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Abstract: We consider a hyperbolicly perturbed Navier-Stokes initial value problem in Rn, n = 2, 3,

arising from using a Cattaneo type relation instead of a Fourier type one in the constitutive equations.

The resulting system is a hyperbolic one with quasilinear nonlinearities. The global existence of smooth

solutions for small data is proved, and relations to the classical Navier-Stokes systems are discussed.

1 Introduction

The classical Navier-Stokes equations in the whole space Rn, n = 2, 3,

ut − µ∆u + ((u · ∇)u) +∇p = 0 in (0,∞)× Rn, (1.1)

div u = 0 in (0,∞)× Rn, (1.2)

u(0, ·) = u0, in Rn, (1.3)

with µ > 0 being the viscosity, for the velocity vector u = u(t, x) : (0,∞)× Rn → Rn of a fluid,
and p = p(t, x) : (0,∞)× Rn → R the related pressure, arise from the transport law

ut + (u · ∇)u +∇p = divS (1.4)

and the constitutive law for the tensor S,

S =
µ

2
(∇u + (∇u)′), (1.5)

together with the incompressibility (zero divergence) condition (1.2) and initial conditions (1.3).
We replace the Fourier type relation (1.5) by the Cattaneo type relation

τSt + S =
µ

2
(∇u + (∇u)′) (1.6)
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cf. the Ortroyd model in (1.11) below. The Fourier type constitutive assumption (1.5) — in
addition to the pressure contribution — leads to the well-known parabolic type classical Navier-
Stokes system (1.1)–(1.3); there, in particular, we have the effect of an infinite propagation
speed of signals, as it is well-known as modeling problem/paradox for heat equations, or, more
generally, for flux type equations (diffusion problems, . . . ) where the flux relation is given by
the Fourier type. There are applications, however, where it is more reasonable to work with
hyperbolic models, cf [23] and the references therein. It has also been observed experimentally
that there exist hyperbolic heat waves. First, one is naturally led to models with a delayed flux
relation

S(t + τ, ·) =
1
2
(∇u + (∇u)′)(t, ·), (1.7)

with a small (small relatively to other physical constants in the system) relaxation parameter
τ > 0. The Cattaneo type constitutive law (1.6) can be interpreted as a formal Taylor expansion
of order one in t.
Remark: Formal higher-order Taylor expansions may lead to ill-posed problems, cf. the exam-
ples by Dreher, Quintanilla and Racke [6].

Differentiating the transport equation (1.4) with respect to t, and using the new relation
(1.6), we obtain the new hyperbolicly perturbed Navier-Stokes system

τutt − µ∆u + ut +∇p + τ∇pt = −(u · ∇)u− (τut · ∇)u− (τu · ∇)ut (1.8)

in (0,∞)× Rn,

div u = 0 in (0,∞)× Rn, (1.9)

u(0, ·) = u0, ut(0, ·) = u1 in Rn, (1.10)

It will turn out that, in this system, at least the vorticity ∇× u has finite propagation speed.
The classical Navier-Stokes system (1.1)–(1.3) has been and is widely discussed. The global

in time well-posedness is of great interest not only in fluid dynamics and has led over the years to
many mathematical contributions, also to still open problems, the most prominent one being the
question of global existence of smooth solutions to any (possibly large, smooth) data (“million
dollar problem”). Under minimal assumptions on the data u0, the existence of a weak solution
is guaranteed by the results of Leray [14] and Hopf [11]. The uniqueness of (u, p) up to an
additive constant for the pressure p is known in two space dimensions, hence also the global
existence of large strong solutions, but the uniqueness in three space dimensions remains open
in general. The global existence of small strong solutions has been proved, see e.g. the books of
Ladyzhenskaya [13], Constantin [5], Temam [26], von Wahl [28], and the references therein. For
an elementary approach to the classical Navier-Stokes equations we also refer to the monograph
[9].

For large data, strong global solutions are know to exist only under very restrictive addi-
tional assumptions on the data: see Ladyzhenskaya [13] for rotational symmetry, Ukhovskii and
Iudovich [27] for axial symmetry, Mahalov, Titi and Leibovich [16] for helical symmetry, or for
approximately symmetric data, see Ponce, Racke, Sideris and Titi [21], for large initial data
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with uniformly large vorticity see [3], [15], for highly oscillating nondecaying large initial data
cf. [10]. For further discussions on global solvability we also refer to [4].

Here, we consider the hyperbolic version (1.8)–(1.10). There it not only the hyperbolic
character of a wave equation for u, that complicates things by less regularization properties,
but we notice the nonlinearities which are — in contrast to the classical case — of highest
order, see the term (τu · ∇)ut. In view of known results on global existence for small data
or blow-up even for small data, respectively, for wave equations or heat type equations, these
quadratic nonlinearities touch the critical borderline. We recall that for nonlinear heat equations
— the linearized version of which will show the same decay rates for solutions as solutions to
damped wave equations, see below — it is known from Fujita [8], see also Ponce [19], that
for quadratic perturbations the nonlinear heat equation in three dimensions has global small
solutions. However, this is in general not the case in dimension two. Nevertheless, we will be
able to prove the global existence for small data also in two space dimensions since the appearing
nonlinearities also have derivatives, and derivatives of solutions to damped wave equations have
a better decay rate compared to the solution itself — this is the same property as known for
heat equations.
Remark: The equation (1.8) can be regarded as a damped wave equation only for small values
of u, since the term (τut · ∇)u might disturb the positive damping term ut for large u. — This
is another hint to think about a possible blow-up situation for large data.

Therefore, we will combine and apply techniques known for nonlinear heat equations, where
additional trouble will arise through the Helmholtz projections, see below.

