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Abstract

In this paper we prove frequency expansions of the resolvent and local energy decay
estimates for the linear thermoelastic plate equations:

utt + ∆2u+ ∆θ = 0 and θt −∆θ −∆ut = 0 in Ω× (0,∞),

subject to Dirichlet boundary conditions: u|Γ = Dνu|Γ = θ|Γ = 0 and initial conditions
(u, ut, θ)|t=0 = (u0, v0, θ0). Here Ω is an exterior domain (domain with bounded comple-
ment) in Rn with n = 2 or n = 3, the boundary Γ of which is assumed to be a C4-
hypersurface.

1 Introduction and main results

Let Ω be an exterior domain (domain with bounded complement) in Rn with n = 2 or n = 3,
the boundary Γ of which is assumed to be a C4-hypersurface. In this paper, we consider the
linear thermoelastic plate equations

utt + ∆2u+ ∆θ = 0 and θt −∆θ −∆ut = 0 in Ω× R+ (1.1)

subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x), θ(x, 0) = θ0(x) (x ∈ Ω) (1.2)

and Dirichlet boundary conditions

u|Γ = Dνu|Γ = θ|Γ = 0. (1.3)

Here Dν =
∑n

j=1 νjDj (Dj = ∂/∂xj), and ν = (ν1, . . . , νn) denotes the unit outer normal to Γ.
In (1.1), u stands for a mechanical variable denoting the vertical displacement of the plate,

while θ stands for a thermal variable describing the temperature relative to a constant reference
temperature θ̄. The thermal effect introduces a damping. In fact, when Ω is a bounded reference
configuration, the exponential stability of the associated semigroup under several different kind
of boundary conditions have been proved by Kim [5], Munõz Rivera and Racke [18], Liu and
Zheng [14], Avalos and Lasiecka [1], Lasiecka and Triggiani [7, 8, 9, 10] and Shibata [22]. Also,
the analyticity of the semigroup has been shown, cf. Liu and Renardy [12] and then it has been
studied by Russell [20], Liu and Liu [11], Liu and Yong [13], Munõz Rivera and Racke [19] in
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the L2 or Hilbert space setting (see also the book of Liu and Zheng [15] for a survey). In the
Lp-setting this was investigated in our paper [4], where sufficiently strong a priori estimates
for the resolvent in Lp-spaces have been proved. Before [4], Denk and Racke [3] studied the
Cauchy problem for (1.1) in the whole space Rn, also giving decay rates of solutions, and Naito
and Shibata [16] studied the initial boundary value problem for (1.1) with Dirichlet boundary
condition in the half-space Rn

+.
There were not yet any decay estimates for exterior domains. The purpose of this paper is

to study the local energy decay of solutions to problem (1.1) – (1.3). To formulate the problem
(1.1) – (1.3) in the semigroup setting, introducing the unknown function v = ut, we rewrite it
in matrix form:

Ut = AU in Ω× R+, U |t=0 = U0, BU |Γ = 0, (1.4)

where we have set

U =

uv
θ

 , U0 =

u0

v0
θ0

 , A =

 0 1 0
−∆2 0 −∆

0 ∆ ∆

 , BU =

 u
Dνu
θ

 . (1.5)

To study the initial boundary value problem (1.4), we consider the corresponding resolvent
problem:

(λI −A)U = F in Ω, BU |Γ = 0, (1.6)

where I denotes the 3×3 unit matrix. We shall give an expansion of the resolvent with respect to
the frequency parameter λ (Theorem 1.3). Then, representing the semigroup via the resolvents
(essentially: Laplace transform) will give the local energy decay result (Theorem 1.4).

To state our main results precisely, we introduce several spaces and some symbols at this
point. Throughout this paper, let n ∈ {2, 3}. For a general domain O ⊂ Rn, p ∈ (1,∞)
and any integer m, Lp(O) and Wm

p (O) stand for the usual Lebesgue space and Sobolev space,
respectively. Let ‖ · ‖Lp(O) and ‖ · ‖W m

p (O) denote their norms. For a general domain O with C1

boundary ∂O, we introduce the spaces W 2
p,0(O) and Wm

p,D(O) (m = 2, 4) as follows:

W 2
p,0(O) = {u ∈W 2

p (O) | u|∂O = 0},
Wm

p,D(O) = {u ∈Wm
p (O) | u|∂O = Dνu|∂O = 0} (m = 2, 4),

(1.7)

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂O. Let Hp(O) and Dp(O) be the
spaces defined by the following formulas:

Hp(O) = {F = T (f, g, h) | f ∈W 2
p,D(O), g ∈ Lp(O), h ∈ Lp(O)},

Dp(O) = {U = T (u, v, θ) | u ∈W 4
p,D(O), v ∈W 2

p,D(O), θ ∈W 2
p,0(O)}.

(1.8)

Here and hereafter, TM denotes the transposed of M . We define the norms ‖ · ‖Hp(O) and
‖ · ‖Dp(O) by the following formulas:

‖F‖Hp(O) = ‖f‖W 2
p (O) + ‖(g, h)‖

Lp(O)
(F = T (f, g, h) ∈ Hp(O)),

‖U‖Dp(O) = ‖u‖W 4
p (O) + ‖(v, θ)‖

W2
p (O)

(U = T (u, v, θ) ∈ Dp(O)).
(1.9)

Let AO be the operator whose domain is Dp(O) and whose operation is defined by the formula:

AOU = AU for U ∈ Dp(O). (1.10)

In [4] we proved the following theorem.
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Theorem 1.1. Let 1 < p <∞. Let ρ(AΩ) be the resolvent set of AΩ. Let

C+ = {λ ∈ C | Reλ ≥ 0}

where C denotes the set of all complex numbers. Then, ρ(AΩ) ⊃ C+ \ {0}.
Moreover, for any λ0 > 0 there exists a constant C depending on λ0, p and Ω such that for

any λ ∈ C+ with |λ| ≥ λ0 and F ∈ Hp(Ω) there holds the estimate:

|λ|‖(λI −Ap)−1F‖Hp(Ω) + ‖(λI −Ap)−1F‖Dp(Ω) ≤ C‖F‖Hp(Ω).

In view of Theorem 1.1, by standard arguments in the theory of analytic semigroups (cf.
Vrabie [24]) we know that for any σ > 0 there exists a θσ ∈ (0, π/2) such that

ρ(AΩ) ⊃ {λ ∈ Σθσ | |λ| > σ}, (1.11)

where we have set
Σε = {λ ∈ C \ {0} | | arg λ| < π − ε}. (1.12)

Moreover, there exists a constant Cσ depending on σ such that

|λ|‖(λI −AΩ)−1F‖Hp(Ω)
+ ‖(λI −AΩ)−1F‖Dp(Ω) ≤ Cσ‖F‖Hp(Ω) (1.13)

for any λ ∈ Σθσ with |λ| > σ and F ∈ Hp(Ω). Let us define a set U by the formula

U =
⋃
σ>0

{λ ∈ Σθσ | |λ| > σ}. (1.14)

From (1.11) we see that
ρ(AΩ) ⊃ U . (1.15)

By (1.13), we have the following theorem.

Theorem 1.2. Let 1 < p < ∞. Then, AΩ generates an analytic semigroup {TΩ(t)}t≥0 in
Hp(Ω).

Let b be a number such that Bb ⊃ Rn \Ω, where Bb = {x ∈ Rn | |x| < b}. Set Ωb = Bb ∩Ω.
We introduce the following spaces:

Lp,b(Ω) = {f ∈ Lp(Ω) | f(x) = 0 for |x| > b},
Hp,b(Ω) = Hp(Ω) ∩ (Lp,b(Ω))3

= {F = T (f, g, h) | f ∈W 2
p,D(Ω) ∩ Lp,b(Ω), g, h ∈ Lp,b(Ω)}.

(1.16)

Replacing Ω by Rn, we define Lp,b(Rn) and Hp,b(Rn). For functions U = T (u, v, θ) we will write

‖U‖Dp,loc(Ωb) := ‖U |Ωb
‖Dp(Ωb).

For Banach spaces X and Y , L(X,Y ) denotes the set of all bounded linear operators from
X into Y and L(X) = L(X,X). For any domain ω in C, Anal (ω,X) denotes the set of all
holomorphic functions defined on ω with their values in X. We set

ωτ := {λ ∈ C | |λ| < τ}, ω̇τ := ωτ \ (−∞, 0].

The following two theorems are our main results.

3



Theorem 1.3. Let n ∈ {2, 3}, 1 < p <∞ and let b be a number such that Bb−3 ⊃ Rn \ Ω. Let
U be the same set as in (1.14). Set Lp,b(Ω) = L(Hp,b(Ω),Dp,loc(Ωb)).

(a) In the case n = 2 there exist a constant τ > 0 and an operator-valued function G ∈
Anal(ω̇τ ,Lp,b(Ω)) such that for any F ∈ Hp,b(Ω) and λ ∈ ω̇τ ∩ U there holds the equality:

(λI −AΩ)−1F = G(λ)F in Ωb.

Moreover, there exist operators G1, G2 ∈ Lp,b(Ω) and an operator-valued function

G3 ∈ Anal(ω̇τ ,Lp,b(Ω))

such that

G(λ) = G1 + (log λ)−1G2 +G3(λ) for any λ ∈ ω̇τ ,

‖G3(λ)F‖Dp,loc(Ωb)
≤ C| log λ|−2‖F‖Hp(Ω)

for any λ ∈ ω̇τ and F ∈ Hp,b(Ω).
(1.17)

(b) In the case n = 3 there exist a constant τ > 0 and operator-valued functions Gj ∈
Anal(ωτ ,Lp,b(Ω)) (j = 1, 2) such that for any F ∈ Hp,b(Ω) and λ ∈ ωτ ∩ U there holds the
equality:

(λI −AΩ)−1F = λ
1
2G1(λ)F + G2(λ)F in Ωb. (1.18)

For wave equations, elasticity or Maxwell equations, a collection of references for results on
low frequency asymptotics is given in the work of Pauly [17].

With the expansion of the resolvent in terms of the frequency parameter above, we shall
obtain the following local energy decay result.

Theorem 1.4. Let 1 < p <∞ and let b be the same constant as in Theorem 1.3. Let {TΩ(t)}t≥0

be the semigroup associated with problem (1.1) – (1.3) which is given in Theorem 1.2. Then,
we have

‖TΩ(t)F‖Dp,loc(Ωb) ≤

{
Cp,bt

−1(log t)−2‖F‖Hp(Ω)
if n = 2,

Cp,bt
− 3

2 ‖F‖Hp(Ω) if n = 3
(1.19)

for any t ≥ 1 and F ∈ Hp,b(Ω).

The difficulty in proving Theorem 1.3 arises from the facts that the expansion formula of
the resolvent operator (λ−∆)−1 in R2 has the singularity log λ and that of (λ−∆2)−1 in Rn

has the singularities λ−1 log λ when n = 2 and λ−
1
2 when n = 3, respectively. Therefore, we

can not use the usual compact perturbation method to obtain the expansion formula in the
exterior domain. To prove Theorem 1.3, first of all employing the Seeley argument [21] about
the invertibility of I +Kλ, Kλ being a compact operator valued holomorphic function in λ, we
shall show that (λI −AΩ)−1 has an expansion formula near λ = 0 which starts from λs(log λ)β

in two dimensional case and λ
s
2 in three dimensional case for some integers s and β. Then,

by a contradiction argument based on the uniqueness theorem we shall show that s = 0 and
β = 0. Our strategy of the proof of Theorem 1.3 follows R. Kleinmann and B. Vainberg [6] and
W. Dan and Y. Shibata [2], where the low frequency expansions of the Laplace operator and
Stokes operator in the two dimensional case were obtained.

We will prove Theorems 1.3 and 1.4 in Sections 2–3 for the (somewhat simpler) case n = 3.
Modifications for the case n = 2 are indicated in Sections 4 and 5.
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2 Expansion formulas in three dimensions

We start with the three-dimensional case by showing an expansion formula of the resolvent in
the whole-space.

Theorem 2.1. Let 1 < p < ∞ and b > 0. Let Lp,b(R3) be the set of all bounded linear
operators from Hp,b(R3) into Dp,loc(Bb) and ρ(AR3) the resolvent set of AR3. Then, there exist
constants ε ∈ (0, π/2) and operator-valued functions Hj(λ) ∈ Anal (C,Lp,b(R3)) (j = 1, 2) such
that ρ(AR3) ⊃ Σε and

(λI −AR3)−1F = λ−
1
2E0F + E1F + λ

1
2H1(λ)F + λH2(λ)F in Bb (2.1)

for any λ ∈ Σε and F ∈ Hp,b(R3). Here, Σε is the set defined in (1.12),

E0F =

α ∫
R3 g dx+ β

∫
R3 h dx

0
0

 , E1F =

E2
3 ∗ (−∆f + g + h)

−f
E1

3 ∗ (h−∆f)

 ,

E1
3(x) =

1
4π|x|

, E2
3(x) = −|x|

8π
,

(2.2)

∗ stands for the convolution operator, ε is given in (2.6), and α and β are non-zero constants
given in (2.11) in the proof below.

Remark 2.2. E1
3(x) and E2

3(x) are fundamental solutions to −∆ and ∆2 in R3, respectively.

