Qualitative aspects in resonators

Ramón Quintanilla ${ }^{1}$
Department of Applied Mathematics II
UPC Terrassa, Colom 11, 08222 Terrassa, Spain
ramon.quintanilla@upc.edu
Reinhard Racke ${ }^{2}$
Department of Mathematics and Statistics
University of Konstanz
78457 Konstanz, Germany
reinhard.racke@uni-konstanz.de

Abstract

We consider the system of micro-beam resonators in the thermoelastic theory of Lord and Shulmann. First, we prove the uniqueness and instability of solutions when the sign of a parameter is not prescribed. Existence of solutions and uniform bounds for the real part of the spectrum are obtained. We finish the paper by proving the impossibility of the time localization of solutions.

1 Introduction

It is well known that the usual theory of heat conduction based on Fourier's law predicts infinite speed of heat propagation. Heat transmission at low temperature has been observed to propagate by means of waves. These aspects have caused intense activity in the field of heat propagation. Extensive reviews on the so-called second sound theories (hyperbolic heat conduction) are given in Chandrasekharaiah [1] and in the books of Müller and Ruggeri [9] and Jou et al. [4].

Instead of Fourier's law, and leading to the classical hyperbolic-parabolic system of thermoelasticity together with the physical paradoxon of infinite propagation speed through the heat conduction part, we consider the model proposed by Lord and Shulmann [8]. Hetnarski and Ignaczak consider it within the nonclassical approach of thermoelasticity in their review [3]. Some mathematical results concerning alternative thermoelastic

[^0]theories can be $[12,13,14,15,16,17,18]$. In [21] the thermoelastic damping in microbeam resonators is considered in the case that the Lord and Shulmann thermoelastic theory is applied. The model that we consider here involves a system of two coupled partial differential equations. It is a coupling of the plate equation with a heat conduction model of hyperbolic.

The system of Lord and Shulman has been studied before, and, for example, the exponential stability has been obtained for bounded reference configurations as well as the nonlinear stability near the equilibrium, see [19, 20] for a coupling of classical elasticity with the hyperbolic heat conduction model (Cattaneo's law).

For the coupling of the plate equation with the classical heat equation, i.e. heat conduction is modeled by Fourier's law, see e.g. [10, 5, 11, 6, 7, 2].

In this paper we study four kinds of questions. One is to prove the uniqueness and the instability of solutions when we assume very relaxed conditions on the coefficients that determine the problem. Second is to determine a suitable frame where the thermoealstic problem in micro-beam resonators is well posed. Third is to investigate the exponential stability of the solutions and fourth is to prove the impossibility of localization of solutions.

This paper is organized as follows: in Section 2 we set down the field equations and the boundary and initial conditions of the problem we consider in this paper. A uniqueness and instability result is proved in Section 3. In Section 4 we prove an existence result, In Section 5 we prove for bounded reference configurations that the spectrum of the governing differential operator lies strictly in the left complex plane. The last Section 6 is devoted to the proof of the impossibility of localization of solutions.

2 Preliminaries

We consider the system which governs the micro-beam resonators in dimensionless form for the Lord-Shulman theory of thermoelasticity. The system of equations is (see [21] for the one-dimensional case)

$$
\begin{gather*}
a \Delta^{2} u+\Delta \theta+\ddot{u}=F, \tag{2.1}\\
\Delta \theta-m \theta+d \Delta \dot{\hat{u}}=c \dot{\hat{\theta}}+G, \tag{2.2}
\end{gather*}
$$

where

$$
\begin{equation*}
\hat{f}=f+\tau \dot{f} \tag{2.3}
\end{equation*}
$$

In this system we assume that m, τ, c and d are positive. In the next section we do not require the positivity of the parameter a, but it will be imposed in later sections. F and G are external supply terms like external force or heat supply.

From now on, we consider a bounded domain B whose boundary fits the requirements of the divergence theorem. In this paper we study solutions $(u, \theta)=(u(\mathbf{x}, t), \theta(\mathbf{x}, t))$, $x \in B, t \geq 0$.

We study the qualitative behavior of classical solutions subject to the initial conditions

$$
\begin{equation*}
u(\mathbf{x}, 0)=u^{0}(\mathbf{x}), \dot{u}(\mathbf{x}, 0)=v^{0}(\mathbf{x}), \theta(\mathbf{x}, 0)=\theta^{0}(\mathbf{x}), \dot{\theta}(\mathbf{x}, 0)=\vartheta^{0}(\mathbf{x}) \tag{2.4}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
u(\mathbf{x}, t)=\Delta u(\mathbf{x}, t)=\theta(\mathbf{x}, t)=0, \quad \mathbf{x} \in \partial B \times[0, \infty) \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\mathbf{x}, t)=\nabla u(\mathbf{x}, t) \cdot \mathbf{n}(\mathbf{x})=\theta(\mathbf{x}, t)=0, \mathbf{x} \in \partial B \times[0, \infty) \tag{2.6}
\end{equation*}
$$

3 Uniqueness and instability

In this section we obtain uniqueness and growth of the solutions of the system (2.1), (2.2) subject to the initial conditions (2.4) and the boundary conditions (2.5) or (2.6). It is worth noting that in this section, we assume that d and c are positive, but we do not impose any condition on a.

