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Abstract

The main goal of this paper is to prove optimal decay estimates for the dissipative Timoshenko
system in the one-dimensional whole space, and to prove a global existence theorem for semilinear
systems. More precisely, if we restrict the initial data ((ϕ0,ψ0),(ϕ1,ψ1)) ∈

(
Hs+1

(
RN
)
∩L1,γ

(
RN
))
×(

Hs
(
RN
)
∩L1,γ

(
RN
))

with γ ∈ [0,1], then we can derive faster decay estimates than those given in [8].
Then, we use these decay estimates of the linear problem combined with the weighted energy method
introduced by Todorova and Yordanov [35] with the special weight given in [11], to tackle a semilinear
problem.

1 Introduction

In this paper, we are concerned with the one dimensional Timoshenko system in the whole space R. Namely,
we consider

ϕ tt (t,x)− (ϕx−ψ)x (t,x) = 0, (t,x) ∈ R+×R,

ψ tt (t,x)−a2ψxx (t,x)− (ϕx−ψ)(t,x)+ µψ t (t,x) = f (ψ (t,x)) , (t,x) ∈ R+×R,

(ϕ,ϕ t ,ψ,ψ t)(0,x) = (ϕ0,ϕ1,ψ0,ψ1) , x ∈ R,

(1.1)

where t denotes the time variable and x is the space variable, the function ϕ and ψ are the displacement and
the rotation angle of the beam respectively, a and µ are positive constants and f (ψ (t,x)) = |ψ (t,x)|p with
p > 1.

Before stating and proving our results, let us recall some other results related to our work.
A Timoshenko system goes back to Timoshenko [34] in 1921 who proposed a coupled hyperbolic system

which is similar to (1.1), describing the transverse vibration of a beam, but without the presence of any
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damping. More precisely, he introduced the following system{
ρϕ tt = (K(ϕx−ψ))x, in (0,L)× (0,+∞)

Iρψ tt = (EIψx)x +K(ϕx−ψ)), in (0,L)× (0,+∞),
(1.2)

where t denotes the time variable, x is the space coordinate along the beam of length L, in its equilibrium
configuration. The function ϕ = ϕ(t,x) is the transverse displacement of the beam from an equilibrium
state and ψ = ψ(t,x) is the rotation angle of the filament of the beam. The coefficients ρ, Iρ ,E, I and K are
respectively the density (the mass per unit length), the polar moment of inertia of a cross section, Young’s
modulus of elasticity, the moment of inertia of a cross section, and the shear modulus. For a physical
derivation of Timoshenko’s system, we refer the reader to [5].

System (1.2), together with boundary conditions of the form

EIψx |x=L
x=0= 0, K(ϕx−ψ) |x=L

x=0= 0

is conservative, and so the total energy of the beam remains constant along the time.
The subject of stability of Timoshenko-type systems has received a lot of attention in the last years, and

quite a number of results concerning uniform and asymptotic decay of energy have been established.
An important issue of research is to look for a minimum dissipation by which solutions of system (1.2)

decay uniformly to zero as time goes to infinity. In this regard, several types of dissipative mechanisms
have been introduced, such as dissipative mechanism of frictional type, of viscoelastic type and thermal
dissipation.

System (1.2) together with two boundary controls of the form

Kψ(L, t)−Kϕx(L, t) = αϕ t(L, t), ∀t ≥ 0,

EIψx(L, t) =−βψ t(L, t), ∀t ≥ 0,
(1.3)

has been considered in [14]. The authors used the multiplier techniques to establish an exponential decay
result for the total energy of (1.2)-(1.3). They also provided numerical estimates to the eigenvalues of the
operator associated with system (1.2)-(1.3).

Subsequently, extensive attention was paid to the problem of obtaining an explicit decay rate of system
(1.2).

Soufyane and Wehbe [33] showed that it is possible to stabilize uniformly (1.2) by using a unique locally
distributed feedback of the form b(x)ψ t in the left hand side of the second equation in (1.2), where b is a
positive and continuous function, which satisfies

b(x)≥ b0 > 0, ∀ x ∈ [a0,a1]⊂ [0,L]

and proved that the uniform stability holds if and only if the wave speeds are equal, that is K
ρ

= EI
Iρ

1. Other-
wise only the asymptotic stability has been proved.

Muñoz Rivera and Racke [26] obtained a similar result in a work where the damping function b = b(x) is
allowed to change its sign. Also, Muñoz Rivera and Racke [25] treated a nonlinear Timoshenko-type system
of the form {

ρ1ϕ tt −σ1(ϕx,ψ)x = 0,

ρ2ψ tt −χ(ψx)x +σ2(ϕx,ψ)+dψ t = 0

1This condition is significant only from the mathematical point of view since in practice the velocities of waves propagations
are always different, see [15].
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in a bounded interval. The dissipation is produced here through the frictional damping dψ t , d > 0 which
is only present in the equation for the rotation angle. The authors gave an alternative proof for a necessary
and sufficient condition for exponential stability in the linear case and then proved a polynomial stability in
general. Moreover, they investigated the global existence of small smooth solutions and exponential stability
in the nonlinear case.

Ammar-Khodja et al. [2] considered a linear Timoshenko-type system with memory of the form

ρ1ϕ tt −K(ϕx +ψ)x = 0,

ρ2ψ tt −bψxx +
∫ t

0
g(t− s)ψxx(s)ds+K(ϕx +ψ) = 0

(1.4)

in (0,L)× (0,+∞), together with homogeneous boundary conditions. They used the multiplier techniques
and proved that the system (1.4) is uniformly stable if and only if the wave speeds are equal

K
ρ1

=
b

ρ2
(1.5)

and g decays uniformly. Precisely, they proved an exponential decay if g decays in an exponential rate and
polynomially if g decays in a polynomial rate. They also required some extra technical conditions on both g′

and g′′ to obtain their result. Guesmia and Messaoudi [6] proved the same result without imposing the extra
technical conditions of [2]. Recently, Messaoudi and Mustafa [17] improved the results of [2] by allowing
more general decaying relaxation functions and showed that the decay rate of the solution energy is exactly
the rate of decay of the relaxation function. Alabau-Boussouira [1] considered the following system{

ρ1ϕ tt −K(ϕx +ψ)x = 0, in (0,L)× (0,+∞),

ρ2ψ tt −bψxx +K(ϕx +ψ)+α(ψ t) = 0, in (0,L)× (0,+∞),
(1.6)

associated with two different types of boundary conditions. Under no growth assumption on the nonlinear
function α near the origin, the author established a semi-explicit formula for the decay of the energy in the
case of equal wave speeds. In the case of different wave speeds, a polynomial decay has been established
for both linear and nonlinear globally Lipschitz feedbacks. System (1.6), with α(t)g(ψ t) instead of α(ψ t),
has been considered by Messaoudi and Mustafa [18]. An explicit formula for the decay rate, depending on
α and g, has been given under no growth condition on g at the origin. Also, Muñoz Rivera and Fernández
Sare [27], considered Timoshenko type system with past history acting only in one equation. More precisely
they looked at the following problem:

ρ1ϕ tt −K(ϕx +ψ)x = 0,

ρ2ψ tt −bψxx +
∫ +∞

0
g(t)ψxx(t− s, .)ds+K(ϕx +ψ) = 0,

(1.7)

together with homogenous boundary conditions, and showed that the dissipation given by the history term
is strong enough to stabilize the system exponentially if and only if the wave speeds are equal. They also
proved that the solution decays polynomially for the case of different wave speeds. This work has been
improved recently by Messaoudi and Said-Houari [22], where the authors considered system (1.7) for g de-
caying polynomially, and proved polynomial stability results for the equal and nonequal wave-speed propa-
gation under some conditions on the relaxation function weaker than those in [27].
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Very recently, Said-Houari and Laskri [29] have considered the following Timoshenko system with a delay
term in the feedback{

ρ1ϕ tt (x, t)−K (ϕx +ψ)x (x, t) = 0,

ρ2ψ tt (x, t)−bψxx (x, t)+K (ϕx +ψ)(x, t)+ µ1ψ t (x, t)+ µ2ψ t (x, t− τ) = 0.
(1.8)

Under the assumption µ1 ≥ µ2 on the weights of the two feedbacks, they proved the well-posedness of the
system. They also established for µ1 > µ2 an exponential decay result for the case of equal-speed wave
propagation.

For similar problems dealing with the stability theory of the Timoshenko systems with thermal dissipation,
we refer to [19, 20, 21, 24, 30].

All the above papers treated the Timoshenko systems in a bounded domain in which the Poincaré inequal-
ity and the type of the boundary conditions play a decisive role. But in the whole space R there are almost
no results, to our knowledge, except the two papers of Kawashima and his collaborators in [8] and [9].

In [8], Ide, Haramoto and Kawashima investigated problem (1.1) with f = 0 and proved that if a = 1, then
the solution of (1.1) decays like:∥∥∂

k
x U (t)

∥∥
2 ≤C (1+ t)−1/4−k/2 ‖U0‖1 +Ce−ct

∥∥∂
k
x U0
∥∥

2 , (1.9)

where U = (ϕx−ψ,ϕ t ,aψx,ψ t)
T . While if a 6= 1, then system (1.1) is of regularity-loss type and the

solutions decay as: ∥∥∂
k
x U (t)

∥∥
2 ≤C (1+ t)−1/4−k/2 ‖U0‖1 +C (1+ t)−l/2∥∥∂

k+l
x U0

∥∥
2 , (1.10)

where the parameters k and l in (1.9) and (1.10) are non-negative integers, and C and c are positive constants.
The work in [8] was followed by [9] where Ide and Kawashima generalized the above decay results to a
nonlinear version of the form

ϕ tt (t,x)− (ϕx−ψ)x (t,x) = 0, (t,x) ∈ R+×R,

ψ tt (t,x)−σ (ψx)x (t,x)− (ϕx−ψ)(t,x)+ µψ t (t,x) = 0, (t,x) ∈ R+×R,

(ϕ,ϕ t ,ψ,ψ t)(0,x) = (ϕ0,ϕ1,ψ0,ψ1) , x ∈ R,

(1.11)

where σ(η) is a smooth function of η such that σ(η) > 0. In fact, they showed the existence of global
solutions and the asymptotic decay of these solutions under the smallness condition on the initial data in
Hs∩L1 with suitably large s. In both papers [8] and [9] the authors have found the diffusion phenomenon
of systems (1.10) and (1.11). In other words, they showed that the solutions approach the diffusion wave
expressed in terms of the superposition of the heat kernels as time tends to infinity.

The purpose of this paper is twofold:

• First, we extend the decay results obtained in [8]. In fact, by restricting ourselves to initial data
U0 ∈ Hs (R)∩L1,γ (R) with a suitably large s and γ ∈ [0,1], then we can derive faster decay estimates
than those given in [8]. Indeed, by transforming our problem in the Fourier space, using the pointwise
estimates derived in [8] and adapting the devise introduced by Ikehata in [10], to treat the Fourier
transform in the low frequency region, we succeed to improve the decay rate given in [8] by t−γ/2, γ ∈
[0,1] especially in the case of equal wave speeds, i.e. a = 1. Also, for a 6= 1, a refinement of the decay
estimates is given which improves the decay rate in [8, Theorem 5.1, Corollary 5.1]. (See Theorem
4.2 below). Moreover, we give a more general proof for the large time approximation given in [8,
Theorem 5.2].
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• Second, we analyze the asymptotic behavior of the semilinear problem (1.1) with the power type
nonlinearity |u|p satisfying

p > 12. (1.12)

Here, we use the decay estimates obtained for the linear problem combined with the weighted energy
method introduced by Todorova and Yordanov [35] with the special weight given in [11] to obtain
the small data global existence and some optimal decay estimates for the semilinear problem. A
restriction like (1.12) seems to be justified since the damping is acting only on the second equation of
(1.1); see Remark 6.5 for more details. We recall that our result has been proved without assuming
the compactness assumption of the support on the initial data.

The rest of the paper is organized as follows. In section 2 we introduce some notations and some useful
tools that we will use throughout this paper. Section 3 is devoted to the analysis of the asymptotic behavior
of the linear hyperbolic system (3.1), the main result of this section is Theorem 3.1, in which we have proved
better decay estimates than those given in [8]. Since in the case where a 6= 1 and as it was shown in [8] our
system (3.1) is of regularity loss type. Therefore, the goal of section 4, is to give a refinement of the decay
estimates in the case a 6= 1. Still our estimate in this section better than those proved in [8]. In section 5, we
prove the asymptotic profile of the solution of our problem (3.1) as t tends to infinity. In fact we show that
the solution of system (3.1) behaves asymptotically like the one of the parabolic system (5.1). Our proof is
more general than the one given [8] and [9], including all the values of γ ∈ [0,1]. We also extend the result
obtained by Ikehata [10] for the hyperbolic wave equation to some parabolic systems (Lemma 5.1), to our
knowledge this result is new. In section 6 we investigate the semilinear problem (6.1). More precisely, in
subsection 6.1, by combining the semigroup approach with the fixed point theorem and using some weighted
estimates, we show that our system is well-posed. Furthermore in subsection 6.2 we investigate the global
existence and the asymptotic behavior of the semilinear problem (6.1). Our result is carried out by making
use of our estimates for the linear problem in section 3 and the Todorova-Yordanov weighted energy method
with the a special weight. The result of this subsection (Theorem 6.4) shows that for small initial data, the
solution of the semilinear problem decays with the same rate as the one of the linear problem. As far as we
know, this is the first result dealing with this type of nonlinearity in the Timoshenko systems. Finally, in
section 7, we conclude by making some comments.

