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Abstract

In this paper we prove frequency expansions of the resolvent and local energy decay
estimates for the linear thermoelastic plate equations:

u + A%u+ A0 =0 and 0, — AO — Auy =0 in  x (0, 00),

subject to Dirichlet boundary conditions: w|r = Dyu|lr = 0|r = 0 and initial conditions
(u, ug, 0)]t=0 = (ug,vo,00). Here Q is an exterior domain (domain with bounded comple-
ment) in R” with n = 2 or n = 3, the boundary I' of which is assumed to be a C*-
hypersurface.

1 Introduction and main results

Let © be an exterior domain (domain with bounded complement) in R™ with n =2 or n = 3,
the boundary I' of which is assumed to be a C*-hypersurface. In this paper, we consider the
linear thermoelastic plate equations

g + A%+ A0 =0 and 6, — Al — Au; =0 in Q xRy (1.1)
subject to the initial conditions
u(z,0) = up(z), w(z,0)=1vo(z), O(x,0) =06p(z) (ze€) (1.2)
and Dirichlet boundary conditions
ulr = Dyulpr = f|r = 0. (1.3)

Here D, =377, v;D; (Dj = 9/0x;), and v = (v1,...,vy,) denotes the unit outer normal to I'.

In (1.1), u stands for a mechanical variable denoting the vertical displacement of the plate,
while 6 stands for a thermal variable describing the temperature relative to a constant reference
temperature 6. The thermal effect introduces a damping. In fact, when € is a bounded reference
configuration, the exponential stability of the associated semigroup under several different kind
of boundary conditions have been proved by Kim [5], Munoz Rivera and Racke [18], Liu and
Zheng [14], Avalos and Lasiecka [1], Lasiecka and Triggiani [7, 8, 9, 10] and Shibata [22]. Also,
the analyticity of the semigroup has been shown, cf. Liu and Renardy [12] and then it has been
studied by Russell [20], Liu and Liu [11], Liu and Yong [13], Munoz Rivera and Racke [19] in

*Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany
TDepartment of Mathematical Sciences, School of Science and Engineering, Waseda University, Ohkubo 3-4-1,
Shinjuku-ku, Tokyo 169-8555, Japan



the Lo or Hilbert space setting (see also the book of Liu and Zheng [15] for a survey). In the
L,-setting this was investigated in our paper [4], where sufficiently strong a priori estimates
for the resolvent in L,-spaces have been proved. Before [4], Denk and Racke [3] studied the
Cauchy problem for (1.1) in the whole space R"™, also giving decay rates of solutions, and Naito
and Shibata [16] studied the initial boundary value problem for (1.1) with Dirichlet boundary
condition in the half-space R'}.

There were not yet any decay estimates for exterior domains. The purpose of this paper is
to study the local energy decay of solutions to problem (1.1) — (1.3). To formulate the problem
(1.1) — (1.3) in the semigroup setting, introducing the unknown function v = u;, we rewrite it
in matrix form:

U =AU in QxRy, Ul=o=Uy, BU|r=0, (1.4)
where we have set
u uo 0 1 0 U
U=|(v], U=|w]|, A=|-A% 0 -A|, BU=|D,u]. (1.5)
0 fo 0o A A 0

To study the initial boundary value problem (1.4), we consider the corresponding resolvent

problem:
(M—-—AU=F inQ, BU|r=0, (1.6)

where I denotes the 3 x 3 unit matrix. We shall give an expansion of the resolvent with respect to
the frequency parameter A (Theorem 1.3). Then, representing the semigroup via the resolvents
(essentially: Laplace transform) will give the local energy decay result (Theorem 1.4).

To state our main results precisely, we introduce several spaces and some symbols at this
point. Throughout this paper, let n € {2,3}. For a general domain O C R", p € (1,00)
and any integer m, L,(O) and W"(O) stand for the usual Lebesgue space and Sobolev space,
respectively. Let || - ||z, (o) and || - |lwm (o) denote their norms. For a general domain O with ct

boundary 00, we introduce the spaces W;O((’)) and W' (0) (m = 2,4) as follows:

Wio(0) = {u € W;(O) | ulgo = 0},

(1.7)
op(0) = {u € W)"(O) | ulspo = Dyulgo =0} (m = 2,4),

where v = (v1,...,1v,) denotes the unit outer normal to 00. Let H,(O) and D,(O) be the
spaces defined by the following formulas:

Hp(O) ={F ="(f,9,h) | f € Wy p(0), g€ Ly(0), heLy(O)},

T 4 2 2 (1.8)
Dp(o) = {U = (U,’U,e) | u € Wp,D(O)v (S Wp,D(O)7 NS Wp,O(O)}'
Here and hereafter, "M denotes the transposed of M. We define the norms || - |3, (o) and
| - llp,(0) by the following formulas:
HF”'HP((')) = HfHWg(O) + ”(g7 h)HLp((')) (F = T(fvg7h) € HP(O))7 (1 9)

1T, 0) = lullwgo) + 100,20, (U ="(w,v,0) € Dy(O)).
Let Ao be the operator whose domain is D, (0O) and whose operation is defined by the formula:
AoU = AU  for U € D,(0). (1.10)

In [4] we proved the following theorem.



Theorem 1.1. Let 1 < p < 0o. Let p(Aq) be the resolvent set of Aq. Let
Ci={AeC|ReX >0}

where C denotes the set of all complex numbers. Then, p(Aq) D C \ {0}.
Moreover, for any Ao > 0 there exists a constant C' depending on Ao, p and  such that for
any A € Cy with |A\| > Ao and F € Hy(2) there holds the estimate:

AT = Ap) ™ Fllag, ) + I = Ap) " Fllp, ) < ClIF [y, -

In view of Theorem 1.1, by standard arguments in the theory of analytic semigroups (cf.
Vrabie [24]) we know that for any o > 0 there exists a 6, € (0,7/2) such that

p(Aq) D{A € Xy, | |A] >0}, (1.11)

where we have set

Se={AeC\ {0} | |arg\| < 7 — €} (1.12)

Moreover, there exists a constant C, depending on ¢ such that
ML = A@) " Fll,,, 0 + I(M = A@) ™' Fllp, () < CollFlln, @) (1.13)
for any A € ¥y, with [A| > o and F' € H,(£2). Let us define a set U by the formula

U=J{ e, | 1A >0} (1.14)

>0

From (1.11) we see that
p(Ag) D U. (1.15)

By (1.13), we have the following theorem.

Theorem 1.2. Let 1 < p < oo. Then, Aq generates an analytic semigroup {To(t)}i>0 in
Hp(2).

Let b be a number such that B, D R™\ 2, where B, = {x € R" | || < b}. Set Q, = B, N Q.

We introduce the following spaces:

Lpp(Q) = {f € Lp(Q) | f(2) = 0 for [z] > b},
Hyp () = Hp(Q) N (Lyp())? (1.16)
={F="(£,9.0) | € Wip(Q) N Lpp(Q), g,h € Lpp(V)}.

Replacing Q2 by R, we define L, ,(R™) and H,,,(R™). For functions U = 7 (u, v, 0) we will write

1UND, 10c ) = U102, IDy 020)-

For Banach spaces X and Y, £(X,Y) denotes the set of all bounded linear operators from
X into YV and £(X) = £(X, X). For any domain w in C, Anal (w, X) denotes the set of all
holomorphic functions defined on w with their values in X. We set

wr={A€C||A <7}, Wri=uw,\(—00,0].

The following two theorems are our main results.



Theorem 1.3. Let n € {2,3}, 1 < p < oo and let b be a number such that By_3 D R™\ Q. Let
U be the same set as in (1.14). Set L,,(2) = L(Hpp(2), Dp1oc ().

(a) In the case n = 2 there exist a constant 7 > 0 and an operator-valued function G €
Anal(wr, L, 5(Q)) such that for any F € Hpp(2) and X € wr NU there holds the equality:

(M — Ag) 'F =G\ F in .
Moreover, there exist operators G, Go € Ly (2) and an operator-valued function
G € Anal(wr, L, 5(£2))
such that

G(\) = Gy + (log\) " 'Ga + G3()\)  for any X € W,

1.17
IG3(\)F| C|log X\|2||F|| for any X\ € wr and F' € H, ,(Q). (1.17)

<
Dy loc () — Hp(Q)

(b) In the case n = 3 there exist a constant T > 0 and operator-valued functions G; €
Anal(wr, L£,5(Q)) (7 = 1,2) such that for any F € H,p(Q) and A € wr NU there holds the
equality:

(M — Ag) " F = A2G1(\)F + Go(\F  in Q. (1.18)

For wave equations, elasticity or Maxwell equations, a collection of references for results on
low frequency asymptotics is given in the work of Pauly [17].

With the expansion of the resolvent in terms of the frequency parameter above, we shall
obtain the following local energy decay result.

Theorem 1.4. Let 1 < p < oo and let b be the same constant as in Theorem 1.3. Let {Tq(t) }+>0
be the semigroup associated with problem (1.1) — (1.3) which is given in Theorem 1.2. Then,
we have

Cp,btil(log t)72HFHHP(Q) ifn=2,

3 , (1.19)
Cppt 2| Fllp, @) ifn=3

HTQ(t)FHDp,IOC(Qb) S {

foranyt>1 and F € H, ().

The difficulty in proving Theorem 1.3 arises from the facts that the expansion formula of
the resolvent operator (A — A)~! in R? has the singularity log A and that of (A — A%)~! in R
has the singularities A™'log A when n = 2 and A2 when n = 3, respectively. Therefore, we
can not use the usual compact perturbation method to obtain the expansion formula in the
exterior domain. To prove Theorem 1.3, first of all employing the Seeley argument [21] about
the invertibility of I + K, K being a compact operator valued holomorphic function in A, we
shall show that (A — Aq)~! has an expansion formula near A\ = 0 which starts from \*(log \)?
in two dimensional case and A2 in three dimensional case for some integers s and 3. Then,
by a contradiction argument based on the uniqueness theorem we shall show that s = 0 and
B = 0. Our strategy of the proof of Theorem 1.3 follows R. Kleinmann and B. Vainberg [6] and
W. Dan and Y. Shibata [2], where the low frequency expansions of the Laplace operator and
Stokes operator in the two dimensional case were obtained.