To obtain a uniqueness result, it is sufficient to prove that the only solution of the problem determined by the homogeneous version of the system (2.1), (2.2)

$$
\begin{align*}
& a \Delta^{2} u+\Delta \theta+\ddot{u}=0 \tag{3.1}\\
& \Delta \theta-m \theta+d \Delta \dot{\hat{u}}=c \dot{\hat{\theta}} \tag{3.2}
\end{align*}
$$

with homogeneous boundary conditions (2.5) or (2.6) and initial homogeneous conditions is the null solution. The key is to define a suitable functional to which the logarithmic convexity is applicable. In this situation the energy equation gives

$$
\begin{align*}
E(t) & \equiv \int_{B}\left(d|\dot{\hat{u}}|^{2}+d a|\Delta \hat{u}|^{2}+c \hat{\theta}^{2}+\tau\left(|\nabla \theta|^{2}+m \theta^{2}\right)+2 \int_{0}^{t}\left(|\nabla \theta|^{2}+m \theta^{2}\right) d s\right) d V \\
& \equiv E(0) \quad(=0) \tag{3.3}
\end{align*}
$$

We now define the new functional

$$
\begin{equation*}
G(t)=\int_{B}\left(d|\hat{u}|^{2}+\tau\left(|\nabla \eta|^{2}+m \eta^{2}\right)+\int_{0}^{t}\left(|\nabla \eta|^{2}+m \eta^{2}\right) d s\right) d V, \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta(t, \mathbf{x}):=\int_{0}^{t} \theta(s, \mathbf{x}) d s \tag{3.5}
\end{equation*}
$$

Differentiating we see that

$$
\begin{align*}
& G^{\prime}(t)=2 \int_{B}\left(d \hat{u} \dot{\hat{u}}+\tau(\nabla \eta \cdot \nabla \theta+m \eta \theta)+\frac{1}{2}\left(|\nabla \eta|^{2}+m \eta^{2}\right)\right) d V, \tag{3.6}\\
& \\
& \quad G^{\prime \prime}(t)=2 \int_{B}\left(|d \dot{\hat{u}}|^{2}+\tau\left(|\nabla \theta|^{2}+m \theta^{2}\right)\right) d V+ \tag{3.7}\\
& \quad+2 \int_{B}(d \ddot{\hat{u}} \hat{u}+\tau(\nabla \eta \cdot \nabla \dot{\theta}+m \eta \dot{\theta})+(\nabla \eta \cdot \nabla \theta+m \eta \theta)) d V .
\end{align*}
$$

We also have that

$$
\begin{equation*}
\int_{B}\left(d \ddot{\hat{u}} \hat{u}+a d|\Delta \hat{u}|^{2}\right) d V=-\int_{B} d \Delta \hat{\theta} \hat{u} d V, \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B}\left(c(\hat{\theta})^{2}+\tau(\nabla \eta \nabla \dot{\theta}+m \eta \dot{\theta})+(\nabla \eta \nabla \theta+m \eta \theta)\right) d V=\int_{B} d \Delta \hat{\theta} \hat{u} d V . \tag{3.9}
\end{equation*}
$$

Now using (3.8) and (3.9) in (3.7) we derive

$$
\begin{equation*}
G^{\prime \prime}(t)=2 \int_{B}\left(d\left(|\dot{\hat{u}}|^{2}+\tau\left(|\nabla \theta|^{2}+m \theta^{2}\right)\right) d V-2 \int_{B}\left(a|\Delta \hat{u}|^{2}+c(\hat{\theta})^{2}\right) d V .\right. \tag{3.10}
\end{equation*}
$$

In view of the energy equation (3.3) we have

$$
\begin{equation*}
G^{\prime \prime}(t)=4 \int_{B}\left(d|\dot{\hat{u}}|^{2}+\tau\left(|\nabla \theta|^{2}+m \theta^{2}\right)\right) d V+4 \int_{B} \int_{0}^{t}\left(|\nabla \theta|^{2}+m \theta^{2}\right) d s d V . \tag{3.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
G^{\prime \prime} G-\left(G^{\prime}\right)^{2} \geq 0 \tag{3.12}
\end{equation*}
$$

where we have used the Cauchy-Schwarz inequality.
Inequality (3.12) implies that $t \mapsto \ln G(t)$ is a convex function of t and then

$$
\begin{equation*}
G(t) \leq[G(0)]^{1-t / T}[G(T)]^{t / T} \tag{3.13}
\end{equation*}
$$

It then follows that $G(t) \equiv 0$ on the interval $[0, T]$ and from (3.4) $\hat{u} \equiv 0$ on $B \times[0, T]$. In view of the initial conditions, we also obtain that $u \equiv 0$. So θ satisfies equation (3.2) without the $d \dot{\hat{u}}$-term. It implies that $\theta \equiv 0$ on $B \times[0, T]$ and the uniqueness is shown.