2 Preliminaries

In this section, we introduce some notations and some technical lemmas to be used throughout this paper.
Throughout this paper, ‖.‖q and ‖.‖H l stand for the Lq(R)-norm (1 ≤ q ≤ ∞) and the H l(R)-norm and

some times for Lq(R+)-norm and the H l(R+)-norm, respectively. Also, for γ ∈ [0,+∞), we define the
weighted function space L1,γ(R) as follows: u ∈ L1,γ(R) iffu ∈ L1 (R) and

‖u‖1,γ =
∫

R
(1+ |x|)γ |u(x)|dx < +∞.

Similarly, we can define the space L1,γ(R+).
Let us also denote by f̂ = F ( f ) the Fourier transform of f with inverse F−1:

f̂ (ξ ) = F ( f )(ξ ) =
∫

R
f (x)e−iξ xdx,

Next, we introduce the following interpolation inequality which will be used in this paper.
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Lemma 2.1 ([23]) Let N ≥ 1. Let 1 ≤ p, q ,r ≤ ∞, and let k be a positive integer. Then for any integer j
with 0≤ j ≤ k, we have ∥∥∂

j
x u
∥∥

Lp ≤C
∥∥∂

k
x u
∥∥a

Lq ‖u‖1−a
Lr (2.1)

where
1
p

=
j

N
+a
(

1
q
− k

N

)
+(1−a)

1
r

for a satisfying j/k ≤ a≤ 1 and C is a positive constant; there are the following exceptional cases:

1. If j = 0, qk < N and r = ∞, then we made the additional assumption that either u(x)→ 0 as |x| → ∞

or u ∈ Lq′ for some 0 < q′ < ∞.

2. If 1 < r < ∞ and k− j−N/r is nonnegative integer, then (2.1) holds only for j/k ≤ a < 1.

Furthermore, we introduce the following lemma, which can be found, for example in [16, 31].

Lemma 2.2 Let a > 0 and b > 0 be constants. If max(a,b) > 1, then∫ t

0
(1+ t− s)−a (1+ s)−b ds≤C (1+ t)−min(a,b) . (2.2)

If max(a,b) = 1, then ∫ t

0
(1+ t− s)−a (1+ s)−b ds≤C (1+ t)−min(a,b) ln(2+ t) . (2.3)

If max(a,b) < 1, then ∫ t

0
(1+ t− s)−a (1+ s)−b ds≤C (1+ t)1−a−b . (2.4)

3 Decay estimates

Our goal now is to write system (1.1) as a first-order system of the form{
Ut +AUx +LU = 0,

U (x,0) = U0,
(3.1)

where A is a real symmetric matrix and L is non-negative definite matrix. To this end, we introduce the
following variables:

v = ϕx−ψ, u = ϕ t , z = aψx, y = ψ t .

Consequently, system (1.1) can be rewritten as the following first-order hyperbolic system (see [8])

U =


v
u
z
y

 , A =−


0 1 0 0
1 0 0 0
0 0 0 a
0 0 a 0

 , L =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 µ

 . (3.2)

and U0 = (v0,u0,z0,y0)
T . It is clear that A is real symmetric and since UT LU = µy2 > 0 for all non-zero

vector U , then L is positive definite, but it is not real symmetric.
System (3.1) can be seen as a particular case of a general hyperbolic system of balance laws. We point out

that Shizuta and Kawashima [32] have introduced the so-called algebraic condition (SK), namely
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(SK) Ker(L)∩{eigenvectors ofA}= {0},

which is satisfied in many examples and sufficient to establish a general result of global existence for
small perturbations of constant-equilibrium state. Our system (3.1) satisfies the condition (SK), but the
general theory on the dissipative structure established in [32] is not applicable since the matrix L is not real
symmetric. Consequently, to treat the global existence and asymptotic stability of (3.1), new ideas have to
be implemented. See [9] for more details.

Recently, Beauchard and Zuazua [3] have showed that the condition (SK) is equivalent to the classical
Kalman rank condition in control theory for the pair (A,L).

The the semigroup etΦ associated with system (3.1) can be represented as(
etΦw

)
(x) = F−1

(
etΦ̂(iξ )ŵ(ξ )

)
(x)

where
Φ̂(iξ ) =−(iξ A+L) (3.3)

and etΦ̂(iξ ) satisfies Û(ξ , t) = etΦ̂(iξ )Û0 and Û(ξ , t) is the solution of the problem{
Ût + iξ AÛx +LÛ = 0,

Û (ξ ,0) = Û0.
(3.4)

Of course, problem (3.4) is obtained by taking the Fourier transform of (3.1).
Our first main result reads as follows:

Theorem 3.1 Let γ ∈ [0,1], and let etΦ be the semigroup associated with the system (3.1). Then, if w is an
odd function, we have the following sharp decay estimates:

• When a = 1, we have∥∥∂
k
x etΦw

∥∥
2 ≤C (1+ t)−1/4−k/2−γ/2 ‖w‖1,γ +Ce−ct

∥∥∂
k
x w
∥∥

2 (3.5)

• When a 6= 1, we have∥∥∂
k
x etΦw

∥∥
2 ≤C (1+ t)−1/4−k/2−γ/2 ‖w‖1,γ +C (1+ t)−l/2∥∥∂

k+l
x w

∥∥
2 (3.6)

where k and l are non-negative integers, and C and c are two positive constants.

In order to proof Theorem 3.1, we recall the following result from [8]. The proof of the following lemma
is carried out by using the energy method in the Fourier space.

Lemma 3.2 Let Φ̂(iξ ) be the matrix defined in (3.3). Then the corresponding matrix eiΦ̂(iξ ) satisfies the
following estimates for any t ≥ 0 and ξ ∈ R:

• When a = 1, we have ∣∣∣etΦ̂(iξ )
∣∣∣≤Ce−cρ1(ξ )t . (3.7)

• When a 6= 1, we have ∣∣∣etΦ̂(iξ )
∣∣∣≤Ce−cρ2(ξ )t (3.8)
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where ρ1 (ξ ) = ξ
2/
(

1+ξ
2
)

, ρ2 (ξ ) = ξ
2/
(

1+ξ
2
)2

, and C and c are positive constants.

Proof of Theorem 3.1. The prove of the above Theorem is reduced through the Fourier transform to the
analysis of the behavior of the spectral parameter ξ near the origin ξ = 0. That is to say, in order to get a
better decay estimates, we have to improve the decay estimate of the low frequency part.

First, let us assume that a = 1. It is clear that Plancherel’s theorem leads to∥∥∂
k
x etΦw

∥∥2
2 =

1
2π

∫
R
|ξ |2k

∣∣∣etΦ̂(iξ )ŵ(ξ )
∣∣∣2 dξ

and therefore, exploiting (3.7), to obtain∥∥∂
k
x etΦw

∥∥2
2 ≤ C

∫
R
|ξ |2k e−cρ1(ξ )t |ŵ(ξ )|2 dξ

= C
∫
|ξ |≤1
|ξ |2k e−cρ1(ξ )t |ŵ(ξ )|2 dξ +C

∫
|ξ |≥1
|ξ |2k e−cρ1(ξ )t |ŵ(ξ )|2 dξ

= I1 + I2. (3.9)

From [8], for the high frequency part, we have

I2 ≤Ce−ct
∥∥∂

k
x w
∥∥2

2 . (3.10)

For the low frequency part, we have the following estimate:

Lemma 3.3 Let us suppose that γ ∈ [0,1]. If w is an odd function with respect to x = 0, then the following
estimate holds

I1 ≤C (1+ t)−1/2−(k+γ) ‖w‖2
L1,γ (R). (3.11)

Proof. From (3.9) we have

I1 = C
∫
|ξ |≤1
|ξ |2k e−cρ1(ξ )t |ŵ(ξ )|2 dξ .

Since w is an odd function, then we get

F (w(ξ )) =−2i
∫

∞

0
w(x)sin(xξ )dξ .

Consequently, it’s clear that

|F (w(ξ ))| ≤ 2
∫

∞

0
|w(x)|sin(xξ )dx. (3.12)

Since ρ1 (ξ )≥ c|ξ |2, for |ξ | ≤ 1, then the above inequality takes the form

|I1| ≤ C
∫
|ξ |≤1
|ξ |2k e−ct|ξ |2 |F (w(ξ ))|2dξ

= C
∫ 0

−1
|ξ |2k e−ct|ξ |2 |F (w(ξ ))|2dξ

+C
∫ 1

0
|ξ |2k e−ct|ξ |2 |F (w(ξ ))|2dξ (3.13)

= C (I1− + I1+) .
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We will estimate I1+ , the same arguments work for I1− , we omit the details. Indeed

I1+ =
∫ 1

0
|ξ |2k e−ct|ξ |2 |F (w(ξ ))|2dξ .

The inequality (3.12) implies

I1+ ≤ 4
∫ 1

0
|ξ |2k e−ct|ξ |2

(∫
∞

0
|w(x)||sin(xξ )|

)2

dx. (3.14)

Let us fix ε > 0, then for each ξ > 0, we obtain∫
∞

ε

|w(x)||sin(xξ )|dx =
∫

∞

ε

(xξ )γ |w(x)| |sin(xξ )|
(xξ )γ

dx

≤ ξ
γ

∫
∞

ε

(1+ x)γ |w(x)|Mγdx

≤ Mγξ
γ

∫
∞

ε

(1+ x)γ |w(x)|dx (3.15)

where

Mγ = sup
θ>0

|sinθ |
θ

γ

is a constant independent of ε . It’s Clear that Mγ < +∞ since γ ∈ [0,1].
Once (3.15) holds for any ε > 0, then letting ε tends to 0, therefore (3.15) implies∫

∞

0
|w(x)||sin(xξ )|dx≤Mγξ

γ‖w‖1,γ .

Consequently, for any ε > 0 (3.14) gives

∫ 1

ε

|ξ |2k e−ct|ξ |2
(∫

∞

0
|w(x)||sin(xξ )|

)2

dx

≤ M2
γ ‖w‖2

1,γ

∫ 1

ε

|ξ |2k e−ct|ξ |2dξ . (3.16)

Similarly, letting ε → 0 once again, we conclude

I1+ ≤Mγ‖w‖2
1,γ

∫ 1

0
|ξ |2k+2γe−ct|ξ |2dξ .

By exploiting the following inequality∫ 1

0
|ξ |σ e−ct|ξ |2dξ ≤C(1+ t)−(σ+1)/2 (3.17)

then, we deduce ∫ 1

0
|ξ |2k+2γe−ct|ξ |2dξ ≤C(1+ t)−(k+γ)−1/2.

Consequently, we have
I1+ ≤Cγ(1+ t)−(k+γ)−1/2‖w‖2

1,γ .
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By carrying the same calculations of I1− , then our desired result holds. This completes the proof of Lemma
3.3. �

Now, going back to the proof of Theorem 3.1, and from the estimates (3.10) and (3.11), the desired
estimate (3.5) holds.

Now, let us assume that a 6= 1. Using (3.8) we have exactly as above∥∥∂
k
x etΦw

∥∥2
2 ≤ C

∫
R
|ξ |2k e−cρ2(ξ )t |ŵ(ξ )|2 dξ

= C
∫
|ξ |≤1
|ξ |2k e−cρ2(ξ )t |ŵ(ξ )|2 dξ +C

∫
|ξ |≥1
|ξ |2k e−cρ2(ξ )t |ŵ(ξ )|2 dξ (3.18)

= J1 + J2.

Since ρ2 (ξ )≥ cξ
2, then the low frequency part J1 can be estimated as I1, so we find

J1 ≤C (1+ t)−1/2−(k+γ) ‖w‖2
L1,γ (R). (3.19)

Concerning the term J2, and since for a 6= 1, the dissipative structure of system (1.1) is too weak to produce
and exponential decay for J2. Thus, we have (see [8])

J2 ≤C (1+ t)−l ∥∥∂
k+l
x w

∥∥2
2 . (3.20)

Finally, the estimate (3.6) is a direct consequence of the inequalities (3.18), (3.19) and (3.20).

Remark 3.4 In Theorem 3.1, the condition on the function w to be an odd function is not restrictive, and
is imposed for the sake of brevity. In fact our results hold under the condition

∫
R w(x)dx = 0, (see Theorem

4.2) or without this condition. See Remark 4.8 for more details.

4 Refinement of the decay estimates

In this section, we will give a refinement of our decay estimates (3.5) and (3.6). To this end, we recall first
from [8] the asymptotic expressions of etΦ̂(iξ ) for ξ → 0 and |ξ | → ∞.

