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WELL-POSEDNESS OF A QUASILINEAR HYPERBOLIC FLUID
MODEL

REINHARD RACKE AND JÜRGEN SAAL

Abstract. We replace a Fourier type law by a Cattaneo type law in the derivation
of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed
quasilinear Navier-Stokes equations. For this problem the standard approach by means
of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite prop-
agation speed might not be expected. Therefore a somewhat different approach via
viscosity solutions is developed in order to prove higher regularity energy estimates for
the linearized system. Surprisingly, this method yields stronger results than previous
methods, by the fact that we can relax the regularity assumptions on the coefficients
to a minimum. This leads to a short and elegant proof of a local-in-time existence
result for the corresponding first order quasilinear system, hence also for the original
hyperbolicly perturbed Navier-Stokes equations.

1. Introduction

Let n ≥ 2 and T, τ > 0. The intention of this note is to examine the hyperbolicly
perturbed Navier-Stokes equations

τutt − µ∆u + τ(u · ∇)∂tu + ((τ∂tu + u) · ∇)u + ut = −∇π in (0, T )× Rn,
div u = 0 in (0, T )× Rn,
u|t=0 = u0 in Rn,
ut|t=0 = u1 in Rn,

(1.1)
where u : (0, T ) × Rn → Rn denotes the velocity of a fluid and p : (0, T ) × Rn → R the
related pressure. System (1.1) is obtained by replacing a Fourier type law by the law of
Cattaneo. More precisely, we replace the constitutive law for the deformation tensor

S =
µ

2
(∇u + (∇u)′) (1.2)

with viscosity coefficient µ > 0 by the relation

S + τSt =
µ

2
(∇u + (∇u)′), (1.3)

which represents the first order Taylor approximation of the delayed deformation condi-
tion

S(t + τ) =
µ

2
(∇u(t) + (∇u(t))′), t > 0,

for small τ > 0. Relation (1.2) is a Fourier type law. It leads to the well-known paradox
of infinite propagation speed for classical parabolic equations. There are applications,
however, for that it is more reasonable to work with hyperbolic models, cf. [14] and the
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references therein. This is also underlined by experiments that document the existence
of hyperbolic heat waves.

Recall that the classical Navier-Stokes equations, determined by Fourier’s law, are
represented by the system ut + (u · ∇)u +∇p = div 2S in (0, T )× Rn,

div u = 0 in (0, T )× Rn,
u|t=0 = u0 in Rn,

(1.4)

where the deformation tensor is given by

S(u) =
µ

2
(∇u + (∇u)′).

In this situation the second line in (1.4) implies that

div 2S(u) = µ∆u.

On the other hand, by employing Cattaneo’s law (1.3) we have that

div 2(S + τSt) = µdiv (∇u + (∇u)′) = µ∆u. (1.5)

System (1.1) is now obtained as follows. Applying τ∂t to the first line in (1.4) and adding
the resulting equation to the original line gives us in view of (1.5) that

0 = τutt + τ∂t(u · ∇)u + τ∇pt + (u · ∇)u + ut +∇p− div 2(S + τSt)
= τutt + τ∂t(u · ∇)u + (u · ∇)u + ut − µ∆u + τ∇pt +∇p.

Consequently, by introducing the new pressure π = p + τpt, under the assumption of
Cattaneo’s law the classical Navier-Stokes equations turn into the hyperbolicly perturbed
system (1.1).

The hyperbolic fluid model (1.1) was already derived in [3] and [4]. In these papers on
an elementary level the authors discussed consequences and differences of (1.1) compared
with the classical model.

In [11] Paicu and Raugel consider the classical Navier-Stokes equations including
merely the hyperbolic perturbation τutt for small τ > 0. The global well-posedness
for mild solutions in two dimensions for sufficiently small τ , and the global existence for
small data and sufficiently small τ in three dimensions in analogy to the classical case
are proved. In [11] also a number of justifications for their model are presented, see the
references therein. By just adding the term τutt to (1.4) the resulting system remains
semilinear and therefore methods for the construction of a mild solution can still be ap-
plied. This, however, is no longer possible for system (1.1), since due to the third term in
the first line of (1.1) this system is a quasilinear one. So, from this point of view system
(1.1) rather differs from the the system considered in [11].

We remark that our new Navier-Stokes system is related to the Oldroyd model which
considers instead of (1.3) the more general model

τSt + S = µ(E + νEt), (1.6)

where E := 1
2(∇u +∇uT ), cf. de Araújo, de Menzenes and Marinho [2] and Joseph [6];

in comparison to our model we have ν = 0 (and µ = 1). If ν 6= 0 then, from the point of
derivatives getting involved, S is on a similar level as E , as in the classical case (1.4).
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In a first step towards the local-in-time existence result in order, as usually we trans-
form (1.1) into a first order quasilinear system of the form{

Vt +A(V )V + B(V )V = 0 in (0, T )× Rn,
V |t=0 = V0 in Rn,

(1.7)

with V := (u, ∂1u, . . . , ∂nu, ∂tu)T . A standard approach used for standard quasilinear
symmetric hyperbolic systems is to derive a priori estimates in Sobolev spaces of higher
order for a linearized version by means of finite propagation speed and then to apply a
fixed point iteration to the nonlinear problem. This method, however, seems to fail for the
first order system resulting from (1.1). The crucial point here is the finite propagation
speed. It seems not to be available (and this can be regarded as a conjecture of the
authors) for equations (1.1) neither for the corresponding first order quasilinear system
or for the associated linearization. The reason for this conjecture lies in the presence
of the pressure gradient in equations (1.1). Of course, as in a standard way for Navier-
Stokes equations, ∇p could be removed by applying the Leray-Helmholtz projector onto
solenoidal fields to the first line of (1.1) and then dealing with the resulting system. But
either way leads to nonlocal terms in the equations which indicates that finite propagation
speed might not be expected. (The authors, however, so far have not been able to prove
this.) In case of dimension n = 2 or n = 3 we can obtain finite propagation speed for
curlu, for instance. This observation is justified by applying curl to (1.1), since then
gradient terms also vanish and (1.1) turns into an equation for the vorticity curl u (see
Section 2). ¿From this point of view, problem (1.1) and the resulting system (1.7) are
somewhat different from standard quasilinear symmetric hyperbolic systems.

By the just mentioned fact, in this note we developed a different approach to first
order hyperbolic systems, which also covers equations of type (1.1). On a standard way
by employing Kato’s theory we first prove the existence of strong solutions for a linearized
version of (1.7) (see Lemma 4.2). However, the essential step is to derive higher order
a priori estimates for the linearized solution, which are required for the application of a
fixed point iteration to (1.7). Here we choose an approach via viscosity solutions, i.e.,
we add a small viscous term to (1.7) such that the resulting system becomes parabolic.
This method provides a smooth way to justify the formal calculations that lead to higher
energy estimates for the solution of the linearized equations. A nice outcome of this
method is that we can provide such estimates under minimal regularity assumptions
on the coefficients of the linearized operators (see Theorem 4.5). In fact, the regularity
assumptions to be made on the coefficients are weaker than the regularity of the obtained
solution. Minimal in this context means that we only have to assume the regularity that
is required to give sense to the natural energy estimates. Furthermore, these helpful
energy estimates for the solution are also provided by the method.

