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Abstract: We consider the system of micro-beam resonators in the thermoelastic theory of Lord

and Shulmann. First, we prove the uniqueness and instability of solutions when the sign of a

parameter is not prescribed. Existence of solutions and uniform bounds for the real part of the

spectrum are obtained. We finish the paper by proving the impossibility of the time localization

of solutions.

1 Introduction

It is well known that the usual theory of heat conduction based on Fourier’s law predicts

infinite speed of heat propagation. Heat transmission at low temperature has been ob-

served to propagate by means of waves. These aspects have caused intense activity in the

field of heat propagation. Extensive reviews on the so-called second sound theories (hy-

perbolic heat conduction) are given in Chandrasekharaiah [1] and in the books of Müller

and Ruggeri [9] and Jou et al. [4].

Instead of Fourier’s law, and leading to the classical hyperbolic-parabolic system

of thermoelasticity together with the physical paradoxon of infinite propagation speed

through the heat conduction part, we consider the model proposed by Lord and Shulmann

[8]. Hetnarski and Ignaczak consider it within the nonclassical approach of thermoelas-

ticity in their review [3]. Some mathematical results concerning alternative thermoelastic
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theories can be [12, 13, 14, 15, 16, 17, 18]. In [21] the thermoelastic damping in micro-

beam resonators is considered in the case that the Lord and Shulmann thermoelastic

theory is applied. The model that we consider here involves a system of two coupled par-

tial differential equations. It is a coupling of the plate equation with a heat conduction

model of hyperbolic.

The system of Lord and Shulman has been studied before, and, for example, the

exponential stability has been obtained for bounded reference configurations as well as

the nonlinear stability near the equilibrium, see [19, 20] for a coupling of classical elasticity

with the hyperbolic heat conduction model (Cattaneo’s law).

For the coupling of the plate equation with the classical heat equation, i.e. heat

conduction is modeled by Fourier’s law, see e.g. [10, 5, 11, 6, 7, 2].

In this paper we study four kinds of questions. One is to prove the uniqueness and the

instability of solutions when we assume very relaxed conditions on the coefficients that

determine the problem. Second is to determine a suitable frame where the thermoealstic

problem in micro-beam resonators is well posed. Third is to investigate the exponential

stability of the solutions and fourth is to prove the impossibility of localization of solutions.

This paper is organized as follows: in Section 2 we set down the field equations and the

boundary and initial conditions of the problem we consider in this paper. A uniqueness

and instability result is proved in Section 3. In Section 4 we prove an existence result,

In Section 5 we prove for bounded reference configurations that the spectrum of the

governing differential operator lies strictly in the left complex plane. The last Section 6

is devoted to the proof of the impossibility of localization of solutions.

2 Preliminaries

We consider the system which governs the micro-beam resonators in dimensionless form

for the Lord-Shulman theory of thermoelasticity. The system of equations is (see [21] for

the one-dimensional case)

a∆2u + ∆θ + ü = F, (2.1)

∆θ −mθ + d∆ ˙̂u = c
˙̂
θ + G, (2.2)

where

f̂ = f + τ ḟ . (2.3)

In this system we assume that m, τ, c and d are positive. In the next section we do

not require the positivity of the parameter a, but it will be imposed in later sections. F

and G are external supply terms like external force or heat supply.
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From now on, we consider a bounded domain B whose boundary fits the requirements

of the divergence theorem. In this paper we study solutions (u, θ) = (u(x, t), θ(x, t)),

x ∈ B, t ≥ 0.

We study the qualitative behavior of classical solutions subject to the initial conditions

u(x, 0) = u0(x), u̇(x, 0) = v0(x), θ(x, 0) = θ0(x), θ̇(x, 0) = ϑ0(x), (2.4)

and the boundary conditions

u(x, t) = ∆u(x, t) = θ(x, t) = 0, x ∈ ∂B × [0,∞), (2.5)

or

u(x, t) = ∇u(x, t).n(x) = θ(x, t) = 0, x ∈ ∂B × [0,∞). (2.6)

3 Uniqueness and instability

In this section we obtain uniqueness and growth of the solutions of the system (2.1), (2.2)

subject to the initial conditions (2.4) and the boundary conditions (2.5) or (2.6). It is

worth noting that in this section, we assume that d and c are positive, but we do not

impose any condition on a.

