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Abstract

The paper is concerned with linear thermoelastic plate equations in a domain :
g + A%u+ A0 =0 and 6; — A — Au; =0 in Q x (0,00),

subject to Dirichlet boundary condition: u|r = Dyulr = f|r = 0 and initial condition:
(u, ut, 0)|i=0 = (u0,v0,600) € W7 p(Q) x Ly x L,,. Here, Q is a bounded or exterior domain in
R” (n > 2). We assume that the boundary I' of 2 is a C* hypersurface and we define Wzi D
by the formula: W}, = {u € W2 | ulr = D,u|r = 0}. We show that for any p € (1, 00),
the associated semigroup {7'(t)};>0 is analytic. Moreover, if € is bounded, then {T'(¢)}:>0
is exponentially stable.

1 Introduction

Let 2 be a bounded domain or an exterior domain (domain with bounded complement) in R™
(n > 2), the boundary T' of which is a C* hypersurface. In this paper, we consider initial
boundary value problem of linear thermoelastic plate equations:

uy + A%u+ A0 =0 and 0, — A0 — Ay, =0 in Q xRy (1.1)
subject to the initial condition:
u(z,0) = uo(x), w(z,0)=uvo(x), 0(z,0)=0b(x) (1.2)
and Dirichlet boundary condition:
ulr = Dyulr = 0|r =0, (1.3)

where D, = Z?:l viDj (D; = 0/0x;) and v = (v1,...,Vy) denotes the unit outer normal to
I'. In (1.1), u stands for a mechanical variable denoting the vertical displacement of the plate,
while 6 stands for a thermal variable describing the temperature relative to a constant reference
temperature . Since the equations (1.1) represent the transfer of the mechanical energy to the
thermal energy through coupling, we expect that total energy of the system decays, because of
the thermal damping. In fact, when 2 is a bounded reference configuration, the exponential
stability of the associated semigroup under several different kind of boundary conditions have
been proved by Kim [4], Mundz Rivera and Racke [14], Liu and Zheng [12], Avalos and Lasiecka
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[1], Lasiecka and Triggiani [5, 6, 7, 8] and Shibata [19]. But, a more significant aspect that the
equations (1.1) have is that the associated semigroup is analytic. Namely, although the first
equations in (1.1) is a simple dispersive equation (the product of two Schrédinger equations),
the effect from the heat equation through coupling is strong enough to have analyticity of the
total system. This fact was first proved by Liu and Renardy [9] and then it has been studied
by Russell [17], Liu and Liu [10], Liu and Yong [11], Mundz Rivera and Racke [15] in the Lo or
Hilbert space setting (see also the book of Liu and Zheng [13] for a survey).

The original equations derived by Lagnese [3] describing the motion and transfer of the
energy of thermo-elastic plate is non-linear and it is widely accepted that the L, approach
is more relevant to handle with the non-linear problem under less regularity assumption and
compatibility condition on initial data in the L, setting. Concerning the generation of L,
analytic semigroup and its decay property for linear thermoelastic plate equations, Denk and
Racke [2] studied the Cauchy problem for (1.1) in the whole space R™ and Naito and Shibata
[16] studied the initial boundary value problem for (1.1) with Dirichlet boundary condition in
the half-space R}.

The purpose of this paper is to study the generation of an L, analytic semigroup and its
decay property when the reference configuration €2 is a bounded domain or an exterior domain
in R” (n > 2). To formulate the problem (1.1) — (1.3) in the semigroup setting, introducing the
unknown function v = u;, we rewrite it in the matrix form:

Ut =AU in Q x RJF, U‘t:(] = Uo, (14)
where we have set
U ug 0 1 0
U=|v]|, Uy=|w]|, A=|-4A%2 0 -A]|. (1.5)
0 0o 0 A A

To solve initial boundary value problem (1.4) with (1.3), we consider the corresponding resolvent
problem:

M—-AU=F inQ (1.6)
subject to the boundary condition (1.3), where I denotes the n X n unit matrix. To state
our main result precisely, we introduce several spaces and some symbols at this point. For a
general domain O, Ly(0) and W (O) stand for the usual Lebesgue space and Sobolev space,
respectively, m € No, 1 <p < oo.. Let || ||, and || ||, denote their norms. For a general

P
domain O with C! boundary O, we introduce the spaces Wg’o(O) and W) (0) (m = 2,4) as
follows:
Wio((’)) ={uce WPZ((’)) | ulgo = 0},
;fD(O) ={ue WIT(D) | ulpo = Dyulsgo =0} (m = 2,4),

where v = (v1,...,v,) denotes the unit outer normal to 90 and D, = >""_, v;D;. Let H,(O)
and D,(O) be the spaces defined by the following formulas:

Hp(O) ={F ="(f,9,h) | f € W7p(O), g€Ly(O), heLy(O)}

(1.7)

T 4 2 2 (1.8)
Dp(O) = {U = (u,vﬁ) | u € Wp,D(O)v v E Wp,D(O)’ NS Wp,O(O)}'
Here and hereafter, M denotes the transposed of M. We define the norms || - I#,(0) and
| - llp,(0) by the following formulas:
1E 4,0y = 11l 200, + 100 D), 0  (F =T(f,9.h) € Hp(O)),
? (1.9)

1Ullm,0) = el ) + 10Ol (U =T(01,0,0) € DH(O)).
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Let A, be an operator whose domain is D,({2) and its operation is defined by the formula:
AU =AU  for U € Dp(2). (1.10)
Then, we have the following theorem.

Theorem 1.1. Let 1 < p < oco. Then, A, generates an analytic semigroup {T,(t)}i>0 on
Hp(82).

Moreover, if Q is a bounded domain, then {T)(t)}s>0 is exponentially stable, that is there
exists a positive constant o such that

1T, (t) F Iy, ) < Ce™ T F 34,0
for any t >0 and F € H,(2) with some constant C independent of t and F.

Theorem 1.1 immediately follows from the following theorem concerning the anaylysis of the
resolvent of A,,.

Theorem 1.2. Let 1 < p < oo. Let p(Ap) be the resolvent set of A,. Let
Ci={ e C|ReAX >0}

where C denotes the set of all complex numbers. Then, we have the following two assertions.
(1) Assume that Q is a bounded domain. Then, p(A,) D Cy.

Moreover, there exists a constant C' depending on p and Q0 such that for any A € C, and
F € H,(Q) there holds the estimate:

AT = Ap) " F iy, ) + IO = Ap) " Fllp, ) < ClIF [y, -

(2) Assume that Q is an exterior domain. Then, p(A,) D Cy \ {0}.
Moreover, for any Ao > 0 there exists a constant C' depending on Ao, p and Q such that for
any A € Cy with |A\| > Ao and F € Hy(2) there holds the estimate:

AT = Ap) " Fllag, ) + IO = Ap) " Fllp, ) < ClIF |y, -

Since Theorem 1.1 follows from Theorem 1.2 immediately (cf. Vrabie [21, Proof of Theorem
7.1.1], we shall only prove Theorem 1.2 in what follows.
We remark that replacing the Dirichlet boundary conditions (1.3) by the boundary condi-
tions
ulp = Aulp =6|r =0 (1.11)

usually simplifies the situation, cf. [16, Sec.6] or [9], and hence allows to obtain similar theorems
as presented above.