This seems to be different and new in comparison to similar results for standard sym-
metric hyperbolic systems that are based on finite propagation speed of the displacement.
In pertinent textbooks such as [10, Theorem 2.1] or [13, Theorem 5.1], for instance, al-
ways the assumed regularity for the coefficients is higher than the regularity obtained
for the solutions, and it seems to be difficult or even impossible to improve this to our
results by the methods used therein. In [5] an abstract approach to quasilinear evolution
equations is developed generalizing results obtained in [7]. But also there the assumed
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regularity on the coefficients is higher than the obtained for the solution. Only for the
approach developed in [8] this is not the case. There the coefficients are assumed to be
elements of uniformly local Sobolev spaces. This assumption is enough by the fact that
the standard Sobolev embedding and the required algebra properties are still valid. Thus
the assumptions in [8] for the coefficients of the linearized system are comparable to ours.
On the other hand, it is not so obvious whether the approach to quasilinear hyperbolic
systems given in [8] applies to system (1.1) due to the presence of the presssure term ∇π
or the Helmholtz projection respectively.

Based on the linear theory developed here the application of Majda’s fixed point iter-
ation, cf [10], in order to construct local-in-time strong solutions to (1.7) becomes rather
short and elegant (see Theorem 5.1). This is due to the fact that by the quality of the
linear results provided here no smoothing of the data, in particular of the coefficients, for
the fixed point iteration is required anymore. By our energy estimates for the linearized
solutions, here we also get immediately upper bounds for the approximate solutions of the
fixed point iteration. This again is in contrast to [10] (or [13]). There upper bounds have
to be derived by estimating the approximate solutions in an elaborate way employing the
structure of the underlying quasilinear symmetric hyperbolic system. Also continuity
(in time) of the solutions (as given in (5.1)) immediately follows from the linear results.
This is also quite different from the approach performed in [10] or [13], where exhausting
procedures via the strong convergence in weaker norms and the weak continuity in higher
norms have to be applied in order to prove continuity. This seems to be a futher nice
advantage of our approach in comparison to previous methods.

We want to emphasize that the approach developed in this note is by no means re-
stricted to first order quasilinear systems arising from equations of type (1.1). In fact, it
is quite generally applicable, in particular to standard quasilinear symmetric hyperbolic
systems. Thus by our approach on a different (perhabs even more elegant) way we can
handle, for example, quasilinear wave equations or systems arising in thermoelasticity
such as treated in [10] or [14]. Moreover, the final results for the quasilinear systems are
of the same quality as the results obtained by previous methods. On the other hand,
obviously the approach presented here is more general, since we can deal as well with
problems of type (1.1), which might not produce finite propagation speed. Furthermore,
also Oldroyd models such as (1.6) can be covered by our approach which is different from
the methods used e.g. in [6].

We proceed with the precise statement of our main results. By virtue of the second
line in (1.1) we define the ground space as

L2
σ(Rn) := {f ∈ L2(Rn) : div f = 0}.

Also note that the symbol C∞
b (Ω) stands for smooth functions whose derivatives of each

order k ∈ N0 are also bounded on the set Ω.

1.1. Theorem. Let n ≥ 2 and m > n/2. For each

(u0, u1) ∈
(
Hm+2(Rn) ∩ L2

σ(Rn)
)
×

(
Hm+1(Rn) ∩ L2

σ(Rn)
)
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there exists a time T∗ > 0 and a unique solution (u, π) of equations (1.1) satisfying

u ∈ C2([0, T∗],Hm(Rn)) ∩ C1([0, T∗],Hm+1(Rn))

∩ C([0, T∗],Hm+2(Rn) ∩ L2
σ(Rn)),

∇π ∈ C([0, T∗],Hm(Rn)).

The existence time T∗ can be estimated from below as

T∗ >
1

1 + C(‖u0‖Hm+2 + ‖u1‖Hm+1)

with a constant C > 0 depending only on m and the dimension n.

As an immediate consequence we also have

1.2. Corollary. In the situation of Theorem 1.1 additionally assume that

u0, u1 ∈
∞⋂

k=0

Hk(Rn).

Then the solution u, p is classical, i.e. we have

u,∇π ∈ C∞
b ([0, T∗]× Rn).

The paper is organized as follows. We start in Section 2 with a remark on finite
propagation speed. In Section 3 we perform the transformation of (1.1) into a first order
quasilinear system. Section 4 represents the heart of this work and provides the linear
theory. First we prove the existence of strong solutions to a linearized version of (1.7). As
mentioned before, the essential point then is to derive higher regularity of this solution.
This result is obtained by employing the method of viscosity solutions. In Section 5
we prove the local-in-time existence for the first order quasilinear system, which finally
results in our main results Theorem 1.1 and Corollary 1.2 by the equivalence of systems
(1.1) and (1.7).

2. Remark on finite propagation speed

For the local solution obtained in the previous section, we can prove the finite prop-
agation speed for the vorticity v := curl u = ∇ × u. Namely, v satisfies the differential
equation

τvtt−µ∆v+vt+(τu·∇)vt+
{

(u·∇)v+(τut ·∇)v+(2−n) (1 + τ∂t)J(∇u)v)
}

= 0, (2.1)

where J(∇u) denotes the Jacobi matrix of the first derivatives of u. The part in brackets
{. . . } involves at most first-order derivatives of v. Therefore, the general energy esti-
mates for hyperbolic equations of second order — after transformation to a first-order
symmetric-hyperbolic system — apply as described in [13], and give the finite propaga-
tion speed. As mentioned before, note that this can still not be expected for u due to
the presence of the pressure terms.
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3. Transformation into a symmetric system

We start by introducing some notation. Note that we use standard notation throughout
this note, for the appearing function spaces see e.g. [1]. Let X be a Banach space and Ω ⊂
Rn be a set. Then Lp(Ω, X) denotes the standard Lebesgue space of p-integrable X-valued
functions for 1 ≤ p < ∞. For p = ∞, L∞(Ω, X) denotes the space of all (essentially)
bounded functions equipped with the standard norm ess supx∈Ω‖ · ‖X . Accordingly, for
k ∈ N0 = N ∪ {0} and 1 ≤ p ≤ ∞ the symbol W k,p(Ω, X) denotes Sobolev space of k-th
order with norm

‖u‖k,p := ‖u‖W k,p := ‖u‖W k,p(Ω,X) :=

 ∑
|α|≤k

‖u‖p
X

1/p

.