By using Sylvester’s formula (see [7]), the matrix exponential etΦ̂(iξ ) can be represented in the following
form

etΦ̂(iξ ) =
4

∑
j=1

eλ j(iξ )Pj (iξ ) , (4.1)

where λ j (iξ ) , j = 1, ..,4 are the four eigenvalues of the matrix Φ̂(iξ ) = −(iξ A+L) and the matrices
Pj (iξ ) , j = 1, ..,4 are the corresponding Frobenius covariants of Φ̂(iξ ) defined by

Pj (iξ ) =
4

∏
j=1
i 6= j

(
Φ̂(iξ )−λ j (iξ ) I

)
λ i (iξ )−λ j (iξ )

. (4.2)

The matrix
Φ̂(iξ ) =−L− iξ A

10



looks like the matrix −L subjected to a small perturbation. So, −L is the unperturbed matrix and iξ A the
perturbation. According to the perturbation theory (see [13]), in the neighborhood of ξ = 0, the eigenvalues
of the matrix Φ̂(iξ ) can be expressed as power series in iξ , that is

λ j (iξ ) =
∞

∑
k=0

λ
(k)
j (iξ )k and Pj (iξ ) =

∞

∑
k=0

P(k)
j (iξ )k .

Let us assume that a 6= 1, µ 6= 2a and µ 6= 2. We introduce now two semigroups etD∂ 2
x and etΨ∞ as approxi-

mations of the semigroup etΦ in the low and high frequency regions, respectively:(
etD∂ 2

x w
)

(x) = F−1
(

e−Dξ
2
ŵ(ξ )

)
(x) (4.3)(

etΨ∞w
)
(x) = F−1

(
etΨ̂∞(iξ )ŵ(ξ )

)
(x) (4.4)

where

D =
2

∑
j=1

κ jΠ
0
j =
(

µ −a
a 0

)
, Ψ̂∞ (iξ ) =

2

∑
j=1

λ
∞

j (iξ )Π
∞
j , (4.5)

where

κ j =
1
2

(µ±β ) , β =
√

µ2−4a2, j = 1,2,

λ
∞

j (iξ ) = ±iξ ± σ

2
(iξ )−1 +σ

2
µ (iξ )−2 , σ =

1
(a2−1)

, j = 1,2

and for j = 1,2, the matrices Π0
j and Π∞

j are defined as follows (see [8] for more details)

Π
0
1 =

1
β

(
κ1 −a
a −κ2

)
, Π

0
1 =

1
β

(
−κ2 a
−a κ1

)
Π

∞
1 =

1
2

(
1 1
1 1

)
, Π

∞
2 =

1
2

(
1 −1
−1 1

)
Let R0 and R∞ be the matrices

R0 =
(

0 1 0 0
0 0 1 0

)
, R∞ =

(
1 0 0 0
0 1 0 0

)
(4.6)

Now, by using the material above, we define the following operators: S0 (t) = RT
0 etD∂ 2

x R0,

S∞ (t) = RT
∞etΨ∞R∞.

(4.7)

The when ξ → 0 and |ξ | → ∞, the matrix exponential etΦ̂(iξ ) can be represented as follows etΦ̂(iξ ) = Ŝ0 (iξ , t)+ R̂0 (iξ , t) ,

etΦ̂(iξ ) = Ŝ∞ (iξ , t)+ R̂∞ (iξ , t) ,
(4.8)

respectively. In (4.8) R̂0 (iξ , t) and R̂∞ (iξ , t) are the remainder terms when ξ → 0 and |ξ | →∞ respectively.
According to [8] these terms can be estimated as follows:
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Lemma 4.1 ([8]) Let a 6= 1 and let µ 6= 2a,2, then we get:

• There is a small positive constant r0 such that for |ξ | ≤ r0, we have∣∣R̂0 (iξ , t)
∣∣≤C |ξ |e−cξ

2t +Ce−ct . (4.9)

• There is a large positive constant K0 such that for |ξ | ≥ K0, we have∣∣R̂∞ (iξ , t)
∣∣≤C |ξ |−1 e−c|ξ |−2t +Ce−ct . (4.10)

where C and c are positive constants.

Now, instead of Theorem 5.1 in [8], we have the following extended estimates:

Theorem 4.2 Let a 6= 1 and let µ 6= 2a,2. Let etΦ be the semigroup associated with (3.1), and let S0 and S∞

be the operators defined above. Assume further that
∫
R w(x)dx = 0. Then we have the following estimates:∥∥∂ k

x
(
etΦ−S0 (t)

)
w
∥∥

2

≤C (1+ t)−3/4−k/2−γ/2 ‖w‖1,γ +C (1+ t)−l/2∥∥∂ k+l
x w

∥∥
2 ,

(4.11)

∥∥∂ k
x
(
etΦ−S∞ (t)

)
w
∥∥

2

≤C (1+ t)−1/4−k/2−γ/2 ‖w‖1,γ +C (1+ t)−l/2∥∥∂ k+l−1
x w

∥∥
2 ,

(4.12)

and ∥∥∂ k
x
(
etΦ−S0 (t)−S∞ (t)

)
w
∥∥

2

≤C (1+ t)−3/4−k/2−γ/2 ‖w‖1,γ +C (1+ t)−l/2∥∥∂ k+l−1
x w

∥∥
2 .

(4.13)

Moreover, for w = (0,0,0,w4) such that
∫
R w(x)dx = 0, we have∥∥∂

k
x etΦw

∥∥
2 ≤C (1+ t)−3/4−k/2−γ/2 ‖w‖1,γ +C (1+ t)−l/2∥∥∂

k+l−1
x w

∥∥
2 (4.14)

where k, l ≥ 0 with k + l ≥ 1 in (4.12), (4.13) and (4.14), and C is a positive constant.

Remark 4.3 The estimates in Theorem 3.1 and Theorem 4.2 show that by taking the initial data w in
L1,γ(R), then the decay rates given in [8] can be improved by t−γ/2, γ ∈ [0,1] .

Proof of Theorem 4.2. Let us first prove the estimate (4.11). By exploiting the Plancherel theorem, we
have ∥∥∂

k
x
(
etΦ−S0 (t)

)
w
∥∥

2 =
1

2π

∫
R
|ξ |2k

∣∣∣(etΦ̂(iξ )− Ŝ0 (iξ )
)

ŵ(ξ )
∣∣∣2 dξ .

Let r0 be as in Lemma 4.1. Following the same strategy as in the proof of Theorem 3.1, we divide the above
integral in two parts: the low frequency part (|ξ | ≤ r0) and the high frequency part (|ξ | ≥ r0). Indeed∥∥∂

k
x
(
etΦ−S0 (t)

)
w
∥∥

2 ≤ C
∫
|ξ |≤r0

|ξ |2k
∣∣∣(etΦ̂(iξ )− Ŝ0 (iξ )

)
ŵ(ξ )

∣∣∣2 dξ

+C
∫
|ξ |≥r0

|ξ |2k
∣∣∣(etΦ̂(iξ )− Ŝ0 (iξ )

)
ŵ(ξ )

∣∣∣2 dξ

= J1 + J2.
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As, we have said before, in order to get better decay estimate, we have to improve the decay rate of the low
frequency part J1. In order to do this let us first prove the following crucial Lemma. A similar one was
shown in [10] for the linear wave equation.

Lemma 4.4 Let us suppose that γ ∈ [0,1]. Assume that
∫
R w(x)dx = 0, then the following estimate holds

J1 ≤C (1+ t)−3/2−(k+γ) ‖w‖2
L1,γ (R). (4.15)

Proof. From (4.8), J1 takes the form

J1 = C
∫
|ξ |≤r0

|ξ |2k ∣∣R̂0 (iξ , t)
∣∣2 |ŵ(ξ )|2 dξ . (4.16)

Our goal now is to estimate ŵ = Fw in the above formula. From [10], we have the following estimate:

Lemma 4.5 Let us suppose that γ ∈ [0,1]. Assume that
∫
R w(x)dx = 0, then we have

|F (w(ξ ))| ≤Cγ |ξ |γ ‖w‖L1,γ (R)

with some constant Cγ > 0, which depends only on γ .

With the result of Lemma 4.5, formula (4.16) takes the form

J1 ≤C‖w‖2
L1,γ (R)

∫
|ξ |≤r0

|ξ |2(k+γ) ∣∣R̂0 (iξ , t)
∣∣2 dξ

where C is a positive constant, which will may vary from line to another.
Next, inequality (4.9) in Lemma 4.1 gives

J1 ≤C‖w‖2
L1,γ (R)

∫
|ξ |≤r0

|ξ |2(k+γ)+2
(

e−cξ
2t +Ce−ct

)
dξ . (4.17)

The last inequality (4.17) together with (3.17) imply

J1 ≤C (1+ t)−
3
2−(k+γ) ‖w‖2

L1,γ (R). (4.18)

The estimate of J2 can be proved by the same method as in the paper [8]. Thus, we have

J2 ≤C (1+ t)−l/2∥∥∂
k+l
x w

∥∥
2 . (4.19)

Consequently, the estimate (4.11) follows immediately from (4.18) and (4.19).
Our goal now is to prove the estimate (4.13). By the same procedure as in [8], we can write

etΦ̂(iξ ) = Ŝ0 (iξ , t)+ Ŝ∞ (iξ , t)+ R̂(iξ , t) (4.20)

where the remainder part R̂(iξ , t) satisfies the following estimates.

Lemma 4.6 ([8, Lemma 4.3]) Under the same condition of Lemma 4.1, we have

∣∣R̂(iξ , t)
∣∣≤


C |ξ |e−cξ
2t +Ce−ct for |ξ | ≤ r0,

Ce−ct for r0 ≤ |ξ | ≤ K0,

C |ξ |−1 e−c|ξ |−2t +Ce−ct for |ξ | ≥ K0,

where C and c are positive constants.
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Consequently, from (4.20) and Plancherel theorem, we may write∥∥∂ k
x
(
etΦ−S0 (t)−S∞ (t)

)
w
∥∥

2

= 1
2π

∫
R
|ξ |2k

∣∣∣(etΦ̂(iξ )− Ŝ0 (iξ , t)− Ŝ∞ (iξ , t)
)

ŵ(ξ )
∣∣∣2 dξ

≤ 1
2π

∫
R
|ξ |2k ∣∣R̂(iξ , t)

∣∣2 |ŵ(ξ )|2 dξ

= 1
2π

{∫
|ξ |≤r0

+
∫

r0≤|ξ |≤K0

+
∫
|ξ |≥K0

}
:= K1 +K2 +K3.

(4.21)

By using Lemma 4.4, we can estimate the term K1 in the same way as J1. So we have

K1 ≤C (1+ t)−
3
2−(k+γ) ‖w‖2

L1,γ (R). (4.22)

The other two terms K2 and K3 satisfy the same estimates as in [8]. Namely,

K2 ≤Ce−ct‖w‖2
L1(R) (4.23)

and
K3 ≤C (1+ t)−l ∥∥∂

k+l−1
x w

∥∥2
2 (4.24)

where k + l ≥ 1. Finally, our result (4.13) holds by inserting (4.22)-(4.24) into (4.21).
To prove (4.14), it’s suffices to see that from (4.7), we deduce that for w = (0,0,0,w4), S0 (t)w = S∞ (t)w =

0, consequently, the estimate (4.13) implies (4.14).

Remark 4.7 (The particular case γ = 1)
In the particular case γ = 1, the proof of the better decay estimates in Theorem 4.2 as well in Theorem 3.1

are carried out simply as follows:
Let us prove (3.5) for example. Indeed, for the high frequency part, the same estimate (3.10) holds. For

the low frequency part, we have from (3.9)

I1 = C
∫
|ξ |≤1
|ξ |2k e−cρ1(ξ )t |ŵ(ξ )|2 dξ

and since ρ1 (ξ )≥ c|ξ |2, for |ξ | ≤ 1, we obtain

|I1| ≤C
∫
|ξ |≤1
|ξ |2k e−ct|ξ |2 |ŵ(ξ )|2dξ .

It is clear that
∫
R w(x)dx = 0 implies ŵ(0) = 0. Therefore, by using the mean value theorem, we get

|I1| ≤ C
∫
|ξ |≤1
|ξ |2k e−ct|ξ |2 |ŵ(ξ )− ŵ(0)|2dξ

≤ C
∥∥∂ξ ŵ

∥∥2
L∞

ξ

∫
|ξ |≤1
|ξ |2k+2 e−ct|ξ |2dξ

≤ C‖w‖2
L1,1(R) (1+ t)−3/2−k ,

which is exactly the estimate (3.11) for γ = 1.
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Remark 4.8 The assumption ∫
R

w(x)dx = 0 (4.25)

in Theorem 4.2 is only a technical condition in order to make our proof simple. If (4.25) does’nt hold, the
estimates (4.11)-(4.13) in Theorem 4.2 take the following form, respectively:∥∥∂ k

x
(
etΦ−S0 (t)

)
w
∥∥

2 ≤C (1+ t)−3/4−k/2−γ/2 ‖w‖1,γ

+C (1+ t)−3/4−k/2
(∫

R
w(x)dx

)
+C (1+ t)−l/2∥∥∂ k+l

x w
∥∥

2∥∥∂ k
x
(
etΦ−S∞ (t)

)
w
∥∥

2 ≤C (1+ t)−1/4−k/2−γ/2 ‖w‖1,γ

+C (1+ t)−1/4−k/2
(∫

R
w(x)dx

)
+C (1+ t)−l/2∥∥∂ k+l−1

x w
∥∥

2 ,

and ∥∥∂ k
x
(
etΦ−S0 (t)−S∞ (t)

)
w
∥∥

2 ≤C (1+ t)−3/4−k/2−γ/2 ‖w‖1,γ

+C (1+ t)−3/4−k/2
(∫

R
w(x)dx

)
+C (1+ t)−l/2∥∥∂ k+l−1

x w
∥∥

2 .

