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Abstract

This paper is concerned with the dynamics for nonlinear one-dimensional beam
equations. We consider a nonlinear beam equation with viscosity or with a lower
order damping term instead of the viscosity, and we establish the existence of global
attractors for both systems.
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1 Introduction

In this paper we investigate the existence of global attractors for the nonlinear one-

dimensional beam equations arising from the study of mechanical movements of shape

memory alloys of constant mass density ρ (assumed to be normalized to unity, i.e., ρ = 1).

We consider the equations either with viscosity, or without viscosity but with a lower order

damping term, respectively. For both cases, our general aim, roughly stated, is to show

that the equations possess global attractors in the corresponding complete metric spaces.

Let Ω = (0, 1), and, for any t > 0, Ωt = Ω× (0, t). For the system with viscosity, the

nonlinear partial di�erential equation we are studying is

utt − νuxxt − f(ux)x + Ruxxxx = g (1.1)

with u, f, g being the displacement, stess, density of distributed loads, respectively, and

subject to the boundary conditions

u |x=0,1= uxx |x=0,1= 0 (1.2)

and the initial conditions

u |t=0= u0, ut |t=0= u1 (1.3)
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And for the system without viscosity, the equation we are studying is

utt + µut − f(ux)x + Ruxxxx = g (1.4)

subject to the same boundary conditions (1.2) and initial conditions (1.3).

To study the thermomechanics of shape memory alloys in one space dimension, Falk

[3], [4] has proposed a Ginzburg-Landau theory, using the strain ε = ux as order parameter

and assuming that the Helmholtz free energy density F is a potential of Ginzburg-Landau

form, i.e.,

F = F (ux, uxx, θ) (1.5)

where θ is the absolute temperature. Here the beam equations studied in our paper can

be taken as the special case of [3], [4] for which with positive constant temperature. The

simplest form for the free energy density F, that accounts quite well for the experimentally

behavior and takes couple stresses into account, is

F (ux, uxx) = F1(ux) +
R

2
u2

xx, (1.6)

where

F1(ux) =
α1

6
u6

x −
α2

4
u4

x −
α3

2
u2

x (1.7)

with positive constants αi and R.

The stress f = f(ux) in (1.1) or (1.4) is given by

f(ux) = F ′
1(ux) = α1u

5
x − α2u

3
x − α3ux (1.8)

and ν, µ are positive constants.

The physical meaning of the boundary conditions is that both ends of the rod are

hinged, respectively. For simplicity, we assume that g ≡ 0, i.e., no external force in the

systems.

Before stating and proving our results, let us �rst recall some related results in the

literature.

Ball [1] proved the existence of weak solutions to the nonlinear beam equation

∂2u

∂t2
+ α

∂4u

∂x4
− [β + κ

∫ l

0

uξ(ξ, t)
2dξ]

∂2u

∂x2
= 0

subject to clamped or hinged boundary conditions. Later, Ball [2] proved the stability

of an extensile beam equation as time tends to in�nity. Eden and Milani [5] proved the
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existence of a compact attractor, and also an exponential attractor to the equations of

the type

εutt + ut + α∆2u = (κ

∫
Ω

| ∇u |2 −β)∆u + f. (1.9)

They also proved in the special case where damping is large, i.e., ε is small, the exponential

attractor contains the global attractor.

For the non-isothermal case, i.e., the coupled partial di�erential equations, which

consist of a nonlinear beam equation with respect to the displacement u and a second

order parabolic equation with respect to the temperature. Shang [12] proved the existence

of a global attractor to the one-dimensional thermoviscoelastic system arising from the

study of phase transitions in shape memory alloys with hinged boundary conditions in

closed subspaces. Motivated by [12], equation (1.1) in our paper can be taken as the

special case of [12] with constant temperature, but here we can proved the existence of

a global attractor in the whole sobolev space H. For the same model as in [12], but with

stress free boundary conditions at least at one end of the rod, Sprekels and Zheng [9]

got the existence of a global attractor for the Ginzburg-Landau form for shape memory

alloys. We can see that Shang [12], Sprekels and Zheng [9] studied the systems whose

free energy density F was a potential of Ginzburg-Landau form, i.e., R > 0. For the case

R = 0, ν > 0, Racke and Zheng [8] obtained the global existence and asymptotic behavior

of the solution to the nonlinear thermoviscoelastic system with stress-free conditions at

least at one end of the rod. For the system with clamped boundary conditions, Chen and

Ho�mann [7] proved the global existence and uniqueness of the smooth solution. Shen,

Zheng and Zhu [10] obtained the global existence and asymptotic behavior of the weak

solution, and they established a new approach to derive a priori estimates on the L∞-

norm of the strain u independent of the length of time. Recently, Qin, Liu and Song [11]

obtained the existence of a global attractor for the same system as in [10].

In this paper, we consider problems (1.1)�(1.3) and (1.4)�(1.3). By deriving delicate

uniform a priori estimates independent of T and the initial data for both cases, we obtain

the results on the existence of global attractors.

First, we study the problem (1.1)�(1.3). Let

H := {(u, ut) ∈ H4 ×H2 : u |x=0,1= uxx |x=0,1= 0}

Our main result in this case reads as follows.

Theorem 1.1. Suppose u0 ∈ H4, u1 ∈ H2 are given functions that satisfy the compati-

bility conditions u0 |x=0,1= u0xx |x=0,1= 0. Then for the problem (1.1)�(1.3) the following

results hold.
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(i)The problem admits a unique global solution (u, ut) satisfying

u ∈ C([0, +∞); H4) ∩ C1([0, +∞); H2) ∩ L2([0, +∞); H5);

ut ∈ C([0, +∞); H2) ∩ L2([0, +∞); H3).

(ii) The orbits starting from H will reenter itself after �nite time, and stay there

forever. Moreover, it possesses in H a global attractor A which is compact.

Second, for the problem (1.4)�(1.3), our result is the following.

Theorem 1.2. Suppose u0 ∈ H4, u1 ∈ H2 are given functions that satisfy the compati-

bility conditions u0 |x=0,1= u0xx |x=0,1= 0. Then for the problem (1.4)�(1.3) the following

results hold.

