g, h)‖

Lp(Hω)
. (3.2)

To prove Theorem 3.1, we reduce problem (3.1) to the half space problem by using the map
Φ : Hω → Rn

+ defind by the formula: y = Φ(x) = (x′, xn − ω(x′)). Given function w(x) defined
on HΩ, we set w(y) = w(x) = w(y′, yn + ω(y′)). We have

∂

∂xj
=

∂

∂yj
− ωj

∂

∂yn
(j = 1, . . . , n− 1),

∂

∂xn
=

∂

∂yn
. (3.3)

Here and hereafter, we set ωj = Djω. Since the operator A contains ∆ and ∆2, we have to
represent these operators in the new coordinate. In fact, by (3.3) we have

∆w =∆w −
n−1∑
j=1

2ωjDjDnw + |∇′ω|2D2
nw − (∆′ω)Dnw,

∆2w =∆2w + a4(∇′ω,∇4w)

+ a3(D̄1
x′∇′ω,∇3w) + a2(D̄2

x′∇′ω,∇2w) + a1(D̄3
x′∇′ω,∇w),

(3.4)

where we have set

∆′ω =
n−1∑
j=1

D2
jω, D̄k

x′∇′ω = (Dα′
x′ωj | j = 1, . . . , n− 1, |α′| ≤ k),

a4(∇′ω,∇4w) = −4
n−1∑
j=1

ωj∆DjDnw + 2|∇′ω|2∆D2
nw + 4

n−1∑
j,k=1

ωjωkDjDkD
2
nw
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− 4
n−1∑
j=1

ωj |∇′ω|2DjD
3
nw + |∇′ω|4D4

nw ,

a3(D̄1
x′∇′ω,∇3w) = −4

n−1∑
j=1

(∇′ωj) · (∇′DjDnw) + 2(∇′|∇′ω|2) · (∇′D2
nw)

− 2(∆′ω)∆Dnw + 4
n−1∑
j,k=1

ωj(DjDkω)D2
kD

2
nw − 2

n−1∑
j=1

ωj(Dj |∇′ω|2)D3
nw

+ 4
n−1∑
j=1

ωj(∆′ω)DjD
2
nw − (∆′ω)|∇′ω|2D3

nw ,

a2(D̄2
x′∇′ω,∇2w) = (∆′ω)2D2

nw − 4
n−1∑
j=1

(∆′ωj)DjDnw + 2
n−1∑
j=1

ωjDj(∆′ω)D2
nw

+ (∆′|∇′ω|2)D2
nw ,

a1(D̄3
x′∇′ω,∇w) = −((∆′)2ω)Dnw .

Let U = T (u, v, θ) satisfy (3.1) with F = T (f, g, h). If we write (3.1) componentwise, then we
have

λu− v = f

λv + ∆2u+ ∆θ = g

λθ −∆θ −∆v = h

 in Hω, (3.5)

u|∂Hω = Dνu|∂Hω = θ|∂Hω = 0,

where Dν = ν ·∇ = (1+ |∇′ω|2)−1/2{
∑n−1

j=1 (Djω)Dj−Dn}. Therefore, by (3.4) (u, v, θ) satisfies
the equations:

λu− v = f

λv + ∆2u+ ∆θ = g +G(ω, u, θ)

λθ −∆θ −∆v = h+H(ω, v, θ)

 in Rn
+, (3.6)

u|xn=0 = Dnu|xn=0 = θ|xn=0 = 0,

where we have set

G(ω, u, θ) =− a4(∇′ω,∇4u)− a3(D̄1
x′∇′ω,∇3u)− a2(D̄2

x′∇′ω,∇2u)

− a1(D̄3
x′∇′ω,∇u) + 2

n−1∑
j=1

ωjDjDnθ − (
n−1∑
j=1

ω2
j )D

2
nθ − (∆′ω)Dnθ,

H(ω, v, θ) =− 2
n−1∑
j=1

ωjDjDn(θ + v) + (
n−1∑
j=1

ω2
j )D

2
n(θ + v) + (∆′ω)Dn(θ + v).

Obviously, if (u, v, θ) satisfies (3.6), then (u, v, θ) satisfies (3.5), and therefore we shall solve
(3.6) in what follows. Since (3.6) is linear, we solve the following two systems of equations:

λu− v = 0

λv + ∆2u+ ∆θ = g +G(ω, u, θ)

λθ −∆θ −∆v = h+H(ω, v, θ)

 in Rn
+, (3.7)
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u|xn=0 = Dnu|xn=0 = θ|xn=0 = 0,

and

λu− v = f

λv + ∆2u+ ∆θ = 0
λθ −∆θ −∆v = 0

 in Rn
+, (3.8)

u|xn=0 = Dnu|xn=0 = θ|xn=0 = 0.

First, we shall show the existence of a unique solution of equation (3.7) by contraction mapping
principle. For the notational simplicity we introduce the following symbols:

Iλ(u, v, θ) =
4∑

j=0

|λ|
4−j
2 ‖∇ju‖

Lp(Rn
+)

+
2∑

j=0

|λ|
2−j
2 ‖∇j(v, θ)‖

Lp(Rn
+)
,

K1 = ‖∇′ω‖
L∞(Rn−1)

, Kj = ‖D̄j−1
x′ ∇′ω‖

L∞(Rn−1)
(j = 2, 3, 4).

Since we shall choose K1 small enough and |λ| large enough later, we may assume that 0 <
K1 ≤ 1 and |λ| ≥ 1 a priori. By Theorem 2.2 we know that given (u1, v1, θ1) ∈ Dp(Rn

+), there
exists a (u2, v2, θ2) ∈ Dp(Rn

+) which uniquely solves the equations:

λu2 − v2 = 0

λv2 + ∆2u2 + ∆θ2 = g +G(ω, u1, θ1)

λθ2 −∆θ2 −∆v2 = h+H(ω, v1, θ1)

 in Rn
+, (3.9)

u2|xn=0 = Dnu
2|xn=0 = θ2|xn=0 = 0

and satisfies the estimate:

Iλ(u2, v2, θ2) ≤ C(‖(g, h)‖
Lp(Rn

+)
+ ‖(G(ω, u1, θ1),H(ω, v1, θ1))‖

Lp(Rn
+)

). (3.10)

From the definition of G(ω, u, θ) and H(ω, v, θ) we have

‖(G(ω, u, θ),H(ω, v, θ))‖
Lp(Rn

+)

≤ C(K1 +K2|λ|−
1
2 + (K2

2 +K3)|λ|−1 +K4|λ|−
3
2 )Iλ(u, v, θ).

(3.11)

Combining (3.10) and (3.11) implies that

Iλ(u2.v2, θ2)

≤ C{(K1 +K2|λ|−
1
2 + (K2

2 +K3)|λ|−1 +K4|λ|−
3
2 )Iλ(u1, v1, θ1) + ‖(g, h)‖

Lp(Rn
+)
}.