To obtain a uniqueness result, it is sufficient to prove that the only solution of the

problem determined by the homogeneous version of the system (2.1), (2.2)

a∆2u + ∆θ + ü = 0, (3.1)

∆θ −mθ + d∆ ˙̂u = c
˙̂
θ, (3.2)

with homogeneous boundary conditions (2.5) or (2.6) and initial homogeneous conditions

is the null solution. The key is to define a suitable functional to which the logarithmic

convexity is applicable. In this situation the energy equation gives

E(t) ≡
∫

B

(
d| ˙̂u|2 + da|∆û|2 + cθ̂2 + τ(|∇θ|2 + mθ2) + 2

∫ t

0

(|∇θ|2 + mθ2)ds
)
dV

≡ E(0) (= 0). (3.3)

We now define the new functional

G(t) =

∫
B

(
d|û|2 + τ(|∇η|2 + mη2) +

∫ t

0

(|∇η|2 + mη2)ds
)
dV, (3.4)

where

η(t,x) :=

∫ t

0

θ(s,x)ds. (3.5)
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Differentiating we see that

G′(t) = 2

∫
B

(
dû ˙̂u + τ(∇η.∇θ + mηθ) +

1

2
(|∇η|2 + mη2)

)
dV, (3.6)

G′′(t) = 2

∫
B

(
|d ˙̂u|2 + τ(|∇θ|2 + mθ2)

)
dV +

+2

∫
B

(
d¨̂uû + τ(∇η.∇θ̇ + mηθ̇) + (∇η.∇θ + mηθ)

)
dV. (3.7)

We also have that ∫
B

(d¨̂uû + ad|∆û|2)dV = −
∫

B

d∆θ̂ûdV, (3.8)

and ∫
B

(
c(θ̂)2 + τ(∇η∇θ̇ + mηθ̇) + (∇η∇θ + mηθ)

)
dV =

∫
B

d∆θ̂ûdV. (3.9)

Now using (3.8) and (3.9) in (3.7) we derive

G′′(t) = 2

∫
B

(
d(| ˙̂u|2 + τ(|∇θ|2 + mθ2)

)
dV − 2

∫
B

(
a|∆û|2 + c(θ̂)2

)
dV. (3.10)

In view of the energy equation (3.3) we have

G′′(t) = 4

∫
B

(
d| ˙̂u|2 + τ(|∇θ|2 + mθ2)

)
dV + 4

∫
B

∫ t

0

(|∇θ|2 + mθ2)dsdV. (3.11)

Hence

G′′G− (G′)2 ≥ 0, (3.12)

where we have used the Cauchy-Schwarz inequality.

Inequality (3.12) implies that t 7→ ln G(t) is a convex function of t and then

G(t) ≤
[
G(0)

]1−t/T [
G(T )

]t/T

. (3.13)

It then follows that G(t) ≡ 0 on the interval [0, T ] and from (3.4) û ≡ 0 on B× [0, T ].

In view of the initial conditions, we also obtain that u ≡ 0. So θ satisfies equation (3.2)

without the d ˙̂u-term. It implies that θ ≡ 0 on B × [0, T ] and the uniqueness is shown.

Now, we give growth estimates for some solutions of the problem determined by the

system (3.1), (3.2) boundary conditions (2.5) or (2.6) and initial conditions (2.4). The

key is again to find a suitable functional to which logarithmic convexity is applicable. To

this end a modification of (3.4) is necessary. We take again η as in (3.5). However, due

to non-zero initial conditions we have:

c ˙̂η − d∆û− [cθ0 + cτϑ0 − d∆u0 − dτ∆v0] = ∆η −mη. (3.14)

4



The data terms are incorporated into the equation by defining Q(x) to be solution to the

equation:

∆Q−mQ =[cθ0 + cbϑ0 − d∆u0 − db∆v0], (3.15)

subject to the homogeneous boundary conditions

Q(x) = 0,x ∈ ∂B. (3.16)

The existence of Q is guaranteed by the existing results for elliptic equations. Now, we

define

β := η + Q, (3.17)

and (3.14) becomes

c
˙̂
β − d∆û = ∆β −mβ. (3.18)

Based on (3.4) we now define the functional

Gω,t0(t) =G0,0(t) + ω(t + t0)
2, (3.19)

where ω and t0 are positive constants to be selected and

G0,0(t) =

∫
B

(
d|û|2 + τ(|∇β|2 + mβ2) +

∫ t

0

(|∇β|2 + mβ2)ds
)
dV. (3.20)