(i)The problem admits a unique global solution (u, ut) satisfying

u ∈ C([0, +∞); H4) ∩ C1([0, +∞); H2) ∩ L2([0, +∞); H5);

ut ∈ C([0, +∞); H2) ∩ L2([0, +∞); H3).

(ii) For β > 0, we de�ne the space

Hβ := {(u, ut) ∈ H,

∫ 1

0

(
1

2
u2

t +
R

2
u2

xx + F2(ux))dx ≤ β}

Then the orbits starting from Hβ will reenter itself after �nite time, and stay there forever.

Moreover, it possesses in Hβ a global attractor Aβ which is compact.

In what follows, we explain some mathematical di�culties that appeared in this paper.

First, in the course of deriving the existence of an absorbing set in H or Hβ, the

estimates obtained in the proof of global existence are not su�cient, and we should derive

uniform estimates of ‖ u ‖H4 , ‖ ut ‖H2 independent of the initial data and t. It turns out

more delicate estimates are needed due to the higher degree of nonlinearity inherent in

the system and to the higher order derivative arising for R > 0.

Second, we recall the results obtained in Eden and Milani [5], which followed a pro-

cedure similar to that of Hale [14], but replacing the role of the Lyapunov functions with

di�erent types of energy norms. Using the method of α-contractions, [5] proved the ex-

istence of a compact, �nite fractal dimensional invariant set toward which all solutions

converged exponentially in time. However, the existence of global attractor, i.e., the

boundedness of the attractor in the corresponding norm, could only be obtained when

the damping is large, i.e., ε is small in (1.9). Di�erent from [5], in order to establish
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the existence of a global attractor, we shall apply the Theorem 6.4.1 in the book by

Zheng [16]. The crucial step is to show the existence of an absorbing set and the uniform

compactness of the orbits starting from any bounded set. In a similar manner to [16], we

can obtain the existence of bounded, invariant absorbing set B0 or Bβ for both cases. But

in the proof of uniformly compactness, we can see that the problem (1.4)�(1.3), i.e., the

system without viscosity, it seems to be totally di�erent in comparison with the problem

(1.1)�(1.3). The uniform compactness of the solution to the problem (1.4)�(1.3) can not

be derived directly like the problem (1.1)�(1.3), due to the term µut in (1.4) is not as

good as −νuxxt in (1.1). In order to overcome this di�culty, we should rather consider

the dynamics in closed subspaces de�ned by the parameter β, i.e., Hβ in our paper. We

shall show that the constraint in the de�nition of Hβ is invariant under S(t). We shall

prove that the orbit starting form Hβ will reenter itself after a �nite time and stay there

forever.

This paper is organized as follows. In section 2 we prove the existence of a global

attractor for the problem (1.1)�(1.3) in the sobolev space H. In section 3 we prove the

existence of a global attractor for the problem (1.4)�(1.3) in the closed subspace Hβ.

The notation in this paper will be as follow : Lp, Wm,p, 1 ≤ p ≤ ∞, m ∈ N ,

H1 ≡ W 1,2, and H1
0 ≡ W 1,2

0 , respectively, denote the usual Lebesgue and Sobolev space

on (0, 1). We use the abbreviation ‖ · ‖:=‖ · ‖L2 , and Ck(I, B), k ∈ N0, denote the

space of k-times continuously di�erentiable functions from I ∈ R into a Banach space

B. The space Lp(I, B), 1 ≤ p ≤ ∞, are de�ned analogously. Finally, ∂t or subscript t

and likewise, ∂x or a subscript x, denote the partial derivations with respect to t and x,

respectively.

2 The Existence of A Global Attractor for the System

with Viscosity

We consider the initial boundary value problem (1.1)�(1.3). In this section, we shall prove

the existence of a global attractor for this system in the whole sobolev space H.

We �rst establish a local existence and uniqueness result for this problem.

Lemma 2.1. Under the same assumption as in Theorem 1.1, there exists t∗ > 0 depending

only on ‖ u0 ‖H4(Ω), ‖ u1 ‖H2(Ω), such that problem (1.1)�(1.3) admits a unique solution

(u, ut) in Ω̄× [0, t∗] such that

u ∈ C([0, t∗]; H4) ∩ C1([0, t∗]; H2) ∩ L2([0, t∗]; H5),
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ut ∈ C([0, t∗]; H2) ∩ L2([0, t∗]; H3).

Proof. We use the contraction mapping theorem to prove the local existence and unique-

ness. Since the proof is essentially the same as in Shang [12], we can omit the details

here.

In the following we prove Theorem 1.1.

Proof of (i) in Theorem 1.1 In order to prove the global existence, we have to

establish a priori estimates for ‖ u ‖H4 , ‖ ut ‖H2 . In fact, we can derive uniform a priori

estimates independent of t, which is crucial for the proof of uniform compactness of the

orbits. In this proof, the letter C denotes a universal positive constant that may depend

on the norm of the initial data, but not on t.

Lemma 2.2. For any t > 0, the following estimates hold.

‖ ut ‖≤ C, ‖ uxx ‖≤ C, ‖ ux ‖L∞≤ C, (2.1)∫ t

0

∫ 1

0

u2
xtdxdτ ≤ C,

∫ t

0

‖ ut ‖2 dτ ≤ C,

∫ t

0

‖ ut ‖2
L∞ dτ ≤ C. (2.2)

Proof. Multiplying (1.1) with ut and integrating with respect to x and t yields

1

2

∫ 1

0

u2
t dx +

R

2

∫ 1

0

u2
xxdx +

∫ 1

0

F1(ux)dx + ν

∫ t

0

∫ 1

0

u2
xtdxdτ ≤ C. (2.3)

Here F ′
1(x) = f(x), and applying Young's inequality, we have

F1(ux) ≥ Cu6
x − C. (2.4)

Combining (2.3) with (2.4), we obtain the estimates (2.1). (2.2) can be derived form (2.1)

and the boundary conditions (1.2) immediately. The proof is complete.