The paper is organized as follows: In section 2, we quote results due to Naito and Shibata
[16] concerning the resolvent problem in R™ and R’!. In section 3, we treat the resolvent problem
in the bent half space. In section 4, we prove the a priori estimate for the resolvent problem
in a general bounded or exterior domain whose boundary is assumed to be a C!, compact
hypersurface. In section 5, we shall show Theorem 1.2 when 2 is a bounded domain. In section
6, we shall show Theorem 1.2 when €2 is an exterior domain.



2  On a resolvent estimate in R" and R’.

In this section, we shall quote results obtained by Naito and Shibata [16] concerning the resolvent
problem in the whole space R™ and its half space R’} which is defined by the formula: R’} =
{z = (x1,...,2,) € R" | , > 0}, whose boundary is the set {z = (z1,...,2,) € R" | z, = 0}.
Note that

Wio(R™) = W (R"), Wyph(R") = Wi (R"),

W2o(RY) = fu € W2RL) | uls,=0 = 03,

Tp(RY) = {u € WRL) | uls,—0 = Dyule,—o = 0} (m =2,4).
Theorem 2.1. Let 1 < p < co. Set
e={AeC\ {0} | |arg\| <7 —€}. (2.1)

Then, there exists an € (0 < € < 7/2) such that for any F = T(f,g,h) € Hp(R™) and X € %,
there exists a unique U = T (u,v,0) € Dp(R™) which solves the resolvent problem:

M —-AU=F inR" (2.2)

uniquely and satisfies the estimates :

2
24 . . .
> I 20, V90, V90) [ ey < O£, 9, D)y ey
= L (2:3)
4—j .
Z ‘)" 2 HVJUHLP(R") < C”(’)".ﬂga h)HLp(Rn)‘
Jj=0

Here and hereafter,

Viu =Vu = (Dyu,...,Dyu), Viu=(Ddu||a|=j)(j>2)
Dju = 0u/dxj, Dyu=D{"---Dpru (o= (ou,...,a,) € Np),

N denotes the set of all natural numbers and No = N U {0}.

Theorem 2.2. Let 1 < p < oo and let C1 be the same as in Theorem 1.2. Then for any
A€ CL\{0} and F =T (f,g,h) € Hp(RY), there exists a U =T (u,v,0) € D,y(R") which solves
the resolvent problem:

(M—-AU=F iR} (2.4)
uniquely and satisfies the estimate:
2
>IN IV 20, V90, VIO ) < CHTAL 9B e
=0

1

4—j .
> A IVl @y < CHAA 95 By gen -
j=0



3 On a resolvent problem in a bent half space

Let w : R ! — R be a bounded function in C3! class whose derivatives up to order 4 are all
essentially bounded in R”~!. Let H,, be a bent half space defined by the formula:

Hy={z=(21,...,2,) €R" | 2 > w(2) (z' = (21,...,20-1) ER")}.
OH,, denotes the boundary of H,,, which is given by the formula:
an = {x = (xl; . 7xn) c RTL ‘ Ty = w(x/) (x’ — (xla L 7:1;“_1) c Rnfl)}.

v(z) denotes the unit outer normal to OH,,, which is defined by the formula:

v(z) = (Vw,-1)/y/1+ |Vw]2, Vw=(Dw,...,Dypqw).
We shall prove the following theorem in this section.
Theorem 3.1. Let 1 < p < co. Then, there exist numbers § and g with 0 < <1 and Ay > 1
such that if |[V'w|, -1, < 0, then for any X € Cy with Al > Xo, F=7T(f,g,h) € Hp(H,)
there exists a unique U = T (u,v,0) € Dy(H,) which solves the equation:

(M — AU = F in H, (3.1)

and satisfies the estimate:

2

S (Jul w2tiimyy TI@ON, )< CU Lz, + 10 MLy (3.2)

7=0

To prove Theorem 3.1, we reduce problem (3.1) to the half space problem by using the map
® : H, — R7} defind by the formula: y = ®(z) = (2, z, — w(z’)). Given function w(z) defined
on Hg, we set w(y) =w(x) =w(y,yn + w(y')). We have

o 9 9 R

aixj_a—yj—wja—yn (j=1,....,n—1), (3.3)

Oy, B 8yn
Here and hereafter, we set w; = Djw. Since the operator A contains A and A2, we have to

represent these operators in the new coordinate. In fact, by (3.3) we have

n—1

Aw =Aw — Z 2w; D Dpw + |V'w*D2w — (A'w)Dypw

7=l (3.4)
Aw =Aw + ay(V'w, Viw)

+ a3(DLV'w, V3w) 4 a2 (D2 V'w, V?w) 4 a1 (D3, V'w, V),

where we have set

n—1
ANw = ZDJQ-w, DEVw = (Dg‘,/wj lj=1,...,n—1, || <k),

n—1 n—1
as(V'w, V'w) = =43 w;AD;Dyw + 2|V'w?’AD2w + 4 > wjwyD; Dy Diw
7=1 k=1



n—1

—4) wj|V'wl’D;Diw + |V'w|*Diw

j=1
az(DLV'w, V3w) = —42 (V'D;Dyw) + 2(V'|V'w|?) - (V' D2w)
n—1 n—1
— 2(AW)ADyw +4 Y wi(D;Dyw) Dy Diw — 2Y " w;(D;|V'w|*) Diw
jik=1 j=1
n—1
+4 ij(A/w)DjDiw — (A'W)|V'w|*Diw,
j=1
n—1
as(D2V'w, Vi) = (A’ 2w — 42 'w;)DjDpw + 22% (A'w)D?
7=1

T (AV'w) DR,
a1 (D3, V'w, Vw) = —((A")?w)Dyw .
Let U = T(u,v,0) satisfy (3.1) with F' = T(f, g, h). If we write (3.1) componentwise, then we
have

Au—v=Ff
M+ A%+ A =g in H,, (3.5)

AN — A0 —Av=nh

ulon,, = Dyulon, = 0lon, =0,

where D, = v-V = (1+ \V’w\Q)*l/Q{Z?:_ll(Djw)Dj — Dy, }. Therefore, by (3.4) (u,v,0) satisfies
the equations:

Au—v=Ff
A+ A%+ Af = g + G(w,u,0) in RY, (3.6)
N —A)—Av=h+ H(w,v,0)

@‘xn:[) = Dnﬂ|xn:0 = Q|:vn:0 = 07
where we have set

G(w7ﬂa Q) = a4(v/w7 v4ﬂ) - a3(D;’v/wa V3M) - aQ(DQ V,w v2 )

n—1
—a1(D3V'w,Vu) + 2> w;D;Dyf — Zw D20 — (A'w)D,0,

j=1
n—1 n—1

H(w,v,0) ==2Y w;D;Dn(0 +v) + (> w})D2(0 + v) + (Aw)Dyn(0 + v).
Jj=1 j=1

Obviously, if (u,v, ) satisfies (3.6), then (u,v,0) satisfies (3.5), and therefore we shall solve
(3.6) in what follows. Since (3.6) is linear, we solve the following two systems of equations:

Au—v=0
Ay—i—A@%—Ang—l—G(w,g,Q) in R?, (3.7)
AN — A0 — Av=h+ H(w,v,0)
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and
Au—v=f
A+ Ay + A =0 in R, (3.8)
AN — A —Av=0

First, we shall show the existence of a unique solution of equation (3.7) by contraction mapping
principle. For the notational simplicity we introduce the following symbols:

4 2
g 25 i
Ta(w0,0) = 3 N T IVl o, + D0 N 197 (2, 0)1],
§=0 =0

Ky =|V'w] Kj = | D)V (1 =2,3,4).