(3.12)

If we choose K1 and λ0 ≥ 1 in such a way that

CK1 ≤
1
4
, C(K2λ

− 1
2

0 + (K2
2 +K3)λ−1

0 +K4λ
− 3

2
0 ) ≤ 1

4
, (3.13)

then by (3.12) and the linearity of the equation (3.7) the map (u1, v1, θ1) 7→ (u2, v2, θ2) is a
contraction on Dp(Rn

+). Therefore, (3.7) admits a unique solution (u′, v′, θ′) ∈ Dp(Rn
+), which

satisfies (3.12) with u1 = u2 = u′, v1 = v2 = v′ and θ1 = θ2 = θ′. By (3.13) we have

Iλ(u′, v′, θ′) ≤ 2C‖(g, h)‖
Lp(Rn

+)
. (3.14)
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On the other hand, by Theorem 2.2 we know that (3.8) admits a unique solution (u′′, v′′, θ′′) ∈
Dp(Rn

+) which satisfies the estimate:

2∑
j=0

|λ|
2−j
2 ‖(∇j+2u′′,∇jv′′,∇jθ′′)‖

Lp(Rn
+)
≤ C‖∇2f‖

Lp(Rn
+)
,

1∑
j=0

|λ|
2−j
2 ‖∇ju′′‖

Lp(Rn
+)
≤ C‖f‖

Lp(Rn
+)
.

(3.15)

Using the interpolation inequality: ‖∇u′′‖
Lp(Rn

+)
≤ C‖∇2u′′‖

1
2
Lp(Rn

+)‖u′′‖
1
2
Lp(Rn

+) , by (3.15) we have

|λ|‖u′′‖
W2

p (Rn
+)
≤ C‖f‖

W2
p (Rn

+)
. Finally, noting that |λ| ≥ 1, by (3.15) we have

2∑
j=0

|λ|
2−j
2 (‖u′′‖

W
j+2
p (Rn

+)
+ ‖(v′′, θ′′)‖

W
j
p (Rn

+)
) ≤ C‖f‖

W2
p (Rn

+)

Therefore, u = u′+u′′, v = v′+v′′ and θ = θ′+ θ′′ solve equation (3.6) and satisfy the estimate:

2∑
j=0

|λ|
2−j
2 (‖u‖

W
2+j
p (Rn

+)
+ ‖(v, θ)‖

W
j
p (Rn

+)
) ≤ C{‖f‖

W2
p (Rn

+)
+ ‖(g, h)‖

Lp(Rn
+)
}.

If we define u(x), v(x) and θ(x) by u(x) = u(y), v(x) = v(y) and θ(x) = θ(y) with y = Φ(x) =
(x′, xn − ω(x′)), then (u, v, θ) is a required solution to (3.1). We have also the uniqueness for
equation (3.1), because both equations (3.8) and (3.9) are uniquely solvable. This completes
the proof of Theorem 3.1.

4 A priori estimate

In this section, we shall show an a priori estimate of problem:

λu− v = f

λv + ∆2u+ ∆θ = g

λθ −∆θ −∆v = h

 in Ω, (4.1)

u|Γ = Dνu|Γ = θ|Γ = 0.

More precisely, we shall show the following theorem.

Theorem 4.1. Let 1 < p < ∞. Then, there exist constants λ1 ≥ 1 and C > 0 such that for
any λ ∈ C+ with |λ| ≥ λ1 and U = t(u, v, θ) ∈ Dp(Ω) there holds the estimate:

2∑
j=0

|λ|
2−j
2 ( ‖u‖

W
2+j
p (Ω)

+ ‖(v, θ)‖
W

j
p (Ω)

) ≤ C{ ‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
}

where W 0
p (Ω) = Lp(Ω) and T(f, g, h) = (λI −A)T(u, v, θ).

To prove the theorem, we localize problem (4.1). Let ϕ be a cut-off function in C∞(Rn).
Then, (ϕu, ϕv, ϕθ) enjoys the equations:

λ(ϕu)− (ϕv) = ϕf

λ(ϕv) + ∆2(ϕu) + ∆(ϕθ) = ϕg +Gϕ(u, θ)
λ(ϕθ)−∆(ϕθ)−∆(ϕv) = ϕh+Hϕ(v, θ)

 in Ω, (4.2)
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(ϕu)|Γ = Dν(ϕu)|Γ = (ϕθ)|Γ = 0.

Here and hereafter, Gϕ(u, θ) and Hϕ(v, θ) denote the symbols defined by the following formulas:

Gϕ(u, θ) =−∆(∇ · ((∇ϕ)u))−∆((∇ϕ) · (∇u))−∇ · ((∇ϕ)∆u)
− (∇ϕ) · (∇∆u)−∇ · ((∇ϕ)θ)− (∇ϕ) · (∇θ),

Hϕ(v, θ) =∇ · ((∇ϕ)(θ + v)) + (∇ϕ) · (∇(θ + v)).
(4.3)

For the notational simplicity, we shall omit u, v and θ in the representation of Gϕ and Hϕ

until the end of the proof of Theorem 4.1 unless any confusion occurs. Let b > 0 be a large
number such that Bb ⊃ Ω when Ω is bounded and Bb ⊃ Rn \ Ω when Ω is exterior, where
Bb = {x ∈ Rn | |x| < b}. Pick up x0 ∈ ∂Ω. Consider a small neighborhood Bσ(x0) = {x ∈ Rn |
|x− x0| < σ} of x0 with some σ > 0. Let us choose ϕ ∈ C∞(Rn) in such a way that ϕ(x) = 1
on Bσ/2(x0) and ϕ(x) = 0 for x 6∈ Bσ(x0). Since we choose σ > 0 small enough, we may assume
that suppϕ ⊂ Bb. We shall reduce (4.2) to the bent half space problem studied in section 3.
Let −ν(x0) = ζn = T(ζ1n, . . . , ζnn) and ζj = T(ζ1j , . . . , ζnj) (j = 1, . . . , n − 1) be vectors such
that ζj · ζk = δjk, and set

O = (ζ1, . . . , ζn) =


ζ11 ζ12 · · · ζ1n

ζ21 ζ22 · · · ζ2n
...

...
. . .

...
ζn1 ζn2 · · · ζnn

 .

Since O is an orthogonal matrix, under the change of variables: y = TO(x− x0) the operators
∆ and ∆2 do not change. Therefore, defining the functions U(y), V (y) and Θ(y) and a domain
Ω̃ by the formulas: (ϕu)(x) = U(y), (ϕv)(x) = V (y), (ϕθ)(x) = Θ(y) and Ω̃ = TO(Ω − {x0}),
we see that (U, V,Θ) enjoys the equations:

λU − V = ϕ̃f

λV + ∆2U + ∆Θ = ϕ̃g + G̃ϕ

λΘ−∆Θ−∆V = ϕ̃h+ H̃ϕ

 in Ω̃, (4.4)

U |∂Ω̃ = Dν̃U |∂Ω̃ = Θ|∂Ω̃ = 0,

where ∂Ω̃ denotes the boundary of Ω̃, and ν̃ denotes the unit outer normal to ∂Ω̃. Here
and hereafter, given function w(x) defined on Ω, w̃(y) denotes the function defined by the
relationship: w̃(y) = w(x) = w(x0 +Oy). In particular, we have

ν̃(0) = T(0, . . . , 0,−1), (4.5)

because ν̃(y) = TOν(x), where ν(x) denotes the unit outer normal to Γ. Let δ0 be a small
positive number chosen later and choose σ > 0 in such a way that suppU , suppV , supp Θ ⊂
Bδ0 = {y ∈ Rn | |y| < δ0}. Let δ1 > 0 be a small number such that

Bδ0 ∩ Ω̃ ⊂ {y = (y1, . . . , yn) ∈ Rn | yn > ψ(y′), y′ ∈ B′
δ1(0)},

Bδ0 ∩ ∂Ω̃ ⊂ {y = (y1, . . . , yn) ∈ Rn | yn = ψ(y′), y′ ∈ B′
δ1(0)}

(4.6)

for some ψ ∈ C3,1(B′
δ1

(0)), where y′ = (y1, . . . , yn−1) and B′
δ1

(0) = {y′ ∈ Rn−1 | |y′| < δ1}.
From (4.5) it follows that

ψ(0) = 0, ∇′ψ(0) = 0, ν̃ = (∇′ψ,−1)/
√

1 + |∇′ψ|2, (4.7)
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where ∇′ψ = (D1ψ, . . . ,Dn−1ψ). Let ρ(y′) be a function in C∞0 (Rn−1) such that ρ(y′) = 1 for
|y′| ≤ 1 and ρ(y′) = 0 for |y′| ≥ 2. Setting ω(y′) = ρ(y′/δ0)ψ(y′) and using ω(y′) we define a
bent half space Hω, its boundary and unit outer normal by the following formulas:

Hω = {y = (y1, . . . , yn) ∈ Rn | yn > ω(y′), y′ ∈ Rn−1},
∂Hω = {y = (y1, . . . , yn) ∈ Rn | yn = ω(y′), y′ ∈ Rn−1},

νω = (∇′ω,−1)/
√

1 + |∇′ω|2, ∇′ω = (D1ω, . . . ,Dn−1ω).