Of course, in this case a slight modification in the proof is needed.

5 Large time approximation

The purpose of this section is to show that the asymptotic profile of the solution U = (v,u,z,y)T of problem
(3.1) is given by U = RT

0 W (t,x) in the sense that the estimate∥∥∂
k
x
(
U−U

)∥∥
L2(R) = O

(
t−3/4−k/2

)
, as t→ ∞

holds for suitably small smooth initial data U0, where W = (u,z)T is the solution of the corresponding
parabolic system (5.2) and R0 is the matrix defined in (4.6). This result indicates that problem (3.1) has an
asymptotically parabolic structure.

Let us consider the problem
ut = µuxx−azxx, (t,x) ∈ R+×R

zt = auxx, (t,x) ∈ R+×R

u(0,x) = u0 (x) , z(0,x) = z0 (x) , x ∈ R.

(5.1)

System (5.1) can be rewritten in vector notation as

{
Wt = DWxx,

W (0,x) = W0 (x)
(5.2)

where D is the matrix defined in (4.5). Each solution of the Cauchy problem (5.2) can be written as

W (t,x) =
(

etD∂ 2
x W0

)
(x) = G(t,x)∗W0 (x) (5.3)
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with the heat kernel

G(x, t) =
2

∑
j=1

H (t,x,κ j)Π
0
j

where
H (t,x,κ j) =

1√
4πκ jt

e−x2/4κ jt .

Now, we are going to prove the decay rate of the Lp−norms of (5.3). The following result extends the well
know decay estimate written in [8, lemma 5.1]

Lemma 5.1 Let γ ∈ [0,1] and let W0 ∈ L1,γ(R)∩H l(R) with l ≥ 1. Then for any 1≤ p≤ ∞, we have∥∥∥∂
k
x etD∂ 2

x W0

∥∥∥
p
≤Ct−α− k+γ

2 ‖W0‖1,γ +C
∣∣∣∣∫R

W0 (x)dx
∣∣∣∣ t−α− k

2 , k = 0,1,2, .., l−1 (5.4)

where α = 1/2(1−1/p).

Proof. Let us prove (5.4) for the L∞ and L2 norms. By using the Fourier transform, we have by using (5.3)

Ŵ (t,ξ ) = e−Dξ
2tŴ0 (ξ ) .

Consequently, we have ∥∥∥∂̂ k
x W
∥∥∥

L1(R)
=

∥∥∥(iξ )k Ŵ
∥∥∥

L1(R)
≤C

∥∥∥|ξ |k e−Dξ
2tŴ0

∥∥∥
L1(R)

≤ C
∫

R
|ξ |k e−cξ

2t
∣∣Ŵ0 (ξ )

∣∣dξ (5.5)

where we have used the relation (4.5). Our goal now is to estimate
∣∣Ŵ0
∣∣. Indeed, we have (see [10])

∣∣Ŵ0 (ξ )
∣∣ =

∣∣∣∣∫R
e−ixξW0 (x)dx

∣∣∣∣
≤

∫
R
|cos(xξ )−1| |W0 (x)|dx+

∫
R
|sin(xξ )| |W0 (x)|dx+

∣∣∣∣∫R
W0 (x)dx

∣∣∣∣ .
Since  Kγ = supθ 6=0

|1−cosθ |
|θ |γ < +∞,

Mγ = supθ 6=0
sinθ

|θ |γ < +∞

for 0≤ γ ≤ 1. Then we deduce

∣∣Ŵ0 (ξ )
∣∣≤Cγ |ξ |γ ‖W0‖1,γ +

∣∣∣∣∫R
W0 (x)dx

∣∣∣∣ (5.6)

with Cγ = Kγ +Mγ . Consequently, inserting (5.6) in (5.5) yields∥∥∥∂̂ k
x W
∥∥∥

L1(R)
≤C‖W0‖1,γ

∫
R
|ξ |k+γ e−cξ

2tdξ +C
∣∣∣∣∫R

W0 (x)dx
∣∣∣∣∫R
|ξ |k e−cξ

2tdξ . (5.7)
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By using the inequality

‖ f‖Lp(R) ≤ ‖ f̂‖Lq(R),
1
p

+
1
q

= 1, 1≤ q≤ 2

we have ∥∥∂
k
x W
∥∥

L∞(R) ≤
∥∥∥∂̂ k

x W
∥∥∥

L1(R)
,

and therefore, this last inequality together with the estimate (5.7) imply∥∥∂
k
x W
∥∥

L∞(R) ≤Ct−
1
2−

(k+γ)
2 ‖W0‖1,γ +C

∣∣∣∣∫R
W0 (x)dx

∣∣∣∣Ct−
1
2−

k
2 ,

which is equivalent to (5.4), for p = ∞.
By the same method, and Plancherel theorem, we can easily show the L2 decay estimate. Once (5.4) is true

for p = 2 and p = ∞, then (5.4) for 2 < p < ∞ follows from the interpolation inequality (2.1) by choosing
j = k, q = 2 and r = ∞.

Now, to complete the proof of (5.4) for 1 ≤ p < 2, we have only to prove (5.4) for p = 1, then the
interpolation inequality fills the gap for 1 < p < 2.

Let us first prove the estimate (5.4) for k = 0. Indeed, (5.3), can be written as

W (t,x) =
∫

R

2

∑
j=1

1√
4πκ jt

e−(x−y)2/4κ jtΠ0
jW0 (y)dy (5.8)

Then (5.8) easily takes the form

W (t,x) =
∫

R

2

∑
j=1

1√
4πκ jt

(
e−(x−y)2/4κ jt − e−x2/4κ jt

)
Π

0
jW0 (y)dy

+
∫

R

2

∑
j=1

e−x2/4κ jt√
4πκ jt

Π
0
jW0 (y)dy

= W1 (t,x)+W2 (t,x) .

It is clear that ∫
R
|W2 (t,x)|dx≤Ct−1/2

∫
R

∣∣∣∣∣
∫

R

2

∑
j=1

e−x2/4κ jtdx

∣∣∣∣∣ |W0 (y)|dy≤C
∣∣∣∣∫R

W0 (x)dx
∣∣∣∣ . (5.9)

On the other hand,

|W1 (t,x)| ≤ C
∫

R

2

∑
j=1

1√
4πκ jt

∣∣∣e−(x−y)2/4κ jt − e−x2/4κ jt
∣∣∣ |W0 (y)|dy

= C
∫

R
(

2

∑
j=1

1√
4πκ jt

∣∣∣e−(x−y)2/4κ jt − e−x2/4κ jt
∣∣∣γ

×
∣∣∣e−(x−y)2/4κ jt − e−x2/4κ jt

∣∣∣1−γ

|W0 (y)|)dy

≤ Cγ

∫ 1

0

∫
R

2

∑
j=1

1√
4πκ jt

∣∣∣∣y(x−θy)
2tκ j

e−|x−θy|2/4κ jt
∣∣∣∣γ |W0 (y)|dydθ

≤ Cγ

∫ 1

0

∫
R

2

∑
j=1

1

(κ jt)
γ/2√4πκ jt

∣∣∣∣y(x−θy)
2
√

κ jt
e−|x−θy|2/4κ jt

∣∣∣∣γ |W0 (y)|dydθ . (5.10)
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By putting z = (x−θy)
2
√

κ jt
, and since

∫
R |z|

γ e−|z|
2γ

dz is bounded, then (5.10) implies

‖W1 (t,x)‖1 ≤ Ct−γ/2
∫

RN
|y|γ |W0 (y)|dy

≤ Ct−γ/2 ‖W0‖1,γ . (5.11)

Therefore, (5.9) together with (5.11) imply the inequality (5.4) for p = 1 and k = 0. It is sufficient to use the
induction on k to obtain higher order estimates for W1 and W2. (This higher order estimates of W2 are sharp
for k even). In order to let the reader understand the core of the argument, we prove here the estimate of W1
(the most difficult term) for k = 1. For simplicity, let us take κ j = 1, j = 1,2, and take j = 1, then we have

∂xW1 =
1√
4πt

∫
R

(
−2(x− y)

4t
e−(x−y)2/4t +

x
2t

e−x2/4t
)

Π
0
1W0 (y)dy,

this implies that

|∂xW1| ≤
C√

t

∫
R

∣∣∣∣2(x− y)
4t

e−(x−y)2/4t − x
2t

e−x2/4t
∣∣∣∣1−γ

×
∣∣∣∣(x− y)

2t
e−(x−y)2/4t − x

2t
e−x2/4t

∣∣∣∣γ |W0 (y)|dy. (5.12)

However, for the first line in (5.12), setting first z = |x− y|/
(
2
√

t
)

for the first term and z = |x|/
(
2
√

t
)

for
the second term and since the function ze−z2

is a bounded function in z≥ 0, then using the fact that∣∣∣ x
2t

e−x2/4t
∣∣∣≤ 1√

t
ze−z2

,

we get

|∂xW1| ≤
Ct(γ−1)/2
√

t

∫
R

∣∣∣∣(x− y)
2t

e−(x−y)2/4t − x
2t

e−x2/4t
∣∣∣∣γ |W0 (y)|dy

≤ Ct(γ−1)/2
√

t

∫
R

∣∣∣∣∫ 1

0

d
dθ

{
(x−θy)

2t
e−(x−θy)2/4t

}
dθ

∣∣∣∣γ |W0 (y)|dy

=
Ct(γ−1)/2
√

t

∫
R

∣∣∣∣∣
∫ 1

0

−y
2t

e−(x−θy)2/4t +
(x−θy)2

4t2 e−(x−θy)2/4tdθ

∣∣∣∣∣
γ

|W0 (y)|dy.

Now, putting z = (x−θy)
2
√

t , and since
∫
R e−|z|

2γ

dz and
∫
R |z|

2γ e−|z|
2γ

dz are bounded, then we get

∫
R
|∂xW1|dx ≤ Ct(γ−1)/2tγ/2

√
t

t−γ

∫
R

(1+ y)γ |W0 (y)|dy

≤ Ct−
γ+1

2 ‖W0‖1,γ .

Thus (5.4) is fulfilled for k = 1; the rest follows inductively.

Remark 5.2 If γ = 1 and
∫
RW0 (x)dx = 0, then our estimate (5.4) will be the same as the estimate (5.14) in

[8]. So, once again our Lemma 5.1 extends the early Lp−Lq decay estimates for the heat equation.
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Now, as in [8], we define the linear diffusion wave U(t,x) by

U(t,x) = RT
0 G(x, t +1)M0, M0 =

∫
R

R0U0 (x) (5.13)

Now, instead of Theorem 5.1 in [8], we have the following result.

Theorem 5.3 Let a 6= 1, µ 6= 2a,2 and let γ ∈ [0,1]. Suppose that the initial data U0 ∈Hs (R)∩L1,γ (R) for
s≥ 2. Then we have ∥∥∂

k
x
(
U (t)−U (t)

)∥∥
2 ≤CI0 (1+ t)−1/2−(k+γ)/2

for 0 ≤ k ≤ [s/2]− 1, where U (t,x) is the solution of (3.1), U (t,x) is defined in (5.13), C is a positive
constant and I0 = ‖U0‖Hs(R) +‖U0‖L1,γ (R).

Theorem 5.3 can be proved by the same method as in [8], we have only to use our estimates in Theorem
4.2 and Lemma 5.1 instead of the estimates used in [8]. We omit the details.

6 The semilinear problem

In this section, we consider the problem
ϕ tt (t,x)− (ϕx−ψ)x (t,x) = 0 (t,x) ∈ R+×R,

ψ tt (t,x)−a2ψxx (t,x)− (ϕx−ψ)(t,x)+ µψ t (t,x) = |ψ (t,x)|p (t,x) ∈ R+×R

(ϕ,ϕ t ,ψ,ψ t)(0,x) = (ϕ0,ϕ1,ψ0,ψ1) x ∈ R

(6.1)

where p > 1. We will use Duhamel’s principle to express the solution to the nonlinear problem (6.1) with
the help of solution to the linear problem (1.1). The basic idea in our proof is based on the weighted energy
estimate used in [35] and [11]. In order to use the better decay estimates of the above sections, let us take
γ = 1, and for simplicity, we take µ = 1.

As in section 3 for the linear problem, problem (6.1) can be rewritten as{
Ut +AUx +LU = G(U) ,

U (0,x) = U0,
(6.2)

where A, L, U are defined by (3.2), and G(U)(t, ·) =
(
0,0,0,

∣∣ψ0 +
∫ t

0 U4(s, ·)ds
∣∣p)T

.

6.1 The well-posedness

In this subsection, we state and prove the local well-posedness result of problem (6.2).

Theorem 6.1 Let (φ 0,φ 1,ψ0,ψ1) satisfy U0 ∈ H1(R), ψ0 ∈ L2(R), and

J := ‖eφ(0,.)U0‖2 +‖eφ(0,.)
ψ0‖2 < ∞,

then there exists a maximal existence time Tm = Tm(J) > 0 such that problem (6.2) has a unique solution
U ∈C

(
[0,Tm),H1 (R)

)
satisfying

sup
[0,T ]

{
‖eφ(t,.)U (t, .)‖2 +‖eφ(t,.)