Loo(RP—1)? Loo (RP—1)

Since we shall choose K7 small enough and || large enough later, we may assume that 0 <
Ki <1and |\| > 1 a priori. By Theorem 2.2 we know that given (u!,v!,0') € D,(R%), there
exists a (u?,v?,6%) € D,p(R?) which uniquely solves the equations:
u? —v? =0
22+ A%? + A% = g+ G(w,gl,Ql) in R, (3.9)
AO? — AO* — Av® = h+ H(w,v",0")

2 2 2
u ’a:nzo = Dn@ |xn:0 = Q |:vn:0 =0
and satisfies the estimate:

(G(w,ut,0Y), H(w,v', )|

Lp(RTY) + == Z 0= Lp(R

Th(u*,0*, 6%) < C(|l (g, b)| )- (3.10)

n)
From the definition of G(w, u,8) and H(w, v, f) we have

(G(w,u,0), H(w,v,0))l,,

e ; (3.11)
< C(K1 4 Ko\ 72 + (K2 4 K3)|A| ™t + K4\ 72) Ty (1, v, 6).
Combining (3.10) and (3.11) implies that
Ty (u® v?, 0%)
< C{(Ky + Ko\ "2 + (K2 + K3\ ™Y + K4\ "2)Z (ul, 0!, 01 h (3.12)
< C{(K1 + Ko A 72 + (K5 + K3)|A| 7 + Ky A[72)Th(u v, 07) + H(g,f)lle(Ri)}-
If we choose K7 and Ag > 1 in such a way that
1 _1 _3 1
CEi< 7, C(Kad* + (K3 + K3)\g' + K4\ 2) < T (3.13)

then by (3.12) and the linearity of the equation (3.7) the map (u',v',8') — (u%,v%,6?) is a
contraction on D,(R%). Therefore, (3.7) admits a unique solution (u',v’,8') € D,(R’), which
satisfies (3.12) with u' = u? = o/, v! = v? =’ and 6! = 6% = §'. By (3.13) we have

IA(Q/72,7Q/) < QCH(Q»Q)H (314)

Lp(R)"



On the other hand, by Theorem 2.2 we know that (3.8) admits a unique solution (u”,v”,0") €
D, (R’ ) which satisfies the estimate:

2
Z’ || vg+2 " v] " vgg//)H
J

2
Lp(R7) < CHV iHLp(Ri)’

(3.15)

=0
1
22 g 1
S AT Vi lepny < ClENL, @n)-
7=0

//H

Using the interpolation inequality: ||[Vu"||, pEn) S < C|V3u ”HLP(Rn) ||u”||Lp(Rn by (3.15) we have
" .
| A]]] e HW,?(R;;) < C||i||W3(M). Finally, noting that |A| > 1, by (3.15) we have

2

S (IIJ’IIW”Q(M + 1", ")l

7=0

<
)< Ol Ly,

Wi ®n)

Therefore, u = v +u”, v =

2
ZI " (|lu watigy, +1(:0)

v/ +v" and 0§ = 6’ + 6" solve equation (3.6) and satisfy the estimate:

wgar) S O gian, + 1By, )

If we defind x), v(z) and O(x) by u(x) = u(y), v(z) = v(y) and O(x) = 0(y) with y = ®(x) =
(@', zy, — w(2')), then (u,v,0) is a required solution to (3.1). We have also the uniqueness for
equation (3.1), because both equations (3.8) and (3.9) are uniquely solvable. This completes
the proof of Theorem 3.1.

1
)

4 A priori estimate

In this section, we shall show an a prior: estimate of problem:
Au—v=f
Mo+ A%u4Af =g in Q, (4.1)
A — A0 —Av=nh
ulr = Dyulp = 0|p = 0.
More precisely, we shall show the following theorem.

Theorem 4.1. Let 1 < p < co. Then, there exist constants A1 > 1 and C > 0 such that for
any X € C4 with |\ > M\ and U = (u,v,0) € Dy(Q) there holds the estimate:

Zw Ul gy + 100 ) < OOy )+ 1020}

where W (Q) = Ly() and 1(f,g,h) = (A — A)T(u,v,0).
To prove the theorem, we localize problem (4.1). Let ¢ be a cut-off function in C'*°(R"™).
Then, (¢u, pv, ) enjoys the equations:
Alpu) = (pv) = o f
Apv) + A% (pu) + Aph) = og + Gyp(u,0) p 9, (4.2)
A(pl) — A(p0) — Apv) = ph+ Hy(v, 0)



(pu)lr = Dy(pu)|r = (#0)[r = 0.
Here and hereafter, G, (u, ) and H,(v,¢) denote the symbols defined by the following formulas:

Go(u,0) = = A(V - ((Ve)u)) — AV ) (Vu)) = V- ((Vp)Au)
= (Vo) - (VAu) =V - ((Vp)0) = (V) - (VO), (4.3)
Hy(v,0) =V - (Vo)(0 +v)) + (V) - (V(0 +v)).

For the notational simplicity, we shall omit u, v and 6 in the representation of G, and H,,
until the end of the proof of Theorem 4.1 unless any confusion occurs. Let b > 0 be a large
number such that By D  when 2 is bounded and By D R" \ Q when Q is exterior, where
By = {z € R" | |z| < b}. Pick up zp € 9Q. Consider a small neighborhood B, (zg) = {z € R™ |
|x — zo| < o} of xg with some o > 0. Let us choose ¢ € C*°(R") in such a way that p(x) =1
on B, 5(wg) and p(z) = 0 for x & B,(xp). Since we choose o > 0 small enough, we may assume
that supp ¢ C Bp. We shall reduce (4.2) to the bent half space problem studied in section 3.
Let —v(xg) = (n = MCiny -y Cun) and ¢ = H(Crjy .-+, Cnj) (= 1,...,n — 1) be vectors such
that (; - ( = 6%, and set

Cii G2 -+ Cin
O= (G C) = C?l C?z CZ:n
<n1 Cn2 te Cnn

Since O is an orthogonal matrix, under the change of variables: y = TO(x — ) the operators
A and A? do not change. Therefore, defining the functions U(y), V(y) and ©(y) and a domain
Q by the formulas: (pu)(z) = U(y), (ev)(z) = V(y), (¢8)(z) = O(y) and Q =TO(Q — {x0}),
we see that (U, V,©) enjoys the equations:
U~V =of
AV + AU + AO = 55 + G, in €, (4.4)
AO — A® — AV = oh + H,,
U|6Q = DDU|BQ = @|8S:2 = 07

where 9Q denotes the boundary of Q, and o denotes the unit outer normal to 9. Here

and hereafter, given function w(z) defined on Q, w(y) denotes the function defined by the
relationship: w(y) = w(z) = w(xo + Oy). In particular, we have