In the case k = 0 we also write ‖ · ‖p for the norm. Moreover, we set Hk(Ω, X) :=
W k,2(Ω, X). In this paper from the just introduced spaces only L2(Ω, X), Hk(Ω, X),
L∞(Ω, X) and W k,∞(Ω, X) will appear. Also note that if X = Cm or X = Rm we write
just L2(Ω), Hk(Ω), etc. We will also make use of the homogeneous Sobolev space

Ĥ1(Rn) := {u ∈ L1
loc : ∇u ∈ L2(Rn)}/C,

which is equipped with the norm ‖∇ · ‖2.
We also use standard notation for spaces of continuous functions. For k ∈ N0 ∪

{∞}, Ck(Ω, X) denotes the space of k-times continuously differentiable functions and we
write C(Ω, X) if k = 0. If the functions in Ck(Ω, X) are additionally bounded, we use
the symbol Ck

b (Ω, X) and its subspace of compactly supported functions is denoted by
Ck

0 (Ω, X). The (X, X ′) dual pairing we denote by 〈·, ·〉X,X′ . To obtain consistency with
the scalar product if X is a Hilbert space, observe that the second argument in 〈·, ·〉X,X′

is defined with complex conjugation, i.e., we have

〈x, x′〉X,X′ = x′(x) (x ∈ X, x′ ∈ X ′),

if x′(x) denotes the standard dual pairing. If H is a Hilbert space we write 〈·, ·〉H .
From time to time we also omit the subscript and just write 〈·, ·〉, if no confusion seems
likely. The space of linear bounded operators from X to a Banach space Y is denoted by
L (X, Y ).

Suppose (u, p) with u : Rn+1
+ → Rn and p : Rn+1

+ → R is the solution of sytem (1.1). In
this section we transform equations (1.1) into a first order quasilinear hyperbolic system
for the vector

V = (u, ∂1u, . . . , ∂nu, ∂tu)T ∈ (Rn)n+2 = Rn(n+2).

As for the classical Navier-Stokes equations the pressure term ∇p will be eliminated by
employing the Leray-Helmholtz projector onto solenoidal fields

P : L2(Rn) → L2
σ(Rn) =

{
v ∈ L2(Rn) : div v = 0

}
.

Observe that C∞
0,σ(Rn) := {u ∈ C∞

0 (Rn) : div u = 0} is dense in L2
σ(Rn). Also note that

P is determined by
Pu := u−∇π,
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where π ∈ Ĥ1(Rn) is the unique solution of the weak Neumann poblem

〈∇π,∇ϕ〉L2 = 〈u,∇ϕ〉L2 (ϕ ∈ Ĥ1(Rn)).

This leads to the well-known orthogonal decomposition

L2(Rn) = L2
σ(Rn) ⊕⊥ G2(Rn),

where G2(Rn) := {∇π : π ∈ Ĥ1(Rn)}. Applying P to the first line of (1.1), this system
is formally reduced to τutt − µ∆u + τP (u · ∇)∂tu + P ((τ∂tu + u) · ∇)u + ut = 0 in (0, T )× Rn,

u|t=0 = u0 in Rn,
ut|t=0 = u1 in Rn,

(3.1)
considered in the space L2

σ(Rn). For the development of the linear theory it will be
convenient to get rid of the τ in front of utt and µ in front of ∆u. For this purpose we
introduce the dilated function

v(t, x) := u(
√

τt,
√

µx).

Then u solves (3.1) if and only if v solves
vtt −∆v +

√
τ/µP (v · ∇)∂tv

+ P ((
√

τ∂tv + v) · ∇)v/
√

µ + vt/
√

τ = 0 in (0, T ′)× Rn,
v|t=0 = v0 in Rn,
vt|t=0 = v1 in Rn,

(3.2)

with T ′ = T/
√

τ , v0 = u0, and v1 =
√

τu1. System (3.2) will be the one which is
considered in the sequel and which we transform it into a first order system.

For j = 1, . . . , n we define the symmetric matrices

Aj(V ) :=



0 · · · · · · · · · 0 0
...

. . .
...

...
0

...
. . .

... −In

0
...

. . .
...

...
0 · · · · · · · · · 0 0
0 · · · 0 −In 0 · · · 0 Mj(V )


∈ (Rn×n)(n+2)×(n+2), (3.3)

with In the identity in Rn and where −In represents the (j + 1, n + 2)-th and the (n +
2, j + 1)-th entry of Aj(V ). The operator Mj is defined as

Mj(V ) :=
√

τ/µ (V 1)j · In =
√

τ/µ vj · In



8 REINHARD RACKE AND JÜRGEN SAAL

and correspondes to the quasilinear term in (3.2). We also define the (n× n) · ((n + 2)×
(n + 2)) matrix operators

B̃(V ) :=


0 · · · · · · 0 −In
...

. . .
... 0

...
. . .

...
...

0 · · · · · · 0 0
0 B1(V ) · · · Bn(V ) In/

√
τ

 (3.4)

with Bj(V ) := 1√
µ(
√

τ(V n+2)j + (V 1)j) · In = 1√
µ(
√

τ∂tv
j + vj) · In and

P :=


In 0 · · · 0

0
. . . . . .

...
...

. . . In 0
0 · · · 0 P

 .

Finally, we set

A(V ) := P
n∑

j=1

Aj(V )∂j and B(V ) := PB̃(V ).

Then, it is easily checked that (3.2) is equivalent to the first order quasilinear hyperbolic
system {

Vt +A(V )V + B(V )V = 0 in (0, T )× Rn,
V |t=0 = V0 in Rn,

(3.5)

with V := (v, ∂1v, . . . , ∂nv, ∂tv)T and V0 := (v0, ∂1v0, . . . , ∂nv0, v1)T . Observe that the
difference to standard quasilinear symmetric hyperbolic systems lies in the presence of the
projector P. In the next two sections we will develop the required linear and quasilinear
existence theory for systems of the form (3.5).

4. Linear theory

Let T ∈ (0,∞]. Here we consider a linearized version of system (3.5). To be precise,
we assume that Aj and B are matrices of the form given in (3.3) and (3.4), where
Mj(V ) and Bj(V ) are replace by ajIn and bjIn, respectively, with given functions aj , bj :
[0, T )× Rn → R. Formally we define for each t ∈ [0, T ) the operator A in the space

H := L2(Rn)n(n+1) × L2
σ(Rn)

by

A(t) :=
n∑

j=1

PAj(t, ·)∂j ,

D(A) := D(A(t)) := {V ∈ H : V n+2 ∈ H1(Rn), P
n∑

j=1

∂jV
j+1 ∈ L2(Rn)}.
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Observe that it is well-known that in Rn the Helmholtz projection is bounded on the
entire scale of Sobolev spaces, that is, we have P ∈ L (Hm(Rn)) for every m ∈ Z. This,
for instance, follows easily by its symbol representation

P = F−1

[
In −

ξξT

|ξ|2

]
F

and Plancherel’s theorem, where F denotes the Fourier transformation. In this spirit the
last expression in the definition of D(A) makes sense, due to

∑n
j=1 ∂jV

j+1 ∈ H−1(Rn).
In this section we aim for the well-posedness and higher regularity of the linear nonau-
tonomous first order hyperbolic system{

Vt +AV + BV = 0 in (0, T ),
V |t=0 = V0.

(4.1)

For this purpose we start with the following result for the ’principal’ linear part A.

4.1. Lemma. Let T ∈ (0,∞) and let A be as defined above. Assume that

(aj)n
j=1 ⊆ C ([0, T ], L∞(Rn)) , div (a1, . . . , an) = 0.

Then for every t ∈ [0, T ] the operator A(t) is skew-selfadjoint, i.e., we have A(t)′ =
−A(t).

Proof. By the definition of Aj we have that

Aj∂jV = (0, . . . , 0,−∂jV
n+2, 0, . . . ,−∂jV

j+1 + aj∂jV
n+2)T .