In this situation, we also obtain (3.8), but (3.9) becomes∫
B

(
c(θ̂)2 + τ(∇β∇θ̇ + mβθ̇) + (∇β∇θ + mβθ)

)
dV =

∫
B

d∆θ̂ûdV. (3.21)

One also derives the energy equality

E(t) ≡
∫

B

(
d| ˙̂u|2 + ad|∆û|2 + cθ̂2 + τ(|∇θ|2 + mθ2) + 2

∫ t

0

(|∇θ|2 + mθ2)dτ
)
dV

≡ E(0). (3.22)

By differentiating G(t) and using (3.8),(3.20) and the energy equation (3.21) it is not

difficult to see that

G′′
ω,t0

(t) = 4

∫
B

(
d| ˙̂u|2 + τ(|∇θ|2 +mθ2)

)
dV +4

∫
B

∫ t

0

(|∇θ|2 +mθ2)dτdV − 2(2E(0)+ω).

(3.23)

Schwarz’s inequality implies that

G′′
ω,t0

Gω,t0 −
(
G′

ω,t0
− ν

2

)2

≥ 0, (3.24)

if

ω = −2E(0), (3.25)
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and

ν = 2

∫
B

(
|∇Q|2 + mQ2

)
dV. (3.26)

If we take t0 such that G′
ω,t0

(0) > ν, it may be proved that

Gω,t0(t) ≥
Gω,t0(0)G′

ω,t0
(0)

G′
ω,t0(0)− ν

exp
(G′

ω,t0
(0)− ν

G(0)

)
t− νGω,t0(0)

G′
ω,t0(0)− ν

. (3.27)

Thus, the function G0,0(t) satisfies the estimate

G0,0(t) ≥
Gω,t0(0)G′

ω,t0
(0)

G′
ω,t0(0)− ν

exp
(G′

ω,t0
(0)− ν

G(0)

)
t− νGω,t0(0)

G′
ω,t0(0)− ν

− ω(t + t0)
2.(3.28)

Theorem 3.1 . Let (u, θ) be a solution of the initial-boundary-value problem determined

by (3.1), (3.2), (2.4) and (2.5) or (2.6), such that the initial conditions satisfy that E(0) <

0. Then, as time increases, the function G0,0 grows exponentially.

4 Well-posedness

In this section we give a existence result for the solutions of the problem determined by

the system (2.1), (2.2), the initial conditions (2.4) and the boundary conditions (2.6)

The well-posedness result for the system can be achieved by an appropriately sophis-

ticated choice of variables and spaces which reflect the special structure of the system.

For the transformation to a first-order system that finally will be characterized by a

semigroup, we apply the differential operator “ˆ” from (2.3) to the differential equation

(2.1) and obtain (a > 0 now)

a∆2û + ∆θ̂ + ˆ̈u = F̂ , (4.1)

We remark that finding a solution (û, θ) allows to determine the desired solutions (u, θ)

of the original system.

Defining

V := (û, ût, θ, θt, )
′

we obtain

Vt = AV + F, V (0) = V 0 (4.2)

with the (yet formal) differential operator A given by the symbol

Af :=


0 1 0 0

a∆2 0 −∆ −τ∆

0 0 0 1

0 d
cτ

∆ 1
cτ

(∆−m) − 1
τ


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the right-hand side F given by

F := (0, F̂ , 0, 0, G)′

and the initial value

V0(x) := (û, ût, θ, θt)
′(x, 0)

with its components being given in terms of the originally prescribed initial data by using

the differential equations.

As underlying Hilbert space we choose

H := (H2
0 (B))n × (L2(B))n ×H1

0 (B)× L2(B)

with inner product

〈V, W 〉H :=
(
d〈V 2, W 2〉+ ad〈∆V 1, ∆W 1〉

)
+τ(〈∇V 3,∇W 3〉+ τm〈V 3, W 3〉+ c〈V 3 + τV 4, W 3 + τW 4〉

where 〈·, ·〉 denotes the usual L2(B)-inner product. The operator A is now given as

A : D(A) ⊂ H 7→ H, AV := AfV,

with

D(A) := {V ∈ H | V 2 ∈ H2
0 (B)n, V 4 ∈ H1

0 (B), AfV ∈ H}.