Quadratic nonlinearities are worse in two than in three space dimensions, and a blow-up of
solutions cannot yet be excluded. In fact, we have the conjecture that strong solutions to the
hyperbolic Navier-Stokes system (1.8)–(1.10) in two space dimensions blow up in finite time if
the data are sufficiently large.
This conjecture might turn out to be wrong if someone is able to prove the global large well-
posedness of large strong solutions — as it is the case for the (simpler) classical Navier-Stokes
system. But if the conjecture is true, it would have two important consequences:

(i) The comparison to the classical Navier-Stokes system in two dimensions would demon-
strate that the modeling of fluid dynamics by the classical system is sensitive versus small changes
— predicting global solutions in one model and a blow-up in the other one —, and hence the
big question of global large solutions in three dimensions might also be a more mathematical
one in the sense that the model might be not appropriate.

(ii) It would be the first nonlinear example where a change from the Fourier type law to a
Cattaneo type law gives opposite information (global existence versus blow-up). This was known
up to now only for linearized equations from the recent study of Timoshenko type systems in
the work of Fernández Sare and Racke [7].

On the other hand, the conjecture might be wrong. Then the conclusion is that both models
— with Fourier or Cattaneo law, respectively — behave similar (leaving the big question in
three dimensions open in both cases). This would fit to observations in different systems in
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thermoelasticity, where the change from one to the other model does not change the qualitative
and even quantitative behavior essentially, see the survey in [23] and the references therein.
Nevertheless, the results in [7] show that, a priori, it is not evident that both systems yield the
same description, despite the fact that the systems are formally close to each other (τ being
small). Our contribution shows on the level of small perturbations of equilibria (small data)
that the two systems — classical versus hyperbolic — are comparable.

We remark that our new Navier-Stokes system is related to the Oldroyd model which con-
siders instead of (1.6) the more general model

τSt + S = µ(E + νEt). (1.11)

where E := 1
2(∇u + (∇u)′), cf. de Araújo, de Menzenes and Marinho [2] and Joseph [12]; in

comparison to our model we have ν = 0. If ν 6= 0 then, from the point of derivatives getting
involved, S is on a similar level as E , as in the classical case.

In [18], Paicu and Raugel considered a hyperbolic perturbation of the classical Navier-Stokes
equations consisting in adding the term τutt to the equation (1.1). The global well-posedness
for mild solutions in two dimensions for sufficiently small τ , and the global existence for small
data and sufficiently small τ in three dimensions in analogy to the classical case are proved.
Of course, keeping the nonlinearity (u · ∇)u is essential there and cannot be compared to our
situation with the quasilinear additional nonlinearities in(1.8). In [18], a number of justifications
for their model is presented, see the references therein.

In order to prove a global existence theorem for small data, we apply the Leray projector
P onto solenoidal fields, in order to eliminate the pressure terms. Once knowing u, one can
determine the pressure p by solving the linear problem

−∆p−∆pt = div {(u · ∇)u + (τut · ∇)u + (τu · ∇)ut} . (1.12)

P projects L2-vector fields onto the divergence free fields,

P : (L2(Rn))n −→ L2
σ(Rn) :=

{
w ∈ (L2

σ(Rn))n : divw = 0
}

.

This leads to the well-known orthogonal decomposition

(L2(Rn))n = L2
σ(Rn)⊕⊥ G2(Rn),

where G2(Rn) := {∇v : v ∈ L2
loc(R

n), ∇v ∈ (L2(Rn))n}.
Applying the projector P to (1.8) we arrive at the following system involving u only,

τutt − µ∆u + ut = −P ((u · ∇)u)− P ((τut · ∇)u)− P ((τu · ∇)ut) (1.13)

in (0,∞)× Rn,

div u = 0 in (0,∞)× Rn, (1.14)

u(0, ·) = u0, ut(0, ·) = u1 in Rn. (1.15)
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In the following we shall prove the global existence to the problem (1.13)–(1.15); the pressure
is then determined by (1.12) (up to constants, as usual).

The Helmholtz projection can be regarded as a continuous operator on any Wm,p∩L2-space,
provided 1 < p < ∞. Since we need to estimate the nonlinearities in particular in Section
4, we have to avoid L∞- resp. L1-norms. On the other hand, for the nonlinear problem in
question we are — with quadratic nonlinearities involving u and one derivative of u in two space
dimensions — at the borderline of possible global existence theorems for small data (cf. the
comments above); for these cases, e.g. for nonlinear heat equations, one usually exploits the
decay of solutions in L∞. This has to be avoided here and leads to some additional technical
difficulties.

The paper is organized as follows: In Section 2, we will recall the local existence theorem from
our paper [24] of (Hm =)Wm,2)-valued solutions. The subsequent remarks on finite propagation
speed and on possible blow-up phenomena in Section 3 precede the first a priori estimate in
Section 4, where a priori energy estimates for the local solution will be proved in Hm-norms.
In Section 5, the decay known for linearized damped wave equations will be exploited to prove
additional weighted a priori estimates in Lq-norms (q 6= ∞). These, together with the energy
estimates from Section 5 will lead in Section 6 to the global existence theorem for small data
given in Theorem 6.1. In an Appendix, Moser-type inequalities for composite functions are
collected.

We use the standard Sobolev spaces Wm,p = Wm,p(Rn), 1 ≤ p ≤ ∞, and Lp = W 0,p, with
norms ‖ · ‖m,p and ‖ · ‖p, respectively, cp. [1]. Occasionally, we shall omit the number of the
copies of the space needed for vector fields. 〈·, ·〉 will denote the inner product in L2.