This yields

P
n∑

j=1

Aj∂jV =
(

0,−∂1V
n+2, . . . ,−∂nV n+2,−P

n∑
j=1

∂jV
j+1 + P

n∑
j=1

aj∂jV
n+2

)T

. (4.2)

This shows that A(t) : D(A) → H is well-defined for each t ∈ [0, T ]. Now, let (Vk)k ∈
D(A) such that Vk → V and A(t)Vk → W in H. Then the first n+1 components in (4.2)
imply that V n+2 ∈ H1(Rn) and that V n+2

k → V n+2 in H1(Rn). By the last component
in (4.2) this, in turn, yields that P

∑n
j=1 ∂jV

j+1
k converges in L2(Rn). By the fact that

Vk → V in H, we also obtain

P

n∑
j=1

∂jV
j+1
k → P

n∑
j=1

∂jV
j+1 in H−1(Rn).

Since the convergence in L2 is stronger as the convergence in H−1 we conclude that
P

∑n
j=1 ∂jV

j+1 ∈ L2(Rn). Consequently, V ∈ D(A) and A(t)V = W which shows that
A(t) is closed for each t ∈ [0, T ].

Next, for V ∈ D(A) and U ∈ H we have

〈A(t)V, U〉 =−
n∑

j=1

(∂jV
n+2, U j+1)− (P

n∑
j=1

∂jV
j+1, Un+2)

+
n∑

j=1

(aj∂jV
n+2, Un+2)

(4.3)
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By the symmetry of P on L2 and since we use the same symbol for the Helmholtz
projection on Hm for different m, we also have P ′ = P if P is the projection on Hm. For
U ∈ D(A) we therefore can continue the above calculation as

〈A(t)V, U〉 =
n∑

j=1

〈PV n+2, ∂jU
j+1〉H1,H−1 − 〈

n∑
j=1

∂jV
j+1, PUn+2〉H−1,H1

+
n∑

j=1

(aj∂jV
n+2, Un+2)

= (V n+2, P

n∑
j=1

∂jU
j+1) +

n∑
j=1

(V j+1, ∂jU
n+2)−

n∑
j=1

(V n+2, aj∂jU
n+2)

= 〈V, −A(t)U〉,
where we used the fact that div (a1, . . . , an)T = 0 in the second equality. This shows that
A(t) is skew-symmetric and that D(A(t)) ⊂ D(A(t)′).

For the converse inclusion we pick

U ∈ D(A(t)′) = {U ∈ H; ∃W ∈ H ∀V ∈ D(A) : 〈V,W 〉 = 〈A(t)V,U〉}.

First we choose V ∈ D(A) such that V k = 0 except for k = `+1 with fixed ` ∈ {1, . . . , n}
and such that V `+1 ∈ C∞

0 (Rn). In view of (4.2) we then obtain

(V `+1, W `+1) = 〈V, W 〉 = 〈A(t)V, U〉

= −(
n∑

j=1

P∂jV
j+1, Un+2) = 〈V `+1, ∂`U

n+2〉H1,H−1 .

This shows that ∂`U
n+2 has a representant in L2(Rn) for every ` ∈ {1, . . . , n}. Thus

Un+2 ∈ H1(Rn). Next we choose V ∈ D(A) satisfying V k = 0 except for k = n + 2 and
V n+2 ∈ C∞

0,σ(Rn) d
↪→L2

σ(Rn). By the fact that Un+2 ∈ H1(Rn) we can calculate

(V n+2, Wn+2) = 〈V, W 〉 = 〈A(t)V, U〉

= −
n∑

j=1

(∂jV
n+2, U j+1) +

n∑
j=1

(Paj∂jV
n+2, Un+2)

= 〈V n+2, P

n∑
j=1

∂jU
j+1〉H1,H−1 − (V n+2,

n∑
j=1

Paj∂jU
n+2).

Thanks to Wn+2,
∑n

j=1 Paj∂jU
n+2 ∈ L2(Rn), this shows that also P

∑n
j=1 ∂jU

j+1 be-
longs to L2(Rn). Consequently, U ∈ D(A) and we conclude that D(A(t)′) ⊂ D(A(t)).
The assertion is therefore proved. �

The full linear operator can now be handled by a perturbation argument.

4.2. Lemma. Let T ∈ (0,∞), A be defined as above, and let M = PM with an (n +
2)n× (n + 2)n matrix M ∈ Cb([0, T ]× Rn). Assume that

(aj)n
j=1 ⊂ LIP ([0, T ], L∞(Rn)) , div (a1, . . . , an) = 0.
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Then A+M is the propagator of an evolution family

(U(t, s))0≤s≤t≤T ⊂ L (H).

Proof. By Lemma 4.1 for every t ∈ [0, T ], A(t) is skew-selfadjoint on H. Stones’s theorem
implies that A(t) is the generator of a unitary C0-group of contractions on H. Clearly,
we also have D(A(t)) = D(A) for every t ∈ [0, T ]. The Lipschitz continuity assumption
on (aj)n

j=1 in t then implies that

(t 7→ A(t)) ∈ LIP ([0, T ],L (D(A), H)).

Thus, (A(t))t∈[0,T ] is a CD-system. By [9, Section 1.2] (see also [12]) therefore A is
the propagator of an evolution family on H. By the fact that M ∈ C([0, T ],L (H)),
a standard abstract perturbation argument (cf. [9, Remark 1.1(c)] or [12]) implies that
A+M is still the propagator of an evolution family on H as claimed in the lemma. �

Lemma 4.2 and the variation of constant formula imply (for suitable f and V0) the
well-posedness of the problem{

∂tV +AV + BV = f in (0, T ),
V |t=0 = V0.

(4.4)

However, in order to prove a local-in-time existence result for the full quasilinear system,
higher regularity in Sobolev spaces for the linear problem is required. For this purpose
we employ the method of viscosity solutions.

4.3. Lemma. Let q ∈ N0, V0 ∈ Hq+2(Rn) ∩H, and let a, b ∈ C∞
b ([0, T ]×Rn). Then for

each ε > 0 there exists a unique solution Vε of{
∂tVε − ε∆Vε + (A+ B)Vε = 0 in (0, T ),

Vε(0) = V0
(4.5)

satisfying
V ∈ C1([0, T ],Hq(Rn) ∩H) ∩ C([0, T ],Hq+2(Rn)). (4.6)

Proof. It is well-known that ε∆ is the generator of an analytic C0-semigroup on Hq(Rn)∩
H. Note that by our regularity assumptions on a, b the nonautonomous operator (A+B)
represents a lower order perturbation of ε∆ regarded as a propagator on Hq(Rn)∩H. By
standard abstract perturbation results (cf. [12]) we therefore obtain that −ε∆ + A + B
is the propagator of an evolution family (Uε(t, s))0≤s≤t≤T on Hq(Rn) ∩ H such that
V (t) := Uε(t, 0)V0 satisfies (4.5) and (4.6). �

In the proof of the next Theorem we will also frequently make use of the following
estimates, which are often quoted as “Moser-type inequalities”. For a proof we refer to
[13, Lemma 4.9].