The operator is obviously densely defined and dissipative, i.e.

∀V ∈ D(A) : Re 〈AV, V 〉H ≤ 0.

The latter follows since we have chosen the setting with the inner product just in a way

that we have

〈AV, V 〉H = −〈∇V 3,∇V 3〉 −m〈V 3, V 3〉. (4.3)

As a consequence we also see that the operator A is invertible.

Lemma 4.1 0 belongs to the resolvent set %(A), and A−1 is compact.

Proof: The solvability of AV = F is equivalent to solving

V 2 = F 1, (4.4)

−a∆2V 1 −∆V 3 − τ∇V 4 = F 2, (4.5)

V 4 = F 3, (4.6)

d

τc
∆V 2 +

1

τc
(∆−m)V 3 − 1

τ
V 4 = F 4. (4.7)

Eliminating V 2 and V 4, we have to solve

−a∆2V 1 −∆V 3 = F 2 + τ∆F 3, (4.8)

1

cτ
(∆−m)V 3 = − d

τc
∆F 1 +

1

τ
F 3 + F 4. (4.9)
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(i) First assume that F 3 ∈ H2(B) ∩ H1
0 (B). Then (4.9) determines V 3 ∈ H2(B) ∩

H1
0 (B), and then (4.8) determines V 1 ∈ H4(B) ∩H2

0 (B). Together with (4.4) and

(4.6) we have found V ∈ D(A) solving AV = F . Moreover, the elliptic estimates

for (4.8) and (4.9) allow us to conclude

|V |H ≤ C|F |H, (4.10)

with a positive constant C which does not depend on V (resp. F ).

(ii) Now let F ∈ H be arbitrary. We take a sequence (F 3
n)n ⊂ H2(B) ∩ H1

0 (B) with

F 3
n → F 3 in H1

0 (B). Then we can apply part (i) to Fn := (F 1, F 2, F 3
n , F 4)′ and

conlude, using (4.10), that Vn with AVn = Fn converges to V ∈ H with V 2 ∈ H2
0 (B)

and V 4 ∈ H1
0 (B). Moreover, for any Φ ∈ (C∞

0 (B))4 we get, denoting by A∗
f the

formal adjoint of Af in H,

〈V, A∗
fΦ〉H ← 〈Vn, A

∗
fΦ〉H = 〈AVn, Φ〉H → 〈F, Φ〉H.

Hence we have proved V ∈ D(A) and AV = F . Moreover, we get the estimate

(4.10) for any F ∈ H.

This proves 0 ∈ %(A), and the proof shows that (4.10) can be extended to

|V |H + ‖V 1‖H4 + ‖V 2‖H2 + ‖V 3‖H2 + ‖V 4‖H1 ≤ C|F |H. (4.11)

Using Rellich’s selection theorem we get the compactness of A−1.

Qed

As a standard conclusion now from the dissipativity and Lemma 4.1 we obtain that A

generates a C0-semigroup, and hence the initial (boundary) value problem (4.2) is uniquely

solvable:

Theorem 4.2 For any F ∈ C0([0,∞), D(A)) or F ∈ C1([0,∞),H) and any V 0 ∈ D(A)

there is a unique solution V to (4.2) with V ∈ C1([0,∞),H) ∩ C0([0,∞), D(A)).

We remark that the boundary condition (2.5) can be treated similarly. Also we note that

the well-posedness consideration in this section naturally extend to unbounded domains.

5 Spectral bounds

We look at the homogeneous differential equation

Vt = AV
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arising for the boundary conditions (2.5) with A being defined in analogy to the operator

A in the previous section (cp. the remark following Theorem 4.2). Due to the boundary

conditions, we can make the following ansatz for V = (V 1, V 2, V 3, V 4)′:

V (t, x) =
∞∑

j=1

(αj(t), γj(t), δj(t), εj(t))
t wj(x),

where (wj)j denote the eigenfunctions of the Laplace operator under Dirichlet boundary

conditions corresponding to the eigenvalue λj,

−∆vj = λjwj, w = 0 on ∂B

with

0 < λ1 ≤ · · · ≤ λj →∞ (as j →∞).

Then the coefficients satisfy

α′j = γj, γ′j = −aλ2
jαj + λjδj + τλjεj.

δ′j = εj, ε′j = − d

cτ
λjγj −

1

cτ
(λj + m)δj −

1

τ
εj.