7(0) = 1(0,...,0,-1), (4.5)

because 7(y) = TOv(x), where v(z) denotes the unit outer normal to I'. Let dp be a small
positive number chosen later and choose ¢ > 0 in such a way that supp U, supp V, supp© C
Bs, ={y € R" | |y| < dp}. Let 61 > 0 be a small number such that

Bs, NQC{y=(y1.-.-,un) ER" [ yn > ¥(y'), v € B (0)},
By, N0 C{y= (Y1, yn) €R" | yn = 9(y), v € B, (0)}

for some ¢ € C*(Bj (0)), where ¥’ = (y1,...,yn—1) and B} (0) = {y € R*™! | |¢/| < 61}
From (4.5) it follows that

$(0) =0, V(0) =0, 7= (V,-1)/V1+|V[ (4.7)

(4.6)



where V't = (D11, ..., Dy—1%). Let p(y') be a function in C$°(R"~!) such that p(y’) = 1 for
ly'| <1 and p(y') = 0 for |y/| > 2. Setting w(y') = p(y'/do)(y') and using w(y’) we define a
bent half space H,, its boundary and unit outer normal by the following formulas:
H,={y= (1, yn) ER" |y > w(y), ¢ € R”_l},
0H, = {y = (yla s 7yn) e R" | Yn = w(y'), y, € Rn_l}a

Ve = (Vw,=1)/\/1+ |[Vw|?, Vw=(Dw, ...,Dp_qw).

If we choose g > 0 so small that 0 < 25y < 41, then it follows from (4.6) that (U, V, ©) satisfies
problem in H,:

U~V =of
AV + AU + A© = 55 + G, in H,, (4.8)
AO — A® — AV = oh + H,
Ulon,, = Dv,Ulon, = ©lon, = 0.

By (4.7) we see easily that

V) <4 sup (oW /50)lly' /50l) sup (V20 ()|

ly’/d0]<2 ly'|<61
+ sup ([T p)W /00y /30f*) sup [V2(y)]| }oo
ly'/60|<2 ly'|<61
< C(d1)do

with some constant C'(d1) independent of dy. Therefore, we have

IV < C(d1)d. (4.9)

Loo (RM— 1) —

Let § > 0 be the number given in Theorem 3.1 and choose dp so small that C(d;)dp < d. Then,
by Theorem 3.1 there exists a A\g = Ag(zp) > 1 such that

Zw ol 2+J(H)+Zw 1.0l
(4.10)

< C@0) (19 lyz, + 155 Oy + G )l )

for any A € C4 with |A| > Ao. Here and hereafter, C'(z¢) denotes a generic constant depending
on zg and . Noting that supp ¢ C By, we have

G By < Ol + 100y ) (411)
where Q, = QN By, = {x € Q| |z| < b}. Combining (4.10) and (4.11) we have
A . A
Zr SRR VAT .

< CEO) My + 102y + Nl + 10Ol g )
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Since ¢ = 1 on B, 5(70), from (4.12) finally we have that there exist o = o(zg) > 0, A(zg) > 1
and C(xg) > 0 such that for any A\ € C; with |A\| > A(zp) there holds the estimate:

A 0
§ju Wl oy HIEO] ) )
< Ca0) 1y 10 D)y + il g, + 10Oy -
Since I' is compact, there exists a finite number of points z; € I' (j = 1,..., N) such that
N
I'c U Bg(xj)/g(.’ﬂj). (4.14)

Jj=1

If we set C' = Zévzl C(z;), Ao = max;j—,_ nA(z;), and E = QN (Uj\[:1 Bo(z;)/2(x5)), then it
follows from (4.13) and (4.14) that for any A € C; with |A| > X there holds the estimate:

§jw el pvs gy + 100, )

< CUS oy + 10 D)0y + Nl + 100 )

(4.15)

Let x > 0 be a small number such that F D {z € Q | dist (z,I") < 3x}. Let ¢ be a function in
C*°(R™) such that

1 for z € QN {x € R" | dist (z,T") > 2k},
o(r) =140 forx € QN {x € R" | dist (z,") < K}
0 for = & .

Since supp ¢ C int(2), we have (4.2), replacing 2 by R™. And therefore, applying Theorem 2.1,
for A € C4 with |A| > 1 we have

2

A VT2 (ou), VI (ov), VI (00 N
]ZOH H( (pu), V7 (pv), V? (00))l ) (4.16)

< CUS Nz + 10 W)y + el 100y
Aol gy < CLI gy + NG Ly + L Ul + 10Oy )3 (417)

where we have used the fact that supp D% C E C ) for any multi-index o with |a| > 1.
Using the interpolation inequality: ||V (¢u)]| < C||V2(u)||M/? /2 and also the

Lp(R™) — L (]Rn)HSD HLP(]R”)
fact that p(z) =1 for x € Q\ E, from (4.16) and (4.17) it follows that for any A € C; with
|A| > 1 there holds the estimate:

Z |>\| H | w2+ (mr\ B) + ||(U’0)HW,Z(R"\E))

< U iy + 1600 gy + Nl + 10, 8) )
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which combined with (4.15) implies that

)

Wh ) (4.18)
< Oy g0y + 100Dl + g, + 1102 6)

2

2—j
;\A\ 2l 0y + 1020
|W1}(Qb))

1
for any A € C; with |A] > Ag. Choosing A\; > Xg so large that A} > 2C in (4.18) implies that

2
5
Z(:) A7 (el g + 1O ) < 2C TNz ) + 109 Py 0)
=

Wi (@)
for A € C4 with |A\| > A1, which completes the proof of Theorem 4.1.

5 A proof of the unique existence theorem in the bounded do-
main case

In what follows, H,(2) and D,(2) denote the spaces defined in (1.8) with O =  and WP%O(Q),
W'h(Q2) (m = 2,4) denote the spaces defined in (1.7) with O = Q. Recall that

Hp(Q) = Wy p(Q) x Lyp(Q) x Lyp(Q), Dp(Q) = W, p(Q) x Wi p(€2) x Wy (). (5.1)

We shall show Theorem 1.2 by a compact perturbation method from the A = 0 case. To study
the A = 0 case, we shall use the following well-known results.

Lemma 5.1. Let 1 < p < oo and let Q be a bounded domain in R™ (n > 2). Then, we have the
following two assertions:

(1)  Assume that the boundary T of Q is a C? hypersurface. Then, for any f € L,(Q) there
erists a unique solution u € W;O(Q) to the Laplace equation: Au = f in €.

(2)  Assume that T is a C* hypersurface. Then, for any f € Ly(SY) there exists a unique
solution u € W;D(Q) to the biharmonic equation: A?u = f in (.

Proof. Both assertions are well-known (cf. Simader [20, Theorem 10.10]) L. O

Lemma 5.2. Let 1 < p < oo and let Q be a bounded domain. Assume that the boundary T of
Q is a C* hypersurface. Let A, be the operator defined in (1.10) and p(Ap) its resolvent set.
Then, 0 € p(Ap).