4.4. Lemma. Let m ∈ N. There there is a constant C = C(m,n) > 0 such that for all
f, g ∈ Wm,2(Rn) ∩ L∞(Rn) and α ∈ Nn

0 , |α| ≤ m, the following inequalities hold:

‖∇α(fg)‖2 ≤ C(‖f‖∞‖∇mg‖2 + ‖g‖∞‖∇mf‖2), (4.7)
‖∇α(fg)− f · ∇αg‖2 ≤ C(‖∇f‖∞‖∇m−1g‖2 + ‖g‖∞‖∇mf‖2). (4.8)
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The next result provides higher regularity of the solutions of (4.4) under, and this is
essential, in a certain sense minimal regularity assumptions on the data and the coef-
ficients. In particular, in Sobolev spaces of higher order these regularity assumptions
are weaker as the obtained regularity for the solutions. This will be very helpful for the
construction of time-local strong solutions for the full nonlinear problem in Section 5.

4.5. Theorem. Let T ∈ (0,∞), m ∈ N, m > n/2, V0 ∈ H ∩ Hm+1(Rn), and let the
coefficients a = (a1, . . . , an) and b = (b1, . . . , bn) satisfy the assumptions of Lemma 4.2.
Assume additionally that

a, b ∈ L1
(
(0, T ),Hm+1(Rn)

)
∩ C([0, T ],Hm(Rn)). (4.9)

Then the unique solution V = U(t, 0)V0 of problem (4.1) satisfies

V ∈ C1([0, T ],Hm(Rn) ∩H) ∩ C([0, T ],Hm+1(Rn)). (4.10)

Furthermore, the evolution family U satisfies the estimates

‖U(t, s)V0‖Hm+1 ≤ C1‖V0‖Hm+1 exp
(

C2

∫ t

s

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)

dr

)
, (4.11)

‖∂tU(t, 0)V0‖Hm ≤ C1‖V0‖Hm+1

(∣∣(a(t), b(t))
∣∣
m+1

+ 1
)

· exp
(

C2

∫ t

0

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)

dr

)
(4.12)

for all 0 ≤ s ≤ t ≤ T with constants C1, C2 > 0 depending only on m and the dimension
n, and where we put ∣∣(a(r), b(r))

∣∣
m+1

= ‖a(r)‖Hm+1 + ‖b(r)‖Hm+1 .

Proof. The proof is splitted in five steps.
Step 1: construction of suitable approximate solutions Vk,ε.
We denote by Jx

k f and J t
kf the convolution of a function f with the Friedrichs mollifier

in the variable x and t, respectively. We set

V0,k := Jx
k V0 ∈ Hq+2(Rn),

aj,k := J t
kE0J

x
k aj |[0,T ] ∈ C∞

b ([0, T ]× Rn),

bj,k := J t
kE0J

x
k bj |[0,T ] ∈ C∞

b ([0, T ]× Rn)

for j = 1, . . . , n and k ∈ N, where E0 denotes the trivial extension by 0 from [0, T ] to R.
Then we readily obtain

V0,k → V0 in Hm+1(Rn) ∩H, (4.13)

ak = (a1,k, . . . , an,k) → a in L1((0, T ),Hm+1) ∩ C([0, T ],Hm), (4.14)
div ak = 0 (k ∈ N),

bk = (b1,k, . . . , bn,k) → b in L1((0, T ),Hm+1) ∩ C([0, T ],Hm). (4.15)

We fix q > m + 1 and denote by Ak and Bk the operators being defined as A and B
with coefficients ak and bk, respectively. Due to Lemma 4.3 for every k ∈ N and ε > 0
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there is a viscosity solution, denoted by Vk,ε, of the system{
∂tVk,ε − ε∆Vk,ε + (Ak + Bk)Vk,ε = 0 in (0, T ),

Vk,ε(0) = V0,k
(4.16)

satisfying
Vk,ε ∈ C1([0, T ],Hq(Rn) ∩H) ∩ C([0, T ],Hq+2(Rn)). (4.17)

Step 2: uniform boundedness of Vk,ε.
Let α ∈ Nn

0 such that |α| ≤ m + 1. Since m + 1 < q, we may apply ∂α to (4.16) to the
result {

∂t∂
αVk,ε − ε∆∂αVk,ε +Ak∂

αVk,ε = F (Vk,ε) in (0, T ),
Vk,ε(0) = Vk,0

(4.18)

with

F (Vk,ε) =− en+2

[
P

n∑
j=1

(
∂αaj,k∂jV

n+2
k,ε − aj,k∂

α∂jV
n+2
k,ε + ∂αbj,kV

j+1
k,ε

)
+ ∂αV n+2

k,ε /
√

τ

]
+ e1∂

αV n+2
k,ε .

Inequality (4.8) applied on the terms involving the aj,k’s and (4.7) on the terms involving
the bj,k’s yields

‖F (Vk,ε)(t)‖L2

≤ C(n, m)
( n∑

j=1

[
‖aj,k(t)‖W 1,∞‖Vk,ε(t)‖Hm+1 + ‖aj,k(t)‖Hm+1‖Vk,ε(t)‖W 1,∞

]

+
n∑

j=1

[
‖bj,k(t)‖L∞‖Vk,ε(t)‖Hm+1 + ‖bj,k(t)‖Hm+1‖Vk,ε(t)‖L∞ + ‖Vk,ε(t)‖Hm+1

])
.

In view of the Sobolev embedding and by our assumption m > n/2 we can continue this
calculation to the result

‖F (Vk,ε)(t)‖L2 ≤ C(n, m)
(
‖ak(t)‖Hm+1 + ‖bk(t)‖Hm+1 + 1

)
‖Vk,ε(t)‖Hm+1

≤ C(n, m)
(∣∣(ak(t), bk(t))

∣∣
m+1

+ 1
)
‖Vk,ε(t)‖Hm+1 (t ∈ [0, T ]). (4.19)

Forming the dual pairing of (4.18) with ∂αVk,ε implies

1
2

d
dt
‖∂αVk,ε(t)‖2

L2 + ε‖∂α∇Vk,ε(t)‖2
L2 = 〈F (t), Vk,ε(t)〉

≤ C(n, m)
(∣∣(ak(t), bk(t))

∣∣
m+1

+ 1
)
‖Vk,ε(t)‖2

Hm+1 .

Summing up over |α| ≤ m + 1 and integrating over t then yields

|||Vk,ε(t)|||2

≤ ‖V0,k‖2
Hm+1 + C(n, m)

∫ t

0

(∣∣(ak(r), bk(r))
∣∣
m+1

+ 1
)
|||Vk,ε(r)|||2dr,
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where

|||Vk,ε(t)|||2 := ‖Vk,ε(t)‖2
Hm+1 + ε

∫ t

0
‖∇Vk,ε(r)‖2

Hm+1dr, t ∈ [0, T ].

Thus, applying Gronwall’s lemma and taking into account (4.13)-(4.15), we end up with

‖Vk,ε(t)‖2
Hm+1 + ε

∫ t

0
‖∇Vk,ε(r)‖2

Hm+1dr

≤ C1(n, m)‖V0,k‖2
Hm+1 exp

(
C2(n, m)

∫ t

0

(∣∣(ak(r), bk(r))
∣∣
m+1

+ 1
)

dr

)
≤ C1(n, m)‖V0‖2

Hm+1 exp
(

C2(n, m)
∫ t

0

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)

dr

)
≤ C1(n, m, V0, a, b, T ) (t ∈ [0, T ], k ∈ N, ε > 0).