Proof. For F ∈ Hp(R3), we set U(λ) = (λI − AR3)−1F . Let Û(λ)(ξ) = T (ûλ(ξ), v̂λ(ξ), θ̂λ(ξ))
be the Fourier transform of U(λ). Then, from Naito and Shibata [16], we have the following
formulas:

ûλ(ξ) =
3∑

j=1

[ A0
j +A1

j +A2
j

(λ+ γj |ξ|2)|ξ|2
|ξ|2f̂(ξ) +

A0
j +A1

j

(λ+ γj |ξ|2)|ξ|2
ĝ(ξ) +

A0
j

(λ+ γj |ξ|2)|ξ|2
ĥ(ξ)

]
,

v̂λ(ξ) =
3∑

j=1

[
−

(A0
j +A1

j )|ξ|2

λ+ γj |ξ|2
f̂(ξ) +

A1
j +A1

2

λ+ γj |ξ|2
ĝ(ξ) +

A1
j

λ+ γj |ξ|2
ĥ(ξ)

]
,

θ̂λ(ξ) =
3∑

j=1

[ A0
j |ξ|2

λ+ γj |ξ|2
f̂(ξ)−

A1
j

λ+ γj |ξ|2
ĝ(ξ) +

A0
j +A2

j

λ+ γj |ξ|2
ĥ(ξ)

]
.

(2.3)

Here, γj (j = 1, 2, 3) are numbers such that

3∏
j=1

(t+ γj) = t3 + t2 + 2t+ 1 for any t ∈ C, (2.4)

0 < γ1 < 1, γ3 is the complex conjugate of γ2 and Re γ2 = (1− γ1)/2 > 0; and A0
j , A

1
j and A2

j

(j = 1, 2, 3) are complex numbers such that

λk∏3
j=1(λ+ γj |ξ|2)

=
3∑

j=1

Ak
j

(λ+ γj |ξ|2)|ξ|4−2k
(k = 1, 2, 3)
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for any ξ ∈ R3 and λ ∈ C with λ+ γj |ξ|2 6= 0 (j = 1, 2, 3). We have the following formulas:

3∑
j=1

A0
j =

3∑
j=1

A1
j = 0,

3∑
j=1

A2
j = 1,

3∑
j=1

A0
j

γj
= 1,

3∑
j=1

A1
j

γj
=

3∑
j=1

A2
j

γj
= 0. (2.5)

Since γ2 and γ3 are complex conjugate and Re γ2 > 0, we may assume that 0 < arg γ2 < π/2.
Let us define ε by the formula:

ε = arg γ2. (2.6)

Since λ + γj |ξ|2 6= 0 for any λ ∈ Σε and ξ ∈ R3, by Fourier multiplier theorem we have
U(λ) = T (uλ, vλ, θλ) ∈ Dp(R3). Moreover, for any ε′ with ε < ε′ < π/2 there exists a constant
C depending on ε′ such that

2∑
j=0

|λ|
2−j
2 ‖∇j(∇2uλ, vλ, θλ)‖

Lp(R3)
≤ C‖F‖

Hp(R3)
,

|λ|‖∇uλ‖Lp(R3)
+ |λ|2‖uλ‖Lp(R3)

≤ C‖(|λ|f, g, h)‖
Lp(R3)

(2.7)

for any λ ∈ Σε′ (cf. Naito-Shibata [16]), where∇jw = (Dαw | |α| = j). From these observations,
we see that ρ(AR3) ⊃ Σε.

Now, restricting ourselves to the case where F ∈ Hp,b(R3), we shall derive an expansion
formula of (λI − AR3)−1F by using the formula (2.3). Let F−1

ξ denote the Fourier inverse
transform, and then we have

F−1
ξ [(λ+ |ξ|2)−1](x) =

e−
√

λ|x|

4π|x|
,

F−1
ξ [(λ+ |ξ|2)−1|ξ|−2](x) = −λ−1

(e−√λ|x|

4π|x|
− 1

4π|x|

) (2.8)

for any λ ∈ C \ (−∞, 0]. Since we have e−
√

λ|x| =
∑∞

j=0(−
√
λ|x|)j/(j!), we have

F−1
ξ [(λ+ |ξ|2)−1](x) =

1
4π|x|

− λ
1
2

4π
H1

1 (λ|x|2) +
λ|x|
8π

H1
2 (λ|x|2), (2.9)

F−1
ξ [(λ+ |ξ|2)−1|ξ|−2](x) =

λ−
1
2

4π
− |x|

8π
+
λ

1
2 |x|2

4π
H2

1 (λ|x|2)− λ|x|3

4π
H2

2 (λ|x|2), (2.10)

where we have set

H2
1 (z) =

∞∑
j=0

zj

(2j + 3)!
, H2

2 (z) =
∞∑

j=0

zj

(2j + 4)!
,

H1
1 (z) = 1 + zH2

1 (z), H1
2 (z) = 1 + 2zH2

2 (z).

Now, we assume that F ∈ Hp,b(R3). Since λ+ γj |ξ|2 = γj(λγ−1
j + |ξ|2), using (2.10) and (2.5),

from (2.3) we have

uλ(x) =
[( 3∑

j=1

A0
j +A1

j√
γj

) 1
4π

∫
R3

g dx+
( 3∑

j=1

A0
j√
γj

) 1
4π

∫
R3

h dx
]
λ−

1
2 + E2

3 ∗ (−∆f + g + h)
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+ λ
1
2

[{( 3∑
j=1

A0
j +A1

j +A2
j

γ
3/2
j

H2
1 (γ−1

j λ|x|2)
) |x|2

4π

}
∗ (−∆f)

+
{( 3∑

j=1

A0
j +A1

j

γ
3/2
j

H2
1 (γ−1

j λ|x|2)
) |x|2

4π

}
∗ g +

{( 3∑
j=1

A0
j

γ
3/2
j

H2
1 (γ−1

j λ|x|2)
) |x|2

4π

}
∗ h

]

+ λ
[{( 3∑

j=1

A0
j +A1

j +A2
j

γ2
j

H2
2 (γ−1

j λ|x|2)
) |x|3

4π

}
∗ (−∆f)

+
{( 3∑

j=1

A0
j +A1

j

γ2
j

H2
1 (γ−1

j λ|x|2)
) |x|3

4π

}
∗ g +

{( 3∑
j=1

A0
j

γ2
j

H2
1 (γ−1

j λ|x|2)
) |x|3

4π

}
∗ h

]
.

Setting

α =
3∑

j=1

A0
j +A1

j√
γj

, β =
3∑

j=1

A0
j√
γj
, (2.11)

we have the first line of the formula (2.1) with (2.2). Using the fact that E1
3 ∗ (−∆f) = f to

obtain the formula for vλ(x), by (2.3), (2.5) and (2.9) we have

vλ(x) = −f + λ
1
2

[( 3∑
j=1

A0
j +A1

j

4πγ3/2
j

H1
1 (γ−1

j λ|x|2)
)
∗ (−∆f)

−
( 3∑

j=1

A1
j +A2

j

4πγ3/2
j

H1
1 (γ−1

j λ|x|2)
)
∗ g −

( 3∑
j=1

A1
j

4πγ3/2
j

H1
1 (γ−1

j λ|x|2)
)
∗ h

]

− λ
[{( 3∑

j=1

A0
j +A1

j

γ2
j

H1
2 (γ−1

j λ|x|2)
) |x|

8π

}
∗ (−∆f)

−
{( 3∑

j=1

A1
j +A2

j

γ2
j

H1
2 (γ−1

j λ|x|2)
) |x|

8π

}
∗ g −

{( 3∑
j=1

A1
j

γ2
j

H1
2 (γ−1

j λ|x|2)
) |x|

8π

}
∗ h

]
,

θλ(x) = E1
3 ∗ (h−∆f)− λ

1
2

[( 3∑
j=1

A0
j

4πγ3/2
j

H1
1 (γ−1

j λ|x|2)
)
∗ (−∆f)

−
( 3∑

j=1

A1
j

4πγ3/2
j

H1
1 (γ−1

j λ|x|2)
)
∗ g +

( 3∑
j=1

A0
j +A1

j

4πγ3/2
j

H1
1 (γ−1

j λ|x|2)
)
∗ h

]

+ λ
[{( 3∑

j=1

A0
j

γ2
j

H1
2 (γ−1

j λ|x|2)
) |x|

8π

}
∗ (−∆f)

−
{( 3∑

j=1

A1
j

γ2
j

H1
2 (γ−1

j λ|x|2)
) |x|

8π

}
∗ g +

{( 3∑
j=1

A0
j +A1

j

γ2
j

H1
2 (γ−1

j λ|x|2)
) |x|

8π

}
∗ h

]
.

This completes the proof of Theorem 2.1.

The next step in the proof of our main results consists in an expansion formula for the
resolvent operator in Ω near λ = 0. We will show the following theorem.
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Theorem 2.3. Let 1 < p < ∞ and b be a positive number such that Bb−3 ⊃ R3 \ Ω. Let U
and Lp,b(Ω) be the same sets as in (1.14) and Theorem 1.3, respectively. Then, there exist a
constant τ > 0, an integer s and operators Gj(λ) ∈ Anal (ωτ ,Lp,b(Ω)) (j = 1, 2) such that

(λI −AΩ)−1F = λ
s
2G1(λ)F + λ

s+1
2 G2(λ)F in Ωb

for any λ ∈ ωτ ∩ U and F ∈ Hp,b(Ω).

In what follows, we shall prove Theorem 2.3. For a given function f defined on Ω, ιf denotes
the zero extension of f to the whole space R3 and rf denotes the restriction of f to the domain
Ωb = Ω ∩ Bb. From Denk, Racke and Shibata [4] (also Simader [23]), we know the unique
existence of a solution U0 = T (u0, v0, θ0) ∈ Dp(Ωb) of the equation:

−AU0 = F in Ωb, BU0|∂Ωb
= 0 (2.12)

for any F ∈ Hp(Ωb), Here, ∂Ωb = Γ ∪ Sb, Sb = {x ∈ R3 | |x| = b} and BU0|∂Ωb
= 0 means that

u0 = Dνu0 = θ0 = 0 on Γ and Sb,

where Dν = (x/|x|) · ∇ on Sb. Let us define the operator SΩb
by the formula: SΩb

F = U0 and
write SΩb

F = (uΩb
, vΩb

, θΩb
) as long as no confusion occurs. Let E0, E1, H1(λ) and H2(λ) be

the same operator as in Theorem 2.1 and set

H(λ) = λ−
1
2E0 + E1 + λ

1
2H1(λ) + λH2(λ). (2.13)

In what follows, we write H(λ)F = (uλ,R3 , vλ,R3 , θλ,R3). Let ϕ be a function in C∞0 (R3) such
that ϕ(x) = 1 for |x| < b−2 and ϕ(x) = 0 for |x| > b−1. With these preparations, we introduce
the operator Φ as follows:

Φ(λ)F = (1− ϕ)H(λ)ιF + ϕSΩb
rF. (2.14)

By Theorem 2.1, we have

Φ(λ)F = (1− ϕ)(λI −AR2)−1ιF + ϕSΩb
rF (2.15)

when λ ∈ Σε. And therefore, applying λI −A to Φ(λ)F , we have

(λI −A)Φ(λ)F = F + T (λ)F in Ω, BΦ(λ)F |Γ = 0 (2.16)

for any λ ∈ Σε, where T (λ)F is defined by the formula:

T (λ)F =

 0
−L3

ϕ(uλ,R2 − uΩb
)− L1

ϕ(θλ,R2 − θΩb
)

L1
ϕ(θλ,R2 − θΩb

) + L1
ϕ(vλ,R2 − vΩb

)

 , (2.17)

L3
ϕ(w) = ∆2(ϕw)− ϕ∆2w, and L1

ϕ(w) = ∆(ϕw)− ϕ∆w. If we consider (2.16) only on Ωb, the
operators in both sides of (2.16) are analytic with respect to λ ∈ C \ (−∞, 0], and therefore by
analytic continuation we have

(λI −A)Φ(λ)F = F + T (λ)F in Ωb, BΦ(λ)F |Γ = 0 (2.18)

for any λ ∈ C \ (−∞, 0]. If (I +T (λ))−1 exists, then Φ(λ)(I +T (λ))−1F solves equations (2.16)
and (2.18).
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Lemma 2.4. Let U and Σε be the same sets as in (1.14) and Theorem 2.1, respectively. Then,
(I + T (λ))−1 exists as a bounded linear operator on Hp,b(Ω) for any λ ∈ U ∩ Σε.

Proof. Let λ ∈ Σε ∩ U . Since the second and third components of T (λ)F belong to W 1
p (Ω) and

suppT (λ)F ⊂ Db−2,b−1 = Bb−1 \ Bb−2, by Rellich’s compactness theorem T (λ) is a compact
operator on Hp,b(Ω). Therefore, to prove the lemma it suffices to show that I+T (λ) is injective.
Let F be an element of Hp,b(Ω) such that (I+T (λ))F = 0. Set U = Φ(λ)F , and then by (2.18)
we have

(λI −A)U = 0 in Ω, BU |Γ = 0.

Since SΩb
rF ∈ Dp(Ωb) and (λI −AR3)−1ιF ∈ Dp(R3) for λ ∈ Σε (cf. (2.7)), by (2.15) we have

U ∈ Dp(Ω). Since U ⊂ ρ(AΩ) as follows from (1.15), we have U = 0, which implies that

(1− ϕ)(λI −AR3)−1ιF + ϕSΩb
rF = 0 in Ω. (2.19)

Recalling that ϕ(x) = 1 for |x| < b− 2 and ϕ(x) = 0 for |x| > b− 1, by (2.19) we have

(λI −AR3)−1ιF = 0 for |x| > b− 1, SΩb
rF = 0 for |x| < b− 2.