Now, we give growth estimates for some solutions of the problem determined by the system (3.1), (3.2) boundary conditions (2.5) or (2.6) and initial conditions (2.4). The key is again to find a suitable functional to which logarithmic convexity is applicable. To this end a modification of (3.4) is necessary. We take again η as in (3.5). However, due to non-zero initial conditions we have:

$$
\begin{equation*}
c \dot{\hat{\eta}}-d \Delta \hat{u}-\left[c \theta^{0}+c \tau \vartheta^{0}-d \Delta u^{0}-d \tau \Delta v^{0}\right]=\Delta \eta-m \eta . \tag{3.14}
\end{equation*}
$$

The data terms are incorporated into the equation by defining $Q(\mathbf{x})$ to be solution to the equation:

$$
\begin{equation*}
\Delta Q-m Q=\left[c \theta^{0}+c b \vartheta^{0}-d \Delta u^{0}-d b \Delta v^{0}\right], \tag{3.15}
\end{equation*}
$$

subject to the homogeneous boundary conditions

$$
\begin{equation*}
Q(\mathbf{x})=0, \mathbf{x} \in \partial B \tag{3.16}
\end{equation*}
$$

The existence of Q is guaranteed by the existing results for elliptic equations. Now, we define

$$
\begin{equation*}
\beta:=\eta+Q, \tag{3.17}
\end{equation*}
$$

and (3.14) becomes

$$
\begin{equation*}
c \dot{\hat{\beta}}-d \Delta \hat{u}=\Delta \beta-m \beta . \tag{3.18}
\end{equation*}
$$

Based on (3.4) we now define the functional

$$
\begin{equation*}
G_{\omega, t_{0}}(t)=G_{0,0}(t)+\omega\left(t+t_{0}\right)^{2}, \tag{3.19}
\end{equation*}
$$

where ω and t_{0} are positive constants to be selected and

$$
\begin{equation*}
G_{0,0}(t)=\int_{B}\left(d|\hat{u}|^{2}+\tau\left(|\nabla \beta|^{2}+m \beta^{2}\right)+\int_{0}^{t}\left(|\nabla \beta|^{2}+m \beta^{2}\right) d s\right) d V . \tag{3.20}
\end{equation*}
$$

In this situation, we also obtain (3.8), but (3.9) becomes

$$
\begin{equation*}
\int_{B}\left(c(\hat{\theta})^{2}+\tau(\nabla \beta \nabla \dot{\theta}+m \beta \dot{\theta})+(\nabla \beta \nabla \theta+m \beta \theta)\right) d V=\int_{B} d \Delta \hat{\theta} \hat{u} d V . \tag{3.21}
\end{equation*}
$$

One also derives the energy equality

$$
\begin{align*}
E(t) & \equiv \int_{B}\left(d|\dot{\hat{u}}|^{2}+a d|\Delta \hat{u}|^{2}+c \hat{\theta}^{2}+\tau\left(|\nabla \theta|^{2}+m \theta^{2}\right)+2 \int_{0}^{t}\left(|\nabla \theta|^{2}+m \theta^{2}\right) d \tau\right) d V \\
& \equiv E(0) \tag{3.22}
\end{align*}
$$

By differentiating $G(t)$ and using (3.8),(3.20) and the energy equation (3.21) it is not difficult to see that
$G_{\omega, t_{0}}^{\prime \prime}(t)=4 \int_{B}\left(d|\dot{\hat{u}}|^{2}+\tau\left(|\nabla \theta|^{2}+m \theta^{2}\right)\right) d V+4 \int_{B} \int_{0}^{t}\left(|\nabla \theta|^{2}+m \theta^{2}\right) d \tau d V-2(2 E(0)+\omega)$.
Schwarz's inequality implies that

$$
\begin{equation*}
G_{\omega, t_{0}}^{\prime \prime} G_{\omega, t_{0}}-\left(G_{\omega, t_{0}}^{\prime}-\frac{\nu}{2}\right)^{2} \geq 0 \tag{3.24}
\end{equation*}
$$

if

$$
\begin{equation*}
\omega=-2 E(0), \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu=2 \int_{B}\left(|\nabla Q|^{2}+m Q^{2}\right) d V \tag{3.26}
\end{equation*}
$$

If we take t_{0} such that $G_{\omega, t_{0}}^{\prime}(0)>\nu$, it may be proved that

$$
\begin{equation*}
G_{\omega, t_{0}}(t) \geq \frac{G_{\omega, t_{0}}(0) G_{\omega, t_{0}}^{\prime}(0)}{G_{\omega, t_{0}}^{\prime}(0)-\nu} \exp \left(\frac{G_{\omega, t_{0}}^{\prime}(0)-\nu}{G(0)}\right) t-\frac{\nu G_{\omega, t_{0}}(0)}{G_{\omega, t_{0}}^{\prime}(0)-\nu} \tag{3.27}
\end{equation*}
$$

Thus, the function $G_{0,0}(t)$ satisfies the estimate

$$
\begin{equation*}
G_{0,0}(t) \geq \frac{G_{\omega, t_{0}}(0) G_{\omega, t_{0}}^{\prime}(0)}{G_{\omega, t_{0}}^{\prime}(0)-\nu} \exp \left(\frac{G_{\omega, t_{0}}^{\prime}(0)-\nu}{G(0)}\right) t-\frac{\nu G_{\omega, t_{0}}(0)}{G_{\omega, t_{0}}^{\prime}(0)-\nu}-\omega\left(t+t_{0}\right)^{2} .(\tag{3.28}
\end{equation*}
$$

Theorem 3.1. Let (u, θ) be a solution of the initial-boundary-value problem determined by (3.1), (3.2), (2.4) and (2.5) or (2.6), such that the initial conditions satisfy that $E(0)<$ 0 . Then, as time increases, the function $G_{0,0}$ grows exponentially.