2 Local existence

In [24] we obtained the following local existence theorem:

Theorem 2.1 Let n ≥ 2 and m > n/2. For each

(u0, u1) ∈
(
Wm+2,2(Rn) ∩ L2

σ(Rn)
)
×

(
Wm+1,2(Rn) ∩ L2

σ(Rn)
)

there exists a time T > 0 and a unique solution (u, p) to the equations (1.8)–(1.10) satisfying

u ∈ C2([0, T ],Wm,2(Rn)) ∩ C1([0, T ],Wm+1,2(Rn)) ∩ C0([0, T ],Wm+2,2(Rn) ∩ L2
σ(Rn)),

∇(p + τpt) ∈ C0([0, T ],Wm,2(Rn)).

The existence time T can be estimated from below as

T >
1

1 + C(‖u0‖m+2,2 + ‖u1‖m+1,2)

with a constant C > 0 depending only on m and the dimension n.
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3 Remarks on finite propagation speed and on blow-up phe-

nomena

For the local solution provided in the previous section, we can prove the finite propagation speed
for the vorticity v := ∇× u. Namely, v satisfies the differential equation

τvtt −∆v + vt + (τu · ∇)vt +
{

(u · ∇)v + (τut · ∇)v + (2− n) (1 + τ∂t)J(∇u)v)
}

= 0, (3.1)

where J(∇u) denotes the Jacobi matrix of the first derivatives of u. The part in brackets
{. . . } involves at most first-order derivatives of v. Therefore, the general energy estimates
for hyperbolic equations of second order — after transformation to a first-order symmetric-
hyperbolic system — apply as described in [22], and give the finite propagation speed. We
remark that this can still not be expected for u due to the pressure terms.

Below, we shall prove the global existence for small data (for u). It will remain open if there
is a blow-up to be expected for large data. An ansatz could be to look at the hyperbolic system
(3.1) for the vorticity v (also involving u in the coefficients, of course), and to try to apply
methods known for large data blow-up situations as in the work of Sideris [25].

The consequences for the classical Navier-Stokes equations as well as for the relation between
Fourier type and Cattaneo type models have been mentioned in the introduction.

4 High energy estimates

In order to be able to continue a local solution to a global one — for small data —, we shall
prove in this section and in the next one suitable a priori estimates. We start with an estimate
for the higher-order energy term Em(t) defined below.

Let u ∈ C0([0, T ],Wm+2,2) ∩ C1([0, T ],Wm+1,2) ∩ C2([0, T ],Wm,2) be the local solution to

τutt − µ∆u + ut = −P ((u · ∇)u)− P ((τut · ∇)u)− P ((τu · ∇)ut) (4.1)

in (0, T )× Rn,

≡ N1 + N2 + N3

div u = 0 in (0, T )× Rn, (4.2)

u(0, ·) = u0, ut(0, ·) = u1 in Rn, (4.3)

m > n/2, n = 2, 3, for data (u0, u1) ∈ Wm+2,2 ×Wm+1,2 according to Theorem 2.1.
Let, for 0 ≤ t ≤ T ,

Em(t) :=
1
2

∑
|α|≤m+1

(‖∇αut‖2
2 + ‖∇α∇u‖2

2 + ε2‖∇αu‖2
2)(t), (4.4)

where 0 < ε2 will be fixed in the proof of the following Theorem, for which we assume m ∈ N,
m > n/2. Then we have for any t, with constants c1, c2 being independent of t,

c1Em(t) ≤ ‖(u(t), ut(t))‖W m+2,2×W m+1,2 ≤ c2Em(t). (4.5)
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Theorem 4.1 : There is C > 0, being independent of T and of the data (u0, u1) such that for
0 ≤ t ≤ T ,

Em(t) ≤ CEm(0)e
C

tR
0

(‖u‖2∞+‖ut‖1,∞+‖∇u‖∞)(r)dr
(4.6)

Remark: The quadratic character of the term ‖u‖2
∞ is essential for the subsequent sections.

Proof: We use multiplicative techniques exploiting the derivative character of some nonlinear
terms.
Let |α| ≤ m + 1. Applying ∇α to the differential equation (4.1), then multiplying by ∇αut in
L2(Rn) yields

τ

2
d

dt
‖∇αut‖2

2 +
µ

2
d

dt
‖∇α∇u‖2

2 + ‖∇αut‖2
2 =

3∑
j=1

〈∇αNj ,∇αut〉, (4.7)

where 〈·, ·〉 denotes the inner product in L2(Rn).
Remark: In (4.7) we have assumed w.l.o.g. - and will do so in the sequel - that functions are
real valued. Otherwise taking real parts would lead to the same conclusions.
Estimation of 〈∇αN1,∇αut〉 :
Using ∇αP = P∇α and well-known Moser-type unequalities that are listed in the Appendix, we
obtain

|〈∇αN1,∇αut〉| ≤ C (‖u‖∞‖‖∇α∇u‖2 + ‖∇u‖∞‖‖∇αu‖2) ‖∇αut‖2 (4.8)

≤ C
(
‖u‖2

∞ + ‖∇u‖∞
)
Em +

1
4
‖∇αut‖2.

From now on the letter C will denote positive constants not depending on T or on the data.
Estimation of 〈∇αN2,∇αut〉 :
As before, we get

|〈∇αN2,∇αut〉| ≤ C(‖ut‖∞ + ‖∇u‖∞)Em. (4.9)

Estimation of 〈∇αN3,∇αut〉 :

〈∇αN3,∇αut〉 = −τ〈(u · ∇∇α)ut,∇αut〉 (4.10)

−τ〈∇α
(
(u · ∇)ut

)
− (u · ∇α∇)u,∇αut〉 ≡ R1 + R2.