If we set V (x) = (SΩb
rF )(x) for x ∈ Ωb and V (x) = 0 for x 6∈ Ω, then V (x) belongs to Dp(Bb)

and satisfies the equation:

(λI −A)V = ιF in Bb, BV |Sb
= 0.

Since (λI −AR3)−1ιF also satisfies the above equation, by the uniqueness of solutions we have
V = (λI − AR3)−1ιF in Bb, and therefore SΩb

F = (λI − AR3)−1ιF in Ωb, which inserted into
(2.19) implies that

0 = (λI −AR3)−1ιF + ϕ(SΩb
F − (λI −AR3)−1ιF ) = (λI −AR3)−1ιF in Ω.

Therefore, F = (λI−A)(λI−AR3)−1ιF = 0 in Ω, which completes the proof of the lemma.

By Lemma 2.4 we have

(λI −AΩ)−1 = Φ(λ)(I + T (λ))−1 (2.20)

for λ ∈ Σε ∩ U .
Now, we shall discuss the invertibility of (I + T (λ)) for λ ∈ ω̇σ with some σ > 0, where we

have set
ω̇σ = {λ ∈ C \ {0} | |λ| < σ and | arg λ| < π}.

For this purpose, we introduce an auxiliary operator:

Φ0F = (1− ϕ)E1ιF + ϕSΩb
rF

for F ∈ Hp,b(Ω), where E1 is the same operator as in Theorem 2.1. Note that

−AE1ιF = ιF in R3.

We write E1ιF = T (u0,R3 , v0,R3 , θ0,R3) unless any confusion may occur. Applying A to Φ0F , we
have

−AΦ0F = F + T0F in Ω, BΦ0F |Γ = 0, (2.21)
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where

T0F =

 0
−L3

ϕ(u0,R3 − uΩb
)− L1

ϕ(θ0,R3 − θΩb
)

L1
ϕ(θ0,R3 − θΩb

) + L1
ϕ(v0,R3 − vΩb

)

 .

Since the second and third members of T0F belong to W 1
p (Ω) and suppT0F ⊂ Db−2,b−1, by

Rellich’s compactness theorem T0 is a compact operator on Hp,b(Ω). According to Theorem
2.1, we set

uλ,R3 =u0,R3 + λ−
1
2T (αg + βh) + Uλ,R3 ,

vλ,R3 =v0,R3 + Vλ,R3 ,

θλ,R3 =θ0,R3 + Θλ,R3 ,

where Ta =
∫

R3 a dx and

T (Uλ,R3 , Vλ,R3 ,Θλ,R3) = λ
1
2H1(λ)ιF + λH2(λ)ιF. (2.22)

Then, we have

(I + T (λ))F = (I + T0)F + λ−
1
2 (∆2ϕ)T (0, T (αg + βh), 0) +R(λ)F (2.23)

where

R(λ)F =

 0
−L3

ϕ(Uλ,R3)− L1
ϕ(Θλ,R3)

L1
ϕ(Θλ,R3) + L1

ϕ(Vλ,R3)

 . (2.24)

In view of (2.22) and (2.24), there exist operators Rj(λ) ∈ Anal (C,L(Hp,b(Ω))) (j = 1, 2) such
that

R(λ)F = λ
1
2R1(λ)F + λR2(λ)F (2.25)

for any λ ∈ C \ (−∞, 0]. In particular, we have

lim
λ→0

‖R(λ)‖L(Hp,b(Ω))
= 0. (2.26)

Here, ‖ · ‖L(Hp,b(Ω))
denotes the operator norm of L(Hp,b(Ω)). Since T0 is a compact operator on

Hp,b(Ω), by Seeley’s lemma [21] there exists a finite range operator B such that I+T0−B has an
inverse operator (I+T0−B)−1 ∈ L(Hp,b(Ω)). Set Gλ = I+T0−B+R(λ) and G0 = I+T0−B,
and then

(I + T (λ))F = GλF +BF + λ−
1
2 (∆2ϕ)T (0, T (αg + βh), 0) (2.27)

Gλ = (I +R(λ)G−1
0 )G0. (2.28)

By (2.26) there exists a τ0 > 0 such that ‖R(λ)G−1
0 ‖L(Hp,b(Ω)

≤ 1/2 for any λ ∈ ω̇τ0 , and therefore
by Neumann series expansion we have

G−1
λ = G−1

0 (I +R(λ)G−1
0 )−1 = G−1

0

∞∑
j=0

(−R(λ)G−1
0 )j (λ ∈ ω̇τ0). (2.29)

In view of (2.25), we see that there exist a τ1 > 0 and operators Gj(λ) ∈ Anal (ωτ1 ,L(Hp,b(Ω))
(j = 1, 2) such that

G−1
λ = λ

1
2G1(λ) +G2(λ) for any λ ∈ ω̇τ1 . (2.30)
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We define the operator B̃ by the formula B̃F = (∆2ϕ)T (0,
∫

R3(αg + βh) dx, 0). As both
operators B and B̃ are finite range operators, we can choose h1, . . . ,hm ∈ Hp,b(Ω) which are
linearly independent over C in such a way that

BF =
m∑

j=1

βj(F )hj , B̃F =
m∑

j=1

β̃j(F )hj

with βj(F ), β̃j(F ) ∈ C. To represent βj(F ), β̃j(F ) ∈ C in more convenient way, we introduce
h∗1, . . ., h∗m ∈ Hp,b(Ω)∗ such that < hj ,h∗k >= δjk, where < ·, · > is the dual paring between
Hp,b(Ω) and its dual space Hp,b(Ω)∗ and δjk denote the Kronecker delta symbols. By using
these symbols, we write

βj(F ) =< BF,h∗j >=< F,B∗h∗j >, β̃j(F ) =< B̃F,h∗j >=< F, B̃∗h∗j > .

Setting `∗aj = B∗h∗j and `∗bj = B̃∗h∗j , we have

BF + λ−
1
2 (∆2ϕ)T (0, T (αg + βh), 0) =

m∑
j=1

< F, `∗aj + λ−
1
2 `∗bj > hj ,

and therefore we have

(I + T (λ))F = GλF +
m∑

j=1

< F, `∗aj + λ−
1
2 `∗bj > hj . (2.31)

Applying G−1
λ to the both side of (2.31), we have

G−1
λ (I + T (λ))F = F +

m∑
j=1

< F, `∗aj + λ−
1
2 `∗bj > G−1

λ hj = (I +Nλ)F (2.32)

where we have defined the operator Nλ by the formula:

NλF =
m∑

j=1

< F, `∗aj + λ−
1
2 `∗bj > G−1

λ hj . (2.33)

Now, we shall show the existence of the inverse operator of I+Nλ. For the notational simplicity,
we set G−1

λ hj = vλ,j and `∗aj + λ−
1
2 `∗bj = Aλ,j . Since {hj}m

j=1 is linearly independent, so is
{vλ,j}m

j=1. Let us consider the m ×m matrix: M(λ) = (δjk+ < vλ,k, Aλ,j >). By (2.30) the

(j, k) component δjk+ < vλ,k, Aλ,j > is of the form: λ−
1
2m1jk(λ)+m2jk(λ), where m1jk(λ) and

m2jk(λ) are complex valued holomorphic functions defined on ωτ1 . Let D(λ) be the determinant
of M(λ). In particular, we can say that D(λ) ≡ 0 on ωτ1 or there exist an integer q1, and
functions Dj(λ) (j = 1, 2) such that

D(λ) = λ
q1
2 D1(λ) + λ

q1+1
2 D2(λ) for λ ∈ ω̇τ1 , (2.34)

D1(0) 6= 0, and Dj(λ) (j = 1, 2) are both holomorphic in ωτ1 . We shall show that

D(λ) 6≡ 0 in ωτ1 . (2.35)
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In fact, let λ ∈ U ∩ Σε ∩ ωτ1 and assume that D(λ) = 0. Then there exists a vector xλ =
T (xλ1, . . . , xλm) ∈ Rm \ {0} such that

0 =
m∑

k=1

(δjk+ < vλ,k, Aλ,j >)xλ,k = xλ,j +
m∑

k=1

< vλ,k, Aλ,j > xλ,k (2.36)

for j = 1, . . . ,m. Set Fλ =
∑m

k=1 xλ,kvλ,k ∈ Hp,b(Ω), and then Fλ 6= 0, because {vλ,k}m
k=1 is

linearly independent. On the other hand, by (2.33) and (2.36)

NλFλ =
m∑

j=1

< Fλ, Aλ,j > vλ,j =
m∑

j,k=1

xλ,k < vλ,k, Aλ,j > vλ,j = −
m∑

j=1

xλ,jvλ,j = −Fλ,

which implies that (I +Nλ)Fλ = 0. And therefore, by (2.32) and (2.31) (I + T (λ))Fλ = 0. On
the other hand, by Lemma 2.4 I + T (λ) is invertible when λ ∈ U ∩ Σε, and therefore we have
Fλ = 0. This leads to a contradiction. Therefore, we have (2.35), and then (2.34) holds.

From (2.34), there exist a constant τ2 (0 < τ2 ≤ τ1) and holomorphic functions Ej(λ)
(j = 1, 2) defined on ωτ2 such that

D−1(λ) = λ−
q1
2 E1(λ) + λ−

q1
2

+ 1
2E2(λ) for λ ∈ ω̇τ2 . (2.37)

By using this fact, we shall show the existence of (I +Nλ)−1. We may assume that D−1(λ) 6= 0
when λ ∈ ωτ2 \ {0}. Let us denote the (j, k) cofactor of M(λ) by Mjk(λ), which has the similar
formula to D−1(λ) in (2.37). We observe that

(I +Nλ)[G−D(λ)−1
m∑

j=1

m∑
k=1

< G,Aλ,k > Mjk(λ)vλ,j ]

= G−D(λ)−1
m∑

j,k=1

< G,Aλ,k > Mjk(λ)vλ,j

+NλG−D(λ)−1
m∑

j,k=1

< G,Aλ,k > Mj,k(λ)Nλvλ,j = (∗).

Since Nλvλ,j =
∑m

`=1 < vλ,j , Aλ,` > vλ,` as follows from (2.33) and our short notation: `∗aj +

λ−
1
2 `∗bj = Aλ,j , we can proceed as follows:

(∗) =G−D(λ)−1
m∑

j,k=1

< G,Aλ,k > Mjk(λ)vλ,j +
m∑

k=1

< G,Aλ,k > vλ,k

−D(λ)−1
m∑

j,k,`=1

< G,Aλ,k > Mjk(λ) < vλ,j , Aλ,` > vλ,`

=G+
m∑

k=1

< G,Aλ,k > vλ,k −D(λ)−1
( m∑
j,k,`=1

(δ`j+ < vλ,j , Aλ,` >)Mjk(λ) < G,Aλ,k >
)
vλ,`

=G+
m∑

k=1

< G,Aλ,k > vλ,k −
m∑

k,`=1

δ`k < G,Aλ,k > vλ,`

=G.
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From this observation and our short notations: G−1
λ hj = vλ,j and `∗aj + λ−

1
2 `∗bj = Aλ,j , we have

(I +N(λ))−1G = G−D(λ)−1
m∑

j,k=1

< G, `∗ak + λ−
1
2 `∗bk > Mjk(λ)G−1

λ hk

for λ ∈ ωτ2 \ {0}. By (2.35), we see that

(I + T (λ))−1 = (I +Nλ)−1G−1
λ

which combined with (2.30) and (2.37) implies that there exist an integer q2 and operators
Tj(λ) ∈ Anal (ωτ2 ,L(Hp,b(Ω))) (j = 1, 2) such that

(I + T (λ))−1 = λ
q2
2 T1(λ) + λ

q2+1
2 T2(λ)

for any λ ∈ ωτ2 \{0}. Combining this fact with (2.20), (2.14) and Theorem 2.1 implies Theorem
2.3.

3 The proofs of Theorems 1.3 and 1.4 in the three-dimensional
case

In what follows, b denotes a large number such that Bb−3 ⊃ R3 \Ω. To prove Theorem 1.3, we
start with the following lemmas.

Lemma 3.1. Let ` be a positive integer and n ∈ {2, 3}. If u ∈ S ′(Rn) ∩ L1,loc(Rn) satisfies the
homogeneous equation:

∆`u = 0 in Rn (3.1)

and the radiation condition:

u(x) = O(|x|m) as |x| → ∞, (3.2)

for some non-negative integer m, then u is a polynomial of order m.

Proof. Since u ∈ S ′(Rn), applying the Fourier transform to (3.1) we have |ξ|2`û(ξ) = 0, which
implies that supp û(ξ) ⊂ {0}. By the structure theorem of distributions, û(ξ) is represented
as follows: û(ξ) =

∑
|α|≤k cαδ

(α)(ξ) for some non-negative integer k, where δ denotes the Dirac
delta function and cα are complex numbers. By the Fourier inverse transform, we have

u(x) =
∑
|α|≤k

cα(−ix)α,

which combined with (3.2) implies that u = u(x) should be a polynomial of order m. This
completes the proof of the lemma.