Lemma 2.3. For any t > 0, the following estimates hold.

‖ utt ‖≤ C, ‖ uxxt ‖≤ C,

∫ t

0

‖ uxtt ‖2 dτ ≤ C,

∫ t

0

‖ uxxxt ‖2 dτ ≤ C. (2.5)

Proof. We di�erentiate (1.1) with respect to t, multiply the resultant by utt, and integrate

with respect to x over Ω to obtain

1

2

d

dt

∫ 1

0

u2
ttdx + ν

∫ 1

0

u2
xttdx +

∫ 1

0

f(ux)t · uxttdx +
R

2

d

dt

∫ 1

0

u2
xxtdx = 0. (2.6)

Since ∫ 1

0

f(ux)t · uxttdx ≤ ν

2

∫ 1

0

u2
xttdx + C

∫ 1

0

| f ′(ux)uxt |2 dx
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≤ ν

2
‖ uxtt ‖2 +C ‖ uxt ‖2 . (2.7)

Using (2.2) and integrating (2.6) with respect to t yields

‖ utt ‖≤ C, ‖ uxxt ‖≤ C,

∫ t

0

‖ uxtt ‖2 dτ ≤ C. (2.8)

Then we di�erentiate (1.1) with respect to t, multiply the resultant by−uxxt, and integrate

with respect to x over Ω to obtain

ν

2

d

dt

∫ 1

0

u2
xxtdx− d

dt

∫ 1

0

utt · uxxtdx−
∫ 1

0

u2
xttdx + R

∫ 1

0

u2
xxxtdx−

∫ 1

0

f(ux)t · uxxxtdx = 0

(2.9)

Using the estimates we obtain in (2.8), we have∫ 1

0

f(ux)t · uxxxtdx ≤ R

2

∫ 1

0

u2
xxxtdx + C

∫ 1

0

| f(ux)t |2 dt

≤ R

2
‖ uxxxt ‖2 dx + C. (2.10)

Combing (2.9) with (2.10), we �nally have∫ t

0

‖ uxxxt ‖2 dτ ≤ C. (2.11)

The proof is complete.

Having established uniform a priori estimates, the global existence and uniqueness

follows from the continuation argument. In what follows, we will prove the compactness

of the orbit for t > 0 in H4 × H2. For the time being, we assume that the initial data

are so smooth that the solution will have enough smoothness to carry out the following

argument. If the initial data just belong to H4×H2, we can approximate them by smooth

functions and then pass to the limit.

Lemma 2.4. For any µ > 0, the triple (u, ut) is bounded in C([µ, +∞); H5 ×H3).

Proof. First, we di�erentiate (1.1) with respect to t, multiply the resultant by −uxxtt, and

integrate with respect to x over Ω to obtain

d

dt

∫ 1

0

(
R

2
u2

xxxt +
1

2
u2

xtt)dx +
ν

2

∫ 1

0

u2
xxttdx ≤ C

∫ 1

0

| f(ux)xt |2 dx. (2.12)

Multiplying (2.12) by t, we obtain

d

dt
(tR ‖ uxxxt ‖2 +t ‖ uxtt ‖2)+νt ‖ uxxtt ‖2≤ (R ‖ uxxxt ‖2 + ‖ uxtt ‖2)+Ct ‖ f(ux)xt ‖2 .

(2.13)
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Since ∫ t

0

‖ f(ux)xt ‖2 dτ =

∫ t

0

(‖ f ′(ux)uxxt ‖2 + ‖ f ′′(ux)uxxuxt ‖2)dτ.

Using Nirenberg's inequality, we have

‖ uxxt ‖≤ C ‖ uxxxt ‖
1
2 · ‖ uxt ‖

1
2

and Young's inequality,

‖ uxxt ‖2≤ C ‖ uxxxt ‖ · ‖ uxt ‖≤
C

2
‖ uxxxt ‖2 +

C

2
‖ uxt ‖2 .

Combining with the estimates in Lemma 2.3 yields∫ t

0

‖ uxxt ‖2 dτ ≤ C.

Similarly, since∫ t

0

‖ uxxuxt ‖2 dτ ≤
∫ t

0

‖ uxt ‖2
L∞ · ‖ uxx ‖2 dτ ≤ C

∫ t

0

‖ uxt ‖2
L∞ dτ

and

‖ uxt ‖2
L∞≤ C ‖ uxxxt ‖

1
2 · ‖ uxt ‖

3
2≤ C

2
‖ uxxxt ‖2 +

C

2
‖ uxt ‖2 .

Thus, ∫ t

0

‖ uxt ‖2
L∞ dτ ≤ C.

Finally, we obtain ∫ t

0

‖ f(ux)xt ‖2 dτ ≤ C.

Thus we can get from (2.13)

R ‖ uxxxt ‖2 + ‖ uxtt ‖2≤ C̃t−1 + C (2.14)

with C̃ = C̃(‖ u0 ‖H4 , ‖ u1 ‖H2). The proof is complete.

From this Lemma the compactness of the orbit in H4 ×H2 follows. In what follows,

we shall prove (ii) of Theorem 1.1, i.e., the existence of a global attractor in H.

Proof of (ii) in Theorem 1.1 In order to prove the existence of a global attractor,

we shall apply Theorem I.1.1 in the book by Temam [14], which Shen and Zheng [6]

rephrased as follows.
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Theorem 2.1. Suppose that

(a) the mapping S(t), t ≥ 0 de�ned by the solution to problem (1.1)-(1.3) is a nonlinear

continuous semigroup from H into itself and is uniformly compact for t large;

(b) there exists a bounded set B in H such that B is absorbing in H.

Then the ω-limit set of B is a global attractor which is compact and attracts the bounded

sets of H.

Concerning (a), we have proved in Theorem 1.1 (i) the global existence of the solution.

It is clear from the proof that the family of operators S(t), t ≥ 0 de�ned by the solution

are continuous operators from H to H and they enjoy the usual semigroup properties. The

uniform compactness of the orbit has been proved in Lemma 2.4. Hence, what remains is

to verify the condition (b). In the following, the letters C, Ci denote positive constants

independent of the initial data and the time t.

