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Abstract: In the literature there exist several thermomechanical models which are proposed

from a heuristic point of view. A mathematical analysis should help to clarify the applicability

of these models. In recent years several thermal or viscoelastic models have been proposed in

which the relaxation time or the delay time plays an important role. Single- and dual-phase-

lag heat conduction models can be interpreted as formal expansions of delay equations. The

delay equations are shown to be ill-posed, as well as the formal expansions of higher order — in

contrast to lower-order expansions leading to Fourier’s or Cattaneo’s law. The ill-posedness is

proved showing the lack of continuous dependence on the data, thus showing that these models

(delay, or higher-order expansions) are highly explosive. In this note we shall present conditions

when this happens.

1 Introduction

This note presents a mathematical analysis of several thermomechanical models which

incorporate delay or relaxation parameters. In particular, we show under which conditions

such models are ill-posed.
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Heat conduction is usually described by means of the energy equation

θt + γ div q = 0 (1.1)

for the temperature θ and the heat flux vector q. With the constitutive law

q(t+ τ, ·) = −κ∇θ(t, ·), (1.2)

this being a special form of a more general law proposed by Tzou [11, 12] (cf. (1.11)

below), where γ, κ > 0, and τ > 0 is a small relaxation parameter, we obtain the delay

equation

θt(t, ·) = κγ∆θ(t− τ, ·). (1.3)

We shall demonstrate that this problem is ill-posed, namely, the continuous dependence

on the initial data is not given. More generally, we look at the problem from an abstract

point of view in discussing
dn

dtn
u(t) = Au(t− τ), (1.4)

where n = 1, and A essentially is the Laplace operator with appropriate boundary con-

ditions in some bounded domain. Then the abstract result on ill-posedness can be given

for any n ∈ N, and a large class of operators A, including non-homogeneous, anisotropic

positive symmetric elliptic operators. We shall prove

Theorem 1.1 Let A be an operator in a Banach space having a sequence of real eigen-

values (λk)k such that 0 > λk → −∞ as k →∞. Let n ∈ N and τ > 0 be fixed.

Then there are solutions (ul)l to

dn

dtn
ul(t) = Aul(t− τ), (1.5)

with norm ‖ul(t)‖, for any fixed t > 0 tending to infinity (as l →∞) while the norms of

the data (ul(0))l remain bounded.

We point out that this result extends the result in [2] in several ways. For connections to

Volterra equations cf. [4].

Recently Roy [10] extended the constitutive equation to

q(t+ τ1, ·) = − (κ∇θ(t+ τ2, ·) + κ∗∇ν(t+ τ3, ·)) ,

where κ, κ∗ are positive, ν is the thermal displacement that satisfies ν̇ = θ, and τ1 > τ2 >

τ3. This leads to the following heat equation of second order in time with two delay times,

θtt(t, ·) = κ∆θt(t− τ, ·) + κ∗∆θ(t− τ ∗, ·), (1.6)
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where τ := τ1 − τ2 > 0, and τ ∗ := τ1 − τ3 > 0. Again, this equation can be extended to

the more general problem

dn

dtn
u(t) = A

d

dt
u(t− τ) + βAu(t− τ ∗), (1.7)

where n ≥ 2. The constant β is positive and will be assumed to be equal to 1 without

loss of generality. Then we also get the ill-posedness of this delay problem, i.e.,

Theorem 1.2 Let A be an operator in a Banach space having a sequence of real eigen-

values (λk)k such that 0 > λk → −∞ as k →∞. Let n ∈ N, n ≥ 2, and τ ∗, τ > 0 be fixed.

Then there are solutions (ul)l to

dn

dtn
ul(t) = A

d

dt
ul(t− τ) + Au(t− τ ∗), (1.8)

with norm ‖ul(t)‖, for any fixed t > 0 tending to infinity (as l →∞) while the norms of

the data (ul(0))l remain bounded.

We remark that it is possible to replace the term Au(t− τ ∗) in (1.8) by βAu(t− τ ∗) for

any β > 0.

In view of the Theorems 1.1 and 1.2, a natural way to define a stable theory with a

delay is by means of a two-temperature theory as it is proposed in [6].