We will prove Theorems 1.3 and 1.4 in Sections 2-3 for the (somewhat simpler) case n = 3.
Modifications for the case n = 2 are indicated in Sections 4 and 5.



2 Expansion formulas in three dimensions

We start with the three-dimensional case by showing an expansion formula of the resolvent in
the whole-space.

Theorem 2.1. Let 1 < p < oo and b > 0. Let L,,(R?) be the set of all bounded linear
operators from Hyp(R3) into Dpioc(By) and p(Ags) the resolvent set of Ags. Then, there exist
constants € € (0,7/2) and operator-valued functions H;(\) € Anal (C, £, ,(R?)) (j = 1,2) such
that p(Ags) D Xe and

(M = Ags)'F = A\ 26 F + &;F + A2 H (A F + A\Ho(\M)F  in By (2.1)

for any X € B¢ and F € H,,(R3). Here, X, is the set defined in (1.12),

o fgs gda + B [ga hda E3x (=Af +g+h)
50F: 0 y glF: _f )
0 Elx(h—Af) (2.2)

1 2]
E§($) = M7 E:?(l") TS

x stands for the convolution operator, € is given in (2.6), and « and [ are non-zero constants
given in (2.11) in the proof below.

Remark 2.2. Fi(z) and E2(z) are fundamental solutions to —A and A? in R3, respectively.

Proof. For F € H,(R3), we set U(N) = (M — Ags)"'F. Let UN)(€) = T(x(€), 0r(£),05(€))
be the Fourier transform of U(A). Then, from Naito and Shibata [16], we have the following
formulas:

S A4 Al 4 A2 A? 4+ Al A? .
L ; 3
w0 = 2| 3O et © * o ©)

3 0 1 2 1 1 1
& AP, Al Al Al
R 5. A%EPR . Al A9 + A2

_ J _ O —d 4

O = 2 [ 53 O~ x et * Awrawh@}

Here, v; (j = 1,2, 3) are numbers such that

3
H(t+7j):t3+t2+2t+1 for any t € C, (2.4)
j=1

0 < 1 <1, 73 is the complex conjugate of v9 and Reyy = (1 —71)/2 > 0; and AO A1 and A2
(j = 1,2,3) are complex numbers such that

Ak > Ak
H§:1()‘+'Yj‘§| ; >‘+’Y]‘§| )IE[12E

(k=1,2,3)




for any £ € R3 and X € C with A +v;|¢|> # 0 (j = 1,2,3). We have the following formulas:

3 3 3 340 341 A2
DAY= "Aj=0, ) A= 24:1, Y L=> “2=o. (2.5)
j=1 j=1 j=1 - T = =

Since 7, and 73 are complex conjugate and Re~y2 > 0, we may assume that 0 < argys < 7/2.
Let us define € by the formula:

€ = argys. (2.6)
Since A + €% # 0 for any A € X, and £ € R3, by Fourier multiplier theorem we have

U(N) = T(uy,vy,0)) € Dy(R3). Moreover, for any € with € < ¢ < 7/2 there exists a constant
C depending on ¢ such that

2
ﬂ .
S I (P, 02,00)l,, ) < CIF L .

AITuAll, s, + AP0l o) < N g,

for any A\ € X (cf. Naito-Shibata [16]), where V/w = (D% | |a| = 7). From these observations,
we see that p(Ags) D Xe.

Now, restricting ourselves to the case where F € ’Hp,b(R?)), we shall derive an expansion
formula of (A — Ags)™'F by using the formula (2.3). Let Fe ! denote the Fourier inverse
transform, and then we have

—1 2y—1 eVl
'7:5 [(A+1€17) ](x)zm,
(2.8)
110 2N —1|¢(—2 | e~ VAl 1
O+ IR @) = A (e - )
for any A € C\ (—00,0]. Since we have e=VAlel = > o= Vz])7/(51), we have
1 Az A
FOO+ I ) = s = o BNl + 42 o), (2.9
Az Az A
PO+ 1)) = A L MR iy AP ey g
where we have set
2 . > Zj 2 . ad Zj

Hl(2) =1+ 2H?(z), Hj(z)=1+2zH3(z).

Now, we assume that F € H,,,(R3). Since A + ;[¢]? = ’yj(/\’yj_l + 1€]?), using (2.10) and (2.5),
from (2.3) we have

uu@::KézAi;f54;/'mm+(§?vﬁ)/'hmﬁv%+E?M—Af+g+h>

(@)



Setting

: (2.11)

we have the first line of the formula (2.1) with (2.2). Using the fact that El x (=Af) = f to
obtain the formula for vy(x), by (2.3), (2.5) and (2.9) we have

1 e AV Al
on@) = —f + 23 [ (30 L B (7 Az?) ) + (-A )
j=1 4m;
3 A1+A2 - 3 Al .
- (g 4; wj/QjHl(” D)) g - @ 4m;”/2 75 Nzf2)) ]

[{( JH2< Te) |}*(—Af)
{(Z ”Hz M) ) g } {(233132 16 Ne ) ) )]

LB A0 "~
em):E;*(h—Af)—m[(; 07 e’ ))*(—Af)
3 Al ’ ! 3
—(;mg/z Ly A ) )*g+(g 3/2 L M) )

AT 2]
A (0 5 H 0 M)} (A)

' . S AYHA] L ||
—{(Z;Hx e |>) }*g+{(z O ) ).
j=1 1J =
This completes the proof of Theorem 2.1. O

The next step in the proof of our main results consists in an expansion formula for the
resolvent operator in ) near A = 0. We will show the following theorem.



Theorem 2.3. Let 1 < p < co and b be a positive number such that By_3 D R3\ Q. Let U
and L,,(S2) be the same sets as in (1.14) and Theorem 1.3, respectively. Then, there exist a
constant T > 0, an integer s and operators G;(A\) € Anal (wr, L,5(2)) (j = 1,2) such that

A = AQ) ' F = N3GI(NF + AT Go(\F  in O
for any A € wr NU and F € Hy,p(92).

In what follows, we shall prove Theorem 2.3. For a given function f defined on €2, ¢ f denotes
the zero extension of f to the whole space R and rf denotes the restriction of f to the domain
O = QN By. From Denk, Racke and Shibata [4] (also Simader [23]), we know the unique
existence of a solution Uy = ' (ug, v, 0p) € Dp(2) of the equation:

—AUO =F in Qb7 BUO‘agb =0 (212)
for any F € H,(Q), Here, 9 =T U Sy, S, = {x € R® | [z| = b} and BUp|sq, = 0 means that
uyg = Dyug=60p=0 onI and Sp,

where D, = (x/|z|) - V on Sp. Let us define the operator Sq, by the formula: S, F' = Uy and
write Sq, F' = (ug,,vq,,0q,) as long as no confusion occurs. Let &, &1, Hi(A) and Ha(A) be
the same operator as in Theorem 2.1 and set

H(A) = A28 + & + ATH1(A) + AHa(A). (2.13)

In what follows, we write H(A\)F = (uy s, vags, 0\ prs). Let ¢ be a function in C§°(R?) such
that p(z) = 1 for |z| < b—2 and ¢(x) = 0 for |z| > b—1. With these preparations, we introduce
the operator ® as follows:

QN F = (1 — )H(ALF + pSq,rF. (2.14)
By Theorem 2.1, we have
PAN)F = (1 — ) (M — Ag2) ' F + oSq,rF (2.15)
when A € ¥.. And therefore, applying AI — A to ®(\)F, we have
(M — A)DN)F = F+T(\F inQ, BONF|r=0 (2.16)
for any A\ € X, where T'(\)F is defined by the formula:

0
T()\)F = —Li(UA7R2 — UQb) - Ltlp(e)\,RQ — egb) s (217)
L910(9A7R2 — HQb) + L;(’UA’RZ — ’UQb)

Lg,(w) = A%(pw) — pA%w, and Li,(w) = A(pw) — pAw. If we consider (2.16) only on €2, the
operators in both sides of (2.16) are analytic with respect to A € C\ (—o0, 0], and therefore by
analytic continuation we have

(A — A)®N)F =F+T(\)F in €, B®N)F|r=0 (2.18)

for any A € C\ (—o0,0]. If (I +T(\))~! exists, then ®(\)(I +T(\))~LF solves equations (2.16)
and (2.18).



Lemma 2.4. Let U and ¢ be the same sets as in (1.14) and Theorem 2.1, respectively. Then,
(I+T(\)7! exists as a bounded linear operator on H, () for any X € U N .

Proof. Let A € ¥, NU. Since the second and third components of T'(A\)F' belong to WI}(Q) and
suppT'(A\)F C Dy_9p—1 = Bp_1 \ By—2, by Rellich’s compactness theorem T'(\) is a compact
operator on H,, 5(€2). Therefore, to prove the lemma it suffices to show that I47'(\) is injective.
Let F' be an element of H,4(£2) such that (I +T'(X))F = 0. Set U = &(\)F', and then by (2.18)
we have

(M —AU=0 inQ, BU|r=0.

Since Sq,7F € Dy() and (M — Ags) 1tF € Dy(R3) for A € X, (cf. (2.7)), by (2.15) we have
U € Dp(2). Since U C p(Agq) as follows from (1.15), we have U = 0, which implies that

(1 — @)\ — Ags) " "F + @Sq,rF =0 in Q. (2.19)
Recalling that ¢(x) =1 for |x| < b—2 and ¢(x) =0 for |x| > b — 1, by (2.19) we have
(M — Ags) M F =0 for|z| >b—1, SqrF =0 for|z|<b—2.

If we set V(z) = (Sq,rF)(z) for x € Q and V(z) =0 for « ¢ Q, then V(x) belongs to D, (B})
and satisfies the equation:

(Al — A)V =.F inB,, BVlg, =0.

Since (M — Ags)~!LF also satisfies the above equation, by the uniqueness of solutions we have
V = (M — Ags)"LuF in By, and therefore Sq, F' = (A — Ags) ™' F in Q, which inserted into
(2.19) implies that

0= (A — Ags) " "F 4 p(Sq, F — (M — Ags) " "F) = (A — Ags) " F  in Q.
Therefore, F' = (A — A)(A — Ags) 1. F = 0 in Q, which completes the proof of the lemma. [
By Lemma 2.4 we have
M — Ag) L =dNI +T(\) ! (2.20)

for A e X, NU.
Now, we shall discuss the invertibility of (I + T'(\)) for A € w, with some o > 0, where we

have set
we ={A e C\ {0} ||\ <o and |arg | < 7}.