If we choose δ0 > 0 so small that 0 < 2δ0 < δ1, then it follows from (4.6) that (U, V,Θ) satisfies
problem in Hω:

λU − V = ϕ̃f

λV + ∆2U + ∆Θ = ϕ̃g + G̃ϕ

λΘ−∆Θ−∆V = ϕ̃h+ H̃ϕ

 in Hω, (4.8)

U |∂Hω = DνωU |∂Hω = Θ|∂Hω = 0.

By (4.7) we see easily that

|∇′
y′ω(y′)| ≤

{
sup

|y′/δ0|≤2
( |ρ(y′/δ0)||y′/δ0| ) sup

|y′|≤δ1

|∇2
y′ψ(y′)|

+ sup
|y′/δ0|≤2

( |(∇y′ρ)(y′/δ0)||y′/δ0|2 ) sup
|y′|≤δ1

|∇2
y′ψ(y′)|

}
δ0

≤ C(δ1)δ0

with some constant C(δ1) independent of δ0. Therefore, we have

‖∇y′ω‖L∞(Rn−1)
≤ C(δ1)δ0. (4.9)

Let δ > 0 be the number given in Theorem 3.1 and choose δ0 so small that C(δ1)δ0 ≤ δ. Then,
by Theorem 3.1 there exists a λ0 = λ0(x0) ≥ 1 such that

2∑
j=0

|λ|
2−j
2 ‖U‖

W
2+j
p (Hω)

+
2∑

j=0

|λ|
2−j
2 ‖(V,Θ)‖

W
j
p (Hω)

≤ C(x0)(‖ϕ̃f‖
W2

p (Hω)
+ ‖(ϕ̃g, ϕ̃h)‖

Lp(Hω)
+ ‖(G̃ϕ, H̃ϕ)‖

Lp(Hω)
)

(4.10)

for any λ ∈ C+ with |λ| ≥ λ0. Here and hereafter, C(x0) denotes a generic constant depending
on x0 and ϕ. Noting that suppϕ ⊂ Bb, we have

‖(G̃ϕ, H̃ϕ)‖
Lp(Hω)

≤ C(‖u‖
W3

p (Ωb)
+ ‖(v, θ)‖

W1
p (Ωb))

), (4.11)

where Ωb = Ω ∩Bb = {x ∈ Ω | |x| < b}. Combining (4.10) and (4.11) we have

2∑
j=0

|λ|
2−j
2 (‖U‖

W
j+2
p (Hω)

+ ‖(V,Θ)‖
W

j
p (Hω)

)

≤ C(x0)( ‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
+ ‖u‖

W3
p (Ωb)

+ ‖(v, θ)‖
W1

p (Ωb)
).

(4.12)

10



Since ϕ = 1 on Bσ/2(x0), from (4.12) finally we have that there exist σ = σ(x0) > 0, λ(x0) ≥ 1
and C(x0) > 0 such that for any λ ∈ C+ with |λ| ≥ λ(x0) there holds the estimate:

2∑
j=0

|λ|
2−j
2 (‖u‖

W
2+j
p (Bσ/2(x0))

+ ‖(v, θ)‖
W

j
p (Bσ/2(x0))

)

≤ C(x0){‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
+ ‖u‖

W3
p (Ωb)

+ ‖(v, θ)‖
W1

p (Ωb)
}.

(4.13)

Since Γ is compact, there exists a finite number of points xj ∈ Γ (j = 1, . . . , N) such that

Γ ⊂
N⋃

j=1

Bσ(xj)/2(xj). (4.14)

If we set C =
∑N

j=1C(xj), λ0 = maxj=1,...,N λ(xj), and E = Ω ∩ (
⋃N

j=1Bσ(xj)/2(xj)), then it
follows from (4.13) and (4.14) that for any λ ∈ C+ with |λ| ≥ λ0 there holds the estimate:

2∑
j=0

|λ|
2−j
2 (‖u‖

W
2+j
p (E)

+ ‖(v, θ)‖
W

j
p (E)

)

≤ C(‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
+ ‖u‖

W3
p (Ωb)

+ ‖(v, θ)‖
W1

p (Ωb)
).

(4.15)

Let κ > 0 be a small number such that E ⊃ {x ∈ Ω | dist (x,Γ) < 3κ}. Let ϕ be a function in
C∞(Rn) such that

ϕ(x) =


1 for x ∈ Ω ∩ {x ∈ Rn | dist (x,Γ) > 2κ},
0 for x ∈ Ω ∩ {x ∈ Rn | dist (x,Γ) < κ}
0 for x 6∈ Ω.

Since suppϕ ⊂ int(Ω), we have (4.2), replacing Ω by Rn. And therefore, applying Theorem 2.1,
for λ ∈ C+ with |λ| ≥ 1 we have

2∑
j=0

|λ|
2−j
2 ‖(∇j+2(ϕu),∇j(ϕv),∇j(ϕθ))‖

Lp(Rn)

≤ C( ‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
+ ‖u‖

W3
p (Ωb)

+ ‖(v, θ)‖
W1

p (Ωb)
),

(4.16)

|λ|‖ϕu‖
Lp(Rn)

≤ C{ ‖f‖
W2

p (Ω)
+ |λ|−1‖(g, h)‖

Lp(Ω)
+ |λ|−1(‖u‖

W3
p (Ωb)

+ ‖(v, θ)‖
W1

p (Ωb)
)}, (4.17)

where we have used the fact that suppDαϕ ⊂ E ⊂ Ωb for any multi-index α with |α| ≥ 1.
Using the interpolation inequality: ‖∇(ϕu)‖

Lp(Rn)
≤ C‖∇2(ϕu)‖1/2

Lp(Rn)
‖ϕu‖1/2

Lp(Rn)
and also the

fact that ϕ(x) = 1 for x ∈ Ω \ E, from (4.16) and (4.17) it follows that for any λ ∈ C+ with
|λ| ≥ 1 there holds the estimate:

2∑
j=0

|λ|
2−j
2 (‖u‖

W
2+j
p (Rn\E)

+ ‖(v, θ)‖
W

j
p (Rn\E)

)

≤ C( ‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
+ ‖u‖

W3
p (Ωb)

+ ‖(v, θ)‖
W1

p (Ωb)
),
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which combined with (4.15) implies that

2∑
j=0

|λ|
2−j
2 (‖u‖

W
2+j
p (Ω)

+ ‖(v, θ)‖
W

j
p (Ω)

)

≤ C( ‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
+ ‖u‖

W3
p (Ωb)

+ ‖(v, θ)‖
W1

p (Ωb)
)

(4.18)

for any λ ∈ C+ with |λ| ≥ λ0. Choosing λ1 ≥ λ0 so large that λ
1
2
1 ≥ 2C in (4.18) implies that

2∑
j=0

|λ|
2−j
2 (‖u‖

W
2+j
p (Ω)

+ ‖(v, θ)‖
W

j
p (Ω)

) ≤ 2C( ‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
)

for λ ∈ C+ with |λ| ≥ λ1, which completes the proof of Theorem 4.1.