Let B0 = {(u, ut) ∈ H, ‖ u ‖H4≤ C̄1, ‖ ut ‖H2≤ C̄2} where C̄1, C̄2 are also positive

constants independent of the initial data and t, which will be speci�ed later. Then we

have

Lemma 2.5. B0 is an absorbing set in H, i.e., for any bounded set B in H, there exists

some time t2 = t2(B) > 0, such that when t ≥ t2(B), S(t)B ⊂ B0.

Proof. Multiplying (1.1) with u and integrating with respect to x yields

d

dt

∫ 1

0

uutdx−
∫ 1

0

u2
t dx +

ν

2

d

dt

∫ 1

0

u2
xdx +

∫ 1

0

f(ux) · uxdx + R

∫ 1

0

u2
xxdx = 0. (2.15)

Using Young's inequality, we obtain

f(ux) · ux ≥ Cu6
x − C.

Multiplying (1.1) with ut and integrating with respect to x yields

1

2

d

dt

∫ 1

0

u2
t dx +

R

2

d

dt

∫ 1

0

u2
xxdx +

d

dt

∫ 1

0

F1(ux)dx + ν

∫ 1

0

u2
xtdx = 0, (2.16)

here

F1(ux) ≥ Cu6
x − C.

Using Poincare's inequality and the boundary condition (1.2), we have

‖ ut ‖L2≤‖ ut ‖L∞≤‖ uxt ‖L2 (2.17)

Now, we multiply (2.15) by ν
2
and add the resultant to (2.16) to obtain

d

dt
(
ν

2

∫ 1

0

uut +
ν2

4

∫ 1

0

u2
xdx +

1

2

∫ 1

0

u2
t dx +

R

2

∫ 1

0

u2
xxdx +

∫ 1

0

u6
xdx)
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+
ν

2

∫ 1

0

u6
xdx +

νR

2

∫ 1

0

u2
xxdx +

ν

2

∫ 1

0

u2
xtdx ≤ C. (2.18)

If we de�ne

E1(t) :=
ν

2

∫ 1

0

uut +
ν2

4

∫ 1

0

u2
xdx +

1

2

∫ 1

0

u2
t dx +

R

2

∫ 1

0

u2
xxdx +

∫ 1

0

u6
xdx

and

E2(t) :=
ν

2

∫ 1

0

u6
xdx +

νR

2

∫ 1

0

u2
xxdx +

ν

2

∫ 1

0

u2
xtdx.

Using Poincare's inequality and the boundary conditions again, we have

E1(t) ∼‖ u ‖2
H2 + ‖ ut ‖2

L2

and

E1(t) ≤ CE2(t).

Thus, we have
dE1(t)

dt
+ C1E1(t) ≤ C2,

then it leads to

E1(t) ≤ E1(0)e
−C1t +

C2

C1

. (2.19)

We can see from (2.19) that for any initial data starting from any bounded set B of H,

there exists t1(B), such that when t ≥ t1(B),

E1(t) ≤
2C2

C1

. (2.20)

In what follows, we consider the solution in [t1(B), +∞). From (2.20), we have

‖ ut ‖2≤ 2C2

C1

, ‖ uxx ‖2≤ 2C2

C1

, for any t ≥ t1(B) (2.21)

and

‖ ux ‖n+2
L∞ ≤‖ uxx ‖n+2

L2 ≤ (
2C2

C1

)
n+2

2 . (2.22)

Di�erentiating (1.1) with respect to t, multiplying the resultant by utt, and integrating

with respect to x over Ω to obtain

1

2

d

dt

∫ 1

0

u2
ttdx + ν

∫ 1

0

u2
xttdx +

R

2

d

dt

∫ 1

0

u2
xxtdx = −

∫ 1

0

f(ux)t · uxttdx. (2.23)

Di�erentiating (1.1) with respect to t, multiplying the resultant by −uxxt, and integrating

with respect to x over Ω to obtain

ν

2

d

dt

∫ 1

0

u2
xxtdx− d

dt

∫ 1

0

utt·uxxtdx−
∫ 1

0

u2
xttdx+R

∫ 1

0

u2
xxxtdx =

∫ 1

0

f(ux)t·uxxxtdx. (2.24)
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In the following, we estimate the right-hand side of (2.23), (2.24) respectively.∫ 1

0

f(ux)t · uxttdx ≤ ν

4

∫ 1

0

u2
xttdx + C

∫ 1

0

f(ux)
2
t dx. (2.25)

Observe that∫ 1

0

f(ux)
2
t dx =

∫ 1

0

| f ′(ux) · uxt |2 dx ≤ C

∫ 1

0

u8
xu

2
xtdx + C

∫ 1

0

u2
xtdx. (2.26)

By virtue of the previous estimates,∫ 1

0

u8
xu

2
xtdx ≤‖ ux ‖8

L∞‖ uxt ‖2
L2≤ (

2C2

C1

)4 ‖ uxt ‖2
L2 ,

and

‖ uxt ‖2
L2≤ C ‖ uxxxt ‖

2
3

L2 · ‖ ut ‖
4
3

L2≤ δ ‖ uxxxt ‖2
L2 +Cδ ‖ ut ‖2

L2 (2.27)

with δ being a positive constant. Thus,∫ 1

0

u8
xu

2
xtdx ≤ δ ‖ uxxxt ‖2

L2 +Cδ ‖ ut ‖2
L2 . (2.28)

Similarly, we have ∫ 1

0

f(ux)t · uxxxtdx ≤ δ ‖ uxxxt ‖2
L2 +Cδ ‖ ut ‖2

L2 . (2.29)

Multiplying (2.24) by η and adding the resultant to (2.23) yields

d

dt
(
1

2

∫ 1

0

u2
ttdx + (

R

2
+

νη

2
)

∫ 1

0

u2
xxtdx− η

∫ 1

0

utt · uxxtdx)

+(ν − η)

∫ 1

0

u2
xttdx + Rη

∫ 1

0

u2
xxxtdx ≤ δ ‖ uxxxt ‖2 +Cδ ‖ ut ‖2 . (2.30)

We can choose η, δ small enough to make sure the positivity of the coe�cients on the

left-hand of (2.30). Then we obtain

d

dt
(

∫ 1

0

u2
ttdx +

∫ 1

0

u2
xxtdx) + C3(

∫ 1

0

u2
xttdx +

∫ 1

0

u2
xxxtdx) ≤ C4.