(4.20)

This shows that Vk,ε is uniformly bounded in L∞([0, T ],Hm+1(Rn)) and that ε∇Vk,ε is
uniformly bounded in L2([0, T ],Hm+1(Rn)). Again by an application of (4.7) we therefore
obtain that (Ak +Bk)Vk,ε is uniformly bounded in L∞([0, T ],Hm(Rn)). ¿From that, the
uniform boundedness of ε∆Vk,ε in L2([0, T ],Hm(Rn)), and the equations (4.16) we infer
that also ∂tVk,ε is uniformly bounded in L2([0, T ],Hm(Rn)). Thus, we have proved that
Vk,ε is uniformly bounded in the class

H1([0, T ],Hm(Rn)) ∩ L∞([0, T ],Hm+1(Rn)). (4.21)

Step 3: weak∗ convergence of Vk,ε to the solution V of (4.1).
The outcome of step 2 implies the existence of a subsequence of Vk,ε, for simplicity also
denoted by Vk,ε, converging weakly∗ in the class (4.21) for k →∞ and ε → 0. Denote by
U its limit. Then U also belongs to (4.21). Thanks to the Sobolev embedding we also
have

U ∈ H1([0, T ],Hm(Rn))↪→C([0, T ],Hm(Rn)). (4.22)

Next, we show that U solves (4.4). In fact, multiplying

ϕ ∈ C1
0 ([0, T ), C∞

c (Rn)), div ϕn+2 = 0

to (4.16) and integrating by parts gives us

0 =
∫ T

0
〈(∂t − ε∆ +Ak(t) + Bk(t))Vk,ε(t), ϕ(t)〉dt

= −
∫ T

0
〈Vk,ε(t), (∂t +Ak(t) + Bk(t)′)ϕ(t)〉dt− ε

∫ T

0
〈Vk,ε(t), ∆ϕ〉dt + 〈V0,k, ϕ(0)〉.

Due to (4.14), (4.15), and m > n/2 we have

‖(Ak + B′k −A− B′)ϕ‖L1(H) ≤ C (‖ak − a‖L∞ + ‖bk − b‖L∞) ‖ϕ‖L1(H1)

→ 0 (k →∞).

This shows that

(∂t +Ak + B′k)ϕ → (∂t +A+ B′)ϕ strongly in L1([0, T ],H) (k →∞).
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Since Vk,ε → U weakly∗ in L∞([0, T ],H) we obtain∫ T

0
〈Vk,ε(t), (∂t +Ak +B′k)ϕ(t)〉dt →

∫ T

0
〈U(t), (∂t +A+B′)ϕ(t)〉dt (k →∞, ε → 0).

The boundedness of Vk,ε in L∞([0, T ],H) also yields

ε

∫ T

0
〈Vk,ε, ∆ϕ〉dt → 0 (k →∞, ε → 0).

Thus, letting k →∞ and ε → 0 implies∫ T

0
〈U(t), (∂t +A+ B′)ϕ(t)〉dt = 〈V0, ϕ(0)〉.

Thanks to the fact that U belongs to (4.21) and in view of (4.22), we can reverse the
integration by parts to the result∫ T

0
〈(∂t +A+ B)U(t), ϕ(t)〉dt = 〈V0 − U(0), ϕ(0)〉. (ϕ ∈ C1

0 ([0, T ), C∞
0 (Rn) ∩H)).

Choosing ϕ ∈ C1
0 ((0, T ), C∞

0 (Rn) ∩H) shows that

(∂t +A+ B)U = 0 a.e.

This, in turn, implies that U(0) = V0, hence that U solves (4.1). By virtue of (4.22) and
by the assumptions on a, b, the fact that U solves (4.1) also yields

U ∈ C1([0, T ],Hm−1(Rn) ∩H). (4.23)

Since we assumed that n ≥ 2, hence that m > n/2 ≥ 2, we obtain that U is a strong
solution of (4.1). Consequently, U is unique and therefore coincides with V = U(·, ·)V0,
where U is the evolution family given by Lemma 4.2.
Step 4: proof of estimates (4.11) and (4.12).
Note that by (4.20) and the fact that U = V , we obtain

‖V (t)‖Hm+1 ≤ lim inf
k→∞, ε→0

‖Vk,ε(t)‖Hm+1

≤ C1(n, m)‖V0‖Hm+1 exp
(

C2(n, m)
∫ t

0

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)

dr

)
for t ∈ [0, T ]. Hence estimate (4.11) is satisfied for V and s = 0. In order to get the
general case we fix s ∈ [0, T ] and set

Ũ(t, 0) := U(t + s, s),
ã(t) := a(t + s),

b̃(t) := b(t + s)

for t ∈ [0, T − s]. If Ã and B̃ denote the operators corresponding to the coefficients ã and
b̃ respectively, we see that Ṽ := Ũ(t, 0)V0 solves{

∂tṼ + (Ã+ B̃)Ṽ = 0 in (0, T − s),
Ṽ (0) = V0
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for V0 ∈ Hm+1(Rn). By the just proved facts for the solution of this system we deduce

‖U(t + s, s)V0‖Hm+1 = ‖Ũ(t, 0)V0‖Hm+1

≤ C1(n, m)‖V0‖Hm+1 exp
(

C2(n, m)
∫ t

0

(∣∣(ã(r), b̃(r))
∣∣
m+1

+ 1
)

dr

)
≤ C1(n, m)‖V0‖Hm+1 exp

(
C2(n, m)

∫ t+s

s

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)

dr

)
,

hence (4.11). The estimate for the time derivative of U now easily follows by

‖∂tU(t, 0)V0‖Hm = ‖(A(t) + B(t))U(t, 0)V0‖Hm

≤ C(n, m)
(∣∣(a(t), b(t))

∣∣
m

+ 1
)
‖U(t, 0)V0‖Hm+1 (t ∈ [0, T ]),

where we applied once more Lemma 4.4.
Step 5: continuity of V in time.
¿From step 4 and our assumptions on a, b we immediately see that

V ∈ W 1,∞([0, T ],Hm(Rn)) ∩ L∞([0, T ],Hm+1(Rn)). (4.24)

It remains to show that in (4.24) W 1,∞ and L∞ can be replaced by C1 and C, respectively.
To this end, we will employ the variation of constant formula.

Thanks to (4.22) and (4.23) we have

V = U(t, 0)V0 ∈ C1([0, T ],Hm−1(Rn)) ∩ C([0, T ],Hm(Rn)) (4.25)

for arbitrary V0 ∈ Hm+1(Rn). In view of m ≥ 2, we may apply ∂α for |α| ≤ 1 to (4.1).
This leads to {

∂t∂
αV + (A+ B)∂αV = F (V ) in (0, T ),

∂αV |t=0 = ∂αV0.
(4.26)

with

F (V ) = −en+2P

n∑
j=1

[
(∂αaj)∂jV

n+2 + (∂αbj)V j+1

]
.