Eliminating γj and εj we obtain

α′′j = −aλ2
jαj + λjδj + τλjδ

′
j

δ′′j = − d

cτ
λjα

′
j −

1

cτ
(λj + m)δj −

1

τ
δ′j.

Differentiating and eliminating αj, we obtain a fourth-order differential equation for δj,

cτδ′′′′j + cδ′′′j + (λj + m + acτλ2
j + dτλ2

j)δ
′′
j + (acλ2

j + dλ2
j)δ

′
j + aλ2

j(λj + m)δj = 0. (5.1)

We remark that αj, γj, and εj satisfy the same differential equation. The characteristic

polynomial Pj to this equation is given by

Pj(β) = β4 +
1

τ
β3 +

1

cτ
(λj + m + τ(ac + d)λ2

j)β
2 +

1

cτ
(ac + d)λ2

jβ +
a

cτ
(λ3

j + mλ2
j). (5.2)

The zeros of Pj are denoted by β1(j), . . . , β4(j), or, short, β1, . . . , β4. Let S denote the

spectral set of all zeros,

S := {βk(j) | j = 1, 2, 3 . . . ; k = 1, 2, 3, 4}.

We shall prove that it lies strictly in the left half complex plane.

Theorem 5.1

∃ω > 0 : sup {Re β | β ∈ S} ≤ −ω.
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Proof: Let β ∈ S. Since A is dissipative we have

Re β ≤ 0. (5.3)

Next we show that there are no purely imaginary eigenvalues. For this purpose let β = iµ

with µ ∈ R \ {0}. Then µ satisfies

µ4 − i

τ
µ3 − 1

cτ
(λj + m + τ(ac + d)λ2

j)µ
2 +

i

cτ
(ac + d)λ2

jµ +
a

cτ
(λ3

j + mλ2
j) = 0. (5.4)

First we look at the imaginary part in equation (5.4) and conclude

µ2 =
ac + d

c
λ2

j . (5.5)

Taking real parts in equation (5.4) and using (5.5) we get

λj = −m ≤ 0

which is a contradiction and hence proves that there are no purely imaginary eigenvalues.

It remains to show

∃ω1 > 0 ∃ j0 ∀ j ≥ j0 ∀ k = 1, 2, 3, 4 : Re βk(j) ≤ −ω1. (5.6)

In order to prove (5.6) we note that the characteristic equation Pj(β) = 0 can be rewritten

as

β4 − (β1 + β2 + β3 + β4) β3 + (β1β2 + β1β3 + β1β4 + β2β3 + β2β4 + β3β4) β2

+(β1β2β3 + β1β2β4 + +β1β3β4 + β2β3β4) β + β1β2β3β4 = 0, (5.7)

and we may assume without loss of generality that

β2 = β1, β4 = β3.

Comparing (5.7) with (5.2) we obtain

Re β1 + Re β3 = − 1

2τ
, (5.8)

4Re β1Re β3 + |β1|2 + |β3|2 = − 1

cτ
(λj + m + τ(ac + d)λ2

j), (5.9)

|β1|2Re β3 + |β3|2Re β1 = −ac + d

2cτ
λ2

j , (5.10)

|β1|2|β3|2 =
a

cτ
(λ3

j + mλ2
j). (5.11)

We conclude from (5.8), observing (5.3)

Re β1,2 = O(1), Re β3,4 = O(1) (as j →∞). (5.12)
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This combined with (5.9) yields

lim
j→∞

|β1|2 + |β3|2

λ2
j

=
ac + d

c
. (5.13)

(5.11) implies

lim
j→∞

|β1|2|β3|2

λ3
j

=
a

cτ
. (5.14)

From (5.13) and (5.14) we obtain

|β1|2 =
ac + d

c
λ2

j + o(λ2
j), |β3|2 =

a

τ(ac + d)
λj + o(λj). (5.15)

Combining (5.15), (5.10) and (5.12) we get

|β1|2Re β3

λ2
j

+
|β3|2Re β1

λ2
j

= −ac + d

2cτ

implying

Re β4 = Re β3 −→ −
1

2τ
, (5.16)

which, together with (5.8), yields

Re β2 = Re β1 −→ −
1

2τ
. (5.17)

If we choose (any, but fixed) ω1 satisfying

0 < ω1 <
1

2τ

(5.16) and (5.17) prove (5.6) (with j0 depending on ω1).