ψ (t, .)‖2

}
< +∞, (6.3)
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for any T < Tm. If in particular Tm < +∞, then the following holds:

lim
t→Tm

sup
{
‖eφ(t,.)U (t, .)‖2 +‖eφ(t,.)

ψ (t, .)‖2

}
= +∞. (6.4)

Our goal in the next steps, is to prove Theorem 6.1. In order to do so, we use the contraction mapping
theorem and it suffices to prove Theorem 6.1 on [0,T ] for small T > 0. For simplicity, we take a = µ = 1.
Let us first consider the mixed problem with a fixed nonlinear term |ψ̂ (t,x) |p

ϕ tt (t,x)− (ϕx−ψ)x (t,x) = 0, (t,x) ∈ R+×R,

ψ tt (t,x)−ψxx (t,x)− (ϕx−ψ)(t,x)+ψ t (t,x) = |ψ̂ (t,x) |p, (t,x) ∈ R+×R,

(ϕ,ϕ t ,ψ,ψ t)(0,x) = (ϕ0,ϕ1,ψ0,ψ1) , x ∈ R.

(6.5)

Then, we have the following result.

Proposition 6.2 Let us assume that U0 = (ϕx (0,x)−ψ0,ϕ1,ψx (0,x) ,ψ1) ∈
(
L2 (R)

)4 satisfy∫
R

e(2+ρ|x|2)/2ρ

{
ϕ

2
1 (x)+ψ

2
1 (x)+ψx (0,x)+(ϕx (0,x)−ψ0)

2 +ψ
2
0

}
dx < +∞

and the function ψ̂ ∈C
(
[0,T ],H1 (R)

)
∩C1

(
[0,T ],L2 (R)

)
satisfies

M = sup
[0,T ]

{
‖eφ(t,.)

ψ̂x (t, .)‖2 +‖eφ(t,.)
ψ̂ t (t, .)‖2 +‖eφ(t,.)

ψ̂ (t, .)‖2

}
< +∞.

Then, problem (6.5) has a weak solution (ϕ,ψ) such that

(ϕx−ψ,ϕ t ,ψx,ψ t) ∈
(
C
(
[0,T ],L2 (R)

))4
(6.6)

and satisfying

sup
[0,T ]

{
‖eφ(t,.)

ϕ t (t, .)‖2 +‖eφ(t,.)
ψ t (t, .)‖2 +‖eφ(t,.)

ψx (t, .)‖2

+‖eφ(t,.) (ϕx (t, .)−ψ (t, .))‖2 +‖eφ(t,.)
ψ (t, .)‖2

}
< +∞.

If U0 ∈ H1(R), then it is the unique classical solution.

In order to define the notion of weak and classical solution and to prove Proposition 6.2, we first study for
any T > 0 and a fixed forcing term g ∈C

(
[0,T ],L2 (R)

)
the following problem:

ϕ tt (t,x)− (ϕx−ψ)x (t,x) = 0, (t,x) ∈ R+×R,

ψ tt (t,x)−ψxx (t,x)− (ϕx−ψ)(t,x)+ψ t (t,x) = g(t,x) , (t,x) ∈ R+×R,

(ϕ,ϕ t ,ψ,ψ t)(0,x) = (ϕ0,ϕ1,ψ0,ψ1) , x ∈ R.

(6.7)

Then, we have the following Lemma.
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Lemma 6.3 Let (ϕx (0,x)−ψ0,ϕ1,ψx (0,x) ,ψ1) ∈
(
L2 (R)

)4 and g ∈C
(
[0,T ],L2 (R)

)
then problem (6.7)

has a weak solution (ϕ,ψ) such that

(ϕx−ψ,ϕ t ,ψx,ψ t) ∈
(
C
(
[0,T ],L2 (R)

))4
.

By a weak solution, we mean the following: Rewrite (6.7) again as first-order system

Ut +(A∂x +L)︸ ︷︷ ︸
=:Â

U = G, G = (0,0,0,g), U(0, ·) = U0. (6.8)

Then Â : D(Â) := (H1(R)4 ⊂ (L2(R)4→ (L2(R)4 is the generator of a contraction semigroup (e−tÂ)t≥0, and,
for U0 ∈D(A) and g∈C1([0,∞),L2(R)), we have a classical solution U ∈C1([0,∞),L2(R))∩C0([0,∞),H1(R))
satisfying

U(t) = e−tÂU0 +
∫ t

0
e−(t−r)ÂG(r)dr. (6.9)

Fixing a Dirac sequence of mollifiers ( j1
n) in x and ( j2

n) in t, we define, for U0 ∈L2(R) and G∈C0([0,∞),L2(R))
— now fixed — approximations U0,n := j1

n ∗U0 and Gn := j2
n ∗G satisfying

U0,n→U0 in L2(R), Gn→ G in C0([0,∞),L2(R)).

We conclude from (6.9) applied to the solution Un corresponding to (U0,n,Gn), that (Un) converges to some
U in C0([0,∞),L2(R, and U satisfies (6.9). This U is called a (the) weak solution.

Proof of Proposition 6.2
First, we observe that, using ψ̂ ∈C0([0,T ],H1(R)), we conclude

|ψ̂|p ∈C1([0,T ],L2(R)). (6.10)

The prove of (6.10) will be given in the Appendix. Now, we approximate U0 by U0,n ∈H1(R) as above, and
obtain a classical solution Un, for which we can proceed as in Lemma 6.6. We get — dropping the index n
—

Eφ

ϕ,ψ (t)≤ Eφ

ϕ,ψ (0)+
∫ t

0

∫
R

e2φ(s,x)|ψ̂|pψsdxds (6.11)

where

Eφ

ϕ,ψ (t) =
∫

R

e2φ(t,x)

2

(
ϕ

2
t +ψ

2
t +ψ

2
x +(ϕx−ψ)2

)
dx.

The Cauchy&Schwarz inequality and Hölder’s inequality imply∫ t

0

∫
R

e2φ(s,x)|ψ̂|pψsdxds =
∫ t

0

∫
R

(
eφ(s,x)|ψ̂|p

)(
eφ(s,x)

ψs

)
dxds

≤
∫ t

0
‖eφ(s)|ψ̂|p‖2‖eφ(s)

ψs‖2ds. (6.12)

Consequently, from (6.11) and (6.12) we get

Eφ

ϕ,ψ (t) ≤ Eφ

ϕ,ψ (0)+
∫ t

0
‖eφ(s)|ψ̂|p‖2‖eφ(s)

ψs‖2ds

≤ Eφ

ϕ,ψ (0)+
∫ t

0
‖eφ(s)|ψ̂|p‖2

(
Eφ

ϕ,ψ (s)
)1/2

ds,
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which implies by Gronwall inequality(
Eφ

ϕ,ψ (t)
)1/2
≤
(

Eφ

ϕ,ψ (0)
)1/2

+C
∫ t

0
‖eφ(s)|ψ̂|p‖2ds (6.13)

Now, using assumption of Proposition 6.2, we deduce that ψ̂ ∈ H1
φ(t,.)(R), so, we can apply the result of

Lemma 6.7, to get

‖eφ(s)|ψ̂|p‖2
2 ≤

∫
R

(
eφ(s)|ψ̂|

)2p
= ‖eφ(s)

ψ̂‖2p
2p ≤C (1+ s)p(ρ+2)(1−θ(2p)) ‖eφ(s)

ψ̂x‖
p
2 ,

By the assumption on ψ̂ , we deduce that

‖eφ(s)
ψ̂x‖2 ≤M,

and this leads to ∫ t

0
‖eφ(s)|ψ̂|p‖2ds ≤ CMp

∫ t

0
C (1+ s)

p(ρ+2)(1−θ(2p))
2 ds

≤ CMp (1+T )
p(ρ+2)(1−θ(2p))

2 T. (6.14)

From (6.13) and (6.14), we get(
Eφ

ϕ,ψ (t)
)1/2
≤
(

Eφ

ϕ,ψ (0)
)1/2

+CMp (1+T )
p(ρ+2)(1−θ(2p))

2 T. (6.15)

On the other hand, we have

ψ (t,x) = ψ0 (x)+
∫ t

0
ψs (s,x)ds,

and then
eφ(t,x)

ψ (t,x) = eφ(t,x)
ψ0 (x)+

∫ t

0
eφ(t,x)

ψs (s,x)ds.

Since the function t 7→ φ (t,x) is monotone decreasing, we get by using (6.15)

‖eφ(t,.)
ψ (t)‖2 ≤ ‖eφ(t,.)

ψ0‖2 +
∫ t

0
‖eφ(t,.)

ψs (s)‖2ds

≤ ‖eφ(0,.)
ψ0‖2 +

∫ t

0
‖eφ(t,.)

ψs (s)‖2ds

≤ ‖eφ(0,.)
ψ0‖2 +

∫ t

0

((
Eφ

ϕ,ψ (0)
)1/2

+CMp (1+T )
p(ρ+2)(1−θ(2p))

2 T
)

ds

≤ ‖eφ(0,.)
ψ0‖2 +

(
Eφ

ϕ,ψ (0)
)1/2

T +CMp (1+T )
p(ρ+2)(1−θ(2p))

2 T 2. (6.16)

From (6.15) and (6.16), we get the desired result for a classical solution Un. Now, let n→ ∞, and we obtain
the estimates for the weak solution U .

Proof of Theorem 6.1.
Let us define

Bφ

T,R =
{

V = (ϕ̂, ψ̂)′ : (ϕ̂x− ψ̂, ϕ̂ t , ψ̂x, ψ̂ t) ∈
(
C
(
[0,T ],L2 (R)

))4
and ‖V‖φ

T ≤ R
}
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where R > 0, T > 0 and

‖V‖φ

T = ‖(ϕ̂, ψ̂)‖φ

T = sup
[0,T ]

{
‖eφ(t,.)(ϕ̂x− ψ̂)(t, .)‖2 +‖eφ(t,.)

ϕ̂ t (t, .)‖2

+‖eφ(t,.)
ψ̂x (t, .)‖2 +‖eφ(t,.)

ψ̂ t (t, .)‖2 +‖eφ(t,.)
ψ̂ (t, .)‖2

}
.

Let us define
X =

{
(ϕ,ψ) : (ϕx−ψ,ϕ t ,ψx,ψ t) ∈

(
C
(
[0,T ],L2 (R)

))4
}

.

Then X is a Banach space with norm ‖ · ‖φ

T . From now on, we fix the intial data to satisfy

U0 ∈ H1(R), ψ0 ∈ L2(R).

For a fixed V = (0, ψ̂)′ ∈ Bφ

T,R, we define a mapping Φ : Bφ

T,R → X such that
(

ϕ

ψ

)
= Φ

(
0
ψ̂

)
is the

weak solution of problem (6.5) defined via approximation of |ψ̂|p as above.
Our goal now is to show that, for a suitable T > 0, Φ is a contractive map satisfying Φ

(
Bφ

T,R

)
⊂ Bφ

T,R.

Proving the following estimates first for the approximations in the class of classical solutions, we finally get
the same also for the weak solution.

Using the same method as in the proof of Lemma 6.6, we deduce from (6.39) that

d
dt

{
e2φ

2

(
ϕ2

t +ψ2
t +ψ2

x +(ϕx−ψ)2
)}

− d
dx

{
e2φ (ϕx−ψ)ϕ t

}
− d

dx

{
e2φ (ψxψ t)

}
≤ e2φ |ψ̂|pψ t .

(6.17)

Which gives by integrating (6.17) over [0, t]×R,

Eφ

ϕ,ψ (t)≤ Eφ

ϕ,ψ (0)+
∫ t

0

∫
R

e2φ(s,x)|ψ̂|pψ tdxds.

The Cauchy&Schwarz inequality gives

Eφ

ϕ,ψ (t)≤ Eφ

ϕ,ψ (0)+
√

2
∫ t

0

(∫
R

e2φ(s,x)|ψ̂ (s,x) |2pdx
)1/2(

Eφ

ϕ,ψ (s)
)1/2

ds. (6.18)

Applying Gronwall type inequality to (6.18), we arrive at(
Eφ

ϕ,ψ (t)
)1/2
≤
(

Eφ

ϕ,ψ (0)
)1/2

+
1√
2

∫ t

0

(∫
R

e2φ(s,x)|ψ̂ (s,x) |2pdx
)1/2

ds. (6.19)

Next, applying Lemma 6.7 to (6.19), we obtain∫
R

e2φ(s,x)|ψ̂ (s,x) |2pdx ≤ C (1+ t)p(2+ρ)(1−θ(2p)) ‖ψ̂x‖
2(p−1)
2 ‖eφ(t,.)

ψ̂x‖2
2

≤ C (1+ t)p(2+ρ)(1−θ(2p)) R2p.

Therefore, (6.19) implies(
Eφ

ϕ,ψ (t)
)1/2
≤
(

Eφ

ϕ,ψ (0)
)1/2

+C (1+T )((p+1)(2+ρ)+2)/4 Rp. (6.20)
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On the other hand and as in (6.16), we have

‖eφ(t,.)
ψ (t)‖2 ≤ ‖eφ(t,.)