Proof. Since Dy(2) is a closed subspace of W(€2) x W2(Q) x W2(Q), to prove that 0 € p(A,) in
view of the closed graph theorem of S. Banach it suffices to prove that the operator A, : D,(2) —
H,(€2) is bijective. The surjectivity follows from the existence of solution U = T(u, v, 0) € D, ()
to the equation AU = F in Q for given F = 1(f, g, h) € H,(Q). To solve this equation, using
the formula (1.5) we rewrite it componentwise as follows:

v=f —A%—A0=g and Av+Af=h in Q. (5.2)

"Here, we quote a result due to Simader [20] concerning the unique existence of solutions to the Dirichlet
problem for the biharmonic operator, and he assumed that T is a C* hypersurface. Therefore, in this paper we
assume that T' is a C* hypersurface, but we think that it is enough to assume that I' is a C*! hypersurface.
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Since F' € H,(Q2), from (5.1) it follows that v = f € WiD(Q). Inserting this fact into the last

equation in (5.2) and using Lemma 5.1 (1), we have the existence of a solution 6 € W}?’O(Q)
to the equation: A@ = h — Av = h — Af in Q. Finally, inserting the first and last relations
of (5.2) into the second equation of (5.2) and using Lemma 5.1 (2), we have the existence of a
solution u € W;’D(Q) to the equation: A%y = —g—Af = —g—h+Af in Q. This completes the
proof of the surjectivity of the map A, : D,(2) — Hp(€2). To show the injectivity of this map,
let U = T(u,v,0) € Dy() satisfy the relation: A,U = 0, which is rewritten componentwise as
follows:

v=0, =A% — A0 =0 and Av+ A0 =0 in Q. (5.3)
Since 0 € WpQ’O(Q) as follows from (5.1) and since Af = 0 in Q as follows from (5.3), by Lemma
5.1 (1) we have 6§ = 0. Therefore, by (5.1) and the second equation of (5.3) we have u € W;D(Q)
and A%y = 0 in Q, which combined with Lemma 5.1 (2) implies that u = 0. Summing up, we
have proved that U = 0, which implies the the injectivity of the map A, : Dp(2) — Hp(£2).
This completes the proof of the lemma. O

Now, we shall discuss the uniqueness.

Lemma 5.3. Let 1 < p < 0o and let Q) be a bounded domain. Assume that the boundary I' of Q
is a C* hypersurface. Let C, be the same set as in Theorem 1.2 and let A € C4. If U € Dy(Q)
satisfies the homogeneous equation:

(M —-A)U =0 1inQ, (5.4)
then U = 0.

Proof. When A = 0, we have already seen the lemma from the proof of Lemma 5.2, and therefore
we assume that A # 0 in what follows. In view of (1.5), U = T(u,v,0) € D,(Q) satisfies the
equations:

Mo=v, W+ A%u+A0=0 and N\ — A —Av =0 in Q. (5.5)

Inserting the relation: Au = v into other two equations in (5.5) we have
N+ A%+ A0 =0 and M — Af — M\Au =0 in Q. (5.6)

If p = 2, then multiplying the first and second equations by A\ and 6, respectively, integrating
the resultant formulas over ) and using the fact that (u,0) € W;{ p(Q) x W2,(Q), by the
divergence theorem of Gauss and the Green formula we have

)2 2 3 2 3 2 2
0= AEXul2, ) + MlAul2, , +AA0,ujo+ AIOI2, , + V62, —Alu, A0)g
where we have set (a,b)q = [, a(z)b(z)dz. Taking real part and using the assumption that
Re A > 0, we have HVGHZ(Q) = 0, which combined with the fact that f|p = 0 implies that § = 0.

Since A # 0, the second equation of (5.6) implies that Au = 0 in Q, which combined with the
fact that u € W;D(Q) C W2,(€2) implies that u = 0. Therefore, if p = 2, then we have U = 0.
Since 2 is bounded, if p > 2, then D,(Q2) C D2(2), and therefore U = 0 when 2 < p < oo as
well.

When 1 < p < 2, we shall show that U € D,(Q) and (5.4) imply that U € Dy(). Since
u € W(Q) and 6 € W2(Q), by Sobolev’s imbedding theorem we see that u € WZ(€2) and
6 € L,(?) with exponent ¢ > p such that n(1/p —1/q) = 2. By Lemma 5.1 there exists a
solution 7 € W;O(Q) to the equation: A7 = A0 — AAw in 2. Since 2 is bounded, 7 also belongs
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to W;O(Q), and therefore the uniqueness of solutions in Lemma 5.1 implies that § = 7, which
means that 0 € W;O(Q). Therefore, A2u + A € Ly(£2). By Lemma 5.1 there exists a solution
(INS W;D(Q) to the equation: A*w = —(\u+ Af) in Q. Since w € W;‘,D(Q) C WﬁD(Q), the
uniqueness of solutions implies that u = w, which means that u € W; p(2). Therefore, we have
seen that U € Dy(Q2). If ¢ > 2, then we have U = 0. If ¢ is still less than 2, then repeating the
same argument finitely many times, finally we arrive at the stage that U € Dy(£2), and therefore
we have U = 0. This completes the proof of the lemma. O

Now, we shall give a

Proof of Theorem 1.2 (1).  Let A, I denote the inverse operator of A,, the existence of
which was proved in Lemma 5.2. AJ! is a bounded linear operator from H,(Q2) onto D,(Q2).
If we write Al — A, = —(I — A1) Ay, then the existence of the inverse operator (A —Ap)~"
is equivalent to that of the inverse operator (I — AA; 1)1, In fact, if (I — XA, 1)1 exists as a
bounded linear operator on H,(£2), then

A=Ay~ = —AJN (T = 2A ) (5.7)

exists as a bounded linear operator from H,(€2) onto D,(2). By the Rellich compactness
theorem, Dy (2) is compactly imbedded into H,(2), and therefore A\A,; lis an entire function of
A with its value in Lo(H,(Q2)), where Lo (H,(£2)) denotes the set of all compact linear operators
on H,(Q2). Therefore, by the Harazov-Seeley theorem (cf. Seeley [18]) we see that (1 — A1)~
is defined for all A € C as a finitely meromorphic function with its value in £(H,(£2)), where
L(H,(2)) denotes the set of all bounded linear operators on H,({2). Let A denote the set of all
poles of (I — A, =1 and then A is a discrete set in C. We shall show the following lemma.

Lemma 5.4. ANC, = 0.