Combining with (2.18), we �nally have

d

dt
(

∫ 1

0

uutdx +

∫ 1

0

u2
xdx +

∫ 1

0

u2
t dx +

∫ 1

0

u2
xxdx +

∫ 1

0

u6
xdx +

∫ 1

0

u2
ttdx +

∫ 1

0

u2
xxtdx)

+C5(

∫ 1

0

u6
xdx +

∫ 1

0

u2
xxdx +

∫ 1

0

u2
xtdx +

∫ 1

0

u2
xttdx +

∫ 1

0

u2
xxxtdx) ≤ C6. (2.31)

If we de�ne

E3(t) :=

∫ 1

0

uutdx +

∫ 1

0

u2
xdx +

∫ 1

0

u2
t dx +

∫ 1

0

u2
xxdx +

∫ 1

0

u6
xdx +

∫ 1

0

u2
ttdx +

∫ 1

0

u2
xxtdx
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and

E4(t) :=

∫ 1

0

u6
xdx +

∫ 1

0

u2
xxdx +

∫ 1

0

u2
xtdx +

∫ 1

0

u2
xttdx +

∫ 1

0

u2
xxxtdx,

then using Poincare's inequality and the boundary condition 1.2, we have

E3(t) ∼‖ u ‖2
H4 + ‖ ut ‖2

H2 ,

E3(t) ≤ CE4(t).

Similarly as in the estimates of E1(t), we have

dE3(t)

dt
+ C7E3(t) ≤ C8, for any t ≥ t1(B) (2.32)

which immediately leads to

E3(t) ≤ E3(0)e−C7t +
C8

C7

, for any t ≥ t1(B). (2.33)

For the initial data starting from the bounded set B mentioned above, there exists t2(B) ≥
t1(B), such that when t ≥ t2(B), we have

E3(t) ≤
2C8

C7

. (2.34)

From (2.34), we can see that if we choose C̄1 = C̄2 = 2C8

C7
in the de�nition of B0, the

existence of absorbing set B0 follows. The proof is complete.

3 The Existence of A Global Attractor for the System

without Viscosity

We consider the initial boundary value problem (1.4)�(1.3). In this section, we shall prove

the existence of a global attractor for this system in the closed subspace Hβ.

Here we de�ne Hβ as

Hβ := {(u, ut) ∈ H,

∫ 1

0

(
1

2
u2

t +
R

2
u2

xx + F1(ux))dx ≤ β}.

We establish the local existence and uniqueness results in a similar way to section 2.

Lemma 3.1. Under the same assumption as in Theorem 1.2. There exists t∗ > 0 de-

pending only on ‖ u0 ‖H4(Ω), ‖ u1 ‖H2(Ω), such that problem (1.4)�(1.3) admits a unique

solution (u, ut) in Ω̄× [0, t∗] such that

u ∈ C([0, t∗]; H4) ∩ C1([0, t∗]; H2) ∩ L2([0, t∗]; H5),

ut ∈ C([0, t∗]; H2) ∩ L2([0, t∗]; H3).
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Proof of (i) in Theorem 1.2. We can only obtain a priori estimates depending on

T. In what follows, the letter CT denotes a positive constant which may depend on the

initial data and the time T.

Lemma 3.2. For any t ∈ [0, T ], the following estimates hold.

‖ ut ‖≤ CT , ‖ uxx ‖≤ CT , ‖ ux ‖L∞≤ CT ,

∫ t

0

‖ ut ‖2 dτ ≤ CT . (3.1)

Proof. Multiplying (1.4) by ut and integrating with respect to x yields

d

dt
(
1

2

∫ 1

0

u2
t dx +

R

2

∫ 1

0

u2
xxdx +

∫ 1

0

F (ux)dx) + µ

∫ 1

0

u2
t dx = 0. (3.2)

From (3.2), the estimates of (3.1) follow immediately.

Lemma 3.3. For any t ∈ [0, T ], the following estimates hold.

‖ utt ‖≤ CT , ‖ uxxt ‖≤ CT . (3.3)

Proof. We di�erentiate (1.4) with respect to t, multiply the resultant by utt, and integrate

with respect to x over Ω to obtain

1

2

d

dt

∫ 1

0

u2
ttdx + µ

∫ 1

0

u2
ttdx +

∫ 1

0

f(ux)t · uxttdx +
R

2

d

dt

∫ 1

0

u2
xxtdx = 0. (3.4)

Since ∫ 1

0

f(ux)xt · uttdx ≤ µ

2

∫ 1

0

u2
ttdx + Cµ

∫ 1

0

| f(ux)xt |2 dx, (3.5)

and ∫ 1

0

| f(ux)xt |2 dx =

∫ 1

0

| f ′′(ux)uxxuxt |2 dx +

∫ 1

0

| f ′(ux)uxxt |2 dx

≤ C ‖ uxt ‖2 +C ‖ uxxt ‖2

≤ C ‖ uxxt ‖2 +C (3.6)

here

‖ uxt ‖2≤ C ‖ uxxt ‖2 +C ‖ ut ‖2 .

Applying Gronwall's inequality, we can obtain

‖ utt ‖≤ CT , ‖ uxxt ‖≤ CT .

The proof is complete.
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Combing Lemma 3.2 with equation (1.4), we can obtain the boundedness of ‖ u ‖H4 ,

‖ ut ‖H2 , then the global existence and uniqueness follows.

Proof of (ii) in Theorem 1.2. First, we prove the existence of an absorbing set in

Hβ. In the following, letter C and Ci denote positive constants depending only on β.