Now ω can be chosen as

ω := min {ω1,−ω2}

where

ω2 := max {Re βk(j) | j = 1, . . . , j0; k = 1, 2, 3, 4},

and ω2 < 0 because of (5.3) and the non-existence of purely imaginary eigenvalues.

Qed

As a corollary we get an estimate on the spectrum σ(A) of A, showing that it lies

strictly in the left half complex plane.

Corollary 5.2

sup {Re β | β ∈ σ(A)} ≤ −ω < 0.
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Proof: Since A−1 is compact by Lemma 4.1 we have

σ(A) = σp(A) (point spectrum).

For a possible eigenvalue β with eigenfunction V we can expand V into the series

V (x) =
∞∑

j=1

(αj, γj, δj, εj)
′wj(x),

with complex numbers αj, γj, δj, εj. It follows

Pj(β)αj = Pj(β)γj = Pj(β)δj = Pj(β)εj = 0,

that is, if β is an eigenvalue then it necessarily belongs to the spectral set S.

Qed

This result nourishes the expectation that the semigroup is exponentially stable, but the

formal proof of this property is still missing. Standard approaches (multiplier methods,

uniform boundedness of resolvents) failed up to now, and the problem remains as a chal-

lenge for future investigations.

6 Impossibility of localization

In the previous section we have proved that the decay of solutions is expected to be

controlled by a negative exponential. A natural question is to ask if the decay is so

fast to guarantee that the solution vanishes in finite time. In this section, we prove the

impossibility of localization of solutions with respect to the time variable. This would

give information concerning a lower bound for the decay of the solutions. That is, the

aim of this section is to establish the following result:

Theorem 6.1 Let (u, θ) be a solution of the problem determined by (3.1), (3.2), (2.4),

(2.5) which vanishes for all t ≥ t0 for some t0 > 0. Then (u, θ) is the null solution.

The impossibility of localization of solutions is equivalent to the uniqueness for the back-

ward in time problem. Therefore we consider

a∆2u + ∆θ + ü = 0, (6.1)

−∆θ + mθ + d∆ ˙̃u = c ˙̃θ (6.2)

where we have used the notation

f̃ = f − τ ḟ . (6.3)
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Proof of Theorem 6.1: It is sufficient to prove that the only solution for null initial data

for the system (6.1), (6.2) is the null solution.

We define the new energy term

E∗(t) :=
1

2

∫
B

(
d| ˙̃u|2 + ad|∆ũ|2 + c(θ̃)2 + τ(|∇θ|2 + mθ2)

)
.dv

We easily obtain, using the boundary conditions,

dE∗

dt
=

∫
B

(|∇θ|2 + mθ2)dv. (6.4)

This implies the existence of a positive constant C such that for all t ≥ 0

dE∗

dt
≤ CE∗(t). (6.5)

Thus, we obtain the estimate

E∗(t) ≤ E∗(0) exp(Ct). (6.6)

and for null initial data we deduce that E(t) = 0 for all t ≥ 0. It follows that θ = 0 and

ũ = 0. In view of the initial conditions the solution of the ordinary differential equation

ũ = 0 is u = 0, and then the uniqueness of solutions is proved.

Qed

References

[1] D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl.
Mech. Rev., 51(1998), pp. 705-729.

[2] R. Denk, R, Racke, Lp resolvent estimates and time decay for generalized thermoelastic
plate equations. Electronic J. Differential Equations 48 (2006).pp. 1-16.

[3] R. B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, J. Thermal Stresses, 22(1999),
pp. 451-470.

[4] D. Jou, J. Casas-Vazquez, G. Lebon, Extended Irreversible Thermodynamics, Springer-
Verlag, Berlin, 1996.

[5] J.U. Kim, On th energy decay of a linear thermoelastic bar and plate. SIAM J. Math.
Anal., 23(1992), pp. 889-899.

[6] Z. Liu, S. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic
damping, Quart. Appl. Math. 53 (1997), pp. 551-564.

13



[7] Z. Liu, S. Zheng, Semigroups associated with dissipative systems. π Research Notes Math.
398. Chapman & Hall/ CRC, Boca Raton, 1999.

[8] H. W. Lord, and Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech.
Phy. Solids, 15(1967), pp. 299-309.

[9] I. Müller, T. Ruggeri, Rational and Extended Thermodynamics, Springer-Verlag, New-
York, 1998.
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