ψ0‖2 +
∫ t

0
‖eφ(t,.)

ψs (s)‖2ds

≤ ‖eφ(0,.)
ψ0‖2 +

∫ t

0
‖eφ(t,.)

ψs (s)‖2ds

≤ ‖eφ(0,.)
ψ0‖2 +

∫ t

0

(
Eφ

ϕ,ψ (0)1/2 +C (1+T )((p+1)(2+ρ)+2)/4 Rp
)

ds

≤ ‖eφ(0,.)
ψ0‖2 +Eφ

ϕ,ψ (0)1/2 T +CRp (1+T )
((p+1)(2+ρ)+2)/4

T. (6.21)

Consequently, from (6.20) and (6.21), we get

‖(ϕ,ψ)‖φ

T ≤
(

Eφ

ϕ,ψ (0)
)1/2

+C (1+T )((p+1)(2+ρ)+2)/4 Rp

+‖eφ(0,.)
ψ0‖2 +Eφ

ϕ,ψ (0)1/2 T +CRp (1+T )
((p+1)(2+ρ)+2)/4

T.

By taking R large enough such that(
Eφ

ϕ,ψ (0)
)
)1/2 +‖eφ(0,.)

ψ0‖2 < R/2,

and choosing T sufficiently small such that

RT +C (1+T )((p−2)(2+ρ)+4)/4 Rp +CRp (1+T )
((p+1)(2+ρ)+2)/4

T < R/2,

then, we get
‖(ϕ,ψ)‖φ

T ≤ R.

This shows that (ϕ,ψ) ∈ Bφ

T,R.

Next, we have to verify that Φ : Bφ

T,R→ Bφ

T,R is a contraction. To this end, we set
(

ϕ

ψ

)
= Φ

(
0
ψ̂

)
=

Φ(V ) and
(

ϕ

ψ

)
= Φ

(
0
ψ̂

)
= Φ

(
V
)
, where (ϕ,ψ) is the solution of the following system


ϕ tt (t,x)− (ϕx−ψ)x (t,x) = 0 (t,x) ∈ R+×R,

ψ tt (t,x)−ψxx (t,x)− (ϕx−ψ)(t,x)+ψ t (t,x) = |ψ̂ (t,x) |p (t,x) ∈ R+×R

(ϕ,ϕ t ,ψ,ψ t)(0,x) = (ϕ0,ϕ1,ψ0,ψ1) x ∈ R

Then by setting ϕ̃ = ϕ−ϕ and ψ̃ = ψ−ψ , we arrive
ϕ̃ tt (t,x)− (ϕ̃x− ψ̃)x (t,x) = 0, (t,x) ∈ R+×R,

ψ̃ tt (t,x)− ψ̃xx (t,x)− (ϕ̃x− ψ̃)(t,x)+ ψ̃ t (t,x) = |ψ̂ (t,x) |p−|ψ̂ (t,x) |p, (t,x) ∈ R+×R,

(ϕ̃, ϕ̃ t , ψ̃, ψ̃ t)(0,x) = (0,0,0,0) , x ∈ R,

where ϕ̃ = ϕ−ϕ and ψ̃ = ψ−ψ . Now, proceeding as in the proof of (6.40), we obtain after an integration
over [0, t]×R,

Eφ

ϕ̃,ψ̃ (t)≤
∫ t

0

∫
R

e2φ(t,x) (|ψ̂ (s,x) |p−|ψ̂ (s,x) |p
)

ψ̃ t (s,x)dxds.
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Applying the inequality

|ψ̂ (t,x) |p−|ψ̂ (t,x) |p ≤ p|ψ̂ (t,x)− ψ̂ (t,x) |
(
|ψ̂ (t,x) |+ |ψ̂ (t,x) |

)p−1
,

then Cauchy&Schwarz inequality implies

Eφ

ϕ̃,ψ̃ (t) ≤ p
∫ t

0

∫
R

e2φ(s,x)|ψ̂ (s,x)− ψ̂ (s,x) |
(
|ψ̂ (s,x) |+ |ψ̂ (s,x) |

)p−1 |ψ̃ t (s,x) |dxds

≤ p
∫ t

0

(∫
R

e2φ(s,x)|ψ̃ t (s,x) |2dx
)1/2

×
(∫

R
e2φ(s,x)|ψ̂ (s,x)− ψ̂ (s,x) |2

(
|ψ̂ (s,x) |+ |ψ̂ (s,x) |

)2(p−1)
)1/2

ds (6.22)

≤ C
∫ t

0

(
Eφ

ϕ̃,ψ̃ (s)
)1/2

×
(∫

R
e2φ(s,x)|ψ̂ (s,x)− ψ̂ (s,x) |2

(
|ψ̂ (s,x) |+ |ψ̂ (s,x) |

)2(p−1)
)1/2

ds.

Our objective now, is to handel the last term in the right-hand side of (6.22). Indeed, exploiting Hölder’s
inequality, we get ∫

R
e2φ(t,x)|ψ̂ (s,x)− ψ̂ (s,x) |2

(
|ψ̂ (s,x) |+ |ψ̂ (s,x) |

)2(p−1)
dx

≤
∥∥∥eφ(s)/2(ψ̂ (s)− ψ̂ (s))

∥∥∥2

2p

∥∥∥eφ(s)/2(p−1) (|ψ̂ (s) |+ |ψ̂ (s) |
)∥∥∥2(p−1)

2p
.

Inserting this last estimate into (6.22), we obtain

Eφ

ϕ̃,ψ̃ (t)

≤ C
∫ t

0

(
Eφ

ϕ̃,ψ̃ (s)
)1/2
‖eφ(s)/2(ψ̂ (s)− ψ̂ (s))‖2p‖eφ(s)/2(p−1) (|ψ̂ (s) |+ |ψ̂ (s) |

)
‖p−1

2p .

Gronwall inequality and Minkowski inequality imply(
Eφ

ϕ̃,ψ̃ (t)
)1/2
≤C

∫ t

0
‖eφ(s)/2(ψ̂ (s)− ψ̂ (s))‖2p

(
‖eφ(s)/2(p−1)

ψ̂ (s)‖2p +‖eφ(s)/2(p−1)
ψ̂ (s)‖2p

)p−1
.

(6.23)
Applying Lemma 6.7 for ν = 1/(2(p−1)) and q = 2p, we get

‖eφ(s)/2(p−1)
ψ̂ (s)‖2p ≤ C (1+ s)(2+ρ)(p+1)/(4p) ‖ψ̂x (s)‖1−1/(2(p−1))

2 ‖eφ(s)
ψ̂x (s)‖1/(2(p−1))

2

≤ C (1+ s)(2+ρ)(p+1)/(4p) R.

≤ C (1+T )(2+ρ)(p+1)/(4p) R.

Similarly, we get for ν = 1/2 and q = 2p

‖eφ(s)/2(ψ̂ (s)− ψ̂ (s))‖2p ≤C (1+T )(2+ρ)(p+1)/(4p) ‖eφ(s)(ψ̂x (s)− ψ̂x (s))‖2.

Consequently, (6.23) becomes(
Eφ

ϕ̃,ψ̃ (t)
)1/2

≤ C (1+T )(2+ρ)(p−1)(p+1)/4 Rp−1
∫ t

0
‖eφ(s)/2 (

ψ̂ (s)− ψ̂ (s)
)
‖2p

≤ C (1+T )(2+ρ)(p+1)/(4) T Rp−1∥∥V −V
∥∥φ

T . (6.24)
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Also, since

ψ̃ (t,x) =
∫ t

0
ψ̃s (s,x)ds,

then, we get as in (6.16)

‖eφ(t,.)
ψ̃ (t,x)‖2 ≤

∫ t

0
‖eφ(t,.)

ψ̃s (s,x)‖2ds≤
∫ t

0
‖eφ(s,.)

ψ̃s (s,x)‖2ds

≤
∫ t

0

(
Eφ

ϕ̃,ψ̃ (s)
)1/2

ds (6.25)

≤ C (1+T )(2+ρ)(p+1)/(4) T 2Rp−1∥∥V −V
∥∥φ

T ,

where we have used (6.24). Therefore, (6.24) together with (6.25) imply

‖(ϕ−ϕ,ψ−ψ)‖φ

T ≤C (1+T )(2+ρ)(p+1)/(4) T Rp−1 (1+T )
∥∥V −V

∥∥φ

T . (6.26)

By choosing T small enough in order to have

C (1+T )(2+ρ)(p+1)/(4) T Rp−1 (1+T ) <
1
2
, (6.27)

estimate (6.26) shows that Φ is a contraction. Consequently the contraction mapping theorem guarantees

the existence of a unique (ϕ,ψ) satisfying
(

ϕ

ψ

)
= Φ(V ) .

Using the representation formula (6.9), we observe that, for U0 ∈H1(R) the solution is the unique classical
solution.

Our last goal now, is to prove (6.3). To accomplish this, we adapt the method introduced in [12] for the
wave equation. We need to show that the norm ‖eφ(t,.)U (t, .)‖2 +‖eφ(t,.)ψ (t, .)‖2 is bounded for all t ∈ [0,T ]
and for any T < Tm.

Let V (0) (t,x) =
(

0
ψ0 (x)

)
with V (0) ∈ Bφ

T,R, and we define the sequence
(
ϕ(n),ψ(n)

)
satisfying

(
ϕ(n)

ψ(n)

)
(t,x) = Φ

(
V (n−1)

)
(t,x) , n = 1,2,3, ...,

and
(

ϕ(n)

ψ(n)

)
is the solution of the problem



ϕ
(n)
tt (t,x)−

(
ϕ

(n)
x −ψ(n)

)
x
(t,x) = 0, (t,x) ∈ R+×R,

ψ
(n)
tt (t,x)−ψ

(n)
xx (t,x)−

(
ϕ

(n)
x −ψ(n)

)
(t,x)+ψ

(n)
t (t,x) = |ψ(n−1) (t,x) |p, (t,x) ∈ R+×R,(

ϕ(n),ϕ
(n)
t ,ψ(n),ψ

(n)
t

)
(0,x) = (ϕ0,ϕ1,ψ0,ψ1) , x ∈ R.

Using the estimate (6.26) with the condition (6.27), we deduce that there exists two functions U =(ϕx−ψ,ϕ t ,ψx,ψ t)∈
C
(
[0,Tm),L2 (R)

)
and ψ ∈C

(
[0,Tm),L2 (R)

)
such that for all T < Tm

U (n) =
(

ϕ
(n)
x −ψ

(n),ϕ
(n)
t ,ψ(n)

x ,ψ
(n)
t

)
→U in C

(
[0,T ],L2 (R)

)
,
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and
ψ

(n)→ ψ in C
(
[0,T ],L2 (R)

)
,

as n→ ∞ and U becomes the weak solution of (6.1). Obviously, from Proposition 6.2, we have for all
t ∈ [0,T ],

‖eφ(t,.)U (n) (t, .)‖2 +‖eφ(t,.)
ψ

(n) (t, .)‖2 < R. (6.28)

Now, let ϑ ∈ (C∞
0 (R))4 and ϑ̃ ∈C∞

0 (R) be fixed, then we have∣∣∣(eφ(t)U (t) ,ϑ
)∣∣∣ =

∣∣∣(U (t) ,eφ(t)
ϑ

)∣∣∣
≤

∣∣∣(U (t)−U (n) (t) ,eφ
∗(t)

ϑ

)∣∣∣+ ∣∣∣(U (n) (t) ,eφ
∗(t)

ϑ

)∣∣∣
≤

∣∣∣(U (t)−U (n) (t) ,eφ
∗(t)

ϑ

)∣∣∣+‖eφ(t)U (n) (t)‖2 ‖ϑ‖2 ,

where ( f ,g) =
∫
R f (x) .g(x)dx. Consequently, passing to the limit in the above inequality, we deduce from

(6.28) that ∣∣∣(eφ(t)U (t) ,ϑ
)∣∣∣≤ lim sup

n→∞

‖eφ(t)U (n) (t)‖2 ‖ϑ‖2 ≤ R‖ϑ‖2 .

Similarly, we can show that∣∣∣(eφ(t)
ψ (t) , ϑ̃

)∣∣∣≤ lim sup
n→∞

‖eφ(t)
ψ

(n) (t)‖2‖ϑ̃‖2 ≤ R‖ϑ̃‖2.

By density argument, we deduce that

eφ(t)U (t) ∈ L2 (R) , eφ(t)
ψ (t) ∈ L2 (R) , ∀t ∈ [0,T ]

and
‖eφ(t,.)U (t, .)‖2 ≤ R, ‖eφ(t,.)

ψ (t, .)‖2 ≤ R

and therefore,
‖eφ(t,.)U (t, .)‖2 +‖eφ(t,.)

ψ (t, .)‖2 ≤ 2R, ∀t ∈ [0,T ].

This completes the proof of Theorem 6.1.

6.2 Global existence and asymptotic behavior

In this subsection, we show the global existence and the asymptotic behavior of problem (6.2). We investi-
gate only the case a = 1, the case a 6= 1 can be proved with the same method.

Our main result in this subsection is the following Theorem.