4 Well-posedness

In this section we give a existence result for the solutions of the problem determined by the system (2.1), (2.2), the initial conditions (2.4) and the boundary conditions (2.6)

The well-posedness result for the system can be achieved by an appropriately sophisticated choice of variables and spaces which reflect the special structure of the system.

For the transformation to a first-order system that finally will be characterized by a semigroup, we apply the differential operator " " " from (2.3) to the differential equation (2.1) and obtain ($a>0$ now)

$$
\begin{equation*}
a \Delta^{2} \hat{u}+\Delta \hat{\theta}+\hat{\ddot{u}}=\hat{F} \tag{4.1}
\end{equation*}
$$

We remark that finding a solution (\hat{u}, θ) allows to determine the desired solutions (u, θ) of the original system.
Defining

$$
\mathbf{V}:=\left(\hat{u}, \hat{u}_{t}, \theta, \theta_{t},\right)^{\prime}
$$

we obtain

$$
\begin{equation*}
\mathbf{V}_{t}=A \mathbf{V}+\mathbf{F}, \quad V(0)=V^{0} \tag{4.2}
\end{equation*}
$$

with the (yet formal) differential operator A given by the symbol

$$
A_{f}:=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
a \Delta^{2} & 0 & -\Delta & -\tau \Delta \\
0 & 0 & 0 & 1 \\
0 & \frac{d}{c \tau} \Delta & \frac{1}{c \tau}(\Delta-m) & -\frac{1}{\tau}
\end{array}\right)
$$

the right-hand side \mathbf{F} given by

$$
\mathbf{F}:=(0, \hat{F}, 0,0, G)^{\prime}
$$

and the initial value

$$
\mathbf{V}^{0}(\mathbf{x}):=\left(\hat{u}, \hat{u}_{t}, \theta, \theta_{t}\right)^{\prime}(\mathbf{x}, 0)
$$

with its components being given in terms of the originally prescribed initial data by using the differential equations.
As underlying Hilbert space we choose

$$
\mathcal{H}:=\left(H_{0}^{2}(B)\right)^{n} \times\left(L^{2}(B)\right)^{n} \times H_{0}^{1}(B) \times L^{2}(B)
$$

with inner product

$$
\begin{gathered}
\langle V, W\rangle_{\mathcal{H}}:=\left(d\left\langle V^{2}, W^{2}\right\rangle+a d\left\langle\Delta V^{1}, \Delta W^{1}\right\rangle\right) \\
+\tau\left(\left\langle\nabla V^{3}, \nabla W^{3}\right\rangle+\tau m\left\langle V^{3}, W^{3}\right\rangle+c\left\langle V^{3}+\tau V^{4}, W^{3}+\tau W^{4}\right\rangle\right.
\end{gathered}
$$

where $\langle\cdot, \cdot\rangle$ denotes the usual $L^{2}(B)$-inner product. The operator A is now given as

$$
A: D(A) \subset \mathcal{H} \mapsto \mathcal{H}, \quad A V:=A_{f} V
$$

with

$$
D(A):=\left\{V \in \mathcal{H} \mid V^{2} \in H_{0}^{2}(B)^{n}, V^{4} \in H_{0}^{1}(B), A_{f} V \in \mathcal{H}\right\}
$$

The operator is obviously densely defined and dissipative, i.e.

$$
\forall V \in D(A): \quad \operatorname{Re}\langle A V, V\rangle_{\mathcal{H}} \leq 0
$$

The latter follows since we have chosen the setting with the inner product just in a way that we have

$$
\begin{equation*}
\langle A V, V\rangle_{\mathcal{H}}=-\left\langle\nabla V^{3}, \nabla V^{3}\right\rangle-m\left\langle V^{3}, V^{3}\right\rangle \tag{4.3}
\end{equation*}
$$

As a consequence we also see that the operator A is invertible.
Lemma 4.10 belongs to the resolvent set $\varrho(A)$, and A^{-1} is compact.
Proof: The solvability of $A V=F$ is equivalent to solving

$$
\begin{align*}
V^{2} & =F^{1}, \tag{4.4}\\
-a \Delta^{2} V^{1}-\Delta V^{3}-\tau \nabla V^{4} & =F^{2}, \tag{4.5}\\
V^{4} & =F^{3}, \tag{4.6}\\
\frac{d}{\tau c} \Delta V^{2}+\frac{1}{\tau c}(\Delta-m) V^{3}-\frac{1}{\tau} V^{4} & =F^{4} . \tag{4.7}
\end{align*}
$$

Eliminating V^{2} and V^{4}, we have to solve

$$
\begin{align*}
-a \Delta^{2} V^{1}-\Delta V^{3} & =F^{2}+\tau \Delta F^{3}, \tag{4.8}\\
\frac{1}{c \tau}(\Delta-m) V^{3} & =-\frac{d}{\tau c} \Delta F^{1}+\frac{1}{\tau} F^{3}+F^{4} . \tag{4.9}
\end{align*}
$$