5 A proof of the unique existence theorem in the bounded do-
main case

In what follows, Hp(Ω) and Dp(Ω) denote the spaces defined in (1.8) with O = Ω and W 2
p,0(Ω),

Wm
p,D(Ω) (m = 2, 4) denote the spaces defined in (1.7) with O = Ω. Recall that

Hp(Ω) = W 2
p,D(Ω)× Lp(Ω)× Lp(Ω), Dp(Ω) = W 4

p,D(Ω)×W 2
p,D(Ω)×W 2

p,0(Ω). (5.1)

We shall show Theorem 1.2 by a compact perturbation method from the λ = 0 case. To study
the λ = 0 case, we shall use the following well-known results.

Lemma 5.1. Let 1 < p <∞ and let Ω be a bounded domain in Rn (n ≥ 2). Then, we have the
following two assertions:
(1) Assume that the boundary Γ of Ω is a C2 hypersurface. Then, for any f ∈ Lp(Ω) there
exists a unique solution u ∈W 2

p,0(Ω) to the Laplace equation: ∆u = f in Ω.
(2) Assume that Γ is a C4 hypersurface. Then, for any f ∈ Lp(Ω) there exists a unique
solution u ∈W 4

p,D(Ω) to the biharmonic equation: ∆2u = f in Ω.

Proof. Both assertions are well-known (cf. Simader [20, Theorem 10.10]) 1.

Lemma 5.2. Let 1 < p < ∞ and let Ω be a bounded domain. Assume that the boundary Γ of
Ω is a C4 hypersurface. Let Ap be the operator defined in (1.10) and ρ(Ap) its resolvent set.
Then, 0 ∈ ρ(Ap).

Proof. Since Dp(Ω) is a closed subspace of W 4
p (Ω)×W 2

p (Ω)×W 2
p (Ω), to prove that 0 ∈ ρ(Ap) in

view of the closed graph theorem of S. Banach it suffices to prove that the operatorAp : Dp(Ω) →
Hp(Ω) is bijective. The surjectivity follows from the existence of solution U = T(u, v, θ) ∈ Dp(Ω)
to the equation AU = F in Ω for given F = T(f, g, h) ∈ Hp(Ω). To solve this equation, using
the formula (1.5) we rewrite it componentwise as follows:

v = f, −∆2u−∆θ = g and ∆v + ∆θ = h in Ω. (5.2)
1Here, we quote a result due to Simader [20] concerning the unique existence of solutions to the Dirichlet

problem for the biharmonic operator, and he assumed that Γ is a C4 hypersurface. Therefore, in this paper we
assume that Γ is a C4 hypersurface, but we think that it is enough to assume that Γ is a C3,1 hypersurface.
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Since F ∈ Hp(Ω), from (5.1) it follows that v = f ∈ W 2
p,D(Ω). Inserting this fact into the last

equation in (5.2) and using Lemma 5.1 (1), we have the existence of a solution θ ∈ W 2
p,0(Ω)

to the equation: ∆θ = h − ∆v = h − ∆f in Ω. Finally, inserting the first and last relations
of (5.2) into the second equation of (5.2) and using Lemma 5.1 (2), we have the existence of a
solution u ∈W 4

p,D(Ω) to the equation: ∆2u = −g−∆θ = −g−h+∆f in Ω. This completes the
proof of the surjectivity of the map Ap : Dp(Ω) → Hp(Ω). To show the injectivity of this map,
let U = T(u, v, θ) ∈ Dp(Ω) satisfy the relation: ApU = 0, which is rewritten componentwise as
follows:

v = 0, −∆2u−∆θ = 0 and ∆v + ∆θ = 0 in Ω. (5.3)

Since θ ∈W 2
p,0(Ω) as follows from (5.1) and since ∆θ = 0 in Ω as follows from (5.3), by Lemma

5.1 (1) we have θ = 0. Therefore, by (5.1) and the second equation of (5.3) we have u ∈W 4
p,D(Ω)

and ∆4u = 0 in Ω, which combined with Lemma 5.1 (2) implies that u = 0. Summing up, we
have proved that U = 0, which implies the the injectivity of the map Ap : Dp(Ω) → Hp(Ω).
This completes the proof of the lemma.

Now, we shall discuss the uniqueness.

Lemma 5.3. Let 1 < p <∞ and let Ω be a bounded domain. Assume that the boundary Γ of Ω
is a C4 hypersurface. Let C+ be the same set as in Theorem 1.2 and let λ ∈ C+. If U ∈ Dp(Ω)
satisfies the homogeneous equation:

(λI −A)U = 0 in Ω, (5.4)

then U = 0.

Proof. When λ = 0, we have already seen the lemma from the proof of Lemma 5.2, and therefore
we assume that λ 6= 0 in what follows. In view of (1.5), U = T(u, v, θ) ∈ Dp(Ω) satisfies the
equations:

λu = v, λv + ∆2u+ ∆θ = 0 and λθ −∆θ −∆v = 0 in Ω. (5.5)

Inserting the relation: λu = v into other two equations in (5.5) we have

λ2u+ ∆2u+ ∆θ = 0 and λθ −∆θ − λ∆u = 0 in Ω. (5.6)

If p = 2, then multiplying the first and second equations by λ̄ū and θ̄, respectively, integrating
the resultant formulas over Ω and using the fact that (u, θ) ∈ W 4

p,D(Ω) × W 2
p,0(Ω), by the

divergence theorem of Gauss and the Green formula we have

0 = |λ|2λ‖u‖2
L2(Ω)

+ λ̄‖∆u‖2
L2(Ω)

+ λ̄(∆θ, u)Ω + λ‖θ‖2
L2(Ω)

+ ‖∇θ‖2
L2(Ω)

− λ(u,∆θ)Ω

where we have set (a, b)Ω =
∫
Ω a(x)b(x) dx. Taking real part and using the assumption that

Reλ ≥ 0, we have ‖∇θ‖2
L2(Ω)

= 0, which combined with the fact that θ|Γ = 0 implies that θ = 0.
Since λ 6= 0, the second equation of (5.6) implies that ∆u = 0 in Ω, which combined with the
fact that u ∈ W 4

p,D(Ω) ⊂ W 2
p,0(Ω) implies that u = 0. Therefore, if p = 2, then we have U = 0.

Since Ω is bounded, if p > 2, then Dp(Ω) ⊂ D2(Ω), and therefore U = 0 when 2 < p < ∞ as
well.