Lemma 3.2. Let E1 be the same operator as in Theorem 2.1. Given F = T (f, g, h), we set
U = E1F = T (u, v, θ). If F ∈ Hp,b(R3) and∫

R3

(g(x) + h(x)) dx = 0, (3.3)

then

u(x) = O(1), ∇u(x) = O(|x|−1), (3.4)

θ(x) = O(|x|−1) (3.5)

as |x| → ∞.
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Proof. Since
∫

R3(g(y) + h(y)−∆f(y)) dy = 0 as follows from (3.3), by (2.2) we have

u(x) =
−1
8π

∫
R3

(|x− y| − |x|)(g(y) + h(y)−∆f(y)) dy.

By Taylor’s formula we have

|x− y| − |x| =
∫ 1

0

d

dθ
|x− θy| dθ = −

3∑
i=1

∫ 1

0
(xi − θyi)yi|x− θy|−1 dθ,

and therefore

u(x) =
3∑

i=1

∫ 1

0

{∫
R3

(xi − θyi)yi

|x− θy|
(g(y) + h(y)−∆f(y)) dy

}
dθ,

which combined with the fact that g(y) + h(y) −∆f(y) = 0 vanishes for |y| ≥ b implies (3.4).
Since

θ = E1
3 ∗ (h−∆f) =

1
4π|x|

∗ (h−∆f)

and since h(y) − ∆f(y) vanishes for |y| ≥ b, we have (3.5), which completes the proof of the
lemma.

Lemma 3.3. Let 1 < p <∞. (1) If θ ∈W 2
p,loc(Ω) satisfies the homogeneous equation:

∆θ = 0 in Ω, θ|Γ = 0 (3.6)

and the radiation condition:
θ(x) = O(|x|−1) (3.7)

as |x| → ∞, then θ = 0.
(2) If u ∈W 4

p,loc(Ω) satisfies the homogeneous equation:

∆2u = 0 in Ω, u|Γ = Dνu|Γ = 0 (3.8)

and the radiation condition:

u(x) = O(1) (3.9)

as |x| → ∞, then u = 0.

Proof. (1) By Lp (1 < p <∞) solvability in any C2 bounded domain for the Dirichlet problem
of the Laplace operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that
θ ∈ W 2

2,loc(Ω). Let ρ be a function in C∞0 (R3) such that ρ(x) = 1 for |x| ≤ 1 and ρ(x) = 0 for
|x| ≥ 2. Set ρL(x) = ρ(x/L) for L > b. Then, we have

0 = (∆θ, ρLθ)Ω = −(∇θ, ρL∇θ)Ω + (1/2)(θ, (∆ρL)θ)Ω (3.10)

where (a, b)Ω =
∫
Ω a(x)b(x) dx. Since

|(θ, (∆ρL)θ)Ω| ≤ ‖∆ρ‖
L∞(R3)

L−2

∫
L≤|x|≤2L

|θ(x)|2 dx,
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and therefore by (3.7) we see that limL→∞ |(θ, (∆ρL)θ)Ω| = 0. Letting L → ∞ in (3.10), we
have ‖∇θ‖2

L2(Ω)
= 0, which implies that ∇θ = 0, that is θ is a constant. But, θ|Γ = 0, which

means that θ = 0.
(2) By Lp (1 < p < ∞) solvability in any C4 bounded domain for the Dirichlet problem
of the biharmonic operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that
u ∈W 4

2,loc(Ω). First, we shall prove that u = 0 assuming that u satisfies the radiation condition:

u(x) = O(1), ∇u(x) = O(|x|−1) (3.11)

as |x| → ∞. Let ρL be the same function as in the proof of (1), and then we have

0 = (∆2u, ρLu)Ω = −(∇u, (∇∆ρL)u)Ω − 2(∇u, (∇2ρL)∇u)Ω + (∆u, ρL∆u)Ω (3.12)

where ∇u(∇2ρL)∇u =
∑3

j,k=1(DjDkρL)DjuDku. The radiation condition (3.11) implies that

lim
L→∞

(∇u, (∇∆ρL)u)Ω = 0, lim
L→∞

(∇u, (∇2ρL)∇u)Ω = 0,

and therefore letting L→∞ in (3.12), we have ‖∆u‖
L2(Ω)

= 0, which implies that ∆u = 0 in Ω.
Since u|Γ = Dνu|Γ = 0, the zero extension u0 of u to the whole space R3 satisfies the Laplace
equation: ∆u0 = 0 in R3. Since u0(x) = u(x) = O(1) as |x| → ∞, from Lemma 3.1 we see that
u0 is a constant. But, u0(x) = 0 for x ∈ R3 \ Ω, which means that u0 = 0.

Finally, we shall show that the condition (3.9) together with (3.8) implies (3.11). Let ψ be
a function in C∞(R3) such that ψ(x) = 1 for |x| ≥ b + 1 and ψ(x) = 0 for |x| ≤ b. Then, by
(3.8) we have

∆2(ψu) = f in R3, (3.13)

where f(x) = ∆2(ψu) − ψ∆2u. Since supp f ⊂ Bb+1 \ Bb, we have f ∈ L2(R3). Setting
v(x) = −(8π)−1|x| ∗ f , by (3.13) and the fact that −(8π)−1|x| is a fundamental solution to the
biharmonic operator ∆2, we have ∆2(u− v) = 0 in R3. Employing the same argument as in the
proof of Lemma 3.1, we have u(x)− v(x) =

∑
|α|≤m cαx

α for some non-negative integer m and
complex numbers cα. If we write

v(x) = −|x|
8π

∫
R3

f(y) dy − 1
8π

∫
R3

(|x− y| − |x|)f(y) dy,

then by (3.9) we have∑
|α|≤m

cαx
α − |x|

8π

∫
R3

f(y) dy = u(x) +
1
8π

∫
R3

(|x− y| − |x|)f(y) dy = O(1)

as |x| → ∞, which implies that

u(x) = c0 −
1
8π

∫
R3

(|x− y| − |x|)f(y) dy

as |x| → ∞, which implies that |∇u(x)| = O(|x|−1) as |x| → ∞. This completes the proof of
the lemma.

After these preparations, we are now able to prove our main results Theorem 1.3 and The-
orem 1.4 in the case n = 3.
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Proof of Theorem 1.3 for n = 3. Let s, G1(λ) and G2(λ) be the same as in Theorem 2.3 and set
G(λ) = λ

s
2G1(λ) + λ

s+1
2 G2(λ). Let η be a function in C∞(R3) such that η(x) = 1 for |x| ≥ b− 1

and η(x) = 0 for |x| ≤ b − 2. Given F ∈ Hp,b(Ω) and λ ∈ ω̇τ , we set U(λ) = G(λ)F . When
λ ∈ ωτ ∩ U , by (2.20) we have U(λ) = (λI −AΩ)−1F ∈ Dp(Ω), and

(λI −A)U(λ) = F in Ω, BUλ|Γ = 0. (3.14)

Therefore, ηU(λ) ∈ Dp(R3) and ηU(λ) satisfies the equation:

(λI −A)(ηU(λ)) = ηF + g(U(λ)) in R3, (3.15)

where for U = T (u, v, θ) we have set

g(U) =

 0
∆2(ηu)− η∆2u+ ∆(ηθ)− η∆θ
−(∆(ηθ)− η∆θ)− (∆(ηv)− η∆v)

 . (3.16)

Note that supp g(U) ⊂ Db−2,b−1. Since Σε ⊂ ρ(AR3) as follows from Theorem 2.1, we have

ηU(λ) = (λI −AR3)−1(ηF + g(U(λ))) (3.17)

whenever λ ∈ ωτ ∩ U ∩ Σε. Let E0, E1, H1(λ) and H2(λ) be the same operators as in (2.1) of
Theorem 2.1 and let H(λ) be the same operator as in (2.13). By (3.17) and Theorem 2.1 we
have

ηU(λ) = H(λ)(ηF + g(U(λ))) in Ωb (3.18)

whenever λ ∈ ωτ ∩U ∩Σε. But, the both sides in (3.18) are analytic in ω̇τ , and therefore (3.18)
holds for any λ ∈ ω̇τ . In view of Theorem 2.3, we write

U(λ) = λ
s
2V +O(λ

s+1
2 ) in Ωb (3.19)

as |λ| → 0. We shall show that s = 0 by contradiction. Since

(λI −A)U(λ) = F in Ωb, BF |Γ = 0

for any λ ∈ ω̇τ as follows from (3.14) and Theorem 2.3, we have

λ
s
2 (−AV ) +O(λ

s+1
2 ) = F in Ωb, (λ

s
2BV +O(λ

s+1
2 ))|Γ = 0. (3.20)

If s > 0, then letting λ → 0, we have F = 0, which leads to a contradiction. Therefore, s 5 0.
Assume that s < 0. We choose F ∈ Hp,b(Ω) such that V 6= 0. Multiplying (3.20) by λ−

s
2 and

letting λ→ 0, we have
−AV = 0 in Ωb, BV |Γ = 0. (3.21)

On the other hand, inserting (3.19) into (3.18) and using (3.16), we have

ηλ
s
2V +O(λ

s+1
2 ) = [λ−

1
2E0 + E1 + λ

1
2H1(λ) + λH2(λ)](ηF + λ

s
2 g(V ) +O(λ

s+1
2 )),

and equating the terms: λ
s
2 , λ

s
2
− 1

2 , we have

E0g(V ) = 0, (3.22)

ηV = E1g(V ) + E0ηF
1 in Ωb, (3.23)
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where we have set

F 1 =

{
F s = −1,
0 s ≤ −2.

We extend V by the formula: V = E1g(V ) + E0ηF for |x| ≥ b− 1. By the definitions of E0 and
E1, we have

−AV = g(V ) = 0 for |x| ≥ b− 1 (3.24)

because supp g(V ) ⊂ Db−2,b−1. If we write V = T (u0, v0, θ0), then noting that η(x) = 1 for
|x| ≥ b − 1, by (3.23) u0 ∈ W 4

p,loc(Ω), v0, θ0 ∈ W 2
p,loc(Ω). Moreover, by (3.21) and (3.24), V

satisfies the homogeneous equation:

−AV = 0 in Ω, BV |Γ = 0. (3.25)

On the other hand, if we set g(V ) = T (0, g0, h0) and F 1 = T (f, g, h), then by (3.23) and Theorem
2.1 we have

V (x) = T (E2
3 ∗ (g0 + h0) + αTηg + βTηh, 0, E1

3 ∗ h0) (3.26)

for |x| ≥ b− 1. By (3.22) we have

α

∫
R3

g0 dx+ β

∫
R3

h0 dx = 0. (3.27)

In particular, by (3.25) we have v0 = 0.
Now, we shall show that θ0 = u0 = 0. By (3.26) we have

θ0(x) =
1

4π|x|
∗ h0 for |x| > b− 1. (3.28)

Moreover, by (3.25) we have
∆θ0 = 0 in Ω, θ0|Γ = 0. (3.29)

Since h0(x) = 0 for |x| ≥ b − 1, we have θ0(x) = O(|x|−1) as |x| → ∞, so that by Lemma 3.3
we see that θ0(x) = 0. Therefore, we have

0 =
1
4π

∫
R3

h0(y)
|x− y|

dy =
1

4π|x|

∫
R3

h0(y) dy +
1
4π

∫
R3

( 1
|x− y|

− 1
|x|

)
h0(y) dy

when |x| > b. Since the last term of the right hand side = O(|x|−2) as |x| → ∞, we have∫
R3

h0(y) dy = 0 (3.30)

Combining (3.30) with (3.27) implies that∫
R3

g0(y) dy = 0 (3.31)

because α 6= 0. By (3.26), u0 = E2
3 ∗ (g0 + h0) + αTηg + βTηh. By (3.30) and (3.31),

[E2
3 ∗ (g0 + h0)](x) =

−1
8π

∫
R3

|x− y|(g0(y) + h0(y)) dy

= − 1
8π

∫
R3

[|x− y| − |x|](g0(y) + h0(y)) dy

= − 1
8π

3∑
j=1

∫ 1

0

{∫
R3

(xi − θyi)yi

|x− θy|
(g0(y) + h0(y)) dy

}
dθ
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when |x| > b. Since g0(y) = h0(y) = 0 for |y| ≥ b− 1 and since αTηg + βTηh is a constant, we
have u0(x) = O(1) as |x| → ∞. Since

∆2u0 = 0 in Ω u0|Γ = Dνu0|Γ = 0

as follows from (3.25), by Lemma 3.3 we have u0 = 0, and therefore V = 0, which leads to
a contradiction. This implies that s = 0, which combined with Theorem 2.3 implies Theorem
1.3.

Proof of Theorem 1.4 in the case n = 3. Let τ , G1(λ) and G2(λ) be the same constant and op-
erators in Theorem 1.3. And, let U be the same domain in C as in (1.14). Let Γ = Γ+∪Γ0∪Γ−
be a path in C defined by the formulas:

Γ+ : λ = sei(π−θ), s : ∞→ (τ/2)(cos θ)−1,

Γ0 : λ = (τ/2)(cos θ)−1eis, s : π − θ → −(π − θ),

Γ− : λ = se−i(π−θ), s : (τ/2)(cos θ)−1 →∞,

where θ ∈ (0, π/2) is chosen so close to π/2 that Γ ⊂ U . By (1.11) and (1.13) we have

T (t)F =
1
2π

∫
Γ
(λI −AΩ)−1F dλ.

To estimate T (t)F , let us set

I± =
1
2π

∫
Γ±

(λI −AΩ)−1F dλ,

I0 =
1
2π

∫
Γ0

(λI −AΩ)−1F dλ.