If we approximate the constitutive equation (1.2) by a formal Taylor expansion with

respect to τ of order zero, i.e.,

q(t, ·) = −κ∇θ(t, ·), (1.9)

we have Fourier’s law, and this leads to the classical heat equation

θt = κ∆θ

having the physical paradoxon of infinite propagation speed; this can be interpreted by

observing that τ = 0 in (1.2) expresses an instantaneous change in the heat flux for a

given temperature gradient.

Formally taking a first-order approximation of (1.2), i.e.,

τqt(t, ·) + q(t, ·) = −κ∇θ(t, ·) (1.10)

yields Cattaneo’s law which, inserted in (1.1), leads to a damped wave equation,

τθtt + θt = γκ∆θ

having finite propagation speed of signals. Both models, Fourier (1.9) and Cattaneo

(1.10), augmented by boundary conditions in a bounded domain in Rn as well as initial

conditions, describe an exponentially stable system.
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More generally, Tzou [11, 12] proposed a dual-phase-lag theory based on

q(t+ τq, ·) = −κ∇θ(t+ τθ, ·) (1.11)

with two relaxation parameters τq, τθ > 0. The delay time τθ is caused by microstructural

interactions such as phonon scattering or phonon-electron interactions. The delay τq is

interpreted as the relaxation time due to fast-transient effects of thermal inertia.

Different formal Taylor approximations like

q + τqqt = −κ∇θ − κτθ∇θ (1.12)

(Jeffreys model)

or

q + τqqt +
τ 2
q

2
qtt = −κ∇θ − κτθ∇θt (1.13)

or

q + τqqt = −κ∇θ − κτθ∇θt − κ
τ 2
θ

2
∇θtt (1.14)

or

q + τqqt +
τ 2
q

2
qtt = −κ∇θ − κτθ∇θt − κ

τ 2
θ

2
∇θtt (1.15)

have been discussed, and exponential stability has been shown for certain parameter do-

mains for (τq, τθ), see [5, 7, 8].

With Theorem 1.1 we cannot interpret the formal ”approximations” through Fourier’s

law, Cattaneo’s law, Jeffreys law, ... in (1.9), (1.10), (1.12) - (1.15) (leading to expo-

nentially stable models) as real approximations of the instable, ill-posed original delay

equations (1.2) and (1.11), respectively; cf. [1, 12] for regarding it as a Taylor expansion.

Moreover, the expectation is nourished that formal higher-order expansions – ”better

approximating” the ill-posed case – lead to ill-posed models as well. Indeed, we consider

the more general expansion of (1.11) given by

q(t, ·) + · · ·+
τ j
q

j!

∂j

∂j
t

q(t, ·) = −κ∇θ(t, ·)− · · · − κτ
m
0

m!

∂m

∂m
t

∇θ(t, ·). (1.16)

If we substitute this constitutive equation into the energy equation, we will obtain an

equation of the form

b0θt + · · ·+ bj
∂j+1

∂tj+1
θ = c0∆θ + · · ·+ cm∆

∂m

∂tm
θ, (1.17)

with bi, ci > 0 for i = 0, . . . , j and i = 0, . . . ,m, respectively. A recent study for equations

of this type can be found in [9].
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It is clear that we could express this in an abstract way in the form

b0ut + · · ·+ bj
∂j+1

∂tj+1
u = c0Au+ · · ·+ cmA

∂m

∂tm
u, (1.18)

where A is an appropriate operator in a suitable Banach space.

We remark that equations of this type are also present in the study of viscoelasticity.

In [3], the following constitutitve relation was proposed,

P (∂/∂t)σij = Q(∂/∂t)εkkδij + 2R(∂/∂t)εij, (1.19)

where σij and εij are the stress and the strain tensors, respectively, and P,Q,R are

three polynomials. In case that we combine this constitutive equation with the dynamic

equilibrium equation and (to make the calculations easier) we restrict our attention to

anti-plane shear deformations (u = u1(x2, x3), u2 = u3 = 0) we obtain again an equation

of the form (1.18).

The result on ill-posedness now reads as

Theorem 1.3 Let A be an operator in a Banach space having a sequence of real eigen-

values (λk)k such that 0 > λk → −∞ as k → ∞. Let n := j + 1 ≥ m and k := n −m.

Then (1.18) is ill-posed if k ≥ 3. There are solutions (ul)l with norm ‖ul(t)‖, for any

fixed t > 0 tending to infinity (as l → ∞) while the norms of the data (ul(0))l remain

bounded.