For this purpose, we introduce an auxiliary operator:
OoF = (1 —p)E1tF + pSq,rF
for F' € H,5(2), where & is the same operator as in Theorem 2.1. Note that
—A&ELF = F in R3.

We write £10F = T(u(),Rg, Vo s, 0o r3) unless any confusion may occur. Applying A to ®oF, we
have
—ASyF = F +TyF in Q, B(I)()F‘p =0, (2.21)



where
0

T()F = —Li(umw - UQb) - L}O(QOJRB — eQb)
L}D (60,R3 — HQb) + Lglo(UO,Rs — ’UQb)
Since the second and third members of Ty F belong to Wpl(Q) and supp ToF C Dyp_op-—1, by

Rellich’s compactness theorem Tp is a compact operator on H,,(£2). According to Theorem
2.1, we set

1
uyrs =Ugps + A 2T (ag + Bh) + Uy gs,
UAR3 =Vor3 + VAR3,
O\ rs =0y r3 + O rs,

where Ta = fR3 adzr and

T(Uypss Vags, Orps) = ATHI (AL + XHa(A)iF, (2.22)
Then, we have
(I+TO\)F = (I +Tp)F +2"2(A20)7(0, T(ag + Bh),0) + R\ F (2.23)
where
0
R\F = | =L3(Uygs) — L,(Orps) | - (2.24)

LL(Oxgs) + LL(Vygs)

In view of (2.22) and (2.24), there exist operators R;(\) € Anal (C, L(H,(£2))) (4 = 1,2) such
that
RO\EF = A2 Ri(\)F + ARy (V) F (2.25)

for any A\ € C\ (—00,0]. In particular, we have

i =0. .
lim || () 0 (2.26)

”me,b(ﬂ»

Here, || - HL(HP denotes the operator norm of L(H,4(£2)). Since Tj is a compact operator on

()

H,pp(82), by Seeley’s lemma [21] there exists a finite range operator B such that I+7y— B has an

inverse operator (I +Tp— B)™t € L(H,4()). Set Gy = [+Ty— B+ R()\) and Go = I + Ty — B,
and then

(I +T(\)F = G\F + BF + A" 2(A2)7(0, T(awg + R), 0) (2.27)

Gy = (I + R(\Gy")Go. (2.28)

By (2.26) there exists a 79 > 0 such that || R(\)Gy" [ o = 1/2 for any A € wy,, and therefore
P,

by Neumann series expansion we have
i .
Gy =G T+ RNG) ™ =Gy Y (—RNGYY (A€ dn). (2.29)
j=0

In view of (2.25), we see that there exist a 71 > 0 and operators G;(A) € Anal (wr,, L(H,,(S2))
( = 1,2) such that
G =A2G1(N) + Ga())  for any A € @, (2.30)
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We define the operator B by the formula BF = (A2%p)T(0, Jgs(ag + Bh)dz,0). As both
operators B and B are finite range operators, we can choose hy,... h, € H,;(Q2) which are
linearly independent over C in such a way that

BF =) Bj(F)h;, BF=Y_j;(F)h,
j=1 i=1

with 3;(F), 3;(F) € C. To represent (3;(F), $;(F) € C in more convenient way, we introduce
hi, ..., hy, € H,,(2)* such that < hj, h} >= 0,5, where < -,- > is the dual paring between
Hpp(S2) and its dual space H,,(€2)* and §;;, denote the Kronecker delta symbols. By using
these symbols, we write

B;(F) =< BF,h} >=< F,B*h} >, (;(F) =< BF,h} >=< F,B*h} > .

Setting (5, = B*h} and E;‘j = B*h}‘, we have
BF +A"2(A20)7(0, T(ag + 5h),0) = > < F, L5+ A"24;; > hy,
j=1

and therefore we have

(I+T(\)F =G\F+ Y <F;+\ 26 >h; (2.31)
j=1

Applying G;l to the both side of (2.31), we have

GlMI+TN)F=F+Y < Fl;+ X\ 36; > Gy'hy = (I + N)F (2.32)

»ay
Jj=1

where we have defined the operator Ny by the formula:
n 1
NAF =) < F 0+ 245> Gy 'y (2.33)
j=1

Now, we shall show the existence of tlhe inverse operator of I+ N,. For the notational simplicity,
we set G;lhj = v); and E:‘;j + )\*M;’)‘j = A, ;. Since {h; 7.y is linearly independent, so is
{va }iLy. Let us consider the m x m matrix: M(X) = (dj5+ < vag, Ar; >). By (2.30) the
(4, k) component 0,4+ < vk, Ay ; > is of the form: )Fémljk()\) +ma;ji(X), where my;i(\) and
ma;k(A) are complex valued holomorphic functions defined on w;,. Let D(A) be the determinant
of M(A). In particular, we can say that D(A) = 0 on w,, or there exist an integer g1, and
functions D;(X) (j = 1,2) such that

q1+1

2 Do) for A € wy, (2.34)

D(A) =A% Di(A) + A
D1(0) # 0, and D;(X) (j = 1,2) are both holomorphic in w,,. We shall show that

D(A\) #0 in wy,. (2.35)
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In fact, let A\ € U N X Nw,, and assume that D(A\) = 0. Then there exists a vector z) =
T(zx1,...,oym) € R™\ {0} such that

m

m
Z jk+ < V) k,A,\J )x;wk =Tx; + Z < V)\Jg,A)\J > Tk (2.36)
k=1 k=1

for j =1,...,m. Set F\ = > ;" zxxVakr € Hpp(R), and then Fy # 0, because {v) ;}7", is
linearly independent. On the other hand, by (2.33) and (2.36)

m
N)\FA—Z<F>\aA>\]>V/\] Z Tak < Vg, Ax; >V = ZxA,jV)\,j:_FAa
Jj=1 Ji.k=1 j=

which implies that (I + Ny)F\ = 0. And therefore, by (2.32) and (2.31) (I +T'(\))F\ = 0. On
the other hand, by Lemma 2.4 I + T'(\) is invertible when A € U N ¥, and therefore we have
F) = 0. This leads to a contradiction. Therefore, we have (2.35), and then (2.34) holds.

From (2.34), there exist a constant ™ (0 < 7 < 71) and holomorphic functions Ej(X\)
(j = 1,2) defined on w;, such that

DY N\ = AT E (N + A2 TIEy(\) for A € W, (2.37)
By using this fact, we shall show the existence of (I + Ny)~'. We may assume that D~1(\) # 0

when X € wy, \ {0}. Let us denote the (j, k) cofactor of M(X) by Mji(\), which has the similar
formula to D~1()\) in (2.37). We observe that

(I—FN)\ G D -1 ZZ < G, A)\,k > Mjk()\)v)\,j]

j=1k=1
=G - -1 Z <G, Ak > Mjp(N)va
k=1
+ NG —D(\)™! Z <G, Ang > Mjp(AN)NAvyj = (%)
k=1

Since Nyvyj; = > /0, < Vaj, Aae > vy as follows from (2.33) and our short notation: b+

1
)FEEZj = A, ;, we can proceed as follows:

m m
() =G =D Y <G Ak > Mj(Mvay + Y <G Avg > v
g k=1 k=1

— D()\)_l Z < G7A)\,k > Mjk()\) < V)\J’,A)“g > Vay

k=1
=G + Z <G A\ > Vg — D()\)_l( Z (004 <V, Axe >)Mjp(N) < G, Ay >)V)\7g
k=1 Jikaf=1

m m
=G + Z < G,A}Hk > Vg — Z oo < G, AA,k > Vg
k=1 k=1

=G.
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1
From this observation and our short notations: G;lhj = v, ; and Ezj + /\_5€Zj = A, ;, we have

I+ NN)G=G =DM Y <Gl + 126 > Mp(\)Gy hy
G k=1

for A € wr, \ {0}. By (2.35), we see that
I+T\) ' =T +Ny'Gy!

which combined with (2.30) and (2.37) implies that there exist an integer ¢» and operators
Tj(N) € Anal (wr,, L(H,5(€2))) (4 = 1,2) such that
a2+1

(T+TN)" = AT\ + A2 Ty())

for any A € wy, \ {0}. Combining this fact with (2.20), (2.14) and Theorem 2.1 implies Theorem
2.3.

3 The proofs of Theorems 1.3 and 1.4 in the three-dimensional
case

In what follows, b denotes a large number such that B, 3 D R?\ Q. To prove Theorem 1.3, we

start with the following lemmas.

Lemma 3.1. Let £ be a positive integer and n € {2,3}. If u € S'(R™) N Ly 10c(R™) satisfies the
homogeneous equation:
A'u=0 nR" (3.1)

and the radiation condition:
u(@) = O(2™) as |a] — o, (3.2)
for some non-negative integer m, then u is a polynomial of order m.

Proof. Since u € S'(R™), applying the Fourier transform to (3.1) we have |¢|?*4(¢) = 0, which
implies that suppu(§) C {0}. By the structure theorem of distributions, @(€) is represented
as follows: 4(§) = > 4 <k a0 (€) for some non-negative integer k, where § denotes the Dirac
delta function and ¢, are complex numbers. By the Fourier inverse transform, we have

u(x) = Z Co(—iz)?,

lal <k

which combined with (3.2) implies that v = wu(x) should be a polynomial of order m. This
completes the proof of the lemma. O

Lemma 3.2. Let & be the same operator as in Theorem 2.1. Given F = T(f,g,h), we set
U=&F=T(u,v,0). If F € Hnb(]R‘g) and

/R (9(a) + h(a)) dx =0, (3.3)

then

as |x| — oo.
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Proof. Since [s(g(y) + h(y) — Af(y)) dy = 0 as follows from (3.3), by (2.2) we have

—1

w(@) = —— /Rg(lx —yl =1z (9(y) +hly) = Af(y)) dy

8

By Taylor’s formula we have

1 g 3 1 .
x—y—xz/w—@yd@z— /:vi—ﬁyiyix—Qy_dG,
o=l =lel = | e =0l d0 = =32 [/ (ai = Ouhuls — 0o

and therefore

—9%)%
Z / ([, S0 0t0) + i)~ Artw)d s

which combined with the fact that g(y) + h(y) — Af(y) = 0 vanishes for |y| > b implies (3.4).