Using divu = 0, we obtain for a typical term

R1 = −τ〈uj∂j∂
m
k ∂tur, ∂

m
k ∂tur〉 (4.11)

= τ〈uj∂
m
k ∂tur, ∂j∂

m
k ∂tur〉

= −R1,

hence
R1 = 0.

|R2| ≤ τC(‖∇u‖∞ + ‖∇ut‖∞)Em. (4.12)
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Now we apply again ∇α to (4.1), but muliply with ε2∇αu in L2(Rn), where ε2 > 0 will be chosen
small enough below. Then we obtain

ε2τ〈∇αutt,∇αu〉+ ε2µ‖∇α∇u‖2
2 + ε2〈∇αut,∇αu〉 = ε2

3∑
j=1

〈∇αNj ,∇αu〉,

or,

ε2τ
d

dt
〈∇αut,∇αu〉 − ε2τ‖∇αut‖2

2 + ε2µ‖∇α∇u‖2
2 (4.13)

+ ε2
d

dt

1
2
‖∇αu‖2

2 = ε2

3∑
j=1

〈∇αNj ,∇αu〉

Consider the Lyapunov functional

Ẽm := Em + ε2τ
∑
|α|≤m

〈∇αut,∇αu〉. (4.14)

If
0 < ε2τ <

1
2

then
∃C1, C2 > 0 ∀t : C1Em(t) ≤ Ẽm(t) ≤ C2Em(t). (4.15)

The term −ε2τ‖∇αut‖2
2 in (4.13) will be dominated by the term ‖∇αut‖2

2 in (4.7) if ε2τ is small
enough (ε2τ < 1

2 e.g.). This fixes ε2.
Estimation of 〈∇αN1,∇αu〉:

|〈∇αN1,∇αu〉| ≤ C (‖u‖∞‖‖∇α∇u‖2 + ‖∇u‖∞‖‖∇αu‖2) ‖∇αu‖2 (4.16)

≤ C
(
‖u‖2

∞ + ‖∇u‖∞
)
Em. (4.17)

Estimation of 〈∇αN2,∇u〉:

|〈∇αN2,∇αu〉| ≤ C (‖ut‖∞ + ‖∇u‖∞) Em. (4.18)

Estimation of 〈∇αN3,∇u〉:
For α = 0 we have

|〈N3, u〉| ≤ C‖∇ut‖∞Em. (4.19)

For |α| > 0 we get

|〈∇αN3,∇αu〉| = τ |〈∇α−1
(
(u · ∇)ut

)
,∇α∇u〉| (4.20)

≤ C
(
‖u‖∞‖∇αut‖2‖∇α∇u‖2 + ‖∇α−1u‖2‖∇ut‖∞‖∇α∇u‖2

)
≤ C

(
‖u‖2

∞ + ‖∇ut‖∞
)
Em +

1
4
‖∇αut‖2

2.
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The last term in (4.20) can be dominated by ‖∇αut‖2 in (4.7) — as well as 1
4‖∇

αut‖2
2 in (4.8).

Summing up for 0 ≤ |α| ≤ m all estimates for the (left and) right-hand sides of (4.7) and of
(4.13), we obtain, after integration in time from 0 to t,

Ẽm(t) ≤ CEm(0) + C

t∫
0

(‖u‖2
∞ + ‖∇u‖∞ + ‖ut‖1,∞)(r)Em(r)dr

which, by the equivalence of Ẽm and Em given in (4.15) and Gronwalls inequality, yields the
assertion (4.10).
2

5 Weighted a priori estimates

Let u ∈ C0([0, T ],Wm+2,2)∩C1([0, T ],Wm+1,2)∩C2([0, T ],Wm,2) be again the local solution to

τutt − µ∆u + ut = −P ((u · ∇)u)− P ((τut · ∇)u)− P ((τu · ∇)ut) (5.1)

in (0, T )× Rn,

≡ N1 + N2 + N3

div u = 0 in (0, T )× Rn, (5.2)

u(0, ·) = u0, ut(0, ·) = u1 in Rn, (5.3)

m > n/2, n = 2, 3, according to Theorem 2.1.
In order to prove a weighted a priori estimate to exploit the expected decay in time, we shall

use the following decay estimates for solutions to the corresponding linearized equations.

Lemma 5.1 Let v be the solution to

τvtt − µ∆v + vt = 0 in (0,∞)× Rn, (5.4)

v(0, ·) = v0, vt(0, ·) = v1 in Rn. (5.5)

Then we have for α ∈ Nn
0 , j ∈ N0 and 1 ≤ p ≤ 2 ≤ q ≤ ∞ with 1/q + 1/p = 1

‖∇α∂j
t v(t, ·)‖2 ≤ C|α|,j(1 + t)−(

|α|
2

+j)‖(v0, v1)‖X2 , (5.6)

where

X2 :=

{
L2 × L2 if |α|+ j = 0,

W |α|+j,2 ×W |α|+j−1,2 if |α|+ j ≥ 1,

‖∇α∂j
t v(t, ·)‖q ≤ Cq,|α|,j(1 + t)−

{
n
2
(1− 2

q
)+

|α|
2

+j
}
‖(v0, v1)‖Yq , (5.7)

where
Yq := Wmq ,p ×Wmq−1,p
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with
mq :=

[
(1− 2

q
)([

n

2
] + 4)

]
≤ 5 =: m0, (5.8)

‖∇α∂j
t v(t, ·)‖2 ≤ C|α|,j(1 + t)−(n

4
+
|α|
2

+j)‖(v0, v1)‖Z2 , (5.9)

where

Z2 :=

{
(L2 × L2) ∩ (L1 × L1) if |α|+ j = 0,

(W |α|+j,z ×W |α|+j−1,2 ∩ (L1 × L1) if |α|+ j = 1.