Let Bβ = {(u, ut) ∈ Hβ, ‖ u ‖H4≤ C̄1, ‖ ut ‖H2≤ C̄2} where C̄1, C̄2 are positive

constants that may depend on β, but not on the initial data and t, and they will be

speci�ed later. Then we have

Lemma 3.4. Bβ is an absorbing set in Hβ, i.e., for any bounded set B in Hβ, there exists

some time t = t0(B) > 0, such that when t ≥ t0(B), S(t)B ⊂ Bβ.

Proof. From now on, we assume that the initial data (u0, u1) ∈ B ⊂ Hβ.

First, we multiply (1.4) by ut and integrate with respect to x to obtain

d

dt
(
1

2

∫ 1

0

u2
t dx +

R

2

∫ 1

0

u2
xxdx +

∫ 1

0

F (ux)dx) + µ

∫ 1

0

u2
t dx = 0, (3.7)

then we have

1

2

∫ 1

0

u2
t dx +

R

2

∫ 1

0

u2
xxdx +

∫ 1

0

F (ux)dx

≤ 1

2

∫ 1

0

u2
1dx +

R

2

∫ 1

0

D2u2
0 +

∫ 1

0

F (Du0)dx

≤ β (3.8)

From (3.8) we can see that S(t) maps (u, ut) from Hβ into itself and stay there forever.

Moreover, we obtain

‖ ut ‖≤ C, ‖ uxx ‖≤ C, ‖ ux ‖L∞≤ C (3.9)

and ∫ t

0

‖ ut ‖2 dτ ≤ C,

∫ t

0

‖ ut ‖n+2 dτ ≤ C, ∀n > 0 (3.10)

Second, we di�erentiate (1.4) with respect to t, multiply the resultant by utt, and integrate

with respect to x over Ω to obtain

1

2

d

dt

∫ 1

0

u2
ttdx + µ

∫ 1

0

u2
ttdx +

∫ 1

0

f(ux)t · uxttdx +
R

2

d

dt

∫ 1

0

u2
xxtdx = 0. (3.11)

Here∫ 1

0

f(ux)t · uxttdx =

∫ 1

0

5α1u
4
xuxtuxttdx−

∫ 1

0

3α2u
2
xuxtuxttdx−

∫ 1

0

α3uxtuxttdx. (3.12)

In what follows, we estimate the right-hand side of (3.12).
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Since ∫ 1

0

5α1u
4
xuxtuxttdx =

1

2
(
d

dt

∫ 1

0

5α1u
4
xu

2
xtdx−

∫ 1

0

20α1u
3
xu

3
xtdx) (3.13)

and from the estimates in (3.9), we have

|
∫ 1

0

u3
xu

3
xtdx |≤ C

∫ 1

0

| uxt |3 dx.

Using Nirenberg's inequality yields

‖ uxt ‖3
L3≤ C ‖ uxxt ‖

7
4

L2 · ‖ ut ‖
5
4

L2≤ δ ‖ uxxt ‖2
L2 +Cδ ‖ ut ‖10

L2

with δ being a positive constant again.

In a similar manner we have∫ 1

0

3α2u
2
xuxtuxttdx =

1

2
(
d

dt

∫ 1

0

3α2u
2
xu

2
xtdx−

∫ 1

0

6α2uxu
3
xtdx)

and

|
∫ 1

0

uxu
3
xtdx |≤ C

∫ 1

0

| uxt |3 dx ≤ δ ‖ uxxt ‖2
L2 +Cδ ‖ ut ‖10

L2 .

Therefore, we infer from (3.11) and the above estimates that

d

dt
(
1

2

∫ 1

0

u2
ttdx +

R

2

∫ 1

0

u2
xxtdx +

5α1

2

∫ 1

0

u4
xu

2
xtdx− 3α2

2

∫ 1

0

u2
xu

2
xtdx− α3

2

∫ 1

0

u2
xtdx)

+µ

∫ 1

0

u2
ttdx ≤ δ ‖ uxxt ‖2

L2 +Cδ ‖ ut ‖10
L2 . (3.14)

Finally, we di�erentiate (1.4) with respect to t, multiply the resultant by ut, and integrate

with respect to x over Ω to obtain

d

dt

∫ 1

0

ututtdx +
µ

2

d

dt

∫ 1

0

u2
t dx + R

∫ 1

0

u2
xxtdx−

∫ 1

0

u2
ttdx +

∫ 1

0

f(ux)t · uxtdx = 0. (3.15)

Here

|
∫ 1

0

f(ux)t · uxtdx | = |
∫ 1

0

f ′(ux) · u2
xtdx |

≤ C ‖ uxt ‖2
L2

≤ δ ‖ uxxt ‖2
L2 +Cδ ‖ ut ‖2

L2 .

Now we multiply (3.15) by µ
2
and add the result to (3.14) to obtain

d

dt
(
1

2

∫ 1

0

u2
ttdx +

R

2

∫ 1

0

u2
xxtdx +

5α1

2

∫ 1

0

u4
xu

2
xtdx− 3α2

2

∫ 1

0

u2
xu

2
xtdx− α3

2

∫ 1

0

u2
xtdx

+
µ

2

∫ 1

0

ututtdx +
µ

2

∫ 1

0

u2
t dx) +

µ2

4

∫ 1

0

u2
ttdx +

µR

2

∫ 1

0

u2
xxtdx
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≤ δ ‖ uxxt ‖2 +Cδ ‖ ut ‖2 . (3.16)

Choosing δ small enough, we �nally have

d

dt
(
1

2

∫ 1

0

u2
ttdx +

R

2

∫ 1

0

u2
xxtdx +

5α1

2

∫ 1

0

u4
xu

2
xtdx− 3α2

2

∫ 1

0

u2
xu

2
xtdx− α3

2

∫ 1

0

u2
xtdx

+
µ

2

∫ 1

0

ututtdx +
µ

2

∫ 1

0

u2
t dx) +

µ2

4

∫ 1

0

u2
ttdx +

µR

4

∫ 1

0

u2
xxtdx ≤ C. (3.17)

If we de�ne

E1(t) :=
1

2

∫ 1

0

u2
ttdx +

R

2

∫ 1

0

u2
xxtdx +

5α1

2

∫ 1

0

u4
xu

2
xtdx− 3α2

2

∫ 1

0

u2
xu

2
xtdx− α3

2

∫ 1

0

u2
xtdx

+
µ

2

∫ 1

0

ututtdx +
µ2

4

∫ 1

0

u2
t dx

and

E2(t) :=
µ

2

∫ 1

0

u2
ttdx +

µR

4

∫ 1

0

u2
xxtdx.