Since
1

dmlz]

and since h(y) — Af(y) vanishes for |y| > b, we have (3.5), which completes the proof of the
lemma. O

0=FE3+(h—Af) = *(h—Af)

Lemma 3.3. Let 1 <p<oo. (1) If0 € WQIOC(Q) satisfies the homogeneous equation:
AG=0 nQ, Op=0 (3.6)

and the radiation condition:
0(z) = O(lz|™") (3.7)

as |x| — oo, then 8 = 0.

(2) Ifu e W4loc(ﬁ) satisfies the homogeneous equation:
A*u=0 inQ, ulr = Dyulp =0 (3.8)
and the radiation condition:
u(z) = O(1) (3.9)

as |x| — oo, then u = 0.

Proof. (1) By L, (1 < p < oo) solvability in any C? bounded domain for the Dirichlet problem
of the Laplace operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that
0 € W2,,.(). Let p be a function in C§°(R3) such that p(z) = 1 for |z| < 1 and p(z) = 0 for
|| > 2. Set pr(x) = p(x/L) for L > b. Then, we have

0= (A@,pLH)Q (Vﬁ pLV9 O+ 1/2)( ApL)H) (3.10)

where (a,b)q = [, a(x)b(z) dz. Since

6. Bo0)00al < 1801, 272 [ o) da,
L<|z|<2L

14



and therefore by (3.7) we see that limy_. |(0,(Apr)0)a| = 0. Letting L — oo in (3.10), we
have ||V9||%2(m = 0, which implies that V€ = 0, that is 6 is a constant. But, f|p = 0, which
means that 6 = 0.

(2) By L, (1 < p < oc) solvability in any C* bounded domain for the Dirichlet problem
of the biharmonic operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that

u € W24,10 (). First, we shall prove that u = 0 assuming that u satisfies the radiation condition:
u(x) = O(1), Vu(z)=O0(|z|™) (3.11)
as |x| — oco. Let pr, be the same function as in the proof of (1), and then we have
0 = (A%u, pru)q = —(Vu, (VApr)u)a — 2(Vu, (V2pr)Vu)a + (Au, prAu)g (3.12)
where Vu(V2pp)Vu = Zikzl(DjkaL)DjuDku. The radiation condition (3.11) implies that

lim (Vu, (VApr)u)g =0, lim (Vu, (Vpr)Vu)g = 0,
L—oo L—oo
and therefore letting L — oo in (3.12), we have [[Au|,, = 0, which implies that Au =0 in Q.
Since u|p = Dyulpr = 0, the zero extension ugy of u to the whole space R3 satisfies the Laplace
equation: Aug = 0 in R3. Since ug(z) = u(z) = O(1) as |z| — oo, from Lemma 3.1 we see that
up is a constant. But, ug(x) = 0 for x € R3\ 2, which means that ug = 0.
Finally, we shall show that the condition (3.9) together with (3.8) implies (3.11). Let ¢ be
a function in C°°(R?) such that 1 (z) = 1 for |z| > b+ 1 and 9(z) = 0 for |x| < b. Then, by
(3.8) we have
A*(u) = f in R, (3.13)
where f(z) = A%(yu) — Au. Since supp f C Byy1 \ By, we have f € Ly(R3). Setting
v(z) = —(87)~Yz| * £, by (3.13) and the fact that —(87)~!|z| is a fundamental solution to the
biharmonic operator A2, we have A%(u —v) = 0 in R3. Employing the same argument as in the
proof of Lemma 3.1, we have u(z) — v(2) = }_|4<;, Ca®® for some non-negative integer m and
complex numbers c,. If we write

_lal

o(w) = 7o) du == [ (e == e ) do

8w R3

then by (3.9) we have

S caat = @[ @y = ute) + - [ (o= sl = e ) dy = 00)
jal<m

as |x| — oo, which implies that
1
u(@)=co— o | (o —yl=l|z)f(y)dy
™ JR3

as |x| — oo, which implies that |[Vu(z)| = O(|z|™!) as |z| — co. This completes the proof of
the lemma. O

After these preparations, we are now able to prove our main results Theorem 1.3 and The-
orem 1.4 in the case n = 3.
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Proof of Theorem 1.3 for n = 3. Let s, G1(\) and Ga(\) be the same as in Theorem 2.3 and set
G(\) = \2G1(\) + As?gz(A). Let 1 be a function in C*°(R?) such that n(z) =1 for |z| > b—1
and n(z) = 0 for |z| < b—2. Given F € H,,(2) and X € w,, we set U(\) = G(A)F. When

A € wy NU, by (2.20) we have U(X) = (A — Aq)~LF € D,(Q), and

(M —AUN)=F inQ, BU)r=0. (3.14)
Therefore, nU()\) € D,(R3) and nU(\) satisfies the equation:
(AL — A) (U (X)) =nF +g(U(N)) in R?, (3.15)
where for U = T'(u,v,6) we have set
0
gU) = A%(gu) — nA%u+ A(nb) — nAf ) . (3.16)
—(A0) —nAb) — (A(n) — nAwv)
Note that supp g(U) C Dyp_2p—1. Since ¢ C p(Ags) as follows from Theorem 2.1, we have
nUN) = (A — Ags) "' (nF + g(U(N))) (3.17)

whenever A € w, NU N E.. Let &, &1, Hi(A) and Ha(\) be the same operators as in (2.1) of
Theorem 2.1 and let H(A) be the same operator as in (2.13). By (3.17) and Theorem 2.1 we
have

nUA) = HA)(F +g(U(X)))  in Qy (3.18)

whenever A € w; NU N XE.. But, the both sides in (3.18) are analytic in w,, and therefore (3.18)
holds for any A\ € w,. In view of Theorem 2.3, we write

UA) = A3V +0(A\ %) inQ (3.19)
as |A\| — 0. We shall show that s = 0 by contradiction. Since
()\I — A)U()\) =F in Qb, BF’F =0

for any A\ € w; as follows from (3.14) and Theorem 2.3, we have

s+1 s+1

>)=F inQ, \:BV+0M\7Z))r=0. (3.20)

A2(—AV) 4+ O(\

If s > 0, then letting A — 0, we have F' = 0, which leads to a contradiction. Therefore, s < 0.
Assume that s < 0. We choose F' € H,,(2) such that V' # 0. Multiplying (3.20) by A~2 and
letting A — 0, we have

—AV =0 in €y, BV|p=0. (3.21)

On the other hand, inserting (3.19) into (3.18) and using (3.16), we have
DAV 4+ ONT ) = [\26 + & + A2 H1(A) + AHa (W) (nF + A g(V) + O\ 5 ),
and equating the terms: )\%, /\5_%, we have

Eog(V) =0, (3.22)
nV = E1g(V) + EmF'  in Q, (3.23)
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where we have set

0 s < —2.

We extend V' by the formula: V = &1g(V') + Enk for |x| > b — 1. By the definitions of & and
&1, we have
—AV =¢g(V)=0 for|z|>b—-1 (3.24)

because supp g(V) C Dyp_gp—1. If we write V = T(uofo,ﬁo), then noting that n(z) = 1 for
2] > b—1, by (3.23) ug € W,,,.(Q), vo, o € W2,,.(Q). Moreover, by (3.21) and (3.24), V
satisfies the homogeneous equation:

—AV =0 in€Q, BV|r=0. (3.25)

On the other hand, if we set g(V') = T(0, go, ho) and F! = T(f, g, h), then by (3.23) and Theorem
2.1 we have
V(z) =T (E3 * (go + ho) + aTng + BTnh,0, E} * ho) (3.26)

for |x| > b— 1. By (3.22) we have

a/ godac—i—ﬁ/ hodx = 0. (3.27)
R3 R3

In particular, by (3.25) we have vy = 0.
Now, we shall show that 8y = up = 0. By (3.26) we have
1
Oo(x) = ] «ho for |z| >b—1. (3.28)
Moreover, by (3.25) we have
AQO =0 in Q, 90|F =0. (329)
Since ho(x) = 0 for |z| > b — 1, we have 0y(z) = O(|z|™!) as |z| — oo, so that by Lemma 3.3
we see that 0g(x) = 0. Therefore, we have

1 ho(y) 1 1 / 1 1
= — dy = holy) dy + — — “Vholy)d
A1 Jrs |z —y| Y 4r|x| Jr3 oly)dy + 4 Ra(]x—y] |x]) o(y) dy

when |z| > b. Since the last term of the right hand side = O(|z|~2) as |z| — oo, we have

0

[ hotw)dy =0 (3:30)
R3
Combining (3.30) with (3.27) implies that
/, go(y)dy =0 (3.31)
R3
because o # 0. By (3.26), uo = E2 * (go + ho) + aTng + BTnh. By (3.30) and (3.31),

23 a0+ ho)l(@) = 5+ | o = 9l(a0(w) + ho(w) d

1

=g [z =yl = [2l(90(y) + ho(y)) dy
T Jrs

= ;ri/ol{/ﬁ@ W(go(y) +ho(y))dy} df
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when |z| > b. Since go(y) = ho(y) = 0 for |y| > b — 1 and since aTng + ST nh is a constant, we
have up(x) = O(1) as || — oo. Since

A?uy=0 inQ wolr = Dyuplr =0

as follows from (3.25), by Lemma 3.3 we have uy = 0, and therefore V' = 0, which leads to
a contradiction. This implies that s = 0, which combined with Theorem 2.3 implies Theorem
1.3. O

Proof of Theorem 1.4 in the case n = 3. Let 7, G1(A\) and Ga(A) be the same constant and op-
erators in Theorem 1.3. And, let U be the same domain in C as in (1.14). Let I' ="y UT UT'_
be a path in C defined by the formulas:

I\ =se™ ) 5:00 — (7/2)(cos )7,
o : A= (7/2)(cosO) e s:m—0— —(m—0),
A= se (0, 5:(1/2)(cosf)™! — o0,

where 0 € (0,7/2) is chosen so close to w/2 that I' C #. By (1.11) and (1.13) we have
1
Tt F = — /()\I — Ag) tFdA.
2w T

To estimate T'(t)F, let us set

1

Li=— [ (M—Aq) 'Fdx

:l: 27T Fi( AQ) )
1

Io=— | (M — Aq) 'Fd.
2 Ty

By (1.13) we have
o0 C
scosO(m—0)t _ —(r/2)t
||I:t(t)||pp(n) <c (r/2)(cos 0) 1 € d‘S”FHHp(Q) - (Cosﬁ)te HFHHP(Q)

for any t > 0 and F' € H,(Q). To estimate Iy(t), we restrict ourselves to the case where
F e Hpp(R). Let C =C1 UCLUC_UC, be a path defined by the formulas:

Cy :A=—(1/2)+1is, s:(7/2)tanf — 0,
Cy:\=e"s, s:7/2—0,
C_:A=e ™s, s:0—171/2,

Cy : N=—(1/2)+1is, s:0— —(7/2)tané.