Postponing the proof of Lemma 5.4, we continue the proof of Theorem 1.2 (1). By Lemma
5.4 we see that (I — A\A; D=1 exists for all A € C, and depends continuously on A € C,.
Especially, for any A; > 0 there exists a K > 0 such that

(I = AAS) < K whenever A € C; and |\| < \;. (5.8)

-1
HE(Hp(Q))

where || - denotes the operator norm of L(H,(Q2)). Since A' is a bounded linear

| crep e
operator from H,(2) onto D,(Q), by (5.7) (A\[ — A,)~! is also a bounded linear operator from
Hp(£2) onto Dp(£2) and by (5.8) we see that for any F' € H,(Q2) and A € Cy with |[A\| < Ay there
holds the estimate:

1A — A,) = F|

< K|A; (5.9)

1
Dp (L2 ||£(Hp(ﬂ)po(Q)) HF”HP(Q)

where || - Hqﬁp(mppm» denotes the operator norm for the bounded linear operator from H,(2)
into D,(2). On the other hand, recalling the definition of the norms for the spaces H,(2) and
Dp(§2) given in (1.9), by Theorem 4.1 we see that there exists a Ay > 1 such that for any A € C
with [A| > A and F' € H,(Q2) there holds the estimate:

AT = Ap) T F Ly ) + IO = Ap) T E L, o) < CIF| (5.10)

Dp(Q) Hp(Q) "

Combining (5.9) and (5.10) completes the proof of Theorem 1.2 (1) if we finish the proof of
Lemma 5.4. Finally, we give a
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Proof of Lemma 5.4. Assume that ANC; # 0. Let \g € AN C,. By the definition of
A, there exists a 09 > 0 and N € N such that

N
(I =2 =D "Aj(A=2) 7+ By (A€ Uy, \ {X0}) (5.11)

j=1

where A; € L(H,(€2)), By is a holomorphic function defined on Uy, with its value in £(H,(£2))
and Uy, = {# € C | |z — Xo| < 00}. We may assume that Ay # 0, so that there exists
at least one F' € Hp(Q2) such that AyF # 0. In view of (5.7), for A € Uy, \ {Ao} we set
W\ = —.A;l(l - AA;l)_lF. Then, V) € D,(Q2) and V), satisfies the equation: (A — A,)Vy = F
in Q. In view of (5.11), we have

N
Vi=—> (A=X) JAAF — A By F
j=1

and therefore
A= X)VF = (A=) (AT — Ap)Vy = (AT — Ap)(—A, P ANE) + O(IA — Ao).
Letting A — )\g, we have
(Mol — Ap)(—ATANF) =0 in Q.

Since —A[TlANF € Dy(12), by Lemma 5.3 .A;lANF = 0. Applying A, we have AyF = 0,
which contradicts the assumption that Ay F # 0. Therefore, AN C, = (), which completes the
proof of Lemma 5.4.

6 A proof of the unique existence theorem in the exterior do-
main case

We shall show Theorem 1.2 (2) in this section. Our main step is to prove the following theorem.

Theorem 6.1. Let 1 < p < co. Let Q be an exterior domain in R™ (n > 2) and assume that
the boundary T' of Q is a C* hypersurface. Let b be a large number such that R" \ Q C By =
{r € R" | |z| < b}. Set
Lyses(@) = {9 € Ly(Q) | g(x) =0 for || > b+3},
Lppi3()? = {(g9:h) | 9,h € Lppi3()}
Tp(Q) = {(u,0) | u e W, p(Q), 6 € Wy(Q)},

where W;{D(Q) and W2,(Q) are the spaces defined in (1.7) with O = Q. Let Ao and A1 be any
numbers such that 0 < A\g < A\; < oo. Then, for any (g,h) € L,p+3(Q)? and X € C; with
Ao < |A| < A\q there ezists a unique solution (u,0) € J,(Q2) to the equations:

Nu+A%u+A0=g and M0 — A0 —XAu=h inQ, (6.1)
which satisfies the estimate:

[l + (191l < Cllg, Ml @) (6.2)

WA () wi(Q) —

for some constant C' depending only on p, Q, A\g and \1.
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Proof. Before starting our proof of Theorem 6.1, we should remark the following fact: If U =

(u,v,0) satisfies the equation:
M-AU=F inQ, (6.3)

for F = 7(0,g,h), then A\u = v implies that (u,f) satisfies the equation (6.1). On the other
hand, if (u,#) satisfies (6.1) then setting Au = v, we see that U = T(u,v,0) and F = 7(0, g, h)
satisfy the equation (6.3). Therefore, when f = 0, equations (6.1) and (6.3) are equivalent
under the substitution for Au = v. In particular, we can use Theorem 1.2 (1), Theorems 2.1,
2.2 and 4.1, and Lemma 5.3 with f = 0 and Au = v in what follows.

To prove Theorem 6.1 we shall construct a parametrix. As a preparation for this, we consider
the resolvent problems in R™ and Q14 = QN Bpry = {z € Q| |z| < b+ 4}. First, we consider
the resolvent problem: (A — A,)U = F in R™. Let X, be the same set as in (2.1) of Theorem
2.1. Then, by Theorem 2.1 we have

(M — Ap) ™" € Anal(Se, £(H,(R™), Dy(R™))). (6.4)

Here and hereafter, Anal (O, X) denotes the set of all holomorphic functions defined on a domain
O of the complex field C with their values in X, and £(X,Y’) the set of all bounded linear
operators from X into Y for two Banach spaces X and Y. For short, we write £(X) = L(X, X)
as usual. The assertion (6.4) follows from the resolvent equation:

AT = A = (oIl —A) =N = X)) —A) (ol — A)7!

and estimate (2.3).

Next, we consider the resolvent problem: (M — Ap)U = F in Q4. Let 0044 be the
boundary of 44, and then it consists of I' and Spy4 = {z € R" | |x| = b+ 4}. In particular,
Oy44 is a C* hypersurface if I is assumed to be a C* hypersurface. Therefore, using Theorem
1.2 (1) which was already proved in section 5 and employing a standard argument (cf. Vrabie
[21, A Proof of Theorem 7.1.1]), we see that there exists an € € (0,7/2) such that

(A = A,) ™" € Anal (S, £(Hp(Q1.4), Dp(Q14))) (6.5)

where X is defined by the formula in (2.1), replacing € by €.

Under above preparations, we shall construct a parametrix for equation (6.1). In what
follows, given function k(z) defined on 2, ko(x) denotes the zero extension of k(z) to the
whole space, that is ko(z) = k(x) for x € Q and ko(z) = 0 for z ¢ Q. Given A € X, and
(9,h) € Lpp3(Q2)%, by Theorem 2.1 there exists a unique solution (U, 0) € W(R") x W} (R")
to the equation:

MU + AU + AO = gy and \O — A® — M\AU = hy in R”, (6.6)

which satisfies the estimate:
4 4—7 2 2—j
2—J 2—J -
ST oy + SN0, ) < Cll(, D) e (6.7)
§=0 =0

where C' is a constant independent of A € ¥, g, h, U and ©. Let us define the maps: A;(\) :
Lypi3(0)? — W;‘(R”) and Aa(N) 1 Lypi3(Q)? — WZ?(]R") by the relations: A1(\)(g,h) = U
and Az(\)(g,h) = ©, and set A(A\)(g,h) = T(A1(N\)(g, h), A2(A\)(g, h)). By (6.4) we have

A(N) € Anal (S, £(Lpp13(2)%, W, (R™) x W2(R™))). (6.8)
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For an element (g,h) € L, p13(Q2)%, we consider it also an element of Ly(Qp+4) X Ly(Qp14).
Applying Theorem 1.2 (1) with f = 0 in case of Q41 4, we see that there exists a unique solution
(v,7) € W4 0 (Qya) X W2o(Qya) to equations:

Mo+ A% =g and A\t — AT — AAv = h in Qy4, (6.9)
which satisfies the estimate:

)+ vl

M0, + I pin) + 1l + W7z < Oy (610)
where C' depends on €2, b and p, but independent of A € C4, g, h, v and 7. Let us define the
maps Bi(\) : Ly pi3(2)% — W;{D(Qbﬂ) and Ba(\) @ Lppi3(Q2)% — Wg}O(Qb_A'_gl) by the relations:
By(\)(g,h) = v and By(A)(g, h) = 7, and set B(\)(g, h) — (Bi(N)(g. h), Ba(A)(g, h)). By (6.5)

we have

B(A) € Anal (Ser, £(Lp p43(2)%, Wy p(Q14) X Wy o(Qp14)))- (6.11)

Let p(z) be a function in C§°(R™) such that ¢(z) = 1 for |z| < b+1 and ¢(x) = 0 for |z| > b+2.
Set = =¥, NX. Note that C, \ {0} C E. Set

Rj(A)(g,h) = (1 —¢)A;(N)(g, k) + ¢B;(A)(g, h), (6.12)
Then, by (6.8) and (6.11)
R(\) € Anal (2, L(Ly513(Q2)2, Tp(2))). (6.13)

If we set (w,7) = R(\)(g, h), then (w, ) satisfies the equations:
N+ A%w + A1 =g+ S1(N\)(g,h) and At — Am — MAw = h + So(A\)(g,h) in Q,  (6.14)
where we have set

S1(A)(g: h) = Go(Bi(M)(g, h) — Ar(N)(g, h), B2(N)(g, h) — A2(>\)(97 h))
S2(A)(g, 1) = Hy(A(B1(N)(g, k) — A1(A) (g, h)), B2(A)(g, h) — A2(A)(g, h))
and G, and H, are the same symbols as in (4.3). Set S(\)(g,h) = (51 ()\)((g yh), S2(N) (g, h)).
11

Since suppS()\)( h) CDpyipro={z€eR" [ b+1< 2| < b—|—2} by (6.8), (6.11) and Rellich’s
compactness theorem we see that

(6.15)

S(\) € Anal (Z, Lo (Lypr3(Q2)?) (6.16)

where Lo(Lyp13(€2)?) denotes the set of all compact operators on Ly p13(2)%. By the Harazov-
Seeley theorem (cf. Seeley [18]) we know that (I + S()\))~! does not exist for any A € Z or
it does exist as a finitely meromorphic function defined on = with its value in £(Lyp43(2)?).
Now, we shall show that (I + S(A\))~! does exist for all A € C \ {0}. Since S()) is a compact
operator, by the Fredholm alternative principle (or the Riesz-Schauder theory), to prove the
existence of bounded inverse (I + S()\))~! it suffices to prove the injectivity of I 4+ S(\). Let
(g,h) be an element in Ly p13(2)? such that (I + S(A))(g,h) = (0,0). Set (w,7) = R(\)(g,h),
and then by (6.14) we see that (w,m) € J,(12) satisfies the homogeneous equation:

Nw+Aw+Ar =0, M\t — A — AAw =0 in Q.

Then, it follows that w = 7 = 0 from the following lemma.
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Lemma 6.2. Let 1 < p < oo and A € CL \ {0}. Let J,(Q2) be the space defined in Theorem 6.1.
If (u,0) € Jy(2) satisfies the homogeneous equation:

MNu+ A%u+A0=0, \—A0—IAu=0 inQ, (6.17)
thenu=6=0.

Postponing the proof of Lemma 6.2, we continue the proof of Theorem 6.1. Combining the
fact that w = 7 = 0 in Q with (6.12) implies that

(1—p)A(N)(g,h) + ¢B(X)(g,h) = (0,0) in Q. (6.18)
Since p(z) =1 for |z| < b and p(z) =0 for |z| > b+ 2, we have
A(N)(g,h) =(0,0) for |z| >b+2, B(N(g,h)=(0,0) for|z|]<b+1. (6.19)

If we define (z,7) by the relation: (z(z),7(z)) = (w(x),n(z)) for © € Qpr4 and (z(z), 7(x)) =
(0,0) for x ¢ Q, then by (6.19) (z,7) € W? .0 (Bpia) X W2o(Byya) and (z,7) satisfies the
equations:

MNz+ A%z 4+ At =gy and A\t — AT — AAz = hg in Byyy. (6.20)

On the other hand, if we restrict A(\)(g,h) on Byy4 and represent it also by A(\)(g, h), then
by (6.19) A(X)(g,h) belongs to W;}’D(Bb+4) X WpQ’O(BbH) and satisfies the equation (6.20) too.
Therefore, the uniqueness result given in Lemma 5.3 implies that A(X)(g,h) = (2,7) in Bpyq,
and therefore A(\)(g,h) = B(\)(g,h) in Qp14. Combining this and (6.18) implies that

0= A)(g,h) + @(B(A)(g, h) = A(A)(9,h)) = A(N)(g,h) in &,

which combined with (6.6) implies that (g, k) = (0,0) in 2. Therefore, we have the injectivity of
I+ S(A) for all A € C, \ {0}, from which it follows that (I 4+ S()\))~! exists for all A € C \ {0}.

The Harazov-Seeley theorem tells us that there exists an open set G such that C, \ {0} C
G C Zand (I +S(\)™' € Anal (G, L(Lpp+3(2)?)), from which it follows that (I + S(\))~*
depends continuously on z € C \ {0}. Therefore for any \g and A\; with 0 < A\g < A\ < o0
there exists a constant K (\g, A1) such that

I+ SN~ K(Xo, A1) (6.21)

L(Ly, b+5(9)2) -
for any A € C4 \ {0} with Ao < |A\] < 1. If we set @(\) = R(\)(I + S(N\)~7L, then ®()\) €
Anal (G, L(Lyp1+3(2)%, Tp(Q))). Moreover, setting (u,) = ®(\)(g,h) for (g,h) € Lypi3(Q)2,
then by (6.7), (6.10), (6.14) and (6.21) we see that (u,0) € J,(£2) solves (6.1) uniquely and
satisfies the estimate:

[l + 16l < Cho, M) (g: Wl 0 (6.22)

W () wi(Q) —

whenever A € C; and Ag < |A\| < Ay, where C(Ag, A1) is a constant depending essentially on p,
Q, b, Ag and A1 only. This completes the proof of Theorem 6.1. O

Now, we shall give

A proof of Lemma 6.2. First, we consider the case where (u,0) € J2(€2). Multiplying
(6.17) by Az and 6 and integrating the resultant formula over €2, by the divergence theorem of
Gauss and the Green formula we have

ANPIall? o)+ AlAull? o+ MO Awa + A0+ VOI7 ) — AAu, O)a =0,
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where (a,b)q = [, a(z)b(z)dr. Since X € C,, taking the real part we have VOl =0
which combined with f|p = 0 implies that § = 0. Inserting this fact into the second equation
in (6.17) and using the fact that A # 0, we have Au = 0 in . Since ulr = 0, we have
0=—(Au,u)q = ||Vu||%2(m, which combined with the fact that u|r = 0 also implies that u = 0.
Therefore, the lemma holds when p = 2.