By (1.13) we have

‖I±(t)‖Dp(Ω)
≤ C

∫ ∞

(τ/2)(cos θ)−1

es cos θ(π−θ)t ds‖F‖Hp(Ω)
=

C

(cos θ)t
e−(τ/2)t‖F‖Hp(Ω)

for any t > 0 and F ∈ Hp(Ω). To estimate I0(t), we restrict ourselves to the case where
F ∈ Hp,b(Ω). Let C = C1 ∪ C+ ∪ C− ∪ C2 be a path defined by the formulas:

C1 : λ = −(τ/2) + is, s : (τ/2) tan θ → 0,

C+ : λ = eπis, s : τ/2 → 0,

C− : λ = e−πis, s : 0 → τ/2,
C2 : λ = −(τ/2) + is, s : 0 → −(τ/2) tan θ.

Then, by Theorem 1.3 we have

I0(t) =
1

2πi

{∫
C1

+
∫

C+

+
∫

C−

+
∫

C2

}
eλt(λ

1
2G1(λ) + G2(λ))F dλ in Ωb for any t > 0.

We have ∥∥∥ 1
2πi

{∫
C1

+
∫

C2

}
eλt(λ

1
2G1(λ) + G2(λ))F dλ

∥∥∥
Dp(Ωb)

≤ Ce−(τ/2)t

∫ (τ/2) tan θ

0
dλ‖F‖Hp(Ω)

≤ C(τ/2)(tan θ)e−(τ/2)t‖F‖Hp(Ω)
.
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Since G2(λ) ∈ Anal (ωτ ,L(Hp,b(Ω),Dp,loc(Ωb))), we have{∫
C+

+
∫

C−

}
eλtG2(λ)F dλ = 0.

On the other hand, we have∥∥∥{∫
C+

+
∫

C−

}
eλtλ

1
2G1(λ)F dλ

∥∥∥
Dp,loc(Ωb)

≤ C

∫ (τ/2)

0
s

1
2 e−st ds ‖F‖Hp(Ω)

≤ Ct−
3
2

∫ ∞

0
`e−` d` ‖F‖Hp(Ω)

.

Combining these estimates, we have Theorem 1.4.

4 Expansion formulas in two dimensions

In the following two sections, we will prove our main results Theorems 1.3 and 1.4 in the two-
dimensional case. Although the structure of the proofs is the same as for n = 3, the asymptotic
expansion is more involved. We will start with the expansion formula for the whole space R2.

Theorem 4.1. Let 1 < p < ∞ and b > 0. Let Lp,b(R2) be the set of all bounded linear
operators from Hp,b(R2) into Dp,loc(Bb) and ρ(AR2) the resolvent set of AR2. Then, there exist
constants ε ∈ (0, π/2) and operator-valued functions Hj(λ) ∈ Anal (C,Lp,b(R2)) (j = 1, 2) such
that ρ(AR2) ⊃ Σε and

(λI −AR2)−1F = λ−1E0F + log λE1F + E2F + E3F + λ log λH1(λ)F + λH2(λ)F in Bb (4.1)

for any λ ∈ Σε and F ∈ Hp,b(R2). Here, Σε is the set defined in (1.12), E0, E1 and E2 are
operators in L(Hp,b(R2),Dp,loc(Bb)) defined by the formulas:

E0F =

α2

∫
R2 g dx+ α3

∫
R2 h dx

0
0

 , E1F =

 |x|2
16π ∗ (−∆f + g + h)

0
− 1

4π

∫
R2 h dx

 ,

E2F =


β1|x|2
16π ∗ (−∆f) + β2|x|2

16π ∗ g + β3|x|2
16π ∗ h

δ22
∫

R2 g dx+ δ23
∫

R2 h dx

δ32
∫

R2 g dx+ δ33
∫

R2 h dx

 , E3F =

E2
3 ∗ (−∆f + g + h)

−f
E1

3 ∗ (h−∆f)

 ,

E1
2(x) = − 1

2π
(log |x| − log 2 + γ), E2

2(x) =
1
8π
|x|2 log |x| − 1

8π
(log 2− γ + 1)|x|2,

(4.2)

∗ stands for the convolution operator, γ is the Euler number, ε is given in (2.6), and α2, α3,
β1, β2, β3, δ22, δ

2
3, δ

3
2 and δ33 are non-zero constants which will be given in the proof below.

Remark 4.2. E1
2(x) and E2

2(x) are fundamental solutions of −∆ and ∆2 in R2, respectively.

Proof. As in the proof for the three-dimensional case (Theorem 2.1), we have the representation
formulas (2.3) or ûλ, v̂λ, and θ̂λ. But now the inverse Fourier transform is given by

F−1
ξ [(λ+ |ξ|2)−1](x) = K0(

√
λ|x|),
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for λ ∈ C \ (−∞, 0], where K0 stands for a modified Bessel function of order zero. We know
that

K0(z) =
1
2π

[
(− log z)

∞∑
m=0

1
(m!)2

(z
2

)2m
+

∞∑
m=0

ψ(m+ 1)
(m!)2

(z
2

)2m]
,

where ψ(z) is the psi function and for any integer m ≥ 1 we have

ψ(1) = −γ, ψ(m) = −γ + 1 + · · ·+ 1
m− 1

(m ≥ 2).

Setting

h1(z) =
∞∑

m=0

1
((m+ 2)!)2

(z
4

)m
, h2(z) =

∞∑
m=0

ψ(m+ 3)
((m+ 2)!)2

(z
4

)m
,

we have

K0(z) =
1
2π

[
(− log z)(1 +

z2

4
+
z4

16
h1(z)) + ψ(1) + ψ(2)

z2

4
+
z4

16
h2(z)

]
. (4.3)

By (4.3) we have

F−1
ξ [(λ+ |ξ|2)−1](x) = − 1

4π
log λ+ E1

2(x)− |x|2

16π
λ log λ

− λE2
2(x)− λ2 log λ

|x|2

64π
h1(λ|x|2)− λ2 |x|2

32π
{
(log |x|+ 1)h1(λ|x|2) + h2(λ|x|2)

}
.

(4.4)

Using the resolvent formula

−λ−1((λ−∆)−1 − (−∆)−1) = (λ−∆)−1(−∆)−1,

by (4.4) we have

F−1
ξ [(λ+ |ξ|2)−1|ξ|−2](x) = −λ−1(F−1

ξ [(λ+ |ξ|2)−1](x)− E1
2(x))

=
1
4π
λ−1 log λ+

|x|2

16π
log λ+ E2

2(x) + λ log λ
|x|2

16π
h1(λ|x|2)

+ λ
|x|
32π

((log |x|+ 1)h1(λ|x|2) + h2(λ|x|2)).

Therefore, setting

H2
1 (λ, |x|) =

|x|2

64π
h1(λ|x|2), H2

2 (λ, |x|) =
|x|2

32π
((log |x|+ 1)h1(λ|x|2) + h2(λ|x|2)),

H1
1 (λ, |x|) = −|x|

2

16π
− λH2

1 (λ, |x|), H1
2 (λ, |x|) = −E2

2(x)−H2
2 (λ, |x|),

we have

F−1
ξ [(λ+ |ξ|2)−1](x) = − 1

4π
log λ+ E1

2(x) + λ log λH1
1 (λ, |x|) + λH1

2 (λ, |x|), (4.5)

F−1
ξ [(λ+ |ξ|2)−1|ξ|−2](x) =

1
4π
λ−1 log λ+

|x|2

16π
log λ+ E2

2(x)

+ λ log λH2
1 (λ, |x|) + λH2

2 (λ, |x|). (4.6)
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Using (4.5) and (2.5), from (2.3) we have

uλ(x) =λ−1
(
α2

∫
R2

g dx+ α3

∫
R2

h dx
)

+ log λ
( |x|2

16π
∗ (−∆f + g + h)

)
+
β1|x|2

16π
∗ (−∆f) +

β2|x|2

16π
∗ g +

β3|x|2

16π
∗ h+ E2

2 ∗ (−∆f + g + h)

+ λ log λK1
1 (λ)F + λK1

2 (λ)F,

where we have set

α2 =
3∑

j=1

(A0
j +A1

j ) log γ−1
j

4π
, α3 =

3∑
j=1

A0
j log γ−1

j

4π
,

β1 =
3∑

j=1

A0
j +A1

j +A2
j

γj
log γ−1

j , β2 =
3∑

j=1

A0
j +A1

j

γj
log γ−1

j , β3 =
3∑

j=1

A0
j

γj
log γ−1

j ,

K1
1 (λ)F =

3∑
j=1

A0
j +A1

j +A2
j

γ2
j

H2
1 (γ−1

j λ, |x|) ∗ (−∆f) +
3∑

j=1

A0
j +A1

j

γ2
j

H2
1 (γ−1

j λ, |x|) ∗ g

+
3∑

j=1

A0
j

γ2
j

H2
1 (γ−1

j λ, |x|) ∗ h,

K1
2 (λ)F =

{ 3∑
j=1

A0
j +A1

j +A2
j

γ2
j

log γ−1
j H2

1 (γ−1
j λ, |x|)

+
3∑

j=1

A0
j +A1

j +A2
j

γ2
j

H2
2 (γ−1

j λ, |x|)
}
∗ (−∆f)

+
{ 3∑

j=1

A0
j +A1

j

γ2
j

log γ−1
j H2

1 (γ−1
j λ, |x|) +

3∑
j=1

A0
j +A1

j

γ2
j

H2
2 (γ−1

j λ, |x|)
}
∗ g

+
{ 3∑

j=1

A0
j

γ2
j

log γ−1
j H2

1 (γ−1
j λ, |x|) +

3∑
j=1

A0
j

γ2
j

H2
2 (γ−1

j λ, |x|)
}
∗ h.

Since E1
2 ∗ (−∆f) = f and

∫
R2 ∆f dx = 0, by (2.3), (2.5) and (4.5) we have

vλ(x) = −f + δ22

∫
R2

g dx+ δ23

∫
R2

h dx+ λ log λK2
1 (λ)F + λK2

2 (λ)F,

where we have set

δ22 =
1
4π

3∑
j=1

A1
j +A2

j

γj
log γj , δ

2
3 =

1
4π

3∑
j=1

A1
j

γj
log γj ,

K2
1 (λ)F = −

3∑
j=1

A0
j +A1

j

γ2
j

H1
1 (γ−1

j λ, |x|) ∗ (−∆f) +
3∑

j=1

A1
j +A2

j

γ2
j

H1
1 (γ−1

j λ, |x|) ∗ g

+
3∑

j=1

A1
j

γ2
j

H1
1 (γ−1

j λ, |x|) ∗ h,

21



K2
2 (λ)F = −

{ 3∑
j=1

A0
j +A1

j

γ2
j

log γ−1
j H1

1 (γ−1
j λ, |x|) +

3∑
j=1

A0
j +A1

j

γ2
j

H1
2 (γ−1

j λ, |x|)
}
∗ (−∆f)

+
{ 3∑

j=1

A1
j +A2

j

γ2
j

log γ−1
j H1

1 (γ−1
j λ, |x|) +

3∑
j=1

A1
j +A2

j

γ2
j

H1
2 (γ−1

j λ, |x|)
}
∗ g

+
{ 3∑

j=1

A1
j

γ2
j

log γ−1
j H1

1 (γ−1
j λ, |x|) +

3∑
j=1

A1
j

γ2
j

H1
2 (γ−1

j λ, |x|)
}
∗ h.

Since E1
2 ∗ (−∆f) = f , by (2.3), (2.5) and (4.5) we have

θλ(x) = − 1
4π

log λ
∫

R2

h dx+ E1
2 ∗ (h−∆h) + δ32

∫
R2

g dx+ δ33

∫
R2

h dx

+ λ log λK3
1 (λ)F + λK3

2 (λ)F,

where we have set

δ32 =
1
4π

3∑
j=1

A1
j

γj
log γj , δ

3
3 =

1
4π

3∑
j=1

A0
j +A1

j

γj
log γj ,

K3
1 (λ)F =

3∑
j=1

A0
j

γ2
j

H1
1 (γ−1

j λ, |x|) ∗ (−∆f)−
3∑

j=1

A1
j

γ2
j

H1
1 (γ−1

j λ, |x|) ∗ g

+
3∑

j=1

A0
j +A2

j

γ2
j

H1
1 (γ−1

j λ, |x|) ∗ h,

K3
2 (λ)F =

{ 3∑
j=1

A0
j

γ2
j

log γ−1
j H1

1 (γ−1
j λ, |x|) +

3∑
j=1

A0
j +A1

j

γ2
j

H1
2 (γ−1

j λ, |x|)
}
∗ (−∆f)

−
{ 3∑

j=1

A1
j

γ2
j

log γ−1
j H1

1 (γ−1
j λ, |x|) +

3∑
j=1

A1
j +A2

j

γ2
j

H1
2 (γ−1

j λ, |x|)
}
∗ g

+
{ 3∑

j=1

A0
j +A2

j

γ2
j

log γ−1
j H1

1 (γ−1
j λ, |x|) +

3∑
j=1

A1
j

γ2
j

H1
2 (γ−1

j λ, |x|)
}
∗ h.

This completes the proof of Theorem 4.1.

The analogue of Theorem 2.3 for n = 2 reads as follows.