Proof: The assertions follow from Lemma 1 in [17], taking m = 2 resp. m = 1 there, and
interpolation.
2

Denoting by w(t)g the solution v to

Lv ≡ τvtt − µ∆v + vt = 0 in (0,∞)× Rn, (5.10)

v(0, ·) = 0, vt(0, ·) = g in Rn, (5.11)

we have the following representation of the local solution u to (5.1)–(5.3).

Lemma 5.2 :

u(t) = w(t)(u1 +
1
τ
u0) + ∂tw(t)u0 +

1
τ

t∫
0

w(t− r)
3∑

j=1

Nj(r)︸ ︷︷ ︸
=:f(r)

dr (5.12)

Proof: Writing u(t) ≡ v1(t) + v2(t) + v3(t) according to (5.12), we get

Lv1 = 0, Lv2 = 0, (5.13)

moreover,

∂tv3(t) =
1
τ
w(0)f(t)︸ ︷︷ ︸

=0

+
1
τ

t∫
0

∂tw(t− r)f(r)dr, (5.14)

τ∂2
t v3(t) = ∂tw(t− r)f(r)|r=t +

1
τ

t∫
0

τ∂2
t w(t− r)f(r)dr

= f(t) +

t∫
0

µ∆w(t− r)f(r)dr −
t∫

0

∂tw(t− r)f(r)dr

= f(t) + µ∆v3(t)− ∂tv3(t),

hence
Lv3 = f
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which gives, using (5.13)
Lu = f.

Moreover, using (5.14),
u(0, ·) = u0,

ut(0, ·) = u1 +
1
τ
u0 + ∂2

t w(t)u0|t=0 +

t∫
0

∂tw(t− r)
1
τ
f(r)dr|t=0

= u1 +
1
τ
u0 +

1
τ

(
µ∆w(t)u0 − ∂tw(t)u0

)
|t=0

= u1 +
1
τ
u0 +

1
τ
(−u0)

= u1.

2

The main weighted a priori estimate for the local solution will be a bound on the following
quantity. Let 0 ≤ T1 ≤ T , and define

M(T ) ≡ Mm,m1,q(T ) := sup
0≤t≤T

{
(1 + t)1−

2
q ‖u(t)‖m1,q+ (1 + t)

3
2
− 2

q (‖ut(t)‖m1,q + ‖∇u(t)‖m1,q)

+(1 + t)
1
2 ‖u(t)‖m,2 + (1 + t)(‖ut(t)‖m,2 + ‖∇u(t)‖m,2)} , (5.15)

where ∞ > q > 4 will be arbitrary, but fixed, and m,m1 ∈ N have to satisfy m1 ≥ 3,m ≥ m1+9,
and are also fixed.

With quadratic nonlinearities in two space dimensions we are at the borderline concerning
the possibility to prove suitable a priori estimates to finally get a global small solution. Usually,
for nonlinear heat equations, for example, one uses L∞-estimates and L1-spaces. This seems
to be not possible here because of the fact that the Helmholtz projector P is not continuous
in these spaces, cf. the introduction. This explains why we try to use Lq-norms, 4 < q < ∞
in addition to the also not avoidable L2-spaces. We follow the approach by Ponce in [19] with
the modification of avoiding L∞- estimates. Since the approach works the better, the better
the decay rates of solutions to the linearized equations are, the situation in two dimensions is
more difficult (actually borderline case) than in three dimensions. For the simplicity of the
presentation we have therefore chosen time weights that are suitable for the two-dimensional
case, but, the more, work in three dimensions. The decay rates finally obtained for the global
solution could be improved for the three dimensional case.

Let 1 < p ≤ 2 satisfy 1/q + 1/p = 1.

Theorem 5.3 : There is δ > 0 such that if the initial data (u0, u1) satisfy

‖u0‖m+2,2 + ‖u1‖m+1,2 + ‖u0‖1 + ‖u1‖1 + ‖u0‖m1+6,p + ‖u1‖m1+5,p < δ, (5.16)

then there is M0 > 0, independent of T , such that

M(T ) ≤ M0. (5.17)
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Proof: We use the representation (5.12) and write u as

u(t) = v1(t) + v2(t) + v3(t)

with

v1(t) = w(t)(u1 +
1
τ
u0), v2(t) = ∂tw(t)u0, v3(t) =

1
τ

t∫
0

w(t− r)f(r)dr

where

f(r) =
3∑

j=1

Nj(r)

with Nj given in (5.1). Since div u = 0, we may also write

Nj = ∇ · PÑj (5.18)

where
Ñ1 := u⊗ u, Ñ2 := τut ⊗ u, Ñ3 := τu⊗ ut, (5.19)

e.g.,

N1 = −P ((u · ∇)u) =
3∑

k=1

∂kP (uku).

Writing the nonlinearities Nj as derivatives as in (5.18) is crucial for the convergence of some
integrals below (in the estimate of (1 + t)1−2/q‖u(t)‖m1,q), while for others the previous repre-
sentation with the derivative ∇ in front of u resp. ut is more appropriate (as in the estimate of
(1 + t)3/2−2/q(‖ut(t)‖m1,q + ‖∇u(t)‖m1,q), for example).