(i) First assume that $F^{3} \in H^{2}(B) \cap H_{0}^{1}(B)$. Then (4.9) determines $V^{3} \in H^{2}(B) \cap$ $H_{0}^{1}(B)$, and then (4.8) determines $V^{1} \in H^{4}(B) \cap H_{0}^{2}(B)$. Together with (4.4) and (4.6) we have found $V \in D(A)$ solving $A V=F$. Moreover, the elliptic estimates for (4.8) and (4.9) allow us to conclude

$$
\begin{equation*}
|V|_{\mathcal{H}} \leq C|F|_{\mathcal{H}}, \tag{4.10}
\end{equation*}
$$

with a positive constant C which does not depend on V (resp. F).
(ii) Now let $F \in \mathcal{H}$ be arbitrary. We take a sequence $\left(F_{n}^{3}\right)_{n} \subset H^{2}(B) \cap H_{0}^{1}(B)$ with $F_{n}^{3} \rightarrow F^{3}$ in $H_{0}^{1}(B)$. Then we can apply part (i) to $F_{n}:=\left(F^{1}, F^{2}, F_{n}^{3}, F^{4}\right)^{\prime}$ and conlude, using (4.10), that V_{n} with $A V_{n}=F_{n}$ converges to $V \in \mathcal{H}$ with $V^{2} \in H_{0}^{2}(B)$ and $V^{4} \in H_{0}^{1}(B)$. Moreover, for any $\Phi \in\left(C_{0}^{\infty}(B)\right)^{4}$ we get, denoting by A_{f}^{*} the formal adjoint of A_{f} in \mathcal{H},

$$
\left\langle V, A_{f}^{*} \Phi\right\rangle_{\mathcal{H}} \leftarrow\left\langle V_{n}, A_{f}^{*} \Phi\right\rangle_{\mathcal{H}}=\left\langle A V_{n}, \Phi\right\rangle_{\mathcal{H}} \rightarrow\langle F, \Phi\rangle_{\mathcal{H}} .
$$

Hence we have proved $V \in D(A)$ and $A V=F$. Moreover, we get the estimate (4.10) for any $F \in \mathcal{H}$.

This proves $0 \in \varrho(A)$, and the proof shows that (4.10) can be extended to

$$
\begin{equation*}
|V|_{\mathcal{H}}+\left\|V^{1}\right\|_{H^{4}}+\left\|V^{2}\right\|_{H^{2}}+\left\|V^{3}\right\|_{H^{2}}+\left\|V^{4}\right\|_{H^{1}} \leq C|F|_{\mathcal{H}} . \tag{4.11}
\end{equation*}
$$

Using Rellich's selection theorem we get the compactness of A^{-1}.
Qed
As a standard conclusion now from the dissipativity and Lemma 4.1 we obtain that A generates a C_{0}-semigroup, and hence the initial (boundary) value problem (4.2) is uniquely solvable:

Theorem 4.2 For any $F \in C^{0}([0, \infty), D(A))$ or $F \in C^{1}([0, \infty), \mathcal{H})$ and any $V^{0} \in D(A)$ there is a unique solution V to (4.2) with $V \in C^{1}([0, \infty), \mathcal{H}) \cap C^{0}([0, \infty), D(A))$.

We remark that the boundary condition (2.5) can be treated similarly. Also we note that the well-posedness consideration in this section naturally extend to unbounded domains.

5 Spectral bounds

We look at the homogeneous differential equation

$$
V_{t}=A V
$$

arising for the boundary conditions (2.5) with A being defined in analogy to the operator A in the previous section (cp. the remark following Theorem 4.2). Due to the boundary conditions, we can make the following ansatz for $V=\left(V^{1}, V^{2}, V^{3}, V^{4}\right)^{\prime}$:

$$
V(t, x)=\sum_{j=1}^{\infty}\left(\alpha_{j}(t), \gamma_{j}(t), \delta_{j}(t), \varepsilon_{j}(t)\right)^{t} w_{j}(x),
$$

where $\left(w_{j}\right)_{j}$ denote the eigenfunctions of the Laplace operator under Dirichlet boundary conditions corresponding to the eigenvalue λ_{j},

$$
-\Delta v_{j}=\lambda_{j} w_{j}, \quad w=0 \quad \text { on } \partial B
$$

with

$$
0<\lambda_{1} \leq \cdots \leq \lambda_{j} \rightarrow \infty \quad(\text { as } j \rightarrow \infty)
$$

Then the coefficients satisfy

$$
\begin{gathered}
\alpha_{j}^{\prime}=\gamma_{j}, \quad \gamma_{j}^{\prime}=-a \lambda_{j}^{2} \alpha_{j}+\lambda_{j} \delta_{j}+\tau \lambda_{j} \varepsilon_{j} . \\
\delta_{j}^{\prime}=\varepsilon_{j}, \quad \varepsilon_{j}^{\prime}=-\frac{d}{c \tau} \lambda_{j} \gamma_{j}-\frac{1}{c \tau}\left(\lambda_{j}+m\right) \delta_{j}-\frac{1}{\tau} \varepsilon_{j} .
\end{gathered}
$$

Eliminating γ_{j} and ε_{j} we obtain

$$
\begin{aligned}
\alpha_{j}^{\prime \prime} & =-a \lambda_{j}^{2} \alpha_{j}+\lambda_{j} \delta_{j}+\tau \lambda_{j} \delta_{j}^{\prime} \\
\delta_{j}^{\prime \prime} & =-\frac{d}{c \tau} \lambda_{j} \alpha_{j}^{\prime}-\frac{1}{c \tau}\left(\lambda_{j}+m\right) \delta_{j}-\frac{1}{\tau} \delta_{j}^{\prime} .
\end{aligned}
$$