When 1 < p < 2, we shall show that U ∈ Dp(Ω) and (5.4) imply that U ∈ D2(Ω). Since
u ∈ W 4

p (Ω) and θ ∈ W 2
p (Ω), by Sobolev’s imbedding theorem we see that u ∈ W 2

q (Ω) and
θ ∈ Lq(Ω) with exponent q > p such that n(1/p − 1/q) = 2. By Lemma 5.1 there exists a
solution τ ∈W 2

q,0(Ω) to the equation: ∆τ = λθ−λ∆u in Ω. Since Ω is bounded, τ also belongs
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to W 2
p,0(Ω), and therefore the uniqueness of solutions in Lemma 5.1 implies that θ = τ , which

means that θ ∈ W 2
q,0(Ω). Therefore, λ2u + ∆θ ∈ Lq(Ω). By Lemma 5.1 there exists a solution

w ∈ W 4
q,D(Ω) to the equation: ∆4w = −(λu + ∆θ) in Ω. Since w ∈ W 4

q,D(Ω) ⊂ W 4
p,D(Ω), the

uniqueness of solutions implies that u = w, which means that u ∈W 4
q,D(Ω). Therefore, we have

seen that U ∈ Dq(Ω). If q ≥ 2, then we have U = 0. If q is still less than 2, then repeating the
same argument finitely many times, finally we arrive at the stage that U ∈ D2(Ω), and therefore
we have U = 0. This completes the proof of the lemma.

Now, we shall give a

Proof of Theorem 1.2 (1). Let A−1
p denote the inverse operator of Ap, the existence of

which was proved in Lemma 5.2. A−1
p is a bounded linear operator from Hp(Ω) onto Dp(Ω).

If we write λI −Ap = −(I − λA−1
p )Ap, then the existence of the inverse operator (λI −Ap)−1

is equivalent to that of the inverse operator (I − λA−1
p )−1. In fact, if (I − λA−1

p )−1 exists as a
bounded linear operator on Hp(Ω), then

(λI −Ap)−1 = −A−1
p (I − λA−1

p,K)−1 (5.7)

exists as a bounded linear operator from Hp(Ω) onto Dp(Ω). By the Rellich compactness
theorem, Dp(Ω) is compactly imbedded into Hp(Ω), and therefore λA−1

p is an entire function of
λ with its value in LC(Hp(Ω)), where LC(Hp(Ω)) denotes the set of all compact linear operators
on Hp(Ω). Therefore, by the Harazov-Seeley theorem (cf. Seeley [18]) we see that (I−λA−1

p )−1

is defined for all λ ∈ C as a finitely meromorphic function with its value in L(Hp(Ω)), where
L(Hp(Ω)) denotes the set of all bounded linear operators on Hp(Ω). Let Λ denote the set of all
poles of (I − λA−1

p )−1, and then Λ is a discrete set in C. We shall show the following lemma.

Lemma 5.4. Λ ∩ C+ = ∅.

Postponing the proof of Lemma 5.4, we continue the proof of Theorem 1.2 (1). By Lemma
5.4 we see that (I − λA−1

p )−1 exists for all λ ∈ C+ and depends continuously on λ ∈ C+.
Especially, for any λ1 > 0 there exists a K > 0 such that

‖(I − λA−1
p )−1‖L(Hp(Ω))

≤ K whenever λ ∈ C+ and |λ| ≤ λ1. (5.8)

where ‖ · ‖L(Hp(Ω))
denotes the operator norm of L(Hp(Ω)). Since A−1

p is a bounded linear
operator from Hp(Ω) onto Dp(Ω), by (5.7) (λI −Ap)−1 is also a bounded linear operator from
Hp(Ω) onto Dp(Ω) and by (5.8) we see that for any F ∈ Hp(Ω) and λ ∈ C+ with |λ| ≤ λ1 there
holds the estimate:

‖(λI −Ap)−1F‖Dp(Ω)
≤ K‖A−1

p ‖L(Hp(Ω),Dp(Ω))
‖F‖Hp(Ω)

(5.9)

where ‖ · ‖L(Hp(Ω),Dp(Ω))
denotes the operator norm for the bounded linear operator from Hp(Ω)

into Dp(Ω). On the other hand, recalling the definition of the norms for the spaces Hp(Ω) and
Dp(Ω) given in (1.9), by Theorem 4.1 we see that there exists a λ1 ≥ 1 such that for any λ ∈ C+

with |λ| ≥ λ1 and F ∈ Hp(Ω) there holds the estimate:

|λ|‖(λI −Ap)−1F‖Hp(Ω)
+ ‖(λI −Ap)−1F‖Dp(Ω)

≤ C‖F‖Hp(Ω)
. (5.10)

Combining (5.9) and (5.10) completes the proof of Theorem 1.2 (1) if we finish the proof of
Lemma 5.4. Finally, we give a
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Proof of Lemma 5.4. Assume that Λ ∩ C+ 6= ∅. Let λ0 ∈ Λ ∩ C+. By the definition of
Λ, there exists a σ0 > 0 and N ∈ N such that

(I − λA−1
p )−1 =

N∑
j=1

Aj(λ− λ0)−j +Bλ (λ ∈ Uσ0 \ {λ0}) (5.11)

where Aj ∈ L(Hp(Ω)), Bλ is a holomorphic function defined on Uσ0 with its value in L(Hp(Ω))
and Uσ0 = {z ∈ C | |z − λ0| < σ0}. We may assume that AN 6≡ 0, so that there exists
at least one F ∈ Hp(Ω) such that ANF 6= 0. In view of (5.7), for λ ∈ Uσ0 \ {λ0} we set
Vλ = −A−1

p (I − λA−1
p )−1F . Then, Vλ ∈ Dp(Ω) and Vλ satisfies the equation: (λI −Ap)Vλ = F

in Ω. In view of (5.11), we have

Vλ = −
N∑

j=1

(λ− λ0)−jA−1
p AjF −A−1

p BλF

and therefore

(λ− λ0)NF = (λ− λ0)N (λI −Ap)Vλ = (λI −Ap)(−A−1
p ANF ) +O(|λ− λ0|).

Letting λ→ λ0, we have
(λ0I −Ap)(−A−1

p ANF ) = 0 in Ω.

Since −A−1
p ANF ∈ Dp(Ω), by Lemma 5.3 A−1

p ANF = 0. Applying Ap, we have ANF = 0,
which contradicts the assumption that ANF 6= 0. Therefore, Λ ∩ C+ = ∅, which completes the
proof of Lemma 5.4.

6 A proof of the unique existence theorem in the exterior do-
main case

We shall show Theorem 1.2 (2) in this section. Our main step is to prove the following theorem.

Theorem 6.1. Let 1 < p < ∞. Let Ω be an exterior domain in Rn (n ≥ 2) and assume that
the boundary Γ of Ω is a C4 hypersurface. Let b be a large number such that Rn \ Ω ⊂ Bb =
{x ∈ Rn | |x| < b}. Set

Lp,b+3(Ω) = {g ∈ Lp(Ω) | g(x) = 0 for |x| ≥ b+ 3},
Lp,b+3(Ω)2 = {(g, h) | g, h ∈ Lp,b+3(Ω)}

Jp(Ω) = {(u, θ) | u ∈W 4
p,D(Ω), θ ∈W 2

p,0(Ω)},

where W 4
p,D(Ω) and W 2

p,0(Ω) are the spaces defined in (1.7) with O = Ω. Let λ0 and λ1 be any
numbers such that 0 < λ0 < λ1 < ∞. Then, for any (g, h) ∈ Lp,b+3(Ω)2 and λ ∈ C+ with
λ0 ≤ |λ| ≤ λ1 there exists a unique solution (u, θ) ∈ Jp(Ω) to the equations:

λ2u+ ∆2u+ ∆θ = g and λθ −∆θ − λ∆u = h in Ω, (6.1)

which satisfies the estimate:

‖u‖
W4

p (Ω)
+ ‖θ‖

W2
p (Ω)

≤ C‖(g, h)‖
Lp(Ω)

(6.2)

for some constant C depending only on p, Ω, λ0 and λ1.
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Proof. Before starting our proof of Theorem 6.1, we should remark the following fact: If U =
(u, v, θ) satisfies the equation:

(λI −A)U = F in Ω, (6.3)

for F = T(0, g, h), then λu = v implies that (u, θ) satisfies the equation (6.1). On the other
hand, if (u, θ) satisfies (6.1) then setting λu = v, we see that U = T(u, v, θ) and F = T(0, g, h)
satisfy the equation (6.3). Therefore, when f = 0, equations (6.1) and (6.3) are equivalent
under the substitution for λu = v. In particular, we can use Theorem 1.2 (1), Theorems 2.1,
2.2 and 4.1, and Lemma 5.3 with f = 0 and λu = v in what follows.