Then, by Theorem 1.3 we have

Iy(t) = 217”{/0 +/C +/ —i—/c }e’\t(/\%gl(k) + Go(N\))FdX in Q for any ¢t > 0.

We have

H;m{/01 +/C2 b (EGi () + gz(A))FdAHDP(Qb)

(7/2) tan@
< Ce (/2 /0 [Py, @ < C(r/2)(tan)e” /2| F)|

Hp() "
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Since Ga(A) € Anal (wr, L(Hp5(€2), Dpioc(%))), we have

{lh+z;}@@ﬂMFdA:Q

On the other hand, we have

1 (/2 |
H{/ +/ ferAEG I Fa)| gc/ s7¢7 ds || Fllyq,
Cy c_ Dp loc () 0 !

gCt—S/ tetde||F||
0

Hp(Q)*

Combining these estimates, we have Theorem 1.4. O

4 Expansion formulas in two dimensions

In the following two sections, we will prove our main results Theorems 1.3 and 1.4 in the two-
dimensional case. Although the structure of the proofs is the same as for n = 3, the asymptotic
expansion is more involved. We will start with the expansion formula for the whole space R2.

Theorem 4.1. Let 1 < p < oo and b > 0. Let L£,,(R?) be the set of all bounded linear
operators from Hyp(R?) into Dpioc(Bp) and p(Age) the resolvent set of Agz. Then, there exist
constants € € (0,7/2) and operator-valued functions H;(\) € Anal (C, L,,(R?)) (j = 1,2) such
that p(Ar2) D X, and

(AT — Apz) " 'F = X YEF +10g \ELF + EF + E3F + Mog NH{(A)F + XHa(\)F  in By, (4.1)

for any A € S and F € H,,(R?). Here, . is the set defined in (1.12), &, & and &y are
operators in L(Hyp(R?), Dpioc(By)) defined by the formulas:

a2 [po gdx + a3 [po hdx %*(—Af—kg—kh)
gOF = 0 5 51F: 0 )
0 ~ i Jp2 hdx
$2 12 xQ
Forx (CAD+ B g+ S b E3 % (=Af +g+h) (4.2)
1
03 [ gdx + 03 [po hda E3«(h—Af)

1 1 1
E}(z) = ——(log|o| —log2+7), E3(x) = o[ log|a| — —(log2 — 7+ 1)[a]?,

x stands for the convolution operator, v is the Euler number, € is given in (2.6), and a9, as,
B1, B2, B3, 03, 62, 03 and &3 are non-zero constants which will be given in the proof below.

Remark 4.2. El(x) and F3(x) are fundamental solutions of —A and A? in R?, respectively.

Proof. As in the proof for the three-dimensional case (Theorem 2.1), we have the representation
formulas (2.3) or 4y, Uy, and 0. But now the inverse Fourier transform is given by

FOOA+ 6P (@) = Ko(VAla),
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for X € C\ (—o0,0], where K stands for a modified Bessel function of order zero. We know

that
09 = el 2 (5) ™+ 25 G 2) )

where 1(2) is the psi function and for any integer m > 1 we have

Y1) ==, w(m)z—v+1+---+ﬁ (m>2).

Setting
- 1 z > w(m+3) rz\m

=3 () o= X G

we have
1 22 o4 22 4
Ko(2) = 5-[(~log2)(1+ o + o) +0() +0@5 + k()] (43)
By (4.3) we have
2
O+ 167)7)@) = — - log A+ B (2) — 1o log A

] 2 (4
— AE3(x) — N2 log)\@hl()\]x\ ) — )\2 { log || + 1)h1(A|z]?) + ha(A|z[*)}.

Using the resolvent formula
A=A T = (FA) T = (- A) T (=)
by (4.4) we have

FAHIED)THE @) = - A7HF A+ 1E) T (@) = i ()

:4177)\ o g)\+‘6210g)\+E2( )+)\log/\|6’2 hi(Az|?)
400 (tog o] + 1) (MJa2) + ha(Afaf?).
Therefore, setting
) = Eo ey, B30 ) = 2L (o o]+ 1) 3lef?) + ha(Alaf2),
A el) = —2E B0 al), e = ~B3() — B3O Ja)
we have

FA+ 1) (@) = *i log A+ Ey(z) + AMog \H{ (A, []) + AH3 (A, |z]),  (4.5)

1 2
FE O 627 €)= oA oA+ 12 tog 4 B3 (a)

47
+ Aog NHE(, |z]) + NHE(\, |2]).  (4.6)
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Using (4.5) and (2.5), from (2.3) we have
|z

ux(z) :)\_1<a2/Rzgdx+a3/ hdm)—i—log)\(ﬁ*( Af4+g+h

Biz]? 52| | B3] z|? 5

167
+ Mog AK{(A\)F 4+ AK3(\)F,

where we have set

aQ_j; 47 o 47
3 0 1 2 3 0 1
AT+ A+ A A7+ A
pr=>Y “L—"T—Jlogy;!, =) -
j=1 I j=1
340 1 2 3
A?+ A+ AS 3
K{NF =) =2 H{(y;'A Ja]) + (=Af) + )
j=1 7 j=1
A°
+> 5 Hi(y; '\ Jz]) b,
j=1 5
3 0 1 2
Aj + A+ A5
K3WF = {3 T oy 23 A )
j=1 75
A% Al 4 A2
2 /_yfl)\

Since Ej  (—Af) = f and [z Af dz =0, by (2.3), (2.5) and (4.

5) we have

)

U)\(x):—f-i-(s%/ gda;+5§/ hdz + XNog AKZ(\)F + AK2(\)F,
R2 R2

where we have set

1
]

3 1 2 3 1
1 + A 1 Al
2 J J J
03 = 4;%103;%7 5 = 47r;7j10g%
3 0 3
Ay Al
KRNF == LT H (70 Jal) « (—Af) + Y 5
j=1 5 j=1
3 Al
+> S HI(y "\ Jz]) + b
j=1 7j
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04 Al

3 0 1 3
A0y Al - A4 A -
K3OVF =~ {30 =5 to L0\ lal) + 32 =5 HA G A ) |+ (=A)
J j=1 J
1 2

+A _ _ 3 A +A —
D oy HL O A el + D0 L A e e g
3 1 3 1
Al 4;
{32 Sousy Hi o ) + 3 SO A e}

Since Ed x (=Af) = f, by (2.3), (2.5) and (4.5) we have

1
0,\(x):—Mlog)\/Rtha:+E21*(h—Ah)—I—ég’/Rdia:+5§/Rghdx

+ AMog AK3(\)F 4+ AK3(\)F,

where we have set

3 1 3 0 1
1 A f Aj+ A
5= LN e, s LN TN,
27 4rn ng v 087j, 93 . ]Zl ” 0g7js

3 4l
(7 A fa]) Z% (95 Jel) =
=17

3 0 2
AT+ B
+ 3 H (7 [al) « b
=
AY AV 4+ Al
KNF = {3 Ftogy B G A Jal) + Y = Hy (7 A ) |+ (~Af)
J J
3 Al 3 41 2
A B B Al 4+ A2 B
{2 St HL O N e + 30 = 07 e g
7=1 ,7] j=1 7]
3 0 2 3 1
AT+ A3 _ B Al B
+{ — L logy THY (v '\ Jxl) + ) 3 Hs (7] 1)\,|x|)}*h

This completes the proof of Theorem 4.1.
The analogue of Theorem 2.3 for n = 2 reads as follows.

Theorem 4.3. Let 1 < p < oo and let U be the same set as in (1.14). Then, there exist a

constant T > 0 and an operator valued function G(\) € Anal (wr, £, () such that
(M — Ag) 'F=G(\F in
for any A € vy NU and F' € H, ().
Moreover, there exist integers s, (3, a constant coefficient polynomial L(t), a polynomial

M (t) whose coefficients belong to Ly, ,(2) and a positive constant C' such that

IGVE = A*(M(log A)/LAog M) Fllp, ) < CINFQog MI[[| L, (4.7)
for any A € wr and F € H,p(S2).
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Proof. The proof follows the lines of the proof of Theorem 2.3 but now the expansion formula
is more complicated. Instead of (2.13) we now set

H(A) = A 18 + log AE1 + E + E + Mog AH (N) + AHa(N), (4.8)
where the operators &y, &1, &2, €3, H1(A) and Ha(\) are given in Theorem 4.1. Defining again
®(A) by (2.14), we obtain

(M —-—A)PNF=F+TANF inQ, B®NF|r=0 (4.9)
for any A € X, where T'(\)F' is defined by (2.17). The proof of Lemma 2.4 works also for n = 2,
so (I +T()\))™! exists as a bounded linear operator on H,,(f2) for any A € U NS, and we have
(M —Ag) ' =d(N)IT+T\) ™! (4.10)
for A € X.NU.
To discuss the invertibility of I + T'(A) for A € w,, we consider
QoF = (1 —p)E3tF + pSq,rF
for F' € H,5(2), where &3 is the same operator as in Theorem 4.1. Note that
— A&y F =F in R%