Theorem 6.4 Let a = 1. Under the same condition of Theorem 6.1 and assume further that U0 ∈ L2 (R)∩
L1,1 (R) 2 such that

∫
RU0 = 0. Suppose also that p > 12. Then there exists a positive number ε > 0 such

that if
I0 +‖U0‖1,1 +‖U0‖2 < ε, (6.29)

then problem (6.1) has a unique global solution U satisfying

‖U‖2 ≤C (1+ t)−3/4
(

I0 +‖U0‖1,1 +‖U0‖2

)
. (6.30)

2In fact these estimates hold for any γ ∈ [0,1], so we take γ = 1 because in this case we have fastes decay rate.
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where U = (ϕx−ψ,ϕ t ,ψx,ψ t)
T , U0 = (ϕx (0)−ψ (0) ,ϕ1,ψx (0) ,ψ1)

T and

I2
0 =

∫
RN

e(2+ρ|x|2)/2ρU2
0 dx.

Remark 6.5 The restriction on the parameter p > 12 in Theorem 6.4 is depending on the weighted function
φ defined in (6.31). Moreover, this condition is quite reasonable since the damping ψ t is not strong enough
to stabilize the whole system for all p > 1. But if we add a damping term of the form ϕ t to the left hand side
of the first equation in (6.1), then the result of Theorem 6.4 holds for all p > 1. Of course in this case, we
choose the weighted function

φ̂ (t,x) =
|x|2

4(t +1)
,

and a slight modification in the proof will give the desired result.

To obtain the decay result of our problem (6.1), we shall proceed with our proof based on the (modified)
weighted energy method originally developed by Todorova and Yordanov [35]. Now, we define a weight
function similar to the one introduced by Ikehata and Inoue [11]. Indeed, we define the function

φ (t,x) =
2(t +1)2 +ρ |x|2

2ρ (t +1)2+ρ
(6.31)

as a weight function where ρ is a small positive constant to be fixed later. It is clear that the function φ

satisfying: φ (t,x) ∈C1 ([0,+∞)×R) and
φ t (t,x) =− 1

(t +1)1+ρ
− ρ +2

2
|x|2

(t +1)3+ρ
< 0,

φ x (t,x) =
x

(1+ t)2+ρ
.

(6.32)

Also a simple computation shows that

−φ t (t,x)≤
Cρ

1+ t
φ (t,x) (6.33)

and

φ
2
x (t,x)−φ t (t,x)φ

2
x (t,x)−φ

2
t (t,x)

=
(2+ρ) |x|4

2(1+ t)7+3ρ

(
1− 2+ρ

2
(1+ t)1+ρ

)
+

|x|2

(1+ t)5+3ρ

(
1− 2+ρ

2
(1+ t)1+ρ

)
− 1

(1+ t)2+2ρ
(6.34)

≤ 0.

Consequently (6.34) implies
φ

2
x (t,x)
−φ t (t,x)

≤−φ
2
x (t,x)−φ t (t,x) . (6.35)
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Lemma 6.6 Let (ϕ,ψ) be a local solution of problem (6.1) on [0,Tm), then the following estimate holds:
for all t ∈ [0,Tm),

‖e2φU‖2
2 ≤CI2

0 +C

(
sup
[0,t]

(1+ s)δ ‖eλφ(s,.)
ψ (s, .)‖p+1

)p+1

(6.36)

where 1≥ λ > 2/(p+1) ,δ > 0 and C = Cδ ,λ > 0 is a constant, which depends on δ and λ .

Proof. To prove Lemma 6.6, we multiply the first equation in (6.1) by ϕ t and the second equation by ψ t ,
we get respectively

1
2

d
dt

ϕ
2
t −

d
dx

(ϕx−ψ)ϕ t +(ϕx−ψ)ϕ tx = 0 (6.37)

and
d
dt

(
1
2

ψ
2
t +ψ

2
x−
|ψ|p ψ

p+1

)
− d

dx
(ψxψ t)− (ϕx−ψ)ψ t +ψ

2
t = 0. (6.38)

Summing up (6.37) and (6.38), we obtain

d
dt

(
1
2

(
ϕ2

t +ψ2
t +ψ2

x +(ϕx−ψ)2
)
− |ψ|

p
ψ

p+1

)
− d

dx
{(ϕx−ψ)ϕ t}−

d
dx

(ψxψ t)+ψ2
t = 0.

(6.39)

Multiplying (6.39) by e2φ , we get

d
dt

(
e2φ

2

(
ϕ

2
t +ψ

2
t +ψ

2
x +(ϕx−ψ)2

)
− e2φ |ψ|p ψ

p+1

)
= e2φ

(
φ t −

φ
2
x

φ t

)
ϕ

2
t −

2φ t

p+1
e2φ |ψ|p ψ + e2φ

(
1−+φ t −

φ
2
x

φ t

)
ψ

2
t

+
e2φ

φ t
(φ tψx−ψ tφ x)

2 +
e2φ

φ t
(φ t (ϕx−ψ)−φ xϕ t)

2

− d
dx

{
e2φ (ϕx−ψ)ϕ t

}
− d

dx

{
e2φ (ψxψ t)

}
.

Recalling (6.32) and (6.35), we get a useful identity

d
dt

{
e2φ

2

(
ϕ2

t +ψ2
t +ψ2

x +(ϕx−ψ)2
)
− e2φ |ψ|p ψ

p+1

}
− d

dx

{
e2φ (ϕx−ψ)ϕ t

}
− d

dx

{
e2φ (ψxψ t)

}
≤− 2φ t

p+1
e2φ |ψ|p ψ.

(6.40)

Integrating (6.40) over [0, t]×R, we obtain∫
R

e2φ

2

(
ϕ

2
t +ψ

2
t +ψ

2
x +(ϕx−ψ)2

)
dx

≤
∫

R

e2φ(0,x)

2

(
ϕ

2
0 +ψ

2
0 +ψ

2
x (0)+(ϕx (0)−ψ0)

2
)

dx (6.41)

+
1

p+1

∫
R

e2φ(t,x) |ψ (t,x)|p+1 dx+
2

p+1

∫ t

0

∫
R

(−φ s)e2φ(s,x) |ψ (s,x)|p+1 dxds.

29



Our goal now is to estimate the last term in the right hand side of (6.41). Indeed, we have from (6.33) and
for λ > 2/(p+1) (see [35] and [12]):∫ t

0

∫
R

(−φ s)e2φ(s,x) |ψ (s,x)|p+1 dxds

≤ C
∫ t

0

1
s+1

∫
R

φ (s,x)e(2−λ (p+1))φ(s,x)eλ (p+1)φ(s,x) |ψ (s,x)|p+1 dsdx.

Since supr≥0
(
re2−λ (p+1)r

)
< +∞, then we get from the above estimate∫ t

0

∫
R

(−φ s)e2φ(s,x) |ψ (s,x)|p+1 dxds

≤ C
∫ t

0

1
s+1

‖eλφ(s,.)
ψ (s, .)‖p+1

p+1ds

≤ C
∫ t

0

1

(s+1)1+δ (p+1)

{
sup
[0,t]

(1+ s)δ ‖eλφ(s,.)
ψ (s, .)‖p+1

}p+1

ds

≤ C

{
sup
[0,t]

(1+ s)δ ‖eλφ(s,.)
ψ (s, .)‖p+1

}p+1

. (6.42)

Also, it is clear that for any s ∈ [0, t], we have∫
R

e2φ(t,x) |ψ (t,x)|p+1 dx = ‖e
2

p+1 φ(s)
ψ (s, .)‖p+1

p+1

≤ ‖eλφ(s)
ψ (s, .)‖p+1

p+1

≤

{
sup
[0,t]

(1+ s)δ ‖eλφ(s,.)
ψ (s, .)‖p+1

}p+1

. (6.43)

Consequently, the above estimates (6.42) and (6.43) give

‖e2φU‖2
2 ≤CI2

0 +C

{
sup
[0,t]

(1+ s)δ ‖eλφ(s,.)
ψ (s, .)‖p+1

}p+1

.

This implies the desired inequality (6.36). �
For ν > 0 and t ≥ 0, we define a family of weighted function spaces H1

νφ(t,.) (R) as:

f ∈ H1
νφ(t,.) (R)⇔ f ∈ H1 (R) , ‖eνφ(t,.) f‖2

2 +‖eνφ(t,.) fx‖2
2 < +∞, ∀t ≥ 0.

We recall the Gagliardo-Nirenberg type inequality, which can be easily proved by following [11].

Lemma 6.7 Let θ (q) = 1/2−1/q with q > 0 and 0≤ θ (q)≤ 1 and 0≤ ν ≤ 1. If v ∈ H1
νφ(t,.) (R) then

‖eνφ(t,.)v‖q ≤Cν (1+ t)(2+ρ)(1−θ(q))/2 ‖vx‖1−ν

2 ‖eφ(t,.)vx‖ν
2 ,

with some constant Cν > 0.

Therefore, the following result holds: (see [12, Lemma 2.5])
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Lemma 6.8 For each δ > 0, there exists a constant C = Cδ such that∫
R

e−2pδφ(t,x)dx≤C (1+ t)(ρ+2)/2 . (6.44)

The following lemma is crucial in our argument.

Lemma 6.9 There exists a constant C = Cδ such that for all t ≥ 0, we have∫
R

e−2pδφ(t,x) (1+ |x|)2 dx≤C (1+ t)
3(ρ+2)/2

. (6.45)

Proof. First, let us assume that x≥ 0 then it follows from (6.31) that∫ +∞

0
e−2pδφ(t,x) (1+ x)2 dx =

∫ +∞

0
e−pδx2/(t+1)(ρ+2)

(1+ x)2 dx

≤ 4
∫ 1

0
e−pδx2/(t+1)(ρ+2)

+4
∫ +∞

1
e−pδx2/(t+1)(ρ+2)

x2dx

≤ 4+4K̃1.

Concerning the integral K̃1, we have, by making the change of variable r =δx2/(t +1)(ρ+2)

K̃1 =
(t +1)(ρ+2)

pδ

∫ +∞

1
e−pδx2/(t+1)(ρ+2)

(
pδx2

(t +1)(ρ+2)

)
dx

=
(t +1)(ρ+2)

pδ

1

2
√

pδ
(t +1)−

(ρ+2)/2
(1+ t)(ρ+2)

∫ +∞

δ/(t+1)3
e−rr1/2dr

≤ Cδ (t +1)3(ρ+2)/2
∫ +∞

0
e−rr3/2−1dr

= Cδ Γ(3/2)(t +1)3(ρ+2)/2 ,

where Γ(s) =
∫ +∞

0 e−rrs−1dr is the Gamma function of s > 0. We can use the same strategy for x < 0. This
concludes the proof of Lemma 6.9. �

The following lemma is crucial in the proof of Theorem 6.4

Lemma 6.10 Let U(t,x) be the solution of problem (6.2), then the following estimate holds:

(1+ t)3/4 ‖U (t)‖2 ≤C (‖U0‖1,1 +‖U0‖2)+C

(
sup
[0,t]

(1+ τ)β ‖eδφ(τ,x)
ψ (τ)‖2p

)p

(6.46)

for any ε > 0, β = (3(ρ +2)/4+1+ ε)/p and δ > 0.

Proof. Let us first assume that a = 1. By virtue of the Duhamel principle, we transform the problem (6.2)
into the integral equation as

U (t) = etΦU0 +
∫ t

0
e(t−τ)ΦG(U)(τ)dτ. (6.47)
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Taking the L2 norm of (6.2), we conclude

‖U (t)‖2 ≤
∥∥etΦU0

∥∥
2 +

∫ t

0

∥∥∥e(t−τ)ΦG(U)
∥∥∥

2
dτ

= Ĩ1 + Ĩ2

Since Ĩ1 is the L2 norm of the solution of problem (3.1), then Ĩ1 satisfies the decay estimate (3.5), conse-
quently we have, for γ = 1,

Ĩ1 ≤C (1+ t)−3/4 ‖U0‖1,1 +Ce−ct ‖U0‖2 , (6.48)

where from now on we will denote by C various positive constants which may be different at different
occurrences

Our main task now is to estimate the term Ĩ2. To do this, we split the integral Ĩ2 into two parts:

Ĩ2 =
∫ t/2

0

∥∥∥e(t−τ)ΦG(U)
∥∥∥

2
dτ +

∫ t

t/2

∥∥∥e(t−τ)ΦG(U)
∥∥∥

2
dτ = J̃1 + J̃2.

For the first integral, and since G(U) = (0,0,0, |ψ|p)T , we apply (3.5) with k = 0 and γ = 1, and obtain

J̃1 ≤ C
∫ t/2

0
(1+ t− τ)−3/4 ‖G(U)(τ)‖1,1dτ

+C
∫ t/2

0
e−c(t−τ) ‖G(U)(τ)‖2 dτ (6.49)

= C
∫ t/2

0
(1+ t− τ)−3/4 ‖ψ (τ)‖p

p,1dτ +C
∫ t/2

0
e−c(t−τ) ‖ψ (τ)‖p

2p dτ.