Theorem 4.3. Let 1 < p < ∞ and let U be the same set as in (1.14). Then, there exist a
constant τ > 0 and an operator valued function G(λ) ∈ Anal (ω̇τ ,Lp,b(Ω)) such that

(λI −AΩ)−1F = G(λ)F in Ωb

for any λ ∈ ωτ ∩ U and F ∈ Hp,b(Ω).
Moreover, there exist integers s, β, a constant coefficient polynomial L(t), a polynomial

M(t) whose coefficients belong to Lp,b(Ω) and a positive constant C such that

‖G(λ)F − λs(M(log λ)/L(log λ))F‖Dp,loc(Ωb)
≤ C|λs+1(log λ)β |‖F‖Hp,b(Ω)

(4.7)

for any λ ∈ ω̇τ and F ∈ Hp,b(Ω).
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Proof. The proof follows the lines of the proof of Theorem 2.3 but now the expansion formula
is more complicated. Instead of (2.13) we now set

H(λ) = λ−1E0 + log λE1 + E2 + E3 + λ log λH1(λ) + λH2(λ), (4.8)

where the operators E0, E1, E2, E3, H1(λ) and H2(λ) are given in Theorem 4.1. Defining again
Φ(λ) by (2.14), we obtain

(λI −A)Φ(λ)F = F + T (λ)F in Ω, BΦ(λ)F |Γ = 0 (4.9)

for any λ ∈ Σε, where T (λ)F is defined by (2.17). The proof of Lemma 2.4 works also for n = 2,
so (I + T (λ))−1 exists as a bounded linear operator on Hp,b(Ω) for any λ ∈ U ∩Σε and we have

(λI −AΩ)−1 = Φ(λ)(I + T (λ))−1 (4.10)

for λ ∈ Σε ∩ U .
To discuss the invertibility of I + T (λ) for λ ∈ ω̇σ, we consider

Φ0F = (1− ϕ)E3ιF + ϕSΩb
rF

for F ∈ Hp,b(Ω), where E3 is the same operator as in Theorem 4.1. Note that

−AE3ιF = ιF in R2.

We write E3F = T (u0,R2 , v0,R2 , θ0,R2) to avoid any confusion, if necessary. Applying A to Φ0F ,
we have

−AΦ0F = F + T0F in Ω, BΦ0F |Γ = 0, (4.11)

where

T0F =

 0
−L3

ϕ(u0,R2 − uΩb
)− L1

ϕ(θ0,R2 − θΩb
)

L1
ϕ(θ0,R2 − θΩb

) + L1
ϕ(v0,R2 − vΩb

)

 .

Since the second and third members of T0F belong to W 1
p (Ω) and suppT0F ⊂ Db−2,b−1, by

Rellich’s compactness theorem, T0 is a compact operator on Hp,b(Ω). According to Theorem
4.1, we set

uλ,R2 =u0,R2 + λ−1S0(α2g + α3h) + log λ
|x|2

16π
∗ (−∆f + g + h) + Uλ,R2 ,

vλ,R2 =v0,R2 + S0(δ22g + δ23h) + Vλ,R2 ,

θλ,R2 =θ0,R2 − log λ
1
4π
S0h+ S0(δ32g + δ33h) + Θλ,R2 ,

where S0a =
∫

R2 a dx and

T (Uλ,R2 , Vλ,R2 ,Θλ,R2) = λ log λH1(λ)F + λH2(λ)F. (4.12)

Then, we have

(I + T (λ))F = (I + T0)F + λ−1R0F + log λR1F +R2F +R(λ)F (4.13)

where

R0F = −(∆2ϕ)

 0
S0(α2g + α3h)

0

 , R1F =

 0
−L3

ϕ

(
|x|2
16π ∗ (−∆f + g + h)

)
+ 1

4π (∆ϕ)S0h

− 1
4π (∆ϕ)S0h

 ,
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R2F = −(∆ϕ)

 0
0

S0(δ22g + δ23h)

 , R(λ)F =

 0
−L3

ϕ(Uλ,R2)− L1
ϕ(Θλ,R2)

L1
ϕ(Θλ,R2) + L1

ϕ(Vλ,R2)

 . (4.14)

In view of (4.12) and (4.14), there exist operators Rj(λ) ∈ Anal (C,L(Hp,b(Ω))) (j = 1, 2) such
that

R(λ)F = λ log λR1(λ)F + λR2(λ)F (4.15)

for any λ ∈ C \ (−∞, 0]. In particular, we have

lim
λ→0

‖R(λ)‖L(Hp,b(Ω))
= 0. (4.16)

Here, ‖ · ‖L(Hp,b(Ω))
denotes the operator norm of L(Hp,b(Ω)). Since T0 is a compact operator on

Hp,b(Ω), by Seeley’s lemma [21] there exists a finite range operator B such that I+T0−B has an
inverse operator (I+T0−B)−1 ∈ L(Hp,b(Ω)). Set Gλ = I+T0−B+R(λ) and G0 = I+T0−B,
and then

(I + T (λ))F = GλF +BF + SλF, (4.17)

Gλ = (I +R(λ)G−1
0 )G0. (4.18)

By (4.16) there exists a τ0 > 0 such that ‖R(λ)G−1
0 ‖L(Hp,b(Ω))

≤ 1/2 for any λ ∈ ω̇τ0 , and
therefore by Neumann series expansion we have

G−1
λ = G−1

0 (I +R(λ)G−1
0 )−1 = G−1

0

∞∑
j=0

(−R(λ)G−1
0 )j (λ ∈ ω̇τ0). (4.19)

In view of (4.15), we have

G−1
λ =

∞∑
j=0

[ j∑
k=0

Gjk(log λ)k
]
λj (4.20)

where Gjk ∈ L(Hp,b(Ω)). The right-hand side of (4.20) is absolutely and uniformly convergent
with operator norm in ω̇τ0 , that is

∞∑
j=0

[ j∑
k=0

‖Gjk‖L(Hp,k(Ω))
| log λ|k

]
|λ|j <∞ (λ ∈ ω̇τ0).

Since B is a finite range operator, there exists a finite number of elements k1, . . ., kk ∈ Hp,b(Ω)
such that

BF =
k∑

j=1

αj(F )kj (αj(F ) ∈ C).

On the other hand, if we define the operators S0, S1 and S2 by the formula:

S0k =
∫

R2

k(y) dy, S1k =
∫

R2

yk(y) dy, S2k =
∫

R2

|y|2k(y) dy (4.21)

for k ∈ Hp,b(Ω) (S0 was already defined before (4.12)), then we can write

L3
ϕ

( |x|2
16π

∗ k
)

=
∆2ϕ

16π
(|x|2S0k − 2x · S1k + S2k) +

∇∆ϕ
2π

· (xS0k − S1k) +
∆ϕ
2π

S0k, (4.22)
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where · stands for the usual inner product in R2. For the notational simplicity, now we set

Sλ = λ−1R0 + log λR1 +R2

in the formula (4.13). From above observation we see that there exists a finite number of
k̃j ∈ Hp,b(Ω) (j = 1, . . . , `+ 1) such that SλF is written in the form:

SλF = λ−1β1(F )k̃1 + log λ
∑̀
j=2

βj(F )k̃j + β`+1(F )k̃`+1 (βj(F ) ∈ C).

There exist h1, . . ., hm ∈ Hp,b(Ω) which are linearly independent over C such that

BF + SλF = λ−1W 1F + log λW 2F +W 3F, W kF =
m∑

j=1

γk
j (F )hj (k = 1, 2, 3) (γk

j (F ) ∈ C).

To represent γk
j (F ), we introduce h∗1, . . ., h∗m ∈ Hp,b(Ω)∗ such that < hj ,h∗k >= δjk where

< ·, · > is the dual paring between Hp,b(Ω) and its dual space Hp,b(Ω)∗ and δjk denotes the
Kronecker delta symbol. Using these symbols, we write

γk
j (F ) =< W kF,h∗j >=< F, (W k)∗h∗j > .

Setting `∗kj = (W k)∗h∗j , we have

BF + SλF =
m∑

j=1

< F, λ−1`∗1j + log λ`∗2j + `∗3j > hj ,

and therefore, we have

(I + T (λ))F = GλF +
m∑

j=1

< F, λ−1`∗1j + log λ`∗2j + `∗3j > hj . (4.23)

Applying G−1
λ to the both side of (4.23), we have

G−1
λ (I + T (λ))F = F +

m∑
j=1

< F, λ−1`∗1j + log λ`∗2j + `∗3j > G−1
λ hj = (I +Nλ)F, (4.24)

where we have defined the operator Nλ by the formula:

NλF =
m∑

j=1

< F, λ−1`∗1j + log λ`∗2j + `∗3j > G−1
λ hj . (4.25)

Now, we shall show the existence of the inverse operator to I + Nλ. For the notational
simplicity, we set G−1

λ hj = vλ,j and λ−1`∗1j + log λ`∗2j + `∗3j = Aλ,j . Since {hj}m
j=1 is linearly

independent, so is {vλ,j}m
j=1. Let us consider the m×m matrix: M(λ) = (δjk+ < vλ,k, Aλ,j >).

By (4.20) the (j, k) component δjk+ < vλ,k, Aλ,j > is of the form: λ−1m1jk(λ)+ log λm2jk(λ)+
+m3jk(λ). Here, mijk(λ) are usual complex valued holomorphic functions defined on ˙ωτ0 and
have the expansion formulas:

mijk(λ) =
∞∑

b=0

[ b∑
a=0

βa,b
ijk(log λ)a

]
λb (βa,b

ijk ∈ C), (4.26)
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where the right-hand side is absolutely and uniformly convergent in ω̇τ0 . Let D(λ) be the
determinant of M(λ). In view of (4.26), we have

det(λM(λ)) =
∞∑

b=0

[ b∑
a=0

δa,b(log λ)a
]
λb (δa,b ∈ C),

where the right-hand side is absolutely and uniformly convergent in ω̇τ0 , and therefore we have

D(λ) = λ−m
∞∑

b=0

[ b∑
a=0

δa,b(log λ)a
]
λb (4.27)

for λ ∈ ω̇τ0 . In particular, we can say that D(λ) ≡ 0 on Uτ1 or there exists an integer γ such
that

b∑
a=0

δa,b(log λ)a ≡ 0 (b < γ),
γ∑

a=0

δa,γ(log λ)a 6≡ 0 (4.28)

for any λ ∈ ω̇τ0 . In the latter case, choosing τ0 smaller if necessary, we may assume that

γ∑
a=0

δa,γ(log λ)a 6= 0 for any λ ∈ ω̇τ0 . (4.29)

In the same way as for n = 3, one can show that

D(λ) 6≡ 0 in Uτ1 . (4.30)

By (4.27) and (4.28) we write

D(λ) = λ−m
∞∑

b=γ

[ b∑
a=0

δa,b(log λ)a
]
λb = λ−m+γ

∞∑
b=0

Lb(log λ)λb,

where we have set Lb(t) =
∑b+γ

a=0 δ
a,b+γta. Since L0(log λ) 6= 0 (λ ∈ ω̇τ0) as follows from (4.29),

we write

D(λ) = λ−m+γL0(log λ)
[
1 +

∞∑
b=1

Lb(log λ)
L0(log λ)

λb
]
.

Since

lim
λ→0

∞∑
b=1

Lb(log λ)
L0(log λ)

λb = 0,

there exists a τ1 (0 < τ1 ≤ τ2) such that∣∣∣ ∞∑
b=1

Lb(log λ)
L0(log λ)

λb
∣∣∣ ≤ 1/2 (λ ∈ ω̇τ1),

and therefore we have

D(λ)−1 = λm−γL0(log λ)−1
[
1 +

∞∑
j=1

{ ∞∑
b=1

Lb(log λ)
L0(log λ)

λb
}j]

= λm−γL0(log λ)−1
[
1 +

∞∑
j=1

{ ∞∑
b=1

Lb(log λ)L0(log λ)b−1
( λ

L0(log λ)

)b}j]
.
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Since Lb(t)L0(t)b−1 is a polynomial of degree not greater than b(γ + 1), we can write

D(λ)−1 =
λm−γ

L0(log λ)

[
1 +

∞∑
j=1

Pj(γ+1)(log λ)
( λ

L0(log λ)

)j]
, (4.31)

where Pj(γ+1)(t) is a polynomial of degree not greater than j(γ + 1).
Similar to the case n = 3, one can show that the inverse of I+N(λ) exists and has the form

(I +N(λ))−1G = G−D(λ)−1
m∑

j,k=1

< G,λ−1`∗1j + log λ`∗2j + `3j > Mjk(λ)G−1
λ hk

for λ ∈ ω̇τ1 , which combined with (4.20) and (4.31) implies that there exists an integer s such
that

(I + T (λ))−1 =
λs

L0(log λ)

∞∑
j=0

Qj(γ+1)(log λ)
( λ

L0(log λ)

)j
, (4.32)

where Qj(γ+1)(t) is a polynomial of degree not greater than j(γ + 1), whose coefficients belong
to L(Hp,b(Ω)). In fact, by (4.20) we have

G−1
λ =

∞∑
j=0

[ j∑
k=0

Gjk(log λ)k
]
λj =

∞∑
j=0

{[ j∑
k=0

Gjk(log λ)k
]
L0(log λ)j

}( λ

L0(log λ)

)j
.

If we set G̃j(γ + 1)(t) = (
∑j

k=0Gjkt
k)L0(t)j , then G̃j(t) is a polynomial of degree not greater

than j(γ + 1) and we have

G−1
λ =

∞∑
j=0

G̃j(γ+1)(log λ)
( λ

L0(log λ)

)j
.