We start with the
I. Estimate for ‖u(t)‖m1,q.
Using Lemma 5.1 frequently in the sequel, we obtain – using from now on the latter C to denote
positive constants that do not depend on T or on the data –,

‖v1(t)‖m1,q ≤ C(1 + t)−(1− 2
q
)(‖u0‖m0−1+m1,p + ‖u1‖m0−1+m1,p) ≤ Cδ(1 + t)−(1− 2

q
)
, (5.20)

‖v2(t)‖m1,q ≤ C(1 + t)−(1− 2
q
)‖u0‖m0+m1,p ≤ Cδ(1 + t)−(1− 2

q
)
, (5.21)

‖v3(t)‖m1,q ≤ C

t∫
0

(1 + t− r)−((1− 2
q
)+ 1

2
)

3∑
j=1

‖PÑj(r)‖m0+m1,p dr,

≤ C

t∫
0

(1 + t− r)−((1− 2
q
)+ 1

2
)

3∑
j=1

‖Ñj(r)‖m0+m1,p dr, (5.22)

where we used the continuity of the Helmholtz projection P in Wm,% if 1 < % < ∞.
Remark: Since P is not continuous in Wm,1 we have to modify the arguments from [19,
20] where standard L∞ − L1-estimates could be used, while we have to circumvent this using
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Lq−estimates with data in Wm,p spaces for q < ∞ and p > 1.
The nonlinearities can be estimated as follows (cf. standard inequalities in [20], [22]),

‖Ñ1(r)‖m0+m1,p ≤ C‖u(r)‖m0+m1,2‖u(r)‖m0+m1,p1 (5.23)

where
1
p

=
1
2

+
1
p1

, i.e. p1 =
2p

2− p
> 2,

‖Ñ2(r)‖m0+m1,p + ‖Ñ3(r)‖m0+m1,p ≤ C‖ut(r)‖m0+m1,2‖u(r)‖m0+m1,p1 (5.24)

Using
Wm,% ↪→ Lµ for % ≤ µ and m% > n (5.25)

we conclude
‖Ñ1(r)‖m0+m1,p ≤ C‖u(r)‖m0+m1,2‖u(r)‖m0+2+m1,2, (5.26)

‖Ñ2(r)‖m0+m1,p + ‖Ñ3(r)‖m0+m1,p ≤ C‖ut(r)‖m0+m1,2‖u(r)‖m0+2+m1,2, (5.27)

hence
(1 + r)‖Ñ1(r)‖m0+m1,p ≤ C

(
(1 + r)

1
2 ‖u(r)‖m0+2+m1,2

)2 ≤ C(M(T ))2, (5.28)

(1 + r)(‖Ñ2(r)‖m0+m1,p + ‖Ñ3(r)‖m0+m1,p)

≤ C
((

(1 + r)
1
2 ‖ut(t)‖m0+m1,2

)(
(1 + r)

1
2 ‖u(r)‖m0+2+m1,2

))
≤ C(M(T ))2. (5.29)

Combining (5.22), (5.28), (5.29) we get

(1 + t)1−
2
q ‖v3(t)‖m1,q ≤ C(M(T ))2

t∫
0

(1 + t− r)
(
(1− 2

q
)+ 1

2

)
(1 + r)−1(1 + t)1−

2
q dr

≤ C(M(T ))2 (5.30)

where we used the following well-known Lemma (cf. [22]).

Lemma 5.4 : Let α, β, γ ≥ 0. Then

sup
t≥0

t∫
0

(1 + t− r)−α(1 + r)−β(1 + t)γdr < ∞

if and only if the following conditions (i)–(iii) are satisfied:

(i) α + β − γ ≥ 1,

(ii) α ≥ γ and β ≥ γ,

(iii) (if β = 1 then α > γ) and (if α = 1 then β > γ).
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To obtain (5.30) we take α = 1− 2/q + 1
2 , β = 1, γ = 1− 2/q and conclude that the conditions

(i)–(iii) of Lemma 5.4 are satisfied.
Combining (5.20), (5.21), and (5.30) we get the first one of the desired estimates, i.e. for
‖u(t)‖m1,q,

sup
0≤t≤T

(1 + t)1−2/q‖u(t)‖m1,q ≤ Cδ + C(M(T ))2. (5.31)

II. Estimate for ‖ut(t)‖m1,q + ‖∇u(t)‖m1,q.
We have the representations (cp. (5.12), (5.14))

ut(t) = ∂tw(t)(u1 +
1
τ
u0) + ∂2

t w(t)u0 +
1
τ

t∫
0

∂tw(t− r)f(r)dr

= ∂tw(t)(u1 +
1
τ
u0) + w(t)(

µ

τ
∆u0)−

1
τ
∂tw(t)u0 +

1
τ

t∫
0

∂tw(t− r)f(r)dr

= w(t)(
µ

τ
∆u0) + ∂tw(t)u1 +

1
τ

t∫
0

∂tw(t− r)f(r)dr, (5.32)

and

∇u(t) = ∇w(t)(u1 +
1
τ
u0) +∇∂tw(t)u1 +

t∫
0

∇w(t− r)f(r)dr. (5.33)

In analogy to the estimates for ‖u(t)‖m1,q above, we may conclude the following series of es-
timates, with the essential difference that now f(r) keeps the derivative ∇ in front of u resp.
ut. This will allow to justify the convergence of integrals as in (5.30) (that otherwise would be
divergent).
Writing ∇u = v1 + v2 + v3 according to (5.33) we have

‖v1(t)‖m1,q ≤ Cδ(1 + t)−((1− 2
q
)+ 1

2
)
, (5.34)

‖v2(t)‖m1,q ≤ Cδ(1 + t)−((1− 2
q
)+ 1

2
)
, (5.35)

Writing Nj = PN̂j , j = 1, 2, 3, we obtain

‖v3(t)‖m1,q ≤ C

t∫
0

(1 + t− r)−((1− 2
q
)+ 1

2
)