We write E3F = T (ug 2, vg gz, 0y r2) to avoid any confusion, if necessary. Applying A to ®oF,
we have
—A®yF = F +TyF in Q, B@0F|F =0, (411)

where

0
ToF = —Li(uo,Rz — UQb) — L}D(GOJRQ — egb)
L(,ID(HO,RQ —0q,) + Li;(Uo,R? —vg,)
Since the second and third members of Ty F belong to Wpl(Q) and suppToF C Dy_op—1, by
Rellich’s compactness theorem, Tp is a compact operator on H,;(2). According to Theorem
4.1, we set

|z

Uy R2 =UgR2 T )xilso(agg + ash) + log )\F *
k) bl 7-[-

(=Af+g+h)+Uyge,
UxR2 =Upr2 + So(859 + 63h) + Vy ge,

1
Oxr2 =bor2 — log )\Esoh + S0(059 + 03h) + O g2,

where Spa = [p. adx and

T(Uyges Vage, O re) = Alog A\H1 (A F + AHa (M) E. (4.12)
Then, we have
(I+T\)F = (I +To)F + X 'RoF +1log AR\ F 4+ RyF + R(\)F (4.13)
where
0 0
RoF = ~(8%) | So(asg +ash) |, RiF = | —L3 (55« (~Af + g+ 1)) + &=(A0)Son |,
0 — £ (Ap)Soh
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0 0
RoF = —(Ayp) 0 , RONF = [ —L3(Uyg2) — LL(Oyg2) | - (4.14)
So(839 + 63h) LL(Oyg2) + LL(Va g2)

In view of (4.12) and (4.14), there exist operators R;(\) € Anal (C, L(H,5(2))) (j = 1,2) such
that
R(\F = Alog AR1(A\)F + ARa(\)F (4.15)

for any A € C\ (—o0,0]. In particular, we have

li . 4.1
lim | R() 0 (416)

HaHp,bm)) -

Here, || - ||£<Hp ,, denotes the operator norm of L£(H,,5(€2)). Since Tj is a compact operator on

b8

Hpp(82), by Seeley’s lemma [21] there exists a finite range operator B such that I+7y— B has an

inverse operator (I +71p—B)™' € L(H,5(Q)). Set G\ = I[+Ty— B+ R()\) and Go = I + Ty — B,
and then

(I +T(N)F = G\F + BF + S\)F, (4.17)

Gy = (I + R(\G,1)Go. (4.18)

By (4.16) there exists a 79 > 0 such that ||R()\)G61HL(H

therefore by Neumann series expansion we have

@y S 1/2 for any A € wy,, and

Gl =G I+ RNG ) =Gy Y (-RNGYY (A€ in). (4.19)
j=0
In view of (4.15), we have
oo _J
Gl =% [Z G (log A)k} N (4.20)
j=0 k=0

where G, € L(Hp5(2)). The right-hand side of (4.20) is absolutely and uniformly convergent
with operator norm in wy,, that is

0o J
S UGl o oA < 00 (A € ).
j=0 k=0

Since B is a finite range operator, there exists a finite number of elements ki, ..., ki € H, ()
such that

k
BF =) a;(F)k; (a;(F)€C).
j=1
On the other hand, if we define the operators Sy, S1 and So by the formula:

Sok= | k(y)dy, Sik= / yk(y) dy, Sak — / Y2k (y) dy (4.21)
R2 R2 R2

for k € Hpp(2) (Sp was already defined before (4.12)), then we can write

s (1220 2 A% sk — s VA o s 4 8
L3 (S k) = TP (P Sok — 22 Sk Sok) + 2 - (nSok — Sik) + 5 E S0k, (4.22)
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where - stands for the usual inner product in R?. For the notational simplicity, now we set
Sy = A 1Ry +1og AR1 + Ry

in the formula (4.13). From above observation we see that there exists a finite number of
ki€ Hpp(Q) (j=1,...,4 1) such that S\F is written in the form:

¢
S\F = X181 (F)ky + log)\Zﬁj(F)f(j + Ber1(F)key1 (B5(F) € C).

=2

There exist hy, ..., h,, € H,,(£2) which are linearly independent over C such that
BF + S\F = A"'W'F +1og \W?F + W*F, W*F =>"yF(F)h; (k=1,2,3) (yj(F)€C).

To represent 'y]’-“(F), we introduce hy, ..., hy € H,,(2)* such that < h;, hj >= 0, where
< -,- > is the dual paring between H,;(£2) and its dual space H,(2)* and d;;, denotes the
Kronecker delta symbol. Using these symbols, we write

Vi (F) =< WFF, h} >=< F,(W*)*h} >

Setting £}, = (Wk)*h;, we have
m
BF + S\F =Y < F,\"'05; +log Al3; + £3; > hy,

and therefore, we have

(I+TN)F =G \F+Y_ < F X5 +log A, + 03, > hy. (4.23)
j=1

Applying G;l to the both side of (4.23), we have

GYMI+TWN)F =F+) < F X, +log A, + 03 > Gy'hy = (I+ NyF,  (4.24)
j=1

where we have defined the operator Ny by the formula:

m
NAF =Y < F, A5 +log Mg; + £5; > G5 'hy. (4.25)

j=1
Now, we shall show the existence of the inverse operator to I + N). For the notational
simplicity, we set Gy 'h; = v, ; and AT +log M, + 05, = Ay . Since {h;}7, is linearly
independent, so is {v, ;}72;. Let us consider the m x m matrix: M(A) = (dj5+ < vag, Ax; >).
By (4.20) the (j, k) component &5+ < v, Ax; > is of the form: A~ my ;1 (X) +log Amajr(A) +
+mg;i(A). Here, myji(\) are usual complex valued holomorphic functions defined on wy, and

have the expansion formulas:

b

mijk(x)zz[z ! (log A) } (Bt € ©), (4.26)

b=0 a=0
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where the right-hand side is absolutely and uniformly convergent in w;,. Let D(\) be the
determinant of M (). In view of (4.26), we have

det(A\M (A Z [Z 5% (log \) } A (5% € Q),

b=0 a=0

where the right-hand side is absolutely and uniformly convergent in w;,, and therefore we have

00 b
A=Ay [Z 5% (log A)a} AP (4.27)

b=0 a=0

for A € wy,. In particular, we can say that D(\) = 0 on U, or there exists an integer 7 such
that

b Yy
D 5% (log\)* =0 (b<7), Y 5*7(logA)* # 0 (4.28)

a=0

for any A € w;,. In the latter case, choosing 79 smaller if necessary, we may assume that

.
Z 07 (log \)* #0 for any \ € wy,. (4.29)
a=0

In the same way as for n = 3, one can show that
D(\) #0 in U,. (4.30)

y (4.27) and (4.28) we write

0o b 00
=AY [Z 5% (log )\)“] A= AT S T Ly(log AN,

b=y a=0 b=0

where we have set Ly(t) = 3017 §40+71. Since Lo(log A) # 0 (X € &r,) as follows from (4.29),
we write
Ly(log A) ., N }

D(A) = A7 Lo(log A) [1 + Z . Tafloz )

Since
> Ly(log A) .,
lim 2 N =
A0 Z < Lo(log A) 0

there exists a 71 (0 < 71 < 79) such that

\i MAI’\ <1/2 (Aedn),

— Lo(log A)
and therefore we have
 me (= Ly(log \)
D)™ = X"V Lo (log A)~ [1 +;{; oo } }
— AT Lo(log A)~ [1 +;{; Ly(log \)Lo(log )*~ l(m) } }
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Since Ly(t)Lo(t)*~! is a polynomial of degree not greater than b(y + 1), we can write

AT

PO = g 11 2 e ) (g ) ()

where Pj(,41)(t) is a polynomial of degree not greater than j(y + 1).
Similar to the case n = 3, one can show that the inverse of I + N(\) exists and has the form

(I+NA)'G=G =D\ ) <G AU +log Ms; + L3 > M (MG ' hy,
g k=1

for A € w;,, which combined with (4.20) and (4.31) implies that there exists an integer s such
that

(1470 = s ZQHH (108 ) (7m) (4.32)

where Q(,41)(t) is a polynomial of degree not greater than j(y + 1), whose coefficients belong
to L(Hp(2)). In fact, by (4.20) we have

N :i[z]:(;]k (log \) ] Z{[Z@k log \) }Lo(logA)j}(Lo(ggA))j.

=0 k=0 7=0 k=0

.

If we set Gj(y + 1)(t) = ( i:o Gxt®)Lo(t)7, then G;(t) is a polynomial of degree not greater
than j(v+ 1) and we have

- AN
go i1 (l0g A) (Lo(log)\)) )

And also, setting My1(t) = tLo(t)l5; + Lo(t)¢3;, we can write

A
—1 p* * * oy —1 *
AU+ log MG + £ = A [ 1+ M, 11 (log )\)T)(A)},

where M,1(t) is a polynomial of degree not greater than v + 1. Therefore, we have (4.32).
Combining (4.32) with (2.20), (2.14) and Theorem 4.1 implies Theorem 4.3. O

5 The proofs of Theorems 1.3 and 1.4 for n = 2

To prove Theorem 1.3, we start with the following lemmas.