In view of Theorem 1.3, we may look again at the – exponentially stable – examples

Fourier’s law, Cattaneo’s law, Jeffreys law, ... in (1.9), (1.10), (1.12) - (1.15) from above

where we have 0 ≤ k ≤ 2 in each case. In this sense, Theorem 1.3 is sharp. We

point out that this theorem also holds in the case that some coefficients vanish, e.g., if

b0 = b1 = ... = br = 0, as long as r < j + 1.

The paper is organized as follows: In Section 2 we shall prove Theorem 1.1 and

Theorem 1.2, and in Section 3 we present the proof of Theorem 1.3. A conclusion is given

in Section 4.

2 Proofs of Theorems 1.1 and 1.2

To prove Theorem 1.1, we make the ansatz

ul(t) = eωltφl (2.1)

for a solution, where φl denotes an eigenfunction to the eigenvalue λl with norm one. We

shall show the existence of a subsequence such that the real part of ωl tends to infinity as
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l→∞.

The ansatz (2.1) yields a solution if

ωn
kl

= e−ωkl
τλkl

. (2.2)

Dropping the index kl for simplicity and writing ω with real and imaginary part as

ω = r(cosϕ+ i sinϕ) ≡ α+ iβ,

we get from (2.2)

rn(cos(nϕ) + i sin(nϕ))eατ (cos(βτ) + i sin(βτ)) = λ,

or

rnerτ cos ϕ[cos(nϕ+ βτ) + i sin(nϕ+ βτ)] = λ. (2.3)

We look for solutions ω (in polar coordinates) ≡ (r, ϕ) such that

rnerτ cos ϕ = |λ|, (2.4)

nϕ+ rτ sinϕ = π. (2.5)

(2.5) implies the condition

r =
π − nϕ
τ sinϕ

, (2.6)

and we note that 0 ≤ r <∞ if

0 ≤ ϕ ≤ π

4n
, (2.7)

so we assume (2.7).

Substituting (2.6) into (2.3) we obtain

ψ(ϕ) := (π − nϕ)n e(π−nϕ) cot ϕ − |λ|τn sinn ϕ = 0. (2.8)

Our aim is to show that (2.8) always has a zero in (0, π/(4n)) whenever |λ| is large enough.

We have

lim
ϕ↓0

ψ(ϕ) =∞, (2.9)

and

ψ
( π

4n

)
=

(3π

4

)n

e
3π
4

cot
(

π
4n

)
− |λ|τn sinn

( π

4n

)
→ −∞ as |λ| → ∞. (2.10)

(2.9), (2.10) imply the existence of ϕ ∈ (0, π
4n

) such that

ψ(ϕ) = 0.
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Hence there is ωkl
= (rkl

, ϕkl
), a solution to (2.2) such that

<ωkl
= rkl

cosϕkl
→∞ as l→∞,

since

cosϕkl
≥ cos

π

4
> 0,

and

rkl
→∞ as l→∞,

because

∞← |λkl
| = rn

kl
erkl

τ cos ϕkl .

This proves Theorem 1.1.

Now we prove Theorem 1.2. Again we use the ansatz

ul(t) = eωltφl (2.11)

for a solution, where φl denotes an eigenfunction to the eigenvalue λl with norm one. We

shall show the existence of a subsequence such that the real part of ωl tends to infinity as

l→∞.

Writing

x := ωl, λ := λl

for simplicity, the ansatz (2.11) yields a solution if

xn = λxe−τx + λe−τ∗x. (2.12)

We have to distinguish the cases I: τ > τ ∗, II: τ < τ ∗ (as in [10]), and III: τ = τ ∗.