To prove Theorem 6.1 we shall construct a parametrix. As a preparation for this, we consider
the resolvent problems in Rn and Ωb+4 = Ω ∩ Bb+4 = {x ∈ Ω | |x| < b+ 4}. First, we consider
the resolvent problem: (λI −Ap)U = F in Rn. Let Σε be the same set as in (2.1) of Theorem
2.1. Then, by Theorem 2.1 we have

(λI −Ap)−1 ∈ Anal(Σε,L(Hp(Rn),Dp(Rn))). (6.4)

Here and hereafter, Anal (O, X) denotes the set of all holomorphic functions defined on a domain
O of the complex field C with their values in X, and L(X,Y ) the set of all bounded linear
operators from X into Y for two Banach spaces X and Y . For short, we write L(X) = L(X,X)
as usual. The assertion (6.4) follows from the resolvent equation:

(λ1I −A)−1 − (λ2I −A)−1 = (λ2 − λ1)(λ1I −A)−1(λ2I −A)−1

and estimate (2.3).
Next, we consider the resolvent problem: (λI − Ap)U = F in Ωb+4. Let ∂Ωb+4 be the

boundary of Ωb+4, and then it consists of Γ and Sb+4 = {x ∈ Rn | |x| = b + 4}. In particular,
∂Ωb+4 is a C4 hypersurface if Γ is assumed to be a C4 hypersurface. Therefore, using Theorem
1.2 (1) which was already proved in section 5 and employing a standard argument (cf. Vrabie
[21, A Proof of Theorem 7.1.1]), we see that there exists an ε′ ∈ (0, π/2) such that

(λI −Ap)−1 ∈ Anal (Σε′ ,L(Hp(Ωb+4),Dp(Ωb+4))) (6.5)

where Σε′ is defined by the formula in (2.1), replacing ε by ε′.
Under above preparations, we shall construct a parametrix for equation (6.1). In what

follows, given function k(x) defined on Ω, k0(x) denotes the zero extension of k(x) to the
whole space, that is k0(x) = k(x) for x ∈ Ω and k0(x) = 0 for x 6∈ Ω. Given λ ∈ Σε and
(g, h) ∈ Lp,b+3(Ω)2, by Theorem 2.1 there exists a unique solution (U,Θ) ∈W 4

p (Rn)×W 2
p (Rn)

to the equation:

λ2U + ∆2U + ∆Θ = g0 and λΘ−∆Θ− λ∆U = h0 in Rn, (6.6)

which satisfies the estimate:

4∑
j=0

|λ|
4−j
2 ‖U‖

Lp(Rn)
+

2∑
j=0

|λ|
2−j
2 ‖∇jΘ‖

Lp(Rn)
≤ C‖(g, h)‖

Lp(Rn)
, (6.7)

where C is a constant independent of λ ∈ Σε, g, h, U and Θ. Let us define the maps: A1(λ) :
Lp,b+3(Ω)2 → W 4

p (Rn) and A2(λ) : Lp,b+3(Ω)2 → W 2
p (Rn) by the relations: A1(λ)(g, h) = U

and A2(λ)(g, h) = Θ, and set A(λ)(g, h) = T(A1(λ)(g, h), A2(λ)(g, h)). By (6.4) we have

A(λ) ∈ Anal (Σε,L(Lp,b+3(Ω)2,W 4
p (Rn)×W 2

p (Rn))). (6.8)
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For an element (g, h) ∈ Lp,b+3(Ω)2, we consider it also an element of Lp(Ωb+4)× Lp(Ωb+4).
Applying Theorem 1.2 (1) with f = 0 in case of Ωb+4, we see that there exists a unique solution
(v, τ) ∈W 4

p,D(Ωb+4)×W 2
p,0(Ωb+4) to equations:

λ2v + ∆2v = g and λτ −∆τ − λ∆v = h in Ωb+4, (6.9)

which satisfies the estimate:

|λ|(‖v‖
W2

p (Ωb+4)
+ ‖τ‖

Lp(Ωb+4)
) + ‖v‖

W4
p (Ωb+4)

+ ‖τ‖
W2

p (Ωb+4)
≤ C‖(g, h)‖

Lp(Ω)
, (6.10)

where C depends on Ω, b and p, but independent of λ ∈ C+, g, h, v and τ . Let us define the
maps B1(λ) : Lp,b+3(Ω)2 →W 4

p,D(Ωb+4) and B2(λ) : Lp,b+3(Ω)2 →W 2
p,0(Ωb+4) by the relations:

B1(λ)(g, h) = v and B2(λ)(g, h) = τ , and set B(λ)(g, h) = (B1(λ)(g, h), B2(λ)(g, h)). By (6.5)
we have

B(λ) ∈ Anal (Σε′ ,L(Lp,b+3(Ω)2,W 4
p,D(Ωb+4)×W 2

p,0(Ωb+4))). (6.11)

Let ϕ(x) be a function in C∞0 (Rn) such that ϕ(x) = 1 for |x| ≤ b+1 and ϕ(x) = 0 for |x| ≥ b+2.
Set Ξ = Σε ∩ Σε′ . Note that C+ \ {0} ⊂ Ξ. Set

Rj(λ)(g, h) = (1− ϕ)Aj(λ)(g, h) + ϕBj(λ)(g, h),
R(λ)(g, h) = (R1(λ)(g, h), R2(λ)(g, h)).

(6.12)

Then, by (6.8) and (6.11)

R(λ) ∈ Anal (Ξ,L(Lp,b+3(Ω)2,Jp(Ω))). (6.13)

If we set (w, τ) = R(λ)(g, h), then (w, π) satisfies the equations:

λ2w + ∆2w + ∆π = g + S1(λ)(g, h) and λπ −∆π − λ∆w = h+ S2(λ)(g, h) in Ω, (6.14)

where we have set

S1(λ)(g, h) = Gϕ(B1(λ)(g, h)−A1(λ)(g, h), B2(λ)(g, h)−A2(λ)(g, h))
S2(λ)(g, h) = Hϕ(λ(B1(λ)(g, h)−A1(λ)(g, h)), B2(λ)(g, h)−A2(λ)(g, h))

(6.15)

and Gϕ and Hϕ are the same symbols as in (4.3). Set S(λ)(g, h) = (S1(λ)(g, h), S2(λ)(g, h)).
Since suppS(λ)(g, h) ⊂ Db+1,b+2 = {x ∈ Rn | b+ 1 ≤ |x| ≤ b+ 2}, by (6.8), (6.11) and Rellich’s
compactness theorem we see that

S(λ) ∈ Anal (Ξ,LC(Lp,b+3(Ω)2) (6.16)

where LC(Lp,b+3(Ω)2) denotes the set of all compact operators on Lp,b+3(Ω)2. By the Harazov-
Seeley theorem (cf. Seeley [18]) we know that (I + S(λ))−1 does not exist for any λ ∈ Ξ or
it does exist as a finitely meromorphic function defined on Ξ with its value in L(Lp,b+3(Ω)2).
Now, we shall show that (I + S(λ))−1 does exist for all λ ∈ C+ \ {0}. Since S(λ) is a compact
operator, by the Fredholm alternative principle (or the Riesz-Schauder theory), to prove the
existence of bounded inverse (I + S(λ))−1 it suffices to prove the injectivity of I + S(λ). Let
(g, h) be an element in Lp,b+3(Ω)2 such that (I + S(λ))(g, h) = (0, 0). Set (w, π) = R(λ)(g, h),
and then by (6.14) we see that (w, π) ∈ Jp(Ω) satisfies the homogeneous equation:

λ2w + ∆2w + ∆π = 0, λπ −∆π − λ∆w = 0 in Ω.