Lemma 5.1. Let E) and E3 be the fundamental solutions of —A and A% given in Theorem
4.1, respectively. Given g,h € L, ,(R?), we set u= E% xg and 0 = E} x h. If

Sog = S19 = Soh =0 (5.1)

then
u(z) = O(log |z|), Vu(z) = O(|z|™1), V?u(z) = O(|z|7?), V’u(x) = O(|z["?), (5.2)
0(z) = O(lz| "), VO(z) = O(|z7?) 5.3)

as |x| — oo, where Sy, S1 and Sy are the same operators as in (4.21).
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Proof. From (4.2) we have

1
u(z) = P / (lz =yl log|z — y| — e1lz — y[*)g(y) dy,
T R2
1
0(r) = ~5- (log |z =yl = c2)h(y) dy

where ¢; =log2 — v+ 1 and ¢y = —log 2 + v. By Taylor expansion, we have

o — y[Plog |z — y| — erfw — yf* = |2[*log |2] — c1|2]* — 2log |z|(x - )

) (5.4)
— (1 =2¢e1)(z - y) + (log |z[)[y|” + O(1)

as |x| — oo when |y| < b, and therefore,

u(z) =(8m) 7} ((|z[*log |2])Sog — c1lz|*Sog — 2(xlog |z]) - (S19)
— (1 =2c1)x - (S19) + (log |x[)S2g + us (z)

where uj () is the function which has the asymptotic behaviour:
ui(x) = O(1), Vui(z) = O(jz|™), V?u(z) = O(l2|?), Viu(x)=O0(lz["%)

as |z| — oo, and S; are the same operators as in (4.21). By (5.1) we have u(z) = (log |z|)(S29)+
ui(x), which implies (5.2).
By (5.1) we have

0(a) = —5- | (gl —3] Tog el)hly) dy

Since

7 -0 i)Y
log |z — y| — log|z| = / — log ]m—@y\dﬁ—/ Tic (i — gy de,
|z — Oy[?

we have

_ 0 _
log [+~ y| — log | = O™}, 5 (log [+ — y| — log ) = O« *) (k=12

as |z| — oo when |y| < b, and therefore we have (5.3). This completes the proof of the
lemma. O

Lemma 5.2. Let 1 <p<oo. (1) If0 € WQIOC(Q) satisfies the homogeneous equation:
AG=0 nQ, Or=0 (5.5)

and the radiation condition:

0(z) = O(1) (5.6)

as |x| — oo, then § = 0.
(2) Ifu e W4loc(ﬁ) satisfies the homogeneous equation:

A?u=0 inQ, ulr =Dyulr =0 (5.7)
and the radiation condition:

u(z) = O(|z]) (5-8)

as |x| — oo, then u = 0.
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Proof. (1) By L, (1 < p < oo) solvability in any C? bounded domain for the Dirichlet problem
of the Laplace operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that
0 € W3,,.(Q). Let ¥(t) be a function in C§°(R) such that ¢(t) = 1 for t < 1/2 and ¥(t) = 0 for

Jloc

¢ > 1 and set pr,(z) = ¥(log(log |z|)(log(log L)) for large L. Then, we have

0= (A0, pr0)a = —(V0,pLVO)a + (1/2)(0, (ApL)0)a (5.9)
where (a,b)q = [, a(z)b(z) dz. Since

|Apr ()] < C(log(log L))~ (log |z]) 2|z (L — o0)

and supp Apy, C {z € R? | eVloel < |z| < L}, by (5.6) we have

L
(0. (8ps))al < Clloglog L) [ (logr) 2t dr < Cllog(log 1)) o 1)+ — 0

as L — oo. Letting L — oo in (5.9), we have ||V||> =0, which implies that V6§ = 0, that is

Lo(Q2)
0 is a constant. But, |r = 0, which means that 6 —(()
(2) By L, (1 < p < 00) solvability in any C* bounded domain for the Dirichlet problem of
the biharmonic operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that
u € Wéloc(ﬁ)‘ First, we shall show that « = 0, assuming that

u(z) = O(|z]), VZu(z) = o(1) (5.10)
as |z| — o0o. Let pr be the same function as in the proof of (1), and then we have

0= (A%, pru)o = —(1/2)(u, (A2p)u)a+2 Z (D;Dypr) D Dyu)o+(Au, prAu)g. (5.11)
7,k=1

Since
|A%pr(2)| < C(log(log L))~ (log |z|) 2[x| ™, |D;Dypr(x)| < C(log(log L))~ (log|x|) ™" |z~

as L — oo and supp A2py,, supp DjDypr, C {x € R? | eV1o8L < |z| < L}, by (5.10) we have

|(u, (A%pr)u)a| < C(log(log L))~ / (logr) %~ dr < C(log(log L)) ' (log L)% — 0,
Vieg L

|(w, (DjDgpr)DjDru)o| < C{ sup |DjDyu(x)|} (log(log L))~ / (log r)_lr_l dr

eVIoEL<|z|<L Viee &
<C sup |D;Dju(x)| — 0
e‘/IOgLS‘aﬂSL

as L — oo, letting L — oo in (5.11) we have [|Au|, , = 0, which implies that Au = 0 in .
Since u|lr = Dyu|r = 0, the zero extension ug of u to the whole space R? satisfies the Laplace
equation: Aug = 0 in R2. Since ug(z) = u(z) = O(|z|) as |x| — oo, from Lemma 3.1 we see
that ug is a polynomial of degree 1. But, ug(z) = 0 for € R? \ 2, which means that ug = 0.
Finally, we shall show that the radiation condition (5.8) together with (5.7) implies that
the radiation condition (5.10) holds. Let 7 be a function in C*°(R?) such that n(z) = 1 for
|z| > b+ 1 and n(x) = 0 for |z| < b, where b is a large number such that B, D R3\ Q. Then,
by (5.7) we have
A%(nu) =0 in R? (5.12)
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where f(xr) = A%(nu) — nA2u. Since supp f C Byi1 \ By, we have f € Ly(R?). Setting
v(z) = E? * f, by (5.10) and the fact that E is a fundamental solution to the biharmonic
operator A% we have A?(u —v) =0 in R?. Employing the same argument as in the proof of
Lemma 3.1, we have u(z) — v(z) = >_|,<;, Cax® for some non-negative integer m and complex
numbers c¢,. If we write

o@) = B3@) [ r)dv+ [ (B =)~ B3 f0) dy,

RQ

we have

> o = B3(@) | ) dy =ula) = [ (B3a —y) ~ B @)1 (0) dy = Ofle]log o

|a|<m

as |x| — oo, which implies that

u(@) = 3 car® + / (B3(x — y) — B2(2))f () dy.

lal<1 R
Therefore, V2u(x) = o(1) as |z| — oo. This completes the proof of the lemma. O

Now, we shall show Theorem 1.3 in the two-dimensional case.
Proof of Theorem 1.3 for n = 2. Let s and G(\) be the same as in Theorem 4.3. Let 7 be a
function in C°°(R?) such that n(z) = 1 for |z| > b — 1 and n(z) = 0 for |z| < b — 2. Given
F € H,p(Q) and X € @y, we set U(X) = G(A)F. We have U(X) = (\] — Aq) " F € Dy() for
A€ w,NU and U(N) = G(A)F € Dpoc() for A € wy. Moreover, by (4.10) we have
M —AUN=F inQ, BUN|r=0, (\ecwrnl). (5.13)
Since U(A) € Anal (w7, Dp 1oc(§2)), it follows from (5.13) that
M —AUN=F inQ, BUN=0 ()€ (5.14)
From (5.13) it follows that nU () satisfies the equation:
(M — A)(nU(N) = nF +g(U(N\)) in R? (5.15)
for A € w, NU, where for U = T (u, v, 0) we have set
0
gU) = A%(qu) —nAZu+ A(nf) —nAd | . (5.16)
—(An0) —nAbd) — (A(nv) — nAv)
Note that supp g(U) C Dy_2p—1. Since X C p(Ag2) as follows from Theorem 4.1, we have
nUN) = (A = Ag2) "' (nF + g(U(N))) (5.17)

whenever A € w, NU N X.. Let &, &1, E2, &, H1(N\) and Ha(A) be the same operators as in

(
(4.1) of Theorem 4.1 and let H(\) be the same operator as in (4.8). By (5.17) and Theorem 4.1
we have

nUA) = HA)F +g(U))) (5.18)
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whenever A € w, NU N X.. But, both sides in (5.18) are analytic in w,, and therefore (5.18)
holds for any A\ € w,.
In view of Theorem 4.3, we write

UN) = XVi(s) + X¥TVa(s) + O(IA* 2| log A|Y) (A — 0) (5.19)

where s and 7 are integers, Vi(A), Va(X) € Dp10c(€2) and ‘|‘/}()‘)“Dp,1oc<ﬂb> < Cllog A\ (| Fll,,. o
for some integer v; (j = 1,2). We shall show that s = 0 by contradiction. Since

M —AUN =F inQ BUN=0 (5.20)
as follows from (5.14), we have
XAV (V) + 0N (log A=) = F in @, {NBVA(A) + O(IA* (log A=)} = 0. (5.21)

If s > 0, letting A — 0 in (5.21), we have F' = 0, which leads to a contradiction. Therefore, we
may assume that s < 0. By contradiction, we shall prove that s = 0, so that we assume that s
is a negative integer. Equating the term A\° in (5.21), we have

—AVi(A)=0 in €y, BVI(M\)|r=0. (5.22)
On the other hand, inserting the formula (5.19) into (5.18) and using Theorem 4.1 we have
X Vi(A) + O(AF (log A)2))
= (A€o +1og & + & + & + O(|Alog A|) (nF + A°g(Vi(N) + X1 g(Va(A)) + O(|A(log A)7))).
Equating the terms of A%, \*log A and A*~!, we have

NV (A) = &F") + Eg(Va(N)) + E29(Vi(N)) + Es9(Vi (), (5.23)
Eog(Vi(A)) =0, &19(Vi(A)) =0, (5.24)

where

1 F when s = —1,
Fl =
0 when s < —2.

Since n = 1 for |x| > b — 1, we extend V;()\) to the domain B® = {z € R? | |z| > b} by the
formula:

Vi(A) = E(FY) + E0g(Va(N)) + E29(Vi(N)) + E3g(Vi(N))  in B (5.25)

Set ‘/1()‘) = T(U,’l),@), 77F1 = T(fO’gDuhD)v g(‘/l()‘)) = T(ngl’hl) and g(VQ(A)) = T(07927h2)'
Then, by Theorem 4.1 we have

u = a9Spgo + aszSohg + @2Spg2 + azSpha

B2 B3
+ 167!9:\2 x g1+ 167‘“2 «hy + E3 + (g1 + h1),

(5.26)
v = 655091 + 0350h,
0 = 655091 + 63S0h1 + Ej % b
for || > b, where Sok = [po kdx (cf. (4.21)). On the other hand, by (5.24) we have
25091 + azSoh1 = 0,
|22 % (g1 +h1) =0 for z € Oy, (5.27)

Soh1 = 0.
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Since |x|% * (g1 + h1) = |2]?So(g1 + h1) — 22 - S1(g1 + k1) + Sa(g1 + k1), |z|? * (g1 + h1) is a
polynomial of degree 2 and vanishes identically in €25, so that we have