3∑
j=1

‖N̂j(r)‖m0+m1,p dr, (5.36)

with p1 = 2p/(2− p) as before, we get

‖N̂1(r)‖m0+m1,p ≤ C‖u(r)‖m0+m1,2‖∇u(r)‖m0+m1,p1

≤ C‖u(r)‖m0+m1,2‖∇u(r)‖m0+m1+2,2, (5.37)

‖N̂2(r)‖ ≤ C‖ut(r)‖m0+m1,2‖∇u(r)‖m0+m1,p1

≤ C‖ut(r)‖m0+m1,2‖∇u(r)‖m0+m1,2, (5.38)
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‖N̂3(r)‖ ≤ C‖u(r)‖m0+m1,2‖∇ut(r)‖m0+m1,p1

≤ C‖u(r)‖m0+m1,2‖ut(r)‖m0+m1+3,2. (5.39)

Hence, we get

(1 + r)
3
2 ‖N̂1(r)‖m0+m1,p ≤ C

(
(1 + r)

1
2 ‖u(r)‖m0+m1,2

)
·
(
(1 + r)‖∇u(r)‖m0+m1+2,2

)
≤ C(M(T ))2, (5.40)

similarly
(1 + r)

3
2 (‖N̂2(r)‖m0+m1,p + ‖N̂3(r)‖m0+m1,p) ≤ C(M(T ))2. (5.41)

Combining (5.36), (5.40), and (5.41) we obtain

(1 + t)(1−
2
q
)+ 1

2 ‖v3(t)‖m1,q ≤ C(M(T ))2
t∫

0

(1 + t− r)−((1− 2
q
)+ 1

2
)(1 + r)−

3
2 (1 + t)1−

2
q
+ 1

2 dr

≤ C(M(T ))2 (5.42)

by Lemma 5.4. The estimates (5.34), (5.35), (5.42) yield

sup
0≤t≤T

(1 + t)
3
2
− 2

q ‖∇u(t)‖m1,q ≤ Cδ + C(M(T ))2. (5.43)

Analogously we get the estimate

sup
0≤t≤T

(1 + t)
3
2
− 2

q ‖ut(t)‖m1,q ≤ Cδ + C(M(T ))2. (5.44)

III. Estimate for ‖u(t)‖m,2.
Writing u = v1 + v2 + v3 according to (5.12) we have, in particular using (5.9) from Lemma 5.1,

‖v1(t)‖m,2 ≤ C(1 + t)−
1
2 (‖u0‖m−1,2 + ‖u1‖m−1,2 + ‖u0‖1 + ‖u1‖1)

≤ Cδ(1 + t)−
1
2 , (5.45)

‖v2(t)‖m,2 ≤ C(1 + t)−
1
2 (‖u0‖m,2 + ‖u0‖1)

≤ Cδ(1 + t)−
1
2 , (5.46)

We observe that the L1-norms appear for the initial data, but will not appear for the nonlinear-
ities (where it would cause trouble due to the Helmholtz projection).

‖v3(t)‖m,2 ≤ C

t∫
0

(1 + t− r)−
1
2

3∑
j=1

‖Ñj(r)‖m+1,2 dr. (5.47)

The nonlinearities Ñj are now estimated as follows.

‖Ñj(r)‖m+1,2 ≤ C(‖u(r)‖∞ + ‖ut(r)‖∞)(‖u(r)‖m,2 + ‖∇m+1u(r)‖2)

≤ C(‖u(r)‖m1,q + ‖ut(r)‖m1,q)(‖u(r)‖m,2 + ‖∇m+1u(r)‖2). (5.48)
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We have from (5.12)

‖∇m+1u(r)‖2 ≤ Cδ(1 + r)−
m+1

2 + C

r∫
0

(1 + r − λ)−(m+1
2

+ 1
2
)

3∑
j=1

‖Ñj(r)‖m+1,2 dλ. (5.49)

Moreover, using the energy estimate from Theorem 4.1,

‖Ñj(λ)‖m+1,2 ≤ C(‖u(λ)‖∞ + ‖ut(λ)‖∞)‖u(λ)‖m+1,2

≤ Cδ(‖u(λ)‖2,q + ‖ut(λ)‖2,q) · e
C

λR
0

(‖u(%)‖22,q+‖ut(%)‖3,q+‖∇u(%)‖2,q)d%.
(5.50)

The estimates (5.49), (5.50) imply

(1 + r)1−
2
q ‖∇m+1u(r)‖2 ≤ Cδ(1 + r)−(m

2
−(1− 2

q
)) + Cδ

r∫
0

(1 + r − λ)−(m
2

+ 1
2
) ·

·
{

(1 + λ)−(1− 2
q
)(1 + r)1−

2
q
[
(1 + λ)1−

2
q ‖u(λ)‖m1,q

]
+(1 + λ)−( 3

2
− 2

q
)(1 + r)1−

2
q
[
(1 + λ)

3
2
− 2

q ‖ut(λ)‖m1,q

]}
·

· e
C

λR
0

(1+%)
−2(1− 2

q )
[
(1+%)2(1−2/q)‖u(%)‖2m1,q

]
+(1+%)−(3/2−2/q)·

·
[
(1+%)(3/2−2/q)

(
‖ut(%)‖m1,q+‖∇u(%)‖m1,q

)]
d%dλ

≤ Cδ
(
1 + M(T )eC((M(T ))2+M(T ))

)
(5.51)

since

sup
r≥0

r∫
0

(1 + r − λ)−(m+1
2

+ 1
2
)(1 + λ)−(1− 2

q
)(1 + r)1−

2
q dλ+

sup
r≥0

r∫
0

(1 + r − λ)−(m
2

+ 1
2
)(1 + λ)−( 3

2
− 2

q
)(1 + r)