Differentiating and eliminating α_{j}, we obtain a fourth-order differential equation for δ_{j},

$$
\begin{equation*}
c \tau \delta_{j}^{\prime \prime \prime \prime}+c \delta_{j}^{\prime \prime \prime}+\left(\lambda_{j}+m+a c \tau \lambda_{j}^{2}+d \tau \lambda_{j}^{2}\right) \delta_{j}^{\prime \prime}+\left(a c \lambda_{j}^{2}+d \lambda_{j}^{2}\right) \delta_{j}^{\prime}+a \lambda_{j}^{2}\left(\lambda_{j}+m\right) \delta_{j}=0 . \tag{5.1}
\end{equation*}
$$

We remark that α_{j}, γ_{j}, and ε_{j} satisfy the same differential equation. The characteristic polynomial P_{j} to this equation is given by

$$
\begin{equation*}
P_{j}(\beta)=\beta^{4}+\frac{1}{\tau} \beta^{3}+\frac{1}{c \tau}\left(\lambda_{j}+m+\tau(a c+d) \lambda_{j}^{2}\right) \beta^{2}+\frac{1}{c \tau}(a c+d) \lambda_{j}^{2} \beta+\frac{a}{c \tau}\left(\lambda_{j}^{3}+m \lambda_{j}^{2}\right) . \tag{5.2}
\end{equation*}
$$

The zeros of P_{j} are denoted by $\beta_{1}(j), \ldots, \beta_{4}(j)$, or, short, $\beta_{1}, \ldots, \beta_{4}$. Let \mathcal{S} denote the spectral set of all zeros,

$$
\mathcal{S}:=\left\{\beta_{k}(j) \mid j=1,2,3 \ldots ; \quad k=1,2,3,4\right\} .
$$

We shall prove that it lies strictly in the left half complex plane.

Theorem 5.1

$$
\exists \omega>0: \quad \sup \{\operatorname{Re} \beta \mid \beta \in \mathcal{S}\} \leq-\omega .
$$

Proof: Let $\beta \in \mathcal{S}$. Since A is dissipative we have

$$
\begin{equation*}
\operatorname{Re} \beta \leq 0 \tag{5.3}
\end{equation*}
$$

Next we show that there are no purely imaginary eigenvalues. For this purpose let $\beta=i \mu$ with $\mu \in \mathbb{R} \backslash\{0\}$. Then μ satisfies

$$
\begin{equation*}
\mu^{4}-\frac{i}{\tau} \mu^{3}-\frac{1}{c \tau}\left(\lambda_{j}+m+\tau(a c+d) \lambda_{j}^{2}\right) \mu^{2}+\frac{i}{c \tau}(a c+d) \lambda_{j}^{2} \mu+\frac{a}{c \tau}\left(\lambda_{j}^{3}+m \lambda_{j}^{2}\right)=0 . \tag{5.4}
\end{equation*}
$$

First we look at the imaginary part in equation (5.4) and conclude

$$
\begin{equation*}
\mu^{2}=\frac{a c+d}{c} \lambda_{j}^{2} . \tag{5.5}
\end{equation*}
$$

Taking real parts in equation (5.4) and using (5.5) we get

$$
\lambda_{j}=-m \leq 0
$$

which is a contradiction and hence proves that there are no purely imaginary eigenvalues. It remains to show

$$
\begin{equation*}
\exists \omega_{1}>0 \exists j_{0} \forall j \geq j_{0} \forall k=1,2,3,4: \quad \operatorname{Re} \beta_{k}(j) \leq-\omega_{1} . \tag{5.6}
\end{equation*}
$$

In order to prove (5.6) we note that the characteristic equation $P_{j}(\beta)=0$ can be rewritten as

$$
\begin{align*}
\beta^{4}-\left(\beta_{1}+\beta_{2}+\right. & \left.\beta_{3}+\beta_{4}\right) \beta^{3}+\left(\beta_{1} \beta_{2}+\beta_{1} \beta_{3}+\beta_{1} \beta_{4}+\beta_{2} \beta_{3}+\beta_{2} \beta_{4}+\beta_{3} \beta_{4}\right) \beta^{2} \\
& +\left(\beta_{1} \beta_{2} \beta_{3}+\beta_{1} \beta_{2} \beta_{4}++\beta_{1} \beta_{3} \beta_{4}+\beta_{2} \beta_{3} \beta_{4}\right) \beta+\beta_{1} \beta_{2} \beta_{3} \beta_{4}=0 \tag{5.7}
\end{align*}
$$

and we may assume without loss of generality that

$$
\beta_{2}=\bar{\beta}_{1}, \quad \beta_{4}=\bar{\beta}_{3} .
$$

Comparing (5.7) with (5.2) we obtain

$$
\begin{align*}
\operatorname{Re} \beta_{1}+\operatorname{Re} \beta_{3} & =-\frac{1}{2 \tau}, \tag{5.8}\\
4 \operatorname{Re} \beta_{1} \operatorname{Re} \beta_{3}+\left|\beta_{1}\right|^{2}+\left|\beta_{3}\right|^{2} & =-\frac{1}{c \tau}\left(\lambda_{j}+m+\tau(a c+d) \lambda_{j}^{2}\right), \tag{5.9}\\
\left|\beta_{1}\right|^{2} \operatorname{Re} \beta_{3}+\left|\beta_{3}\right|^{2} \operatorname{Re} \beta_{1} & =-\frac{a c+d}{2 c \tau} \lambda_{j}^{2}, \tag{5.10}\\
\left|\beta_{1}\right|^{2}\left|\beta_{3}\right|^{2} & =\frac{a}{c \tau}\left(\lambda_{j}^{3}+m \lambda_{j}^{2}\right) . \tag{5.11}
\end{align*}
$$