Then, it follows that w = π = 0 from the following lemma.
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Lemma 6.2. Let 1 < p <∞ and λ ∈ C+ \{0}. Let Jp(Ω) be the space defined in Theorem 6.1.
If (u, θ) ∈ Jp(Ω) satisfies the homogeneous equation:

λ2u+ ∆2u+ ∆θ = 0, λθ −∆θ − λ∆u = 0 in Ω, (6.17)

then u = θ = 0.

Postponing the proof of Lemma 6.2, we continue the proof of Theorem 6.1. Combining the
fact that w = π = 0 in Ω with (6.12) implies that

(1− ϕ)A(λ)(g, h) + ϕB(λ)(g, h) = (0, 0) in Ω. (6.18)

Since ϕ(x) = 1 for |x| ≤ b and ϕ(x) = 0 for |x| ≥ b+ 2, we have

A(λ)(g, h) = (0, 0) for |x| ≥ b+ 2, B(λ)(g, h) = (0, 0) for |x| ≤ b+ 1. (6.19)

If we define (z, τ) by the relation: (z(x), τ(x)) = (w(x), π(x)) for x ∈ Ωb+4 and (z(x), τ(x)) =
(0, 0) for x 6∈ Ω, then by (6.19) (z, τ) ∈ W 4

p,D(Bb+4) × W 2
p,0(Bb+4) and (z, τ) satisfies the

equations:
λ2z + ∆2z + ∆τ = g0 and λτ −∆τ − λ∆z = h0 in Bb+4. (6.20)

On the other hand, if we restrict A(λ)(g, h) on Bb+4 and represent it also by A(λ)(g, h), then
by (6.19) A(λ)(g, h) belongs to W 4

p,D(Bb+4)×W 2
p,0(Bb+4) and satisfies the equation (6.20) too.

Therefore, the uniqueness result given in Lemma 5.3 implies that A(λ)(g, h) = (z, τ) in Bb+4,
and therefore A(λ)(g, h) = B(λ)(g, h) in Ωb+4. Combining this and (6.18) implies that

0 = A(λ)(g, h) + ϕ(B(λ)(g, h)−A(λ)(g, h)) = A(λ)(g, h) in Ω,

which combined with (6.6) implies that (g, h) = (0, 0) in Ω. Therefore, we have the injectivity of
I+S(λ) for all λ ∈ C+ \{0}, from which it follows that (I+S(λ))−1 exists for all λ ∈ C+ \{0}.

The Harazov-Seeley theorem tells us that there exists an open set G such that C+ \ {0} ⊂
G ⊂ Ξ and (I + S(λ))−1 ∈ Anal (G,L(Lp,b+3(Ω)2)), from which it follows that (I + S(λ))−1

depends continuously on z ∈ C+ \ {0}. Therefore for any λ0 and λ1 with 0 < λ0 < λ1 < ∞
there exists a constant K(λ0, λ1) such that

‖(I + S(λ))−1‖
L(Lp,b+3(Ω)2)

≤ K(λ0, λ1) (6.21)

for any λ ∈ C+ \ {0} with λ0 ≤ |λ| ≤ λ1. If we set Φ(λ) = R(λ)(I + S(λ))−1, then Φ(λ) ∈
Anal (G,L(Lp,b+3(Ω)2,Jp(Ω))). Moreover, setting (u, θ) = Φ(λ)(g, h) for (g, h) ∈ Lp,b+3(Ω)2,
then by (6.7), (6.10), (6.14) and (6.21) we see that (u, θ) ∈ Jp(Ω) solves (6.1) uniquely and
satisfies the estimate:

‖u‖
W4

p (Ω)
+ ‖θ‖

W2
p (Ω)

≤ C(λ0, λ1)‖(g, h)‖Lp(Ω)
(6.22)

whenever λ ∈ C+ and λ0 ≤ |λ| ≤ λ1, where C(λ0, λ1) is a constant depending essentially on p,
Ω, b, λ0 and λ1 only. This completes the proof of Theorem 6.1.

Now, we shall give

A proof of Lemma 6.2. First, we consider the case where (u, θ) ∈ J2(Ω). Multiplying
(6.17) by λ̄ū and θ̄ and integrating the resultant formula over Ω, by the divergence theorem of
Gauss and the Green formula we have

λ|λ|2‖u‖2
L2(Ω)

+ λ̄‖∆u‖2
L2(Ω)

+ λ̄(θ,∆u)Ω + λ‖θ‖2
L2(Ω)

+ ‖∇θ‖2
L2(Ω)

− λ(∆u, θ)Ω = 0,
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where (a, b)Ω =
∫
Ω a(x)b(x) dx. Since λ ∈ C+, taking the real part we have ‖∇θ‖

L2(Ω)
= 0,

which combined with θ|Γ = 0 implies that θ = 0. Inserting this fact into the second equation
in (6.17) and using the fact that λ 6= 0, we have ∆u = 0 in Ω. Since u|Γ = 0, we have
0 = −(∆u, u)Ω = ‖∇u‖2

L2(Ω)
, which combined with the fact that u|Γ = 0 also implies that u = 0.

Therefore, the lemma holds when p = 2.
When p 6= 2, we shall show that (u, θ) ∈ Jp(Ω) also belongs to J2(Ω). Applying the

same argument as in the proof of Lemma 5.3 and using Theorem 1.2 (1), we see that (u, θ) ∈
W 4

2,loc(Ω) ×W 2
2,loc(Ω). To show that (u, θ) ∈ J2(Ω), we use the cut-off technique. Let ϕ be a

function in C∞(Rn) such that ϕ(x) = 1 for |x| ≥ b+ 2 and ϕ(x) = 0 for |x| ≤ b+ 1, where b is
a large number such that Rn \Ω ⊂ Bb = {x ∈ Rn | |x| < b}. Using the symbols defined in (4.3)
and equation (6.17) we have

λ2(ϕu) + ∆2(ϕu) + ∆(ϕθ) = g and λ(ϕθ)−∆(ϕθ)− λ∆(ϕu) = h in Rn (6.23)

where g = Gϕ(u, θ) and h = Hϕ(λu, θ). Since (u, θ) ∈ W 4
2,loc(Ω) × W 2

2,loc(Ω), we see that
(g, h) ∈ L2(Rn) × L2(Rn). By Theorem 2.1 there exists a unique (w, τ) ∈ W 4

2 (Rn) ×W 2
2 (Rn)

which solves the equation:

λ2w + ∆2w + ∆τ = g and λτ −∆τ − λ∆w = h in Rn (6.24)

Since the uniqueness holds for the S ′(Rn) solutions in the whole space case, we have (ϕu, ϕθ) =
(w, τ). In fact, setting z = ϕu − w and π = ϕθ − τ , by (6.23) and (6.24) we see that (z, π) ∈
S ′(Rn)× S ′(Rn) satisfies the homogeneous equation:

λ2z + ∆2z + ∆π = 0 and λπ −∆π − λ∆z = 0 in Rn, (6.25)

where S ′(Rn) is the class of tempered distributions. Applying the Fourier transform to (6.25)
we have (

λ2 + |ξ|4 −|ξ|2
λ|ξ|2 λ+ |ξ|2

) (
ẑ
π̂

)
=

(
0
0

)
in Rn (6.26)

in the sense of distribution of class S ′(Rn). If we denote the determinant of the matrix(
λ2 + |ξ|4 −|ξ|2
λ|ξ|2 λ+ |ξ|2

)
by D(λ, ξ), then D(λ, ξ) = λ3 + |ξ|2λ2 + 2|ξ|4λ + |ξ|6. Let f(t) be a

polynomial defined by the formula: f(t) = t3 + t2 + 2t+ 1. We see that f(λ/|ξ|2)|ξ|6 = D(λ, ξ).
Since f(0) = 1, f(−1) = −1 and f(t) is a strictly increasing function, there exists only one real
root α with −1 < α < 0. Since the coefficients of f(t) are real numbers, other two roots are
complex number β and its complex conjugate β̄. If we write f(t) = (t− α)(t− β)(t− β̄), then
α + 2Reβ = −1, from which it follows that Reβ = −(1 + α)/2. Since −1 < α < 0, we have
Reβ < 0. Since

D(λ, ξ) = |ξ|6(λ/|ξ|2 − α)(λ/|ξ|2 − β)(λ/|ξ|2 − β̄) = (λ− |ξ|2α)(λ− |ξ|2β)(λ− |ξ|2β̄),

D(λ, ξ) 6= 0 whenever λ ∈ C+\{0} and ξ ∈ Rn. Therefore, it follows from (6.26) that ẑ = π̂ = 0.
Applying the Fourier inverse transform, we have z = π = 0, which means that ϕu = w ∈W 4

2 (Rn)
and ϕθ = τ ∈ W 2

2 (Rn). Since ϕ(x) = 1 for |x| ≥ b+ 2 and since (u, θ) ∈ W 4
2,loc(Ω)×W 2

2,loc(Ω),
we have (u, θ) ∈ W 4

2 (Ω) ×W 2
2 (Ω), which implies that u = θ = 0. This completes the proof of

Lemma 6.2.
Now, we shall give
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A proof of Theorem 1.2 (2). Let λ0 and λ1 be arbitrary positive numbers such that
λ0 < λ1 and let λ ∈ C+ such that λ0 ≤ |λ| ≤ λ1. Given F = T (f, g, h) ∈ Hp(Ω), we shall look
for a solution U = T (u, v, θ) ∈ Dp(Ω) of the equation:

(λI −A)U = F in Ω. (6.27)

Let ϕ and ψ be two cut-off functions in C∞(Rn) such that ϕ(x) = 1 for |x| ≥ b+3 and ϕ(x) = 0
for |x| ≤ b + 2, and ψ(x) = 1 for |x| ≥ b + 2 and ψ(x) = 0 for |x| ≤ b + 1, where b is a large
number such that Rn \ Ω ⊂ Bb. Note that ϕ(x)ψ(x) = ϕ(x). Let U0 = (u0, v0, θ0) ∈ Dp(Rn) be
a solution to the equation:

(λI −A)U0 = ψF in Rn. (6.28)

By Theorem 2.1 we know the unique existence of U0 and moreover U0 satisfies the estimate:

‖u0‖
W4

p (Rn)
+ ‖(v0, θ0)‖

W2
p (Rn)

≤ C(λ0, λ1)(‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
) (6.29)

with some constant C(λ0, λ1) whenever λ ∈ C+ and λ0 ≤ |λ| ≤ λ1. Here and hereafter,
C(λ0, λ1) denotes a generic constant which depends essentially only on p, Ω, ϕ, ψ, λ0 and λ1. If
we set U = ϕU0 +V (V = T(u1, v1, θ1)), then new unknown vector V should solve the equation:

(λI −A)V = (1− ϕ)F −R in Ω, (6.30)

where R = T(0, Gϕ(u0, θ0),Hϕ(v0, θ0)), and Gϕ and Hϕ are symbols defined by (4.3). By (6.29)
and (4.3) we have

suppR ⊂ Bb+3, ‖R‖Lp(Ω)
≤ C(λ0, λ1)(‖f‖

W2
p (Ω)

+ ‖(g, h)‖
Lp(Ω)

). (6.31)

Now, we shall solve (6.30). By (1.5), the first equation of (6.30) is λu1 − v1 = (1− ϕ)f , so
that we set

v1 = λu1 − (1− ϕ)f. (6.32)

Inserting this formula into the second and third lines of the equation (6.30), we have

λ2u1 + ∆2u1 −∆θ1 = (1− ϕ)(g + λf)−Gϕ(u0, θ0),
λθ1 −∆θ1 − λ∆u1 = (1− ϕ)h− λ∆((1− ϕ)f)−Hϕ(v0, θ0)

in Ω. (6.33)

From (6.31) and the fact that 1 − ϕ(x) = 0 for |x| ≥ b + 3 it follows that the right members
of (6.33) are supported by Bb+3, and therefore by Theorem 6.1 there exists a (u1, θ1) ∈ Jp(Ω)
which solves (6.33) uniquely and satisfies the estimate:

‖u1‖
W4

p (Ω)
+ ‖θ1‖

W2
p (Ω)

≤ C(λ0, λ1)(‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
+ ‖(Gϕ(u0, θ0),Hϕ(v0, θ0))‖Lp(Ω)

),
(6.34)

whenever λ ∈ C+ and λ0 ≤ |λ| ≤ λ1. Combining (6.29), (6.32) and (6.34), we see that equation
(6.30) admits a solution V ∈ Dp(Ω) which satisfies the estimate:

‖V ‖Dp(Ω)
≤ C(λ0, λ1)(‖f‖

W2
p (Ω)

+ ‖(g, h)‖
Lp(Ω)

),

which combined with (6.28) and (6.29) implies that that U = ϕU0 +V ∈ Dp(Ω) solves equation
(6.27) and satisfies the estimate:

‖U‖Dp(Ω)
≤ C(λ0, λ1)(‖f‖

W2
p (Ω)

+ ‖(g, h)‖
Lp(Ω)

), (6.35)
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whenever λ ∈ C+ and λ0 ≤ |λ| ≤ λ1.
Since λ0 and λ1 are chosen arbitrarily, for any λ ∈ C+ \ {0} equation (6.27) admits a

solution U ∈ Dp(Ω) which satisfies the estimate (6.35) whenever λ ∈ C+ and λ0 ≤ |λ| ≤ λ1.
The uniqueness of solutions to (6.27) follows from Lemma 6.2 for λ ∈ C+ \ {0}. Therefore, we
have C+ \ {0} ⊂ ρ(Ap). Moreover, by Theorem 4.1 and (6.35) we have

|λ|‖(λI −Ap)−1F‖Hp(Ω)
+ ‖(λI −Ap)−1F‖Dp(Ω)

≤ C(‖f‖
W2

p (Ω)
+ ‖(g, h)‖

Lp(Ω)
)

whenever λ ∈ C+ and |λ| ≥ λ0, where λ0 is arbitrary positive number and C depends essentially
only on p, Ω and λ0. This completes the proof of Theorem 1.2 (2).
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[14] J. E. Munõz Rivera and R. Racke, Smoothing properties, decay and global existence of
solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26
(1995), 1547–1563.
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