So(g1+ h1) = Si(g1 + ha) = S2(g1 + h1) = 0. (5.28)
Since Sphy = 0, we have
S()gl = Sohl =0. (5.29)
Since
B2\ 12 B3 | 2 _ P Bs P2 Ps
11 F 91 g T == e (Sign) = g (Sihn) 4 96 g1 + 16 Sl

as follows from (5.29), from (5.26) and (5.29) we have
u=ci(z)+ E5%(g14+h1), v=0, 6 =E}«h (5.30)

for x € B®, where ci(z) is a constant coefficient polynomial of degree 1 which is given by the
formula:

ci(z)=—x- (5—;5‘191 + %Slhl)
B2 B3
+ a1.5090 + aaSohg + a1.50g2 + a2Sohe + ——S2g1 + ——Soh;.
167 167

Noting that E5 and F3 are fundamental solutions of A? and —A, respectively, we have

0 0
—AVIN) = | A2u+A0) =g | =0 in B, (5.31)
—Af hi

because g1 = h; = 0 for |z| > b — 1. Combining (5.31) and (5.22) implies that

A2y =0 inQ, ulp = Dyulr =0
v=0 1inQ, (5.32)
“AO=0 inQ, O =0.
Now, we shall show that u = § = 0 by using Lemmas 5.1 and 5.2. By (5.28), (5.29), (5.30) and
Lemma 5.1 we have
w(z) = O(|z]), Vu(z)=0(1), Vu(z) = O(|z[?), V’u(z)=O0(z|™),
0(z) = O(|z|™"), VO(z) = O(|jz|7?)
as |z| — oo, which combined with (5.32) and Lemma 5.2 implies that w = # = 0. Therefore, we

have V1 () = 0, which leads to a contradiction. Namely, we have shown that s = 0.
Now, in view of Theorem 4.3, we can write

UN) = (log AV + (log N1V + O(| log A|9~2) (5.33)

as A — 0, where V; € Dp10¢(%) and ||VjHDpJOC(Qb) < Ol F |y, 0 (
Vi # 0. Employing the contradiction argument again, we shall show that d = 0. From (5.14)

j =1,2). We may assume that

we have

(log N (—AV) + O(|log \|*1) = F in @, {(log A\)?BVi + O(|log A|*")}r =0.  (5.34)
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If d < 0, then letting A — 0 in (5.34), we have F' = 0, which leads to a contradiction. Therefore,
we may assume that d > 0. Assume that d is a positive integer. Multiplying (5.34) by (log \)~¢
and letting A — 0, we have

“AVi =0 in$y, BVi|r=0. (5.35)
On the other hand, inserting the formula (5.33) into (5.19) and using Theorem 4.1, we have

n(log \)Vi 4+ O(|log A|*™)
= (A1 +log AEL + &9 4+ E3 4+ O(|A log A))
(nF + (log A)?g(V1) + (log \)*~"g(V2) 4+ O(|log A|*~?))
= A" (&o(nF) + (log A)*Eg(V1) + (log ) €g(V2) + O(| log A)[*~?))
+ log Ae1(nF) + (log N E1g(V1) + (log M)4E1g(Va) + (log \)4Ea9(V1)
+ (log \)?E39(V1) 4+ O(| log A|*™).

Equating the terms of A™1, A= (log \)4, A= (log )41, (log A\)4*! and (log A)?, we have

Eog(V1) = E(nF1 + g(Va)) = E19(V1) = 0, (5.36)
nVi =&k + g(V2)) + E290(Vi) + E39(V1), (5.37)
where
0 when d > 2,
F =
F when d > 1.
Note that now &; appears and &y disappears in (5.37), while & disappears and &, appears

in (5.25). Again we set Vi = T(u,v,0), nF1 = (fo, g0, ho), g(V1) = T(0,91,h1) and g(Va) =
7(0, g2, ha). By Theorem 4.1 and (5.37), we have

1 9 P2 | o
= — —A + + g9 +nhg + ho) + —
U 16 || * ( (nfo) +ngo + g2 + nho 2) 16 |z]* * g1

+ ﬁ|9C|2 xhy + E3 * (g1 + h1),
167

(5.38)
v = 055091 + 63S0h,
1
0 = ——So(nho + ha) + 055091 + 05.S0h1 + E * hn
for x € B®. By (5.36) and (4.2) we have
25091 + azSoh1 = 0,
a250(ng0 + 92) + a3 So(nho + h2) =0, (5.39)
[ (g1 +h) =0 (€ D), .
Sohi = 0.
The first and last formulas in (5.39) implies that
S()gl = Soh1 = 0. (5.40)
Moreover, the third formula in (5.39) implies that
So(g1 + h1) = S1(g1 + h1) = S2(g1 + h1) = 0. (5.41)
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By (5.38) and (5.40) we have v = 0 for x € B®, which combined with (5.35) implies that
v=0 1in Q. (5.42)

Since A%|z|? = 0, and So(nho + h2), Sog1 and Sphy are constants, and since E3 and E} are
fundamental solutions of A? and —A, respectively, from (5.38) we have

Au=g +hi =0, —A0=h; =0 (5.43)
for z € B®, because g1 = hy = 0 for |z| > b — 1. Combining (5.43) with (5.35) implies that

A%y =0 inQ, u|p=Dyulp=0, (5.44)

“AO=0 inQ, Op=0. (5.45)

Since Sph; = 0, by Lemma 5.1 we have 6(z) = (|z|~!) as |z| — oo, which combined with (5.45)
and Lemma 5.2 implies that § = 0. Since

1

0 — —%So(ﬁho +hy) = o /R?(E%(x —y) — Ex(2)hi(y) dy

as || — oo as follows from the third formula in (5.38) and (5.40), we have
So(nho + ha) =0, (5.46)

because [p2(E3(z — y) — E3(x))hi(y) dy = O(|z|™') as |z| — oo. Combining (5.46) and the
second formula of (5.39), we have

So(ngo + g2) = So(nho + hg) = 0. (5.47)
From the first formula of (5.38), we have u = ¢y + ¢1 + up, where we have set

up = E3 = (g1 + h1)

2
co = @T(So(—ﬁ(nfo)) + So(n90 + 92) + So(nho + h2))
= —% - (S1(=A(nfo)) + S1(ngo + g2) + S1(nho + he) + B25191 + B351h1)

+ 52(=A(nfo)) + S2(ngo + 92) + S2(nho + h2) + F25201 + F352m
By (5.41) and Lemma 5.1 we have
ug(z) = O(log |z]), Vug(x) = O(|z|™"), VZuo(z) = O(|z|7?) (5.48)

as |z| — oo. Noting that So(—A(nfo)) = 0 as follows from the divergence theorem of Gauss, by
(5.47) we have ¢y = 0. Since ¢; is a polynomial of degree 1, by (5.48) we have u(z) = O(|z|) as
|z| — oo, which combined with (5.44) and Lemma 5.2 implies that u = 0. Therefore, we have
V1 = 0, which leads to a contradiction, and then we have d = 0. This completes the proof of
Theorem 1.3 for n = 2. O

Proof of Theorem 1.4 for n = 2. Let 7, G1, G2 and G3(\) be the same as in Theorem 1.3. And,
let U be the same as in (1.14). Let ' =Ty UTy UT'_ be a path in C defined by the formulas:

Iy A= sel™ ) s:00 — (1/2)(cos )7L,
Lo : A= (7/2)(cos) L, s:m—0— —(7—0),
I\ =se (m=0), 5:(1/2)(cosf)™! — oo,
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where 6 € (0,7/2) is chosen so close to /2 that I' C Y. By (1.11) and (1.13) we have

1
THt)F = — /(/\I — Ag) tFadX.
211 T
To estimate T'(t)F, let us set
1 -1
L= — | (A= Ag) 'Fd),
21 Jp,
1
Ip==— [ (\[—Ag) 'FadA.
0 211 FO( AQ)
By (1.13) we have
x5, 0) < € ) el ST 5| F |, 0 = __ e TP
P =y cos0)-1 e (cos )t T

for any t > 0 and F' € H,(Q2). To estimate Iy(t), we restrict ourselves to the case where
F e Hpp(R). Let C =C1 UCLUC_UC, be a path defined by the formulas:

Ci :A=—(1/2)+s, s:(1/2)tanf — 0,
Cyp:X=es, s:7/2—0,
C_:A=e ™, s:0—171/2,

Cy : A=—(1/2)+s, s:0— —(7/2)tand.

Then, by (1.17) in Theorem 1.3 we have

Io(t) = ;i{Al+/C++L+A2 }e’\t(GlF—i—(log)\)_leF—i—Gg(A)F) d\

in p for any ¢t > 0. Setting

Jo(t) = 217”{/0 +/C }e’\t(GlF+(log)\)’ngF—ng()\)F) dX,

we have
- (r/2) tan 6 -
1To@)lls o,y < Ce™™? /0 ds|| F|l,y, ) < C(7/2)(tan0)e” /2P|, .
Obviously, { f., + i }eNG1F dX =0. Setting
1 At ~1
t) = — log A\) ™" dA G2 F.
i(t) 2m,{/c++/c_}e (log \) "' dA G F,
we observe that
I S . 1 [/ - A
Ji(t) = / (log se'™) " te '™ ds Go F + / (logse™ ™) te ste "™ ds Go '
21 7/2 21 0
1 T/2 1 1 . T/2 e—st
_ _ St dsGoF = — ——  _dsG-YF.
2mi Jo (logs+i7r 10g5—z’7r>6 a2 /0 (log s)? + 72 o2
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Therefore, for ¢ > 1 we have

5O, 0 < € [ “Wd L
—ort [T 1ogt_1og X L (S
{/ logt - logﬁ) et % /OO e d(} HFHHZ’(Q)
{4 logt)™ / etde+ < :/2/0 e 2 dﬁ} 17, 0
“logt) 217

Hp ()"

Finally, setting

Jo(t) = ;m{/c +/ feN Gy (N Fdn,

by (1.17) in Theorem 1.3 we have

T/2 oSt
12D, . ) < C/O W@HFHHM,

and therefore employing the same argument as in the estimate of Ji(¢) we have

for

12O, 0y < Ot (log ) || F|

Hp ()

t > 1. Combining these estimations, we have Theorem 1.4 for n = 2. O
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