And also, setting Mγ+1(t) = tL0(t)`∗2j + L0(t)`∗3j , we can write

λ−1`∗1j + log λ`∗2j + `∗3j = λ−1
[
`∗1j +Mγ+1(log λ)

λ

L0(λ)

]
,

where Mγ+1(t) is a polynomial of degree not greater than γ + 1. Therefore, we have (4.32).
Combining (4.32) with (2.20), (2.14) and Theorem 4.1 implies Theorem 4.3.

5 The proofs of Theorems 1.3 and 1.4 for n = 2

To prove Theorem 1.3, we start with the following lemmas.

Lemma 5.1. Let E1
2 and E2

2 be the fundamental solutions of −∆ and ∆2 given in Theorem
4.1, respectively. Given g, h ∈ Lp,b(R2), we set u = E2

2 ∗ g and θ = E1
2 ∗ h. If

S0g = S1g = S0h = 0 (5.1)

then

u(x) = O(log |x|), ∇u(x) = O(|x|−1), ∇2u(x) = O(|x|−2), ∇3u(x) = O(|x|−3), (5.2)

θ(x) = O(|x|−1), ∇θ(x) = O(|x|−2) (5.3)

as |x| → ∞, where S0, S1 and S2 are the same operators as in (4.21).
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Proof. From (4.2) we have

u(x) =
1
8π

∫
R2

(|x− y|2 log |x− y| − c1|x− y|2)g(y) dy,

θ(x) = − 1
2π

∫
R2

(log |x− y| − c2)h(y) dy

where c1 = log 2− γ + 1 and c2 = − log 2 + γ. By Taylor expansion, we have

|x− y|2 log |x− y| − c1|x− y|2 = |x|2 log |x| − c1|x|2 − 2 log |x|(x · y)
− (1− 2c1)(x · y) + (log |x|)|y|2 +O(1)

(5.4)

as |x| → ∞ when |y| ≤ b, and therefore,

u(x) =(8π)−1((|x|2 log |x|)S0g − c1|x|2S0g − 2(x log |x|) · (S1g)
− (1− 2c1)x · (S1g) + (log |x|)S2g + u1(x)

where u1(x) is the function which has the asymptotic behaviour:

u1(x) = O(1), ∇u1(x) = O(|x|−1), ∇2u(x) = O(|x|−2), ∇3u(x) = O(|x|−3)

as |x| → ∞, and Sj are the same operators as in (4.21). By (5.1) we have u(x) = (log |x|)(S2g)+
u1(x), which implies (5.2).

By (5.1) we have

θ(x) = − 1
2π

∫
R2

(log |x− y| − log |x|)h(y) dy.

Since

log |x− y| − log |x| =
∫ 1

0

d

dθ
log |x− θy| dθ =

∫ 1

0

∑3
i=1(xi − θyi)yi

|x− θy|2
dθ,

we have

log |x− y| − log |x| = O(|x|−1),
∂

∂xk
(log |x− y| − log |x|) = O(|x|−2) (k = 1, 2)

as |x| → ∞ when |y| ≤ b, and therefore we have (5.3). This completes the proof of the
lemma.

Lemma 5.2. Let 1 < p <∞. (1) If θ ∈W 2
p,loc(Ω) satisfies the homogeneous equation:

∆θ = 0 in Ω, θ|Γ = 0 (5.5)

and the radiation condition:
θ(x) = O(1) (5.6)

as |x| → ∞, then θ = 0.
(2) If u ∈W 4

p,loc(Ω) satisfies the homogeneous equation:

∆2u = 0 in Ω, u|Γ = Dνu|Γ = 0 (5.7)

and the radiation condition:

u(x) = O(|x|) (5.8)

as |x| → ∞, then u = 0.
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Proof. (1) By Lp (1 < p <∞) solvability in any C2 bounded domain for the Dirichlet problem
of the Laplace operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that
θ ∈W 2

2,loc(Ω). Let ψ(t) be a function in C∞0 (R) such that ψ(t) = 1 for t ≤ 1/2 and ψ(t) = 0 for
t ≥ 1 and set ρL(x) = ψ(log(log |x|)(log(logL))−1) for large L. Then, we have

0 = (∆θ, ρLθ)Ω = −(∇θ, ρL∇θ)Ω + (1/2)(θ, (∆ρL)θ)Ω (5.9)

where (a, b)Ω =
∫
Ω a(x)b(x) dx. Since

|∆ρL(x)| ≤ C(log(logL))−1(log |x|)−2|x|−2 (L→∞)

and supp∆ρL ⊂ {x ∈ R2 | e
√

log L ≤ |x| ≤ L}, by (5.6) we have

|(θ, (∆ρL)θ)Ω| ≤ C(log(logL))−1

∫ L

e
√

log L

(log r)−2r−1 dr ≤ C(log(logL))−1(logL)−
1
2 → 0

as L→∞. Letting L→∞ in (5.9), we have ‖∇θ‖2
L2(Ω)

= 0, which implies that ∇θ = 0, that is
θ is a constant. But, θ|Γ = 0, which means that θ = 0.
(2) By Lp (1 < p < ∞) solvability in any C4 bounded domain for the Dirichlet problem of
the biharmonic operator (cf. Simader [23]) and Sobolev’s imbedding theorem, we see that
u ∈W 4

2,loc(Ω). First, we shall show that u = 0, assuming that

u(x) = O(|x|), ∇2u(x) = o(1) (5.10)

as |x| → ∞. Let ρL be the same function as in the proof of (1), and then we have

0 = (∆2u, ρLu)Ω = −(1/2)(u, (∆2ρL)u)Ω+2
2∑

j,k=1

(u, (DjDkρL)DjDku)Ω+(∆u, ρL∆u)Ω. (5.11)

Since

|∆2ρL(x)| ≤ C(log(logL))−1(log |x|)−2|x|−4, |DjDkρL(x)| ≤ C(log(logL))−1(log |x|)−1|x|−2

as L→∞ and supp∆2ρL, suppDjDkρL ⊂ {x ∈ R2 | e
√

log L ≤ |x| ≤ L}, by (5.10) we have

|(u, (∆2ρL)u)Ω| ≤ C(log(logL))−1

∫ L

e
√

log L

(log r)−2r−1 dr ≤ C(log(logL))−1(logL)−
1
2 → 0,

|(u, (DjDkρL)DjDku)Ω| ≤ C{ sup
e
√

log L≤|x|≤L

|DjDku(x)|} (log(logL))−1

∫ L

e
√

log L

(log r)−1r−1 dr

≤ C sup
e
√

log L≤|x|≤L

|DjDku(x)| → 0

as L → ∞, letting L → ∞ in (5.11) we have ‖∆u‖
L2(Ω)

= 0, which implies that ∆u = 0 in Ω.
Since u|Γ = Dνu|Γ = 0, the zero extension u0 of u to the whole space R2 satisfies the Laplace
equation: ∆u0 = 0 in R2. Since u0(x) = u(x) = O(|x|) as |x| → ∞, from Lemma 3.1 we see
that u0 is a polynomial of degree 1. But, u0(x) = 0 for x ∈ R2 \ Ω, which means that u0 = 0.

Finally, we shall show that the radiation condition (5.8) together with (5.7) implies that
the radiation condition (5.10) holds. Let η be a function in C∞(R2) such that η(x) = 1 for
|x| ≥ b + 1 and η(x) = 0 for |x| ≤ b, where b is a large number such that Bb ⊃ R3 \ Ω. Then,
by (5.7) we have

∆2(ηu) = 0 in R2, (5.12)
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where f(x) = ∆2(ηu) − η∆2u. Since supp f ⊂ Bb+1 \ Bb, we have f ∈ L2(R2). Setting
v(x) = E2

2 ∗ f , by (5.10) and the fact that E2
2 is a fundamental solution to the biharmonic

operator ∆2, we have ∆2(u− v) = 0 in R2. Employing the same argument as in the proof of
Lemma 3.1, we have u(x)− v(x) =

∑
|α|≤m cαx

α for some non-negative integer m and complex
numbers cα. If we write

v(x) = E2
2(x)

∫
R2

f(y) dy +
∫

R2

(E2
2(x− y)− E2

2(x))f(y) dy,

we have∑
|α|≤m

cαx
α − E2

2(x)
∫

R2

f(y) dy = u(x)−
∫

R2

(E2
2(x− y)− E2

2(x))f(y) dy = O(|x| log |x|)

as |x| → ∞, which implies that

u(x) =
∑
|α|≤1

cαx
α +

∫
R2

(E2
2(x− y)− E2

2(x))f(y) dy.

Therefore, ∇2u(x) = o(1) as |x| → ∞. This completes the proof of the lemma.

Now, we shall show Theorem 1.3 in the two-dimensional case.

Proof of Theorem 1.3 for n = 2. Let s and G(λ) be the same as in Theorem 4.3. Let η be a
function in C∞(R2) such that η(x) = 1 for |x| ≥ b − 1 and η(x) = 0 for |x| ≤ b − 2. Given
F ∈ Hp,b(Ω) and λ ∈ ω̇τ , we set U(λ) = G(λ)F . We have U(λ) = (λI − AΩ)−1F ∈ Dp(Ω) for
λ ∈ ω̇τ ∩ U and U(λ) = G(λ)F ∈ Dp,loc(Ωb) for λ ∈ ω̇τ . Moreover, by (4.10) we have

(λI −A)U(λ) = F in Ω, BU(λ)|Γ = 0, (λ ∈ ω̇τ ∩ U). (5.13)

Since U(λ) ∈ Anal (ω̇τ ,Dp,loc(Ωb)), it follows from (5.13) that

(λI −A)U(λ) = F in Ωb, BU(λ)|Γ = 0, (λ ∈ ω̇τ ). (5.14)

From (5.13) it follows that ηU(λ) satisfies the equation:

(λI −A)(ηU(λ)) = ηF + g(U(λ)) in R2 (5.15)

for λ ∈ ω̇τ ∩ U , where for U = T (u, v, θ) we have set

g(U) =

 0
∆2(ηu)− η∆2u+ ∆(ηθ)− η∆θ
−(∆(ηθ)− η∆θ)− (∆(ηv)− η∆v)

 . (5.16)

Note that supp g(U) ⊂ Db−2,b−1. Since Σε ⊂ ρ(AR2) as follows from Theorem 4.1, we have

ηU(λ) = (λI −AR2)−1(ηF + g(U(λ))) (5.17)

whenever λ ∈ ω̇τ ∩ U ∩ Σε. Let E0, E1, E2, E3, H1(λ) and H2(λ) be the same operators as in
(4.1) of Theorem 4.1 and let H(λ) be the same operator as in (4.8). By (5.17) and Theorem 4.1
we have

ηU(λ) = H(λ)(ηF + g(U(λ))) (5.18)
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whenever λ ∈ ω̇τ ∩ U ∩ Σε. But, both sides in (5.18) are analytic in ω̇τ , and therefore (5.18)
holds for any λ ∈ ω̇τ .

In view of Theorem 4.3, we write

U(λ) = λsV1(s) + λs+1V2(s) +O(|λ|s+2| log λ|γ) (λ→ 0) (5.19)

where s and γ are integers, V1(λ), V2(λ) ∈ Dp,loc(Ωb) and ‖Vj(λ)‖Dp,loc(Ωb)
≤ C| log λ|γj‖F‖Hp(Ω)

for some integer γj (j = 1, 2). We shall show that s = 0 by contradiction. Since

(λI −A)U(λ) = F in Ωb, BU(λ)|Γ = 0 (5.20)

as follows from (5.14), we have

λs(−AV1(λ)) +O(|λs+1(log λ)γ2 |) = F in Ωb, {λsBV1(λ) +O(|λs+1(log λ)γ2 |)}|Γ = 0. (5.21)

If s > 0, letting λ→ 0 in (5.21), we have F = 0, which leads to a contradiction. Therefore, we
may assume that s ≤ 0. By contradiction, we shall prove that s = 0, so that we assume that s
is a negative integer. Equating the term λs in (5.21), we have

−AV1(λ) = 0 in Ωb, BV1(λ)|Γ = 0. (5.22)

On the other hand, inserting the formula (5.19) into (5.18) and using Theorem 4.1 we have

ηλsV1(λ) +O(|λs+1(log λ)γ2 |)
= (λE0 + log E1 + E2 + E3 +O(|λ log λ|))(ηF + λsg(V1(λ)) + λs+1g(V2(λ)) +O(|λ(log λ)γ |)).

Equating the terms of λs, λs log λ and λs−1, we have

ηV (λ) = E0(ηF 1) + E0g(V2(λ)) + E2g(V1(λ)) + E3g(V1(λ)), (5.23)
E0g(V1(λ)) = 0, E1g(V1(λ)) = 0, (5.24)

where

F 1 =

{
F when s = −1,
0 when s ≤ −2.

Since η = 1 for |x| ≥ b − 1, we extend V1(λ) to the domain Bb = {x ∈ R2 | |x| > b} by the
formula:

V1(λ) = E0(ηF 1) + E0g(V2(λ)) + E2g(V1(λ)) + E3g(V1(λ)) in Bb. (5.25)

Set V1(λ) = T (u, v, θ), ηF 1 = T (f0, g0, h0), g(V1(λ)) = T (0, g1, h1) and g(V2(λ)) = T (0, g2, h2).
Then, by Theorem 4.1 we have

u = α2S0g0 + α3S0h0 + α2S0g2 + α3S0h2

+
β2

16π
|x|2 ∗ g1 +

β3

16π
|x|2 ∗ h1 + E2

3 ∗ (g1 + h1),

v = δ22S0g1 + δ23S0h1,

θ = δ32S0g1 + δ33S0h1 + E1
3 ∗ h1

(5.26)

for |x| ≥ b, where S0k =
∫

R2 k dx (cf. (4.21)). On the other hand, by (5.24) we have

α2S0g1 + α3S0h1 = 0,

|x|2 ∗ (g1 + h1) = 0 for x ∈ Ωb,

S0h1 = 0.