We conclude from (5.8), observing (5.3)

$$
\begin{equation*}
\operatorname{Re} \beta_{1,2}=\mathbf{O}(1), \operatorname{Re} \beta_{3,4}=\mathbf{O}(1) \quad(\text { as } j \rightarrow \infty) \tag{5.12}
\end{equation*}
$$

This combined with (5.9) yields

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\left|\beta_{1}\right|^{2}+\left|\beta_{3}\right|^{2}}{\lambda_{j}^{2}}=\frac{a c+d}{c} \tag{5.13}
\end{equation*}
$$

(5.11) implies

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{\left|\beta_{1}\right|^{2}\left|\beta_{3}\right|^{2}}{\lambda_{j}^{3}}=\frac{a}{c \tau} . \tag{5.14}
\end{equation*}
$$

From (5.13) and (5.14) we obtain

$$
\begin{equation*}
\left|\beta_{1}\right|^{2}=\frac{a c+d}{c} \lambda_{j}^{2}+\mathbf{o}\left(\lambda_{j}^{2}\right), \quad\left|\beta_{3}\right|^{2}=\frac{a}{\tau(a c+d)} \lambda_{j}+\mathbf{o}\left(\lambda_{j}\right) . \tag{5.15}
\end{equation*}
$$

Combining (5.15), (5.10) and (5.12) we get

$$
\frac{\left|\beta_{1}\right|^{2} \operatorname{Re} \beta_{3}}{\lambda_{j}^{2}}+\frac{\left|\beta_{3}\right|^{2} \operatorname{Re} \beta_{1}}{\lambda_{j}^{2}}=-\frac{a c+d}{2 c \tau}
$$

implying

$$
\begin{equation*}
\operatorname{Re} \beta_{4}=\operatorname{Re} \beta_{3} \longrightarrow-\frac{1}{2 \tau}, \tag{5.16}
\end{equation*}
$$

which, together with (5.8), yields

$$
\begin{equation*}
\operatorname{Re} \beta_{2}=\operatorname{Re} \beta_{1} \longrightarrow-\frac{1}{2 \tau} \tag{5.17}
\end{equation*}
$$

If we choose (any, but fixed) ω_{1} satisfying

$$
0<\omega_{1}<\frac{1}{2 \tau}
$$

(5.16) and (5.17) prove (5.6) (with j_{0} depending on ω_{1}).

Now ω can be chosen as

$$
\omega:=\min \left\{\omega_{1},-\omega_{2}\right\}
$$

where

$$
\omega_{2}:=\max \left\{\operatorname{Re} \beta_{k}(j) \mid j=1, \ldots, j_{0} ; \quad k=1,2,3,4\right\}
$$

and $\omega_{2}<0$ because of (5.3) and the non-existence of purely imaginary eigenvalues.
Qed
As a corollary we get an estimate on the spectrum $\sigma(A)$ of A, showing that it lies strictly in the left half complex plane.

Corollary 5.2

$$
\sup \{\operatorname{Re} \beta \mid \beta \in \sigma(A)\} \leq-\omega<0
$$

Proof: Since A^{-1} is compact by Lemma 4.1 we have

$$
\sigma(A)=\sigma_{p}(A) \quad(\text { point spectrum })
$$

For a possible eigenvalue β with eigenfunction V we can expand V into the series

$$
V(x)=\sum_{j=1}^{\infty}\left(\alpha_{j}, \gamma_{j}, \delta_{j}, \varepsilon_{j}\right)^{\prime} w_{j}(x)
$$

with complex numbers $\alpha_{j}, \gamma_{j}, \delta_{j}, \varepsilon_{j}$. It follows

$$
P_{j}(\beta) \alpha_{j}=P_{j}(\beta) \gamma_{j}=P_{j}(\beta) \delta_{j}=P_{j}(\beta) \varepsilon_{j}=0
$$

that is, if β is an eigenvalue then it necessarily belongs to the spectral set \mathcal{S}.
Qed
This result nourishes the expectation that the semigroup is exponentially stable, but the formal proof of this property is still missing. Standard approaches (multiplier methods, uniform boundedness of resolvents) failed up to now, and the problem remains as a challenge for future investigations.

6 Impossibility of localization

In the previous section we have proved that the decay of solutions is expected to be controlled by a negative exponential. A natural question is to ask if the decay is so fast to guarantee that the solution vanishes in finite time. In this section, we prove the impossibility of localization of solutions with respect to the time variable. This would give information concerning a lower bound for the decay of the solutions. That is, the aim of this section is to establish the following result:

Theorem 6.1 Let (u, θ) be a solution of the problem determined by (3.1), (3.2), (2.4), (2.5) which vanishes for all $t \geq t_{0}$ for some $t_{0}>0$. Then (u, θ) is the null solution.