First, consider case I: Let ω be the solution to

ωn = λe−τ∗ω (2.13)

with <ω → ∞ as λ → −∞ and 0 < arg(ω) < π
4n

, according to (the proof of) Theorem

1.1. For a solution to (2.12) we look for ζ ∈ C with |ζ| < 1
2

such that x = ω(1+ζ) satisfies

(2.12). Then we have to solve

ωn(1 + ζ)n = λxe−τx + λe−τ∗x,

or, using (2.13),

(1 + ζ)n = xeτ∗ωe−τx + eτ∗ωe−τ∗x,

rewritten as (
eτ∗ωζ − 1

)︸ ︷︷ ︸
=:f(ζ)

+
(
eτ∗ωζ((1 + ζ)n − 1)− ω(1 + ζ)e(τ

∗−τ)ω(1+ζ)
)︸ ︷︷ ︸

=:g(ζ)

= 0. (2.14)
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Let Ω be the ball with center zero and radius RΩ := 1
10τ∗|ω| . Then f has exactly one zero

(ζ = 0) in Ω. Moreover, on the boundary of Ω we have

|f(ζ)| ≥ inf
|z|= 1

10

|ez − 1| > 0, (2.15)

independent of |ω|. g is estimated as follows. Writing

g(ζ) = [eτ∗ωζ((1 + ζ)n − 1)]− [ω(1 + ζ)e(τ
∗−τ)ω(1+ζ)]

≡ [g1(ζ)]− [g2(ζ)]

we have

|g1(ζ)| ≤ e
1
10nRΩ(1 +Rn−1

Ω ) ≤ c

|ω|
(2.16)

with some constant c > 0, and

|g2(ζ)| ≤ 2|ω|e<{(τ∗−τ)ω(1+ζ)} ≤ 2|ω|e(τ∗−τ)c|ω| ≤ c

|ω|
(2.17)

since τ > τ ∗. By (2.15), (2.16), and (2.17) we conclude with Rouché’s theorem that (2.14)

has a solution ζ which gives the desired solution x to (2.12), with <x→∞ as λ→ −∞.

The cases II (τ < τ ∗) and III (τ = τ ∗) are treated similarly replacing (2.13) by the

following implicit equation for ω:

ωn−1 = λe−τω.

This completes the proof of Theorem 1.2.

3 Proof of Theorem 1.3

To prove Theorem 1.3 we again consider the ansatz

ul(t) = eωltφl, (3.1)

where (φl)l denote again the eigenfunctions (with norm 1) of the operator A. This ansatz

yields a solution if, for ω := ωl,

b0ω + · · ·+ bjω
j+1 = c0λl + · · ·+ cmλlω

m,

or

Pn(ω) = 0,

where, assuming without loss of generality: bj = 1,

Pn(x) = xn + a1 x
n−1 + · · ·+ an−1x+ an, (3.2)
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with coefficients ai satisfying

ai > 0, ai = ai(λl), (3.3)

a1, . . . , ak−1 remains bounded as l→∞, (3.4)

ak, . . . , an ∼ (−λl) as l→∞ (3.5)

Remember: n = j + 1, k = n−m = j + 1−m.

Let

λ := −λl, y := xλ−
1
k , Q(y) :=

P (x)

λ
n
k

.

Then

Q(y) = yn +a1λ
− 1

k yn−1 + · · ·+ak−1λ
− k−1

k yn−k+1 +akλ
−1yn−k + · · ·+an−1λ

−n−1
k y+anλ

−n
k ,

implying

Q(y) = yn + akλ
−1yn−k︸ ︷︷ ︸

=:f(λ,y)

+
n−1∑
l=0

αl(λ)yl

︸ ︷︷ ︸
=:R(λ,y)

,

with

αl(λ) = O(λ−
1
k ) as λ→∞.

Let

a∗ := lim
λ→∞

ak(λ)

λ
> 0,

and

y∗ := (−a∗)
1
k .

where the root with argument π/k is chosen such that

<y∗ > 0.

This is possible since, by assumption, k ≥ 3.

Choosing r0 := 1
10
|y∗| we have that f(λ, ·) has exactly one zero in the ball B(y∗, r0) of

radius r0 around y∗ if |λ| is large enough. Since

lim
λ→∞
|R(λ, y)| = 0,

uniformly in y ∈ ∂B(y∗, r0), we conclude, by the theorem of Rouché, that also Q has

exactly one zero ŷ in B(y∗, r0). Then

x̂ := λ
1
k ŷ,

satisfies

P (x̂) = 0 and <x̂→∞ as λ→∞.

This proves Theorem 1.3.
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4 Conclusion

In this note we have investigated the ill-posedness of the problems (1.5), (1.8), (1.18).

The results directly apply to several thermomechanical models in heat conduction and in

viscoelasticity, but they are proved in a general Banach space setting for further applica-

tions.
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