Very similar to the calculations that lead to (4.19) we can derive

‖F (V )(t)‖Hm ≤ C(n, m)
∣∣(a(t), b(t))

∣∣
m+1

‖V (t)‖Hm+1 (t ∈ [0, T ]).

By virtue of our assumptions on a, b and since

V ∈ L∞([0, T ],Hm+1(Rn))

we observe that
F (V ) ∈ L1((0, T ),Hm(Rn)).

On the other hand, by applying the Hölder inequality we can also estimate as

‖F (V )(t)‖2 ≤ C

(
‖∇a(t)‖4 + ‖b(t)‖4

)
‖∇V (t)‖4 (t ∈ [0, T ]).

Since m− 1 ≥ m/2 > n/4 for m ≥ 2, the Sobolev embedding implies that Hm−1(Rn) ↪→
L4(Rn). Hence the above inequality gives us F (V ) ∈ L∞((0, T ),H). By our asumptions
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on a and b and in view of (4.25), F (V ) is even continuous in time. So, altogether we
obtain

F (V ) ∈ L1((0, T ),Hm(Rn)) ∩ C([0, T ],H).

According to H1(Rn) ∩ H↪→D(A), [9, Remark 1.3] therefore implies that ∂αV is the
unique strong solution of (4.26) given by the variation of constant formula

∂αV (t) = U(t, 0)∂αV0 +
∫ t

0
U(t, s)F (V )(s)ds, t ∈ [0, T ]. (4.27)

Here U still denotes the evolution system generated by the propagator A+ B.
¿From our assumptions (4.9) on a, b and step 4 we know that U satisfies the estimate

‖U(t, s)‖L (Hm+1∩H) ≤ C1(T ) (0 ≤ s ≤ t ≤ T ),

for some C1 > 0. Since U is an evolution system on H we also have

‖U(t, s)‖L (H) ≤ C2(T ) (0 ≤ s ≤ t ≤ T ),

for some C2 > 0. Interpolating these two inequalities yields

‖U(t, s)‖L ([H, Hm+1∩H]θ) ≤ C(T ) (0 ≤ s ≤ t ≤ T ),

with C = max(C1, C2) and where [·, ·]θ denotes the complex interpolation space for
θ ∈ (0, 1). By the fact that H is complementary in L2(Rn), [16, Theorem 1.17.1.1]
implies that

[H, Hm+1 ∩H]θ = [L2(Rn), Hm+1]θ ∩H = Hθ(m+1)(Rn) ∩H.

Consequently, for θ = m/(m + 1) we deduce

‖U(t, s)‖L (Hm∩H) ≤ Ceω(t−s) (0 ≤ s ≤ t ≤ T ).

¿From this we immediately gain the estimate

‖U(t, s)F (V )(s)‖Hm ≤ C(T )‖F (V )(s)‖Hm (0 ≤ s ≤ t ≤ T ).

Inserting this into (4.27) while taking the Hm-norm and keeping in mind continuity
relation (4.25) and that F (V ) ∈ L1((0, T ),Hm(Rn)) then gives us

‖∂α(V (t)− V0)‖Hm ≤ ‖(U(t, 0)− I)∂αV0‖Hm + C(a, b, T )
∫ t

0
‖F (V )(s)‖Hmds

→ 0 (t → 0, |α| ≤ 1).

This shows that t 7→ U(t, 0) is strongly continuous in t = 0 w.r.t. the Hm+1-norm. The
fact that U is an evolution family then implies the continuity on [0, T ]. So, we have
proved

V ∈ C([0, T ],Hm+1(Rn)).

The assertion that V ∈ C1([0, T ],Hm(Rn)) then follows again by ∂tV = −(A+B)V and
by our assumption a, b ∈ C([0, T ],Hm(Rn)) on the coefficients. The result is therefore
proved. �
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5. Quasilinear local existence

Based on a fixed point iteration here we construct local-in-time solutions to the first
order quasilinear system (3.5). The idea of this fixed point iteration goes back to Ma-
jda [10]. However, by the strength of our linear result Theorem 4.5 the proof of the
quasilinear local-in-time existence performed here becomes much more elegant compared
to the methods used in [10] or [13].

5.1. Theorem. Let m ∈ N0, m > n/2, and let V0 ∈ H ∩Hm+1(Rn). Then, there exists
a T > 0 and a unique solution

V ∈ C1([0, T ],Hm(Rn) ∩H) ∩ C([0, T ],Hm+1(Rn)) (5.1)

of system (3.5). The existence time T can be estimated from below as

T >
1

1 + C‖V0‖Hm+1

(5.2)

with a constant C > 0 depending only on m and the dimension n.

Proof. Step 1: existence.
Let V0 ∈ Hm+1(Rn) ∩H be an initial value. Set

V0(t, x) := V0(x) ((t, x) ∈ [0, T ]× Rn)

and for k ∈ N0 let Vk+1 be inductively defined as the solution of the initial value problem{
∂tVk+1 + (A(Vk) + B(Vk))Vk+1 = 0 in (0, T ),

Vk+1(0) = V0.
(5.3)

By the fact that

C1([0, T ],Hm(Rn)) ∩ C([0, T ],Hm+1(Rn))

↪→ C([0, T ],Hm(Rn)) ∩ L1((0, T ),Hm+1(Rn)) ∩ LIP ([0, T ], L∞(Rn)),

we see that Theorem 4.5 (i.p. (4.9) and (4.10)) implies that every solution belongs to the
class of the coefficients for the next step. Hence, Vk+1 is well-defined for every k ∈ N0.
Next, we will prove the following uniform bounds.

5.2. Lemma. There exist R,L, T∗ > 0 such that for all k ∈ N0 we have
(i) ‖Vk‖L∞([0,T∗],Hm+1) ≤ R,
(ii) ‖∂tVk‖L∞([0,T∗],Hm) ≤ L.

Proof. We use induction over k ∈ N0. For k = 0 we have

‖V0‖L∞([0,T ],Hm+1) = ‖V0‖Hm+1 ≤ R,

which is to understand as a first condition on the size of R. In view of ∂tV0 = 0 we see
that L is still arbitrary.

Now, assume that the assertion holds for k ∈ N0. Estimate (4.11) in combination with
(4.9) and the induction hypothesis imply

‖Vk+1‖L∞([0,T ],Hm+1) ≤ C1‖V0‖Hm+1 exp
(

C2

∫ T

0
(‖Vk(r)‖Hm+1 + 1) dr

)
≤ C1‖V0‖Hm+1 exp (C2(R + 1)T ) (T > 0).
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We choose

R = R(‖V0‖Hm+1) := C1‖V0‖Hm+1 exp(C2) =: C(n, m)‖V0‖Hm+1 .

Then for
T∗ ≤

1
R + 1

=
1

1 + C(n, m)‖V0‖Hm+1

we obtain
‖Vk+1‖L∞([0,T∗],Hm+1) ≤ R.

This leads to estimate (5.2) for the size of the existence time.
Similarly, for the time derivative of Vk+1 we employ estimate (4.12) in combination

with (4.9) to the result

‖∂tVk+1‖L∞([0,T ],Hm) ≤ C1‖V0‖Hm+1

(
‖Vk‖L∞([0,T ],Hm+1) + 1

)
· exp

(
C2

∫ T

0
(‖Vk(r)‖Hm+1 + 1) dr

)
≤ C1‖V0‖Hm+1(R + 1) exp (C2(R + 1)T ) (T > 0).