Combing the estimates obtained in (3.9), (3.10) with the equation (1.4), we get

E1(t) ∼‖ u ‖2
H4 + ‖ ut ‖2

H2 ,

and

E1(t) ≤ CE2(t).

Therefore
dE1(t)

dt
+ C1E1(t) ≤ C2,

then it immediately leads to

E1(t) ≤ E1(0)e
−C1t +

C2

C1

. (3.18)

It is clearly that here C1, C2 are positive constants depending only on β. Then we have

for any initial data starting from any bounded set B of Hβ, there exists some time t0(B),

such that when t ≥ t0(B),

E1(t) ≤
2C2

C1

. (3.19)

The existence of an absorbing set follows. The proof is complete.

Next, we focus on proving the uniform compactness of the orbits. For this we have to

estimate higher-order derivatives. From now on we assume that the initial data belong to

a bounded set B contained in Hβ and we use C, C̃ to denote positive constants depending

on B and β, i.e., ‖ u0 ‖H4 , ‖ u1 ‖H2 and β.
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Lemma 3.5. There exists some time t1 = t1(B) > 0, such that (u, ut) is bounded in

C([t1, +∞); H5 ×H3).

Proof. First, we di�erentiate (1.4) with respect to t, multiply the resultant by −uxxtt, and

integrate with respect to x over Ω to obtain

d

dt

∫ 1

0

(
R

2
u2

xxxt +
1

2
u2

xtt)dx +
µ

2

∫ 1

0

u2
xttdx +

∫ 1

0

f(ux)xt · uxxttdx = 0. (3.20)

Multiplying (3.20) by t yields

d

dt
(
1

2
t ‖ uxtt ‖2 +

R

2
t ‖ uxxxt ‖2) +

µt

2

∫ 1

0

u2
xttdx

≤ 1

2
‖ uxtt ‖2 +

R

2
‖ uxxxt ‖2 +t

∫ 1

0

f(ux)xxt · uxttdx. (3.21)

Next, we di�erentiate (1.4) with respect to t, multiply the resultant by −uxxt and integrate

with respect to x over Ω to obtain

µ

2

d

dt

∫ 1

0

u2
xtdx− d

dt

∫ 1

0

utt · uxxtdx + R

∫ 1

0

u2
xxxtdx−

∫ 1

0

u2
xttdx +

∫ 1

0

f(ux)xt · uxxtdx = 0

(3.22)

Observe that if we integrate (3.17) with respect t, we arrive at

‖ utt ‖≤ C, ‖ uxxt ‖≤ C,

∫ t

0

‖ utt ‖2 dτ ≤ C,

∫ t

0

‖ uxxt ‖2 dτ ≤ C (3.23)

with C = C(‖ u0 ‖H4 , ‖ u1 ‖H2). From (3.10), we also have∫ t

0

‖ ut ‖2 dτ ≤ C.

Using Nirenberg's inequality and equation (1.4), we have∫ t

0

‖ uxt ‖2 dτ ≤ C, ‖ uxxxx ‖≤ C, ‖ uxxx ‖≤ C. (3.24)

Then we integrate (3.22) with respect to t to arrive at

R

∫ t

0

‖ uxxxt ‖2 dτ +

∫ t

0

∫ 1

0

f(ux)xt · uxxtdxdτ +
µ

2

∫ 1

0

u2
xtdx− µ

2

∫ 1

0

u2
xt |t=0 dx

=

∫ 1

0

uttuxxtdx−
∫ 1

0

uttuxxt |t=0 dx +

∫ t

0

‖ uxtt ‖2 dτ. (3.25)

Combing the estimates obtained in Lemma 3.4. and (3.23), we have∫ t

0

∫ 1

0

f(ux)xt · uxxtdxdτ
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=

∫ t

0

∫ 1

0

(5α1u
4
x − 30α2u

2
x − α3)u

2
xxtdxdτ

+

∫ t

0

∫ 1

0

(20α1u
3
xuxtuxx − 6α2uxuxtuxx)uxxtdxdτ

≤ C

∫ t

0

‖ uxxt ‖2 dτ + C ≤ C. (3.26)

Thus, it follows from (3.25)∫ t

0

‖ uxxxt ‖2 dτ ≤ C

∫ t

0

‖ uxtt ‖2 dτ + C. (3.27)

Similarly, we also have ∫ t

0

‖ uxtt ‖2 dτ ≤ C

∫ t

0

‖ uxxxt ‖2 dτ + C. (3.28)

In the follows, we estimate the last term of the right-hand side of (3.21).

Since

f(ux)xt = 20α1u
3
xuxtuxx + 5α1u

4
xuxxt − 3α2u

2
xuxxt − 6α2uxuxtuxx − α3uxxt. (3.29)

Here

|
∫ t

0

∫ 1

0

(20α1u
3
xuxtuxx)x · uxttdxdτ |≤ δ

∫ t

0

‖ uxtt ‖2 dτ + Cδ

∫ t

0

∫ 1

0

(u3
xuxtuxx)

2
xdxdτ

and ∫ t

0

∫ 1

0

(u3
xuxtuxx)

2
xdxdτ =

∫ t

0

∫ 1

0

(3u2
xu

2
xxuxt + u3

xuxtuxxx + u3
xuxxuxxt)

2dxdτ

≤ C

∫ t

0

∫ 1

0

(u2
xt + u2

xxt)dxdτ ≤ C. (3.30)