(5.27)
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Since |x|2 ∗ (g1 + h1) = |x|2S0(g1 + h1) − 2x · S1(g1 + h1) + S2(g1 + h1), |x|2 ∗ (g1 + h1) is a
polynomial of degree 2 and vanishes identically in Ωb, so that we have

S0(g1 + h1) = S1(g1 + h1) = S2(g1 + h1) = 0. (5.28)

Since S0h1 = 0, we have
S0g1 = S0h1 = 0. (5.29)

Since

β2

16π
|x|2 ∗ g1 +

β3

16π
|x|2 ∗ h1 =− β2

8π
x · (S1g1)−

β3

8π
x · (S1h1) +

β2

16π
S2g1 +

β3

16π
S2h1

as follows from (5.29), from (5.26) and (5.29) we have

u = c1(x) + E2
2 ∗ (g1 + h1), v = 0, θ = E1

2 ∗ h1 (5.30)

for x ∈ Bb, where c1(x) is a constant coefficient polynomial of degree 1 which is given by the
formula:

c1(x) =− x · (β2

8π
S1g1 +

β3

8π
S1h1)

+ α1S0g0 + α2S0h0 + α1S0g2 + α2S0h2 +
β2

16π
S2g1 +

β3

16π
S2h1.

Noting that E2
2 and E1

2 are fundamental solutions of ∆2 and −∆, respectively, we have

−AV1(λ) =

 0
∆2u+ ∆θ
−∆θ

 =

 0
g1
h1

 = 0 in Bb, (5.31)

because g1 = h1 = 0 for |x| > b− 1. Combining (5.31) and (5.22) implies that

∆2u = 0 in Ω, u|Γ = Dνu|Γ = 0
v = 0 in Ω,

−∆θ = 0 in Ω, θ|Γ = 0.
(5.32)

Now, we shall show that u = θ = 0 by using Lemmas 5.1 and 5.2. By (5.28), (5.29), (5.30) and
Lemma 5.1 we have

u(x) = O(|x|), ∇u(x) = O(1), ∇2u(x) = O(|x|−2), ∇3u(x) = O(|x|−3),

θ(x) = O(|x|−1), ∇θ(x) = O(|x|−2)

as |x| → ∞, which combined with (5.32) and Lemma 5.2 implies that u = θ = 0. Therefore, we
have V1(λ) = 0, which leads to a contradiction. Namely, we have shown that s = 0.

Now, in view of Theorem 4.3, we can write

U(λ) = (log λ)dV1 + (log λ)d−1V2 +O(| log λ|d−2) (5.33)

as λ→ 0, where Vj ∈ Dp,loc(Ωb) and ‖Vj‖Dp,loc(Ωb)
≤ C‖F‖Hp(Ω)

(j = 1, 2). We may assume that
V1 6= 0. Employing the contradiction argument again, we shall show that d = 0. From (5.14)
we have

(log λ)d(−AV1) +O(| log λ|d−1) = F in Ωb, {(log λ)dBV1 +O(| log λ|d−1)}|Γ = 0. (5.34)
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If d < 0, then letting λ→ 0 in (5.34), we have F = 0, which leads to a contradiction. Therefore,
we may assume that d ≥ 0. Assume that d is a positive integer. Multiplying (5.34) by (log λ)−d

and letting λ→ 0, we have

−AV1 = 0 in Ωb, BV1|Γ = 0. (5.35)

On the other hand, inserting the formula (5.33) into (5.19) and using Theorem 4.1, we have

η(log λ)dV1 +O(| log λ|d−1)

= (λ−1E0 + log λE1 + E2 + E3 +O(|λ log λ|))
(ηF + (log λ)dg(V1) + (log λ)d−1g(V2) +O(| log λ|d−2))

= λ−1(E0(ηF ) + (log λ)dE0g(V1) + (log λ)d−1E0g(V2) +O(| log λ)|d−2))

+ log λE1(ηF ) + (log λ)d+1E1g(V1) + (log λ)dE1g(V2) + (log λ)dE2g(V1)

+ (log λ)dE3g(V1) +O(| log λ|d−1).

Equating the terms of λ−1, λ−1(log λ)d, λ−1(log λ)d−1, (log λ)d+1 and (log λ)d, we have

E0g(V1) = E0(ηF1 + g(V2)) = E1g(V1) = 0, (5.36)
ηV1 = E1(ηF1 + g(V2)) + E2g(V1) + E3g(V1), (5.37)

where

F1 =

{
0 when d ≥ 2,
F when d ≥ 1.

Note that now E1 appears and E0 disappears in (5.37), while E1 disappears and E0 appears
in (5.25). Again we set V1 = T (u, v, θ), ηF1 = (f0, g0, h0), g(V1) = T (0, g1, h1) and g(V2) =
T (0, g2, h2). By Theorem 4.1 and (5.37), we have

u =
1

16π
|x|2 ∗ (−∆(ηf0) + ηg0 + g2 + ηh0 + h2) +

β2

16π
|x|2 ∗ g1

+
β3

16π
|x|2 ∗ h1 + E2

2 ∗ (g1 + h1),

v = δ22S0g1 + δ23S0h1,

θ = − 1
4π
S0(ηh0 + h2) + δ32S0g1 + δ33S0h1 + E1

2 ∗ h1

(5.38)

for x ∈ Bb. By (5.36) and (4.2) we have

α2S0g1 + α3S0h1 = 0,
α2S0(ηg0 + g2) + α3S0(ηh0 + h2) = 0,

|x|2 ∗ (g1 + h1) = 0 (x ∈ Ωb),
S0h1 = 0.

(5.39)

The first and last formulas in (5.39) implies that

S0g1 = S0h1 = 0. (5.40)

Moreover, the third formula in (5.39) implies that

S0(g1 + h1) = S1(g1 + h1) = S2(g1 + h1) = 0. (5.41)
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By (5.38) and (5.40) we have v = 0 for x ∈ Bb, which combined with (5.35) implies that

v = 0 in Ω. (5.42)

Since ∆2|x|2 = 0, and S0(ηh0 + h2), S0g1 and S0h1 are constants, and since E2
2 and E1

2 are
fundamental solutions of ∆2 and −∆, respectively, from (5.38) we have

∆2u = g1 + h1 = 0, −∆θ = h1 = 0 (5.43)

for x ∈ Bb, because g1 = h1 = 0 for |x| ≥ b− 1. Combining (5.43) with (5.35) implies that

∆2u =0 in Ω, u|Γ = Dνu|Γ = 0, (5.44)
−∆θ =0 in Ω, θ|Γ = 0. (5.45)

Since S0h1 = 0, by Lemma 5.1 we have θ(x) = (|x|−1) as |x| → ∞, which combined with (5.45)
and Lemma 5.2 implies that θ = 0. Since

θ = − 1
4π
S0(ηh0 + h2)−

1
2π

∫
R2

(E1
2(x− y)− E1

2(x))h1(y) dy

as |x| → ∞ as follows from the third formula in (5.38) and (5.40), we have

S0(ηh0 + h2) = 0, (5.46)

because
∫

R2(E1
2(x − y) − E1

2(x))h1(y) dy = O(|x|−1) as |x| → ∞. Combining (5.46) and the
second formula of (5.39), we have

S0(ηg0 + g2) = S0(ηh0 + h2) = 0. (5.47)

From the first formula of (5.38), we have u = c0 + c1 + u0, where we have set

u0 = E2
2 ∗ (g1 + h1)

c0 =
|x|2

16π
(S0(−∆(ηf0)) + S0(ηg0 + g2) + S0(ηh0 + h2))

c1 = − x

8π
· (S1(−∆(ηf0)) + S1(ηg0 + g2) + S1(ηh0 + h2) + β2S1g1 + β3S1h1)

+ S2(−∆(ηf0)) + S2(ηg0 + g2) + S2(ηh0 + h2) + β2S2g1 + β3S2h1

By (5.41) and Lemma 5.1 we have

u0(x) = O(log |x|), ∇u0(x) = O(|x|−1), ∇2u0(x) = O(|x|−2) (5.48)

as |x| → ∞. Noting that S0(−∆(ηf0)) = 0 as follows from the divergence theorem of Gauss, by
(5.47) we have c0 = 0. Since c1 is a polynomial of degree 1, by (5.48) we have u(x) = O(|x|) as
|x| → ∞, which combined with (5.44) and Lemma 5.2 implies that u = 0. Therefore, we have
V1 = 0, which leads to a contradiction, and then we have d = 0. This completes the proof of
Theorem 1.3 for n = 2.

Proof of Theorem 1.4 for n = 2. Let τ , G1, G2 and G3(λ) be the same as in Theorem 1.3. And,
let U be the same as in (1.14). Let Γ = Γ+ ∪ Γ0 ∪ Γ− be a path in C defined by the formulas:

Γ+ : λ = sei(π−θ), s : ∞→ (τ/2)(cos θ)−1,

Γ0 : λ = (τ/2)(cos θ)−1eis, s : π − θ → −(π − θ),

Γ− : λ = se−i(π−θ), s : (τ/2)(cos θ)−1 →∞,
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where θ ∈ (0, π/2) is chosen so close to π/2 that Γ ⊂ U . By (1.11) and (1.13) we have

T (t)F =
1

2πi

∫
Γ
(λI −AΩ)−1F dλ.

To estimate T (t)F , let us set

I± =
1

2πi

∫
Γ±

(λI −AΩ)−1F dλ,

I0 =
1

2πi

∫
Γ0

(λI −AΩ)−1F dλ.

By (1.13) we have

‖I±(t)‖Dp(Ω)
≤ C

∫ ∞

(τ/2)(cos θ)−1

e(s cos(π−θ))t ds‖F‖Hp(Ω)
=

C

(cos θ)t
e−(τ/2)t‖F‖Hp(Ω)

for any t > 0 and F ∈ Hp(Ω). To estimate I0(t), we restrict ourselves to the case where
F ∈ Hp,b(Ω). Let C = C1 ∪ C+ ∪ C− ∪ C2 be a path defined by the formulas:

C1 : λ = −(τ/2) + s, s : (τ/2) tan θ → 0,

C+ : λ = eπis, s : τ/2 → 0,

C− : λ = e−πis, s : 0 → τ/2,
C2 : λ = −(τ/2) + s, s : 0 → −(τ/2) tan θ.

Then, by (1.17) in Theorem 1.3 we have

I0(t) =
1

2πi

{∫
C1

+
∫

C+

+
∫

C−

+
∫

C2

}
eλt(G1F + (log λ)−1G2F +G3(λ)F ) dλ

in Ωb for any t > 0. Setting

J0(t) =
1

2πi

{∫
C1

+
∫

C2

}
eλt(G1F + (log λ)−1G2F +G3(λ)F ) dλ,

we have

‖J0(t)‖Dp,loc(Ωb)
≤ Ce−τ/2)t

∫ (τ/2) tan θ

0
ds‖F‖Hp(Ω)

≤ C(τ/2)(tan θ)e−(τ/2)t‖F‖Hp(Ω)
.

Obviously,
{∫

C+
+

∫
C−

}
eλtG1F dλ = 0. Setting

J1(t) =
1

2πi

{∫
C+

+
∫

C−

}
eλt(log λ)−1 dλG2F,

we observe that

J1(t) =
1

2πi

∫ 0

τ/2
(log seiπ)−1e−steiπ dsG2F +

1
2πi

∫ τ/2

0
(log se−iπ)−1e−ste−iπ dsG2F

=
1

2πi

∫ τ/2

0

( 1
log s+ iπ

− 1
log s− iπ

)
e−st dsG2F = −

∫ τ/2

0

e−st

(log s)2 + π2
dsG2F.
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Therefore, for t ≥ 1 we have

‖J1(t)‖Dp,loc(Ωb)
≤ C

∫ ∞

0

e−st

(log s)2 + π2
ds‖F‖Hp(Ω)

= Ct−1

∫ ∞

0

e−`

(log t− log `)2 + π2
d` ‖F‖Hp(Ω)

≤ Ct−1
{∫ √

t

0

e−`

(log t− log `)2
d`+

1
π2

∫ ∞

√
t
e−` d`

}
‖F‖Hp(Ω)

≤ Ct−1
{

4(log t)−2

∫ ∞

0
e−` d`+

e−
√

t/2

π2

∫ ∞

0
e−`/2 d`

}
‖F‖Hp(Ω)

≤ Ct−1(log t)−2 ‖F‖Hp(Ω)
.

Finally, setting

J2(t) =
1

2πi

{∫
C+

+
∫

C−

}
eλtG3(λ)F dλ,

by (1.17) in Theorem 1.3 we have

‖J2(t)‖Dp,loc(Ωb)
≤ C

∫ τ/2

0

e−st

(log s)2 + π2
ds‖F‖Hp(Ω)

,

and therefore employing the same argument as in the estimate of J1(t) we have

‖J2(t)‖Dp,loc(Ωb)
≤ Ct−1(log t)−2‖F‖Hp(Ω)

for t ≥ 1. Combining these estimations, we have Theorem 1.4 for n = 2.
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