When p # 2, we shall show that (u,0) € J,(2) also belongs to J2(€2). Applying the
same argument as in the proof of Lemma 5.3 and using Theorem 1.2 (1), we see that (u,0) €
Wi () x W2,.(Q). To show that (u,0) € Jo(f2), we use the cut-off technique. Let ¢ be a
function in C“’(Rn) such that ¢(x) =1 for |x| > b+ 2 and p(z) = 0 for |z| < b+ 1, where b is
a large number such that R™"\ Q C By = {x € R" | || < b}. Using the symbols defined in (4.3)
and equation (6.17) we have

N (pu) + A%(pu) + A(ph) = g and A(@f) — A(pf) — AA(pu) = h  in R” (6.23)

where g = Gy(u,0) and h = H,(\u,0). Since (u,0) € Wf’bc(ﬁ) X WilOC(Q), we see that
(g,h) € Lay(R™) x Ly(R™). By Theorem 2.1 there exists a unique (w,7) € Wi (R") x WZ(R")
which solves the equation:

M+ A%w+ At =g and A\7 — A7 —NAw="h inR" (6.24)

Since the uniqueness holds for the &’(R™) solutions in the whole space case, we have (pu, pf) =
(w, 7). In fact, setting z = pu — w and © = ph — 7, by (6.23) and (6.24) we see that (z,7) €
S'(R™) x 8'(R™) satisfies the homogeneous equation:

Mz4 A%z 4+ Ar =0 and A\t — Ar — AAz =0 in R", (6.25)

where S'(R") is the class of tempered distributions. Applying the Fourier transform to (6.25)

we have 2 |§‘4 |€|2 R 0
_ 3 o
< NefE A+ \§|2> <7r> - <0> i (6:26)

in the sense of distribution of class &’'(R™). If we denote the determinant of the matrix
2 4 g2

(A ;I—HE‘ Afl‘él?) by D(X€), then D(A,€) = A3 + |€2A2 + 2|¢*A + [€f°. Let f(t) be a
polynomial defined by the formula: f(t) = 3 + 2+ 2t + 1. We see that f(A/[£]?)[£]8 = D(),€).
Since f(0) =1, f(—1) = —1 and f(t) is a strictly increasing function, there exists only one real
root o with —1 < o < 0. Since the coefficients of f(?) are real numbers, other two roots are
complex number 3 and its complex conjugate (3. If we write f(t) = (t — «)(t — 8)(t — (), then
a + 2Reff = —1, from which it follows that Ref = —(1 + «)/2. Since —1 < a < 0, we have
Ref < 0. Since

D(X,€) = [€I°(V/I€]* = )N/ IE]” = BYN/IEP* = B) = (A = [ePa) (X = [€2B) (X — €1D),

D()\,€) # 0 whenever A € C\{0} and & € R™. Therefore, it follows from (6.26) that Z = & = 0.
Applying the Fourier inverse transform, we have z = 7 = 0, which means that pu = w € Wy (R")

and pf = 7 € W2(R"). Since p(x) = 1 for |z| > b+ 2 and since (u,0) € Wiloc(ﬁ) X W22’10C(Q),

we have (u,0) € Wi (Q) x W2(Q2), which implies that u = § = 0. This completes the proof of

Lemma 6.2. 0
Now, we shall give
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A proof of Theorem 1.2 (2). Let Ao and A\; be arbitrary positive numbers such that
Ao < A1 and let A € Cy such that \g < [A| < A\;. Given F = T(f,g,h) € H,(Q), we shall look
for a solution U = T'(u,v,0) € D,() of the equation:

M —AU=F inQ. (6.27)

Let ¢ and 1 be two cut-off functions in C*°(R"™) such that ¢(z) =1 for |z| > b+3 and ¢(z) =0
for |z| < b+ 2, and ¢(x) =1 for |z| > b+ 2 and ¢(x) = 0 for |x| < b+ 1, where b is a large
number such that R™ \ Q C By. Note that p(x)y(z) = ¢(z). Let Uy = (uo, vo,60) € Dp(R™) be
a solution to the equation:

(M — AUy = F  in R". (6.28)

By Theorem 2.1 we know the unique existence of Uy and moreover Uy satisfies the estimate:

+ [[(vo, 6o)| < €0, M)(1fll 5, + (g, )l 1, 0)) (6.29)

Wi ®™)

with some constant C'(Ag, A1) whenever A € C; and \g < |A] < A\;. Here and hereafter,
C(Xo, A1) denotes a generic constant which depends essentially only on p, Q, ¢, 1, A\g and A\;. If
we set U = Uy +V (V = T(u1,v1,61)), then new unknown vector V' should solve the equation:

M—-AV=(01-¢)F—R inQ, (6.30)

where R = T(0, Gy (ug, 0p), Hp(vo, 00)), and G, and H,, are symbols defined by (4.3). By (6.29)
and (4.3) we have
Supp R € By, 1Bl 00 < CO0 M ey + 1001, ) (6.31)

Now, we shall solve (6.30). By (1.5), the first equation of (6.30) is Au; —v; = (1 —¢)f, so
that we set

()

v =g — (1 — ) f. (6.32)
Inserting this formula into the second and third lines of the equation (6.30), we have

)\211,1 + A2“’1 —Aby = (1 - 90)(9 + )‘f) - G@(uoveo)v

Ay — AGy — My = (1 — ©)h — AMA((1— @) f) — Ho(vo, 6o) in 2. (6.33)

From (6.31) and the fact that 1 — ¢(z) = 0 for |x| > b+ 3 it follows that the right members
of (6.33) are supported by B3, and therefore by Theorem 6.1 there exists a (u1,61) € Jp(Q2)
which solves (6.33) uniquely and satisfies the estimate:

W3 (9)

< CO0 Al + )]

lutll g + 1161
R (6.34)

oo + (G0, 80), H (v, 00)) o))

whenever A € C4 and A\ < |A| < A1. Combining (6.29), (6.32) and (6.34), we see that equation
(6.30) admits a solution V' € D,(€2) which satisfies the estimate:

HVH’DP(Q) < C(Xo, Al)(”fHng) + (g, h)HLp(Q))’

which combined with (6.28) and (6.29) implies that that U = pUy+V € D, () solves equation
(6.27) and satisfies the estimate:

10112y 00 < COOA Ny + 10 D)) (6.35)
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whenever A € C; and A\g < [A| < Ay

Since Ao and A; are chosen arbitrarily, for any A € C; \ {0} equation (6.27) admits a

solution U € D,(§2) which satisfies the estimate (6.35) whenever A € C1 and Ay < |A] < Aq.
The uniqueness of solutions to (6.27) follows from Lemma 6.2 for A € C4 \ {0}. Therefore, we
have C; \ {0} C p(Ap). Moreover, by Theorem 4.1 and (6.35) we have

NI = 4) 7 F L g+ 1T = A) 7 Flly ) < CU Ly 0y + 10 8) )

whenever A € C; and |\| > X\, where )\ is arbitrary positive number and C' depends essentially
only on p,  and \g. This completes the proof of Theorem 1.2 (2).
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