Thus, again for T∗ ≤ 1/(R + 1) we deduce

‖∂tVk+1‖L∞([0,T ],Hm) ≤ R(R + 1) =: L.

This fixes L and the lemma is proved. �

The just proved lemma implies the existence of a subsequence of Vk (for simpicity also
denoted by Vk) converging weakly∗ in W 1,∞([0, T∗],Hm(Rn)) ∩ L∞([0, T∗],Hm+1(Rn)).
Thus there is a limit

V ∈ W 1,∞([0, T∗],Hm(Rn)) ∩ L∞([0, T∗],Hm+1(Rn)). (5.4)

Due to m > n/2 the Sobolev embedding also implies that

V ∈ C([0, T∗],Hm(Rn))↪→C([0, T∗]× Rn). (5.5)

Next , let G ⊂ Rn be compact. Since the embedding

W 1,∞([0, T∗],Hm(G)) ∩ L∞([0, T∗],Hm+1(G))↪→L2((0, T∗),Hm(G))

is compact (cf. [15]), in view of the Sobolev embedding we obtain that

Vk → V strongly in L2((0, T∗)×G). (5.6)

Forming the dual pairing of (5.3) with ϕ ∈ C1
0 ([0, T∗), C∞

0 (Rn)) such that div ϕn+2 = 0
and integrating by parts implies∫ T∗

0
〈Vk+1(t), (∂t +A(Vk(t)) + B(Vk(t)))ϕ(t)〉L2(G)dt = 〈V0, ϕ(0)〉 (5.7)

with G ⊂ Rn compact so that suppϕ(t) ⊂ G for all t ∈ [0, T∗]. By virtue of (5.6) we
observe that

(∂t +A(Vk) + B(Vk))ϕ → (∂t +A(V ) + B(V ))ϕ (k →∞)

strongly in L2((0, T∗)×G). Hence, letting k →∞ in (5.7) shows that∫ T∗

0
〈V (t), (∂t +A(V (t)) + B(V (t)))ϕ(t)〉L2(G)dt = 〈V0, ϕ(0)〉.
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Thanks to (5.4) and (5.5) we may reverse the integration by parts which yields∫ T∗

0
〈(∂t +A(V (t)) + B(V (t)))V (t), ϕ(t)〉L2(G)dt = 〈V0 − V (0), ϕ(0)〉.

In the same way as in step 3 of the proof of Theorem 4.5 we therefore obtain that V
solves (3.5) for a.e. (t, x) ∈ [0, T∗]× Rn.

To see that V satisfies (5.1) we argue as follows. First observe that we have

W 1,∞([0, T∗],Hm(Rn))↪→LIP ([0, T∗],Hm(Rn)).

Combining this with (5.4) and (5.5) implies

V ∈ L∞([0, T∗],Hm+1(Rn)) ∩ C([0, T∗],Hm(Rn)) ∩ LIP ([0, T ], L∞(Rn)).

By this fact we may regard (3.5) as the linear system{
∂tU + (A+ B)U = 0 in (0, T∗),

U(0) = V0
(5.8)

with fixed coefficients

a :=
√

τ/µ V 1, b :=
1
√

µ
(
√

τV n+2 + V 1).

Theorem 4.5 implies the existence of a unique solution

U ∈ C1([0, T∗],Hm(Rn) ∩H) ∩ C([0, T∗],Hm+1(Rn)).

Obviously U is a strong solution of (5.8). On the other hand, in view of (5.5), our
assumptions on a, b, and since V solves (3.5) we obtain

V ∈ C1([0, T∗],H) ∩ C([0, T∗],D(A)).

Thus, V is a strong solution of (5.8) as well. By the uniqueness of strong solutions of the
linear system (5.8) we obtain V = U , hence (5.1).
Step 2: uniqueness.
Let

U, V ∈ C1([0, T ],H) ∩ C([0, T ],H1(Rn)) ∩ L∞([0, T ],W 1,∞(Rn))
be solutions of (3.5) to the initial value V0. Then W := U − V solves{

∂tW +A(U)W = F in (0, T∗),
W (0) = 0,

(5.9)

with
F = (A(W ) + B(W ))V + B(U)W,

where we used the fact that V 7→ A(V ) and V 7→ B(V ) are linear. Our assumptions on
U, V yield

‖V ‖L∞([0,T ],W 1,∞(Rn)) + ‖U‖L∞([0,T ]×Rn) ≤ C.

Thus we can estimate F as

‖F (t)‖H ≤ C‖W (t)‖H (‖V (t)‖W 1,∞ + ‖U(t)‖L∞) ≤ C‖W (t)‖H (t ∈ [0, T ]).

Forming the dual pairing of (5.9) with W gives us
1
2

d
dt
‖W (t)‖2

L2 = 〈F (t), W (t)〉 ≤ C‖W (t)‖2
L2 (t ∈ [0, T ]).
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Consequently, W = 0 by Gronwall’s lemma. This completes the proof of Theorem 5.1. �

We conclude with the proof of our main result Theorem 1.1.

Proof. Let (u0, u1) ∈
(
Hm+2(Rn) ∩ L2

σ(Rn)
)
×

(
Hm+1(Rn) ∩ L2

σ(Rn)
)
. Then we have

V0 := (v0, ∂1v0, . . . , ∂nv0, v1)T ∈ Hm+1(Rn) ∩ H, where (v0, v1) := (u0,
√

τu1). If V is
the solution of system (3.5) in (0, T ) we set v := V 1. Then by construction of A + B
we readily see that v satisfies equations (3.2). Regularity relation (5.1) and the fact that
V = (v, ∂1v, . . . , ∂n, ∂tv) imply

v ∈ C2([0, T ],Hm(Rn)) ∩ C1([0, T ],Hm+1(Rn)) ∩ C([0, T ],Hm+2(Rn) ∩ L2
σ(Rn)).

Setting T∗ :=
√

τT then gives us the claimed regularity for u(t, x) := v(t/
√

τ , x/
√

µ),
the solution of (3.1).

A further application of Lemma 4.4 and the regularity of u show that

τ(u · ∇)∂tu, ((τ∂tu + u) · ∇)u ∈ C([0, T∗],Hm(Rn)).

(This can also be seen by the construction of V .) Thus, we may recover the pressure
term via

∇π := (I − P ) (−τ(u · ∇)∂tu− ((τ∂tu + u) · ∇)u))

= (1 + τ∂t)(I − P )(u · ∇)u.
(5.10)

This yields that (u, π) is the unique solution of (1.1) with the claimed regularity. �

Corollary 1.2 now is easily obtained as follows

Proof. Assuming u0, u1 ∈
⋂∞

k=0 Hk(Rn) implies that u ∈ C2([0, T∗],Hm(Rn)) for every
m ∈ N. By applying ∂t iteratively to equations (3.1) and taking into account the bound-
edness of P on every Hm(Rn), we even obtain that u ∈ C∞([0, T∗],Hm(Rn)) for every
m ∈ N. From representation (5.10) we then deduce the same regularity for ∇π. The
Sobolev embedding finally yields the assertion. �
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