3
2
− 2

q dr+

sup
λ≥0

λ∫
0

(1 + %)−2(1− 2
q
) + (1 + %)−( 3

2
− 2

q
)
d% < ∞

by Lemma 5.4, using q > 4. Combining (5.48) and (5.51) we obtain

(1 + r)1−
2
q
+ 1

2 ‖Ñj(r)‖m+1,2 ≤ C(1 + r)1−
2
q
(
‖u(r)‖m1,q + ‖ut(r)‖m1,q

)
·

·
(
(1 + r)

1
2 ‖u(r)‖m,2 + (1 + r)

1
2 ‖∇m+1u(r)‖2

)
(5.52)

≤ C(M(T ))2 + CδM(T )
(
1 + M(T )eC((M(T ))2+M(T ))

)
.
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By (5.45), (5.46),(5.47), and (5.52) we conclude

(1 + t)
1
2 ‖u(t)‖m,2 ≤ Cδ + C

t∫
0

(1 + t− r)−
1
2 (1 + r)−(1− 2

q
+ 1

2
)(1 + t)1/2 ·

·(1 + r)1−2/q+1/2
3∑

j=1

‖Ñj(r)‖m+1,2dr (5.53)

≤ Cδ + C(M(T ))2 + CδM(T )
(
1 + M(T ))eC((M(T ))2+M(T ))

)
,

since

sup
t≥0

t∫
0

(1 + t− r)−
1
2 (1 + r)−(1− 2

q
+ 1

2
)(1 + t)

1
2 dr < ∞. (5.54)

IV. Estimates for ‖ut(t)‖m,2 + ‖∇u(t)‖m,2.
Using the representations (5.32) for ut and (5.33) for ∇u, respectively, we obtain the analogous
series of estimates as for ‖u(t)‖m,2 in part III above, in particular: (5.48) turns into

‖Ñj(r)‖m+2,2 ≤ C(‖u(r)‖m1,q + ‖ut(r)‖m1,q)(‖u(r)‖m,2 + ‖∇m+2u(r)‖m,2), (5.55)

and (5.53) turns into

(1 + t)(‖ut(t)‖m,2 + ‖∇u(t)‖m,2) ≤ Cδ + C(M(T ))2

+CδM(T )
(
1 + M(T )eC(M(T ))2+(M(T ))

)
, (5.56)

since

sup
t≥0

t∫
0

(1 + t− r)−1(1 + r)−(1− 2
q
+ 1

2
)(1 + t)dr < ∞. (5.57)

Summarizing (5.31), (5.43), (5.44), (5.53), and (5.56), we have

M(T ) ≤ Cδ + C(M(T ))2 + CδM(T )
(
1 + M(T )eC((M(T ))2+M(T ))

)
. (5.58)

In (5.58) we may replace T by any T1 with 0 ≤ T1 ≤ T , and we conclude by standard arguments
(cf. [22], [19]) that for sufficiently small δ > 0 we have

M(T ) ≤ M0 (5.59)

where M0 is the first zero of the function h with

h(x) := Cx + Cx2 + Cδx(1 + xeC(x2+x))− x.

This proves Theorem 5.3.
2

17



6 Global existence

The a priori estimates in Theorem 4.1 (high energy estimates) and in Theorem 5.3 (weighted a
priori estimates) allow us in a standard way (cf.[22]) to prove the global existence theorem

Theorem 6.1 : Let m1 ≥ 3,m ≥ m1 + 9,∞ > q > 4, 1/q + 1/p = 1.

There exists ε > 0 such that if

‖u0‖m+2,2 + ‖u0‖m+1,2 + ‖u0‖1 + ‖u1‖1 + ‖u0‖m1+6,p + ‖u0‖m1+5,p < ε,

then there exists a unique global solution (u, p) to the hyperbolic Navier-Stokes equations (1.8)–
(1.10), satisfying

u ∈ C2([0,∞),Wm,2) ∩ C1([0,∞),Wm+1,2) ∩ C0([0,∞),Wm+2,2),

∇(p + τpt) ∈ C0([0,∞),Wm,2(Rn)).

Remark: Since supt≥0 M(t) ≤ M0, we have the corresponding decay rates for u(t), ut(t) and
∇u(t) in ‖ · ‖m1,q and in ‖ · ‖m,2, respectively.

Proof: Let u be the local solution to (5.1), (5.2), (5.3) according to Theorem 2.1. We obtain
using Theorem 4.1 and Theorem 5.3

‖Em(t)‖ ≤ CEm(0)eC(M2
0 +M0) ≤ CEm(0)

where C is independent of T and of the data. Using (4.5), we get

‖(u(t), ut(t))‖W m+2,2×W m+1,2 ≤ Ĉ‖(u0, u1)‖W m+2,2×W m+1,2 ,

where
Ĉ :=

c2C

c1
.

Choosing

O < ε <
δ

Ĉ

we conclude
Em(T ) < δ

and are thus able to continue a local solution to a global one (as usual, cf. [22, p. 91]).
2

18



7 Appendix

The following inequalities have been frequently used in the preceding sections and are often
quoted as “Moser-type inequalities”.

Lemma 7.1 Let m ∈ N. There there is a constant c = c(m, n) > 0 such that for all f, g ∈
Wm,2(Rn) ∩ L∞(Rn) and α ∈ Nn

0 , |α| ≤ m, the following inequalities hold:

‖∇α(fg)‖2 ≤ c(‖f‖∞‖∇mg‖2 + ‖g‖∞‖∇mf‖2), (7.1)

‖∇α(fg)− f · ∇αg‖2 ≤ c(‖∇f‖∞‖∇m−1g‖2 + ‖g‖∞‖∇mf‖2). (7.2)

For a Proof see [22, Lemma 4.9].
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