The impossibility of localization of solutions is equivalent to the uniqueness for the backward in time problem. Therefore we consider

$$
\begin{gather*}
a \Delta^{2} u+\Delta \theta+\ddot{u}=0 \tag{6.1}\\
-\Delta \theta+m \theta+d \Delta \dot{\tilde{u}}=c \dot{\tilde{\theta}} \tag{6.2}
\end{gather*}
$$

where we have used the notation

$$
\begin{equation*}
\tilde{f}=f-\tau \dot{f} \tag{6.3}
\end{equation*}
$$

Proof of Theorem 6.1: It is sufficient to prove that the only solution for null initial data for the system (6.1), (6.2) is the null solution.

We define the new energy term

$$
E^{*}(t):=\frac{1}{2} \int_{B}\left(d|\dot{\tilde{u}}|^{2}+a d|\Delta \tilde{u}|^{2}+c(\tilde{\theta})^{2}+\tau\left(|\nabla \theta|^{2}+m \theta^{2}\right)\right) \cdot d v
$$

We easily obtain, using the boundary conditions,

$$
\begin{equation*}
\frac{d E^{*}}{d t}=\int_{B}\left(|\nabla \theta|^{2}+m \theta^{2}\right) d v . \tag{6.4}
\end{equation*}
$$

This implies the existence of a positive constant C such that for all $t \geq 0$

$$
\begin{equation*}
\frac{d E^{*}}{d t} \leq C E^{*}(t) \tag{6.5}
\end{equation*}
$$

Thus, we obtain the estimate

$$
\begin{equation*}
E^{*}(t) \leq E^{*}(0) \exp (C t) \tag{6.6}
\end{equation*}
$$

and for null initial data we deduce that $E(t)=0$ for all $t \geq 0$. It follows that $\theta=0$ and $\tilde{u}=0$. In view of the initial conditions the solution of the ordinary differential equation $\tilde{u}=0$ is $u=0$, and then the uniqueness of solutions is proved.
Qed

References

[1] D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51(1998), pp. 705-729.
[2] R. Denk, R, Racke, L^{p} resolvent estimates and time decay for generalized thermoelastic plate equations. Electronic J. Differential Equations 48 (2006).pp. 1-16.
[3] R. B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, J. Thermal Stresses, 22(1999), pp. 451-470.
[4] D. Jou, J. Casas-Vazquez, G. Lebon, Extended Irreversible Thermodynamics, SpringerVerlag, Berlin, 1996.
[5] J.U. Kim, On th energy decay of a linear thermoelastic bar and plate. SIAM J. Math. Anal., 23(1992), pp. 889-899.
[6] Z. Liu, S. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math. 53 (1997), pp. 551-564.
[7] Z. Liu, S. Zheng, Semigroups associated with dissipative systems. π Research Notes Math. 398. Chapman \& Hall/ CRC, Boca Raton, 1999.
[8] H. W. Lord, and Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phy. Solids, 15(1967), pp. 299-309.
[9] I. Müller, T. Ruggeri, Rational and Extended Thermodynamics, Springer-Verlag, NewYork, 1998.
[10] J.E. Muñoz Rivera, R.Racke, Smoothing properties, decay and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26(1995), pp. 1547-1563.
[11] J.E. Muñoz Rivera, R. Racke, Large solutions and smoothing properties for nonlinear thermoelastic systems, J. Differential Equations, 127(1996), pp. 454-483.
[12] R. Quintanilla, Damping of end effects in a thermoelastic theory. Appl. Math. Letters. 14(2001), pp. 137-141.
[13] R.Quintanilla, Impossibility of localization in linear thermoelasticity. Proc. Royal Society London A.463(2007), pp. 3311-3322.
[14] R. Quintanilla, R. Racke, Stability in thermoelasticity of type III, Discr. Cont. Dyn. Sys., Ser. B, 3(2003), pp. 383-400.
[15] R. Quintanilla, R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity. SIAM Journal of Applied Mathematics. 66(2006), pp. 9771001.
[16] R. Quintanilla, B. Straughan, Growth and uniqueness in thermoelasticity. Proc. Royal Society London A 456(2000), pp. 1419-1429.
[17] R. Quintanilla, B. Straughan, A note on discontinuity waves in type III thermoelasticity. Proc. Royal Society London A. 460(2004), pp. 1169-1175.
[18] R. Quintanilla, B. Straughan, Energy bounds for some non-standard problems in thermoelasticity, Proc. Roy. Soc. London, Ser. A, 461(2005), pp. 1147-1162.
[19] R. Racke, Thermoelasticity with second sound - exponential stability in linear and nonlinear 1-d, Math. Meth. Appl. Sci., 25(2002), pp. 409-441.
[20] R. Racke, Asymptotic behavior of solutions in linear 2- or 3-d thermoelasticity with second sound, Quart. Appl. Math., 61(2003), pp. 315-328.
[21] Y. Sun, D. Fang, A.K. Soh, Thermoelastic damping in micro-beam resonators, Int. J. Solids Structures, 43(2006), pp. 3213-3229.

[^0]: ${ }^{0}$ AMS subject classification: $35 \mathrm{~L} 35,74 \mathrm{~F} 05,74 \mathrm{G} 50$
 Keywords and phrases: hyperbolic model in thermoelasticity, well-posedness, exponential stability
 ${ }^{1}$ Supported by the project "Estudio Cualitativo de Problemas Termomecnicos. (MTM2006-03706)"
 ${ }^{2}$ Supported in the DFG-project "Hyperbolic Thermoelasticity" (RA 504/3-3).