Thus, we have

|
∫ t

0

∫ 1

0

(20α1u
3
xuxtuxx)x · uxttdxdτ |≤ δ

∫ t

0

‖ uxtt ‖2 dτ + Cδ

In a similar manner to (3.30), we have

|
∫ t

0

∫ 1

0

(6α2uxuxtuxx)x · uxttdxdτ |≤ δ

∫ t

0

‖ uxtt ‖2 dτ + Cδ. (3.31)

And ∫ 1

0

(5α1u
4
xuxxt)x · uxttdx = −

∫ 1

0

(5α1u
4
xuxxt) · uxxttdx

= −1

2
(
d

dt

∫ 1

0

5α1u
4
xu

2
xxtdx−

∫ 1

0

20α1u
3
xu

3
xxtdx) (3.32)
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By Nirenberg's inequality and Young's inequality, we �nd that

|
∫ t

0

∫ 1

0

20α1u
3
xu

3
xxtdxdτ |≤ C

∫ t

0

∫ 1

0

| uxxt |3 dxdτ (3.33)

and

‖ uxxt ‖L3≤ C ‖ uxxxt ‖
1
6

L2 · ‖ uxxt ‖
5
6

L2 , (3.34)

‖ uxxt ‖3
L3 ≤ C ‖ uxxxt ‖

1
2

L2 · ‖ uxxt ‖
5
2

L2

≤ δ ‖ uxxxt ‖2
L2 +Cδ ‖ uxxt ‖

10
3

L2 . (3.35)

Thus, ∫ t

0

∫ 1

0

| uxxt |3 dxdτ ≤ δ

∫ t

0

‖ uxxxt ‖2 dτ + Cδ. (3.36)

Similarly, we have

−
∫ 1

0

(3α2u
2
xuxxt)x · uxttdx =

∫ 1

0

(3α2u
2
xuxxt) · uxxttdx

=
1

2
(
d

dt

∫ 1

0

3α2u
2
xu

2
xxtdx−

∫ 1

0

6α2uxu
3
xxtdx), (3.37)

and

|
∫ t

0

∫ 1

0

6α2uxu
3
xxtdxdτ |≤ δ

∫ t

0

‖ uxxxt ‖2 dτ + Cδ. (3.38)

Finally, we deduce∫ t

0

∫ 1

0

f(ux)xxt · uxttdxdτ ≤ δ

∫ t

0

‖ uxtt ‖2 dτ + δ

∫ t

0

‖ uxxxt ‖2 dτ + C̃δ. (3.39)

with C̃δ = C̃(‖ u0 ‖H4 , ‖ u1 ‖H2 , δ).

Now we integrate (3.21) with respect t to obtain

1

2
t ‖ uxtt ‖2 +

R

2
t ‖ uxxxt ‖2 +

µ

2

∫ t

0

τ ‖ uxtt ‖2 dτ

≤ 1

2

∫ t

0

‖ uxtt ‖2 dτ +
R

2

∫ t

0

‖ uxxxt ‖2 dτ + δt

∫ t

0

‖ uxtt ‖2 + ‖ uxxxt ‖2 dτ + C̃δt.

(3.40)

Combing (3.40) with (3.27), (3.28) for any t ≥ 1 and choosing δ � µ small enough yields

1

2
‖ uxtt ‖2 +

R

2
‖ uxxxt ‖2≤ 1

2

∫ t

0

‖ uxtt ‖2 dτ +
R

2

∫ t

0

‖ uxxxt ‖2 dτ + Ct. (3.41)

Using Gronwall's inequality yields

1

2
‖ uxtt ‖2 +

R

2
‖ uxxxt ‖2≤ Ct · et. (3.42)
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Let t = 1 in (3.42) to obtain

1

2
‖ uxtt |t=1‖2 +

R

2
‖ uxxxt |t=1‖2≤ Ce (3.43)

with C = C(‖ u0 ‖H4 , ‖ u1 ‖H2).

Integrating (3.21) again with respect t in [1, +∞), combing the the resultant with

(3.27), (3.28) and (3.39), we derive that there exists t1 > 1 large enough in (3.21), such

that, when t > t1 the terms on the right-hand side of (3.21), i.e.,
1
2

∫ t

1
‖ uxtt ‖2 dτ + R

2

∫ t

1
‖ uxxxt ‖2 dτ + δt

∫ t

1
‖ uxxxt ‖2 + ‖ uxtt ‖2 dτ can be absorbed by

1
4
µ

∫ t

1
τ ‖ uxtt ‖2 dτ + C. Then, we get

1

2
t ‖ uxtt ‖2 +

R

2
t ‖ uxxxt ‖2 +

µ

4

∫ t

1

τ ‖ uxtt ‖2 dτ ≤ C +Ce+Ct, for any t ≥ t1 (3.44)

with C = C(‖ u0 ‖H4 , ‖ u1 ‖H2).

Integrating (3.44) with respect to t yields

1

2
‖ uxtt ‖2 +

R

2
‖ uxxxt ‖2≤ C

t
+ C, for any t ≥ t1 (3.45)

Combing (3.45) with equation (1.4), we conclude our argument. The proof is complete.

From the last lemma the compactness of the orbit in H4 ×H2 follows.

In a similar manner to Section 2, applying the Theorem by Temann again, which can

be rephrased as follows, we deduce the results of Theorem 1.2. (ii).

Theorem 3.1. Suppose that

(a) the mapping S(t), t ≥ 0 de�ned by the solution to problems (1.4)-(1.3) is a non-

linear continuous semigroup from H into itself;

(b) the operators S(t) are uniformly compact for t large, i.e., for every bounded set B

contained in Hβ , there exists t1 which may depend on B such that ∪t≥t1S(t)B is relatively

compact in H;

(c) the orbit starting from any bounded set of Hβ will reenter in Hβ after a �nite time,

which depends only on this bounded set, and stay there forever; there exists a bounded set

Bβ in Hβ such that Bβ is absorbing in Hβ.

Then the ω-limit set of Bβ, Aβ is a global attractor which is compact and attracts the

bounded sets of Hβ.

Therefore, the proof of Theorem 1.2. (ii) is complete.
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