To estimate the term ‖ψ (τ)‖p
p,1, we have from the Cauchy&Schwarz inequality and (6.45)

‖ψ (τ)‖p
p,1 =

∫
R

e−pδφ(τ,x) |ψ (τ,x)|p (1+ |x|)epδφ(τ,x)dx

≤
(∫

R
e2pδφ(τ,x) |ψ (τ,x)|2p

)1/2(∫
R

e−2pδφ(τ,x) (1+ |x|)2
)1/2

≤ C (1+ τ)3(ρ+2)/4 ‖eδφ(τ,x)
ψ (τ)‖p

2p. (6.50)

On the other hand, since φ is a positive function, then the function e−δφ(t,x) is bounded and therefore we
may estimate the norm ‖ψ (s)‖p

2p as follows

‖ψ (s)‖p
2p =

∥∥∥e−δφ(t,x).ψ(s)eδφ(t,x)
∥∥∥p

2p
≤C (1+ τ)(ρ+2)/4 ‖eδφ(t,x)

ψ (s)‖p
2p. (6.51)

Consequently, from (6.49), (6.50) and (6.51) we obtain

J̃1 ≤ C
∫ t/2

0
(1+ t− τ)−3/4 (1+ τ)3(ρ+2)/4 ‖eδφ(τ,x)

ψ (τ)‖p
2pdτ

+C
∫ t/2

0
e−c(t−τ) (1+ τ)(ρ+2)/4 ‖eδφ(τ,x)

ψ (τ)‖p
2pdτ.

This gives,

J̃1 ≤C
∫ t/2

0
(1+ t− τ)−3/4 (1+ τ)3(ρ+2)/4 ‖eδφ(τ,x)

ψ (τ)‖p
2pdτ.
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Now, for any ε > 0, we may write

J̃1 ≤ C
∫ t/2

0
(1+ τ)−1−ε (1+ t− τ)−3/4

{
(1+ τ)(3(ρ+2)/4+1+ε)/p ‖eδφ(τ,x)

ψ (τ)‖2p

}p
dτ

≤ C

(
sup
[0,t]

(1+ τ)β ‖eδφ(τ,x)
ψ (τ)‖2p

)p ∫ t/2

0
(1+ τ)−1−ε (1+ t− τ)−3/4 ds,

where

β =
3(ρ +2)/4+1+ ε

p
.

Using Lemma 2.2, we get ∫ t/2

0
(1+ τ)−1−ε (1+ t− τ)−3/4 ds≤C (1+ t)−3/4 .

Consequently,

J̃1 ≤C (1+ t)−3/4

(
sup
[0,t]

(1+ τ)β ‖eδφ(τ,x)
ψ (τ)‖2p

)p

. (6.52)

By the same strategy, we get

J̃2 ≤C (1+ t)−3/4

(
sup
[0,t]

(1+ τ)β ‖eδφ(τ,x)
ψ (τ)‖2p

)p

. (6.53)

Exploiting the estimates (6.48), (6.52) and (6.53), we find (6.46). This completes the proof of Lemma 6.10.
�

Proof of Theorem 6.4
To prove Theorem 6.4, let us now define the functional

W (t) = ‖e2φU‖2 +(1+ t)3/4 ‖U (t)‖2 . (6.54)

Then, it follows from Lemma 6.6 and Lemma 6.10 that

W (t) ≤ CI0 +C

(
sup
[0,t]

(1+ τ)δ ‖eλφ(τ,.)
ψ (τ, .)‖p+1

)(p+1)/2

+C (‖U0‖1,1 +‖U0‖2)+C

(
sup
[0,t]

(1+ τ)β ‖eδφ(τ,x)
ψ (τ)‖2p

)p

(6.55)

for 2/(p+1) < λ < 1 and δ > 0.
Applying Lemma 6.7 for q = 2p and ν = δ , we get (see [12])

‖eδφ(τ,x)
ψ (τ)‖2p ≤ C (1+ τ)(2+ρ)(1−θ(2p))/2 ‖ψx (τ)‖1−δ

∥∥∥eδφ(τ,x)
ψx (τ)

∥∥∥δ

≤ C (1+ τ)(2+ρ)(1−θ(2p))/2
{

(1+ τ)3/4 ‖ψx (τ)‖
}1−δ

×(1+ τ)−(1−δ )3/4W (τ)δ

= C (1+ τ)(2+ρ)(1−θ(2p))/2−(1−δ )3/4W (τ) . (6.56)
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Similarly, we have for q = p+1 and ν = λ

‖eλφ(s,.)
ψ (s, .)‖p+1 ≤C (1+ s)(2+ρ)(1−θ(p+1))/2−(1−λ )3/4W (s) . (6.57)

Consequently, from (6.55), (6.56) and (6.57), we obtain

W (t) ≤ C (I0 +‖U0‖1,1 +‖U0‖2)

+C

{
sup
[0,t]

(1+ τ)δ (1+ τ)(2+ρ)(1−θ(p+1))/2−(1−λ )3/4W (τ)

}(p+1)/2

+C

{
sup
[0,t]

(1+ τ)β (1+ τ)(2+ρ)(1−θ(2p))/2−(1−δ )3/4W (τ)

}p

Since λ > 2/(p + 1), then, we can choose λ as λ = 2/(p + 1)+ ε1. Now, by the definition of θ (2p) and
θ (p+1) in Lemma 6.7, we obtain

κ1 = β +
(2+ρ)(1−θ (2p))

2
− (1−δ )3

4

=
(

3
p
− 1

4

)
+ρ

(
1
p

+
1
4

)
+

ε

p
+

3δ

4
,

and

κ2 = δ +
(2+ρ)(1−θ (p+1))

2
− (1−λ )3

4

=
(
−1

4
+

10
4(p+1)

)
+

ρ

2

(
1
2

+
1

p+1

)
+

3ε1

4
+δ .

It is clear that for 12 < p and by choosing ε,δ ,ρ and ε1 small enough, we get κ1 < 0 and κ2 < 0. Conse-
quently, we have

sup
[0,t]

W (t)≤C (I0 +‖U0‖1,1 +‖U0‖2)+C

(
sup
[0,t]

W (τ)

)(p+1)/2

+C

(
sup
[0,t]

W (τ)

)p

. (6.58)

Define
M (t) = sup

[0,t]
W (τ) ,

Consequently, inequality (6.58) can be rewritten as

M (t)≤C
(

I1 +M (t)p +M (t)p+1
)

(6.59)

where
I1 = I0 +‖U0‖1,1 +‖U0‖2 .

Then, we conclude by standard arguments (cf. [28]) that for sufficiently small I1, we have

M (t)≤ I1, ∀t ≥ 0. (6.60)
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This yields
‖e2φU‖2 +(1+ t)3/4 ‖U (t)‖2 ≤ I1,, ∀t ≥ 0. (6.61)

In addition, since

ψ (t) = ψ0 +
∫ t

0
ψs (s)ds

we get

eφ(t,.)
ψ (t) = eφ(t,.)

ψ0 +
∫ t

0
eφ(t,.)

ψs (s)ds,

which implies by using the first inequality in (6.32)

‖eφ(t,.)
ψ (t)‖2 ≤ ‖eφ(t,.)

ψ0‖2 +
∫ t

0
‖eφ(t,.)

ψs (s)‖2ds

≤ ‖eφ(0,.)
ψ0‖2 +

∫ t

0
‖eφ(t,.)

ψs (s)‖2ds.

Then, using (6.61), we get
‖eφ(t,.)

ψ (t)‖2 ≤ ‖eφ(0,.)
ψ0‖2 + I1t (6.62)

on [0,Tm). Therefore, if Tm < +∞, then the two estimates (6.61) and (6.62) imply that

lim
t→Tm

sup
{
‖eφ(t,.)U (t, .)‖2 +‖eφ(t,.)

ψ (t, .)‖2

}
< +∞,

which contradicts (6.4). This gives Tm = +∞. Consequently, the proof of Theorem 6.4 is thus completed.

7 Concluding remarks

In this section, we conclude with a few remarks, and future directions worth pursuing.

Remark 7.1 We can also deal with other nonlinearities. For example −|ψ|p,±|ψ|p−1ψ .

Remark 7.2 The restriction p > 12 in Theorem 6.4 is not optimal. It is an interesting open problem to study
the case p≤ 12. In the case of a damped wave equation of the form

utt(x, t)−∆u(x, t)+ut(x, t) = |u(x, t)|p, (x, t) ∈ RN×R+, (7.1)

Todorova and Yordanov [35] showed that the value pc = 1 + 2/N is the critical number. In other words,
they proved that if p > pc, then global solutions exist for small initial data. While if p≤ pc, solutions blow
up in finite time. We point out that pc is the same critical exponent obtained by Fujita [4] for the problem
of a nonlinear parabolic equation with negative initial data. In fact this is obvious since the solution of the
linear damped wave equation behaves as t → +∞ like the one of the related heat equation. See [36] for
more details.

Remark 7.3 We may apply the techniques used in the above sections to establish the optimal decay estimate
for (1.1) in R+×R+ with the boundary conditions

ϕx(t,0) = ψ(t,0) = 0, t ∈ R+.
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In order to use the argument developed in the above sections, we extend our problem to the whole domain
R. To do this, we extend the solution ϕ as an even function, and ψ as an odd function with respect to x = 0.
That is

ϕ̃(t,x) :=

{
ϕ(t,x), x≥ 0

ϕ(t,−x), x < 0
, ψ̃(t,x) :=

{
ψ(t,x), x≥ 0

−ψ(t,−x), x < 0
, (7.2)

and

ϕ̃0 : =

{
ϕ0(x), x≥ 0

ϕ0(−x), x < 0
, ψ̃0 :=

{
ψ0(x), x≥ 0

−ψ0(−x), x < 0

ϕ̃1 : =

{
ϕ1(x), x≥ 0

ϕ1(−x), x < 0
, ψ̃1 :=

{
ψ1(x), x≥ 0

−ψ1(−x), x < 0

Consequently, we extend our problem to the following system in the whole space R
ϕ̃ tt (t,x)− (ϕ̃x− ψ̃x)(t,x) = 0 (t,x) ∈ R+×R,

ψ̃ tt (t,x)−a2ψ̃xx (t,x)− (ϕ̃x− ψ̃)(t,x)+ µψ̃ t (t,x) = 0 (t,x) ∈ R+×R,

(ϕ̃, ϕ̃ t , ψ̃, ψ̃ t)(0,x) = (ϕ̃0, ϕ̃1, ψ̃0, ψ̃1) x ∈ R.

(7.3)

It is clear that the unique solution (ϕ̃, ψ̃) of problem (7.3) satisfies: ϕ̃ is an even function and ψ̃ is an odd
function. In fact, we can easily see that (ϕ̃1, ψ̃1) such that

ϕ̃1(t,x) :=

{
ϕ̃(t,x), x≥ 0

ϕ̃(t,−x), x < 0
, ψ̃1(t,x) :=

{
ψ̃(t,x), x≥ 0

−ψ̃(t,−x), x < 0
,

is also a solution of (7.3) and ϕ̃1 is even and ψ̃1 is odd. Thus, the uniqueness of solutions gives us (ϕ̃1, ψ̃1) =
(ϕ̃, ψ̃).

A Appendix

In this Appendix, we prove the property (6.10).
Let us first show that ψ̂ ∈C0

(
[0,T ],H1 (R)

)
, then |ψ̂|p ∈C0

(
[0,T ],L2 (R)

)
. Indeed, by using the alge-

braic inequality
|ap−bp| ≤ p |a−b|

(
|a|p−1 + |b|p−1

)
, a, b≥ 0,

we get ∫
R
||ψ̂ (t1,x)|p−|ψ̂ (t2,x) |p|2 dx

≤ p
∫

R
(|ψ̂ (t1,x) |− |ψ̂ (t2,x) |)2 (|ψ̂ (t1,x) |p−1 + |ψ̂ (t2,x) |p−1)2︸ ︷︷ ︸

≤4‖ψ̂‖2(p−1)
C0([0,T ],H1(R))

Consequently, we get∫
R
||ψ̂ (t1,x) |p−|ψ̂ (t2,x) |p|2 dx≤C‖ψ̂‖2(p−1)

C0([0,T ],H1(R))‖ψ̂ (t1,x)− ψ̂ (t2,x)‖2
2
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and using the fact that ψ̂ ∈C0
(
[0,T ],L2 (R)

)
, we deduce that |ψ̂|p ∈C0

(
[0,T ],L2 (R)

)
.

Next, we want to show that ∂t(|ψ̂|p)∈C0
(
[0,T ],L2 (R)

)
. To do this, we have first ∂t(|ψ̂|p)= p(∂tψ̂)|ψ̂|p−2ψ̂ .

Consequently, applying the same argument as before, we obtain∫
R

{∣∣∂tψ̂ (t1,x) |ψ̂ (t1,x) |p−1−∂tψ̂ (t2,x) |ψ̂ (t2,x) |p−1∣∣2}dx

≤ 2
∫

R
|∂tψ̂ (t1,x)|2

(
|ψ̂ (t1,x) |p−1−|ψ̂ (t2,x) |p−1)dx

+2
∫

R
|∂tψ̂ (t1,x)−∂tψ̂ (t1,x)|2 |ψ̂ (t2,x) |2(p−1)︸ ︷︷ ︸

≤C‖ψ̂‖2(p−1)
C0([0,T ],H1(R))

dx

= I1 + I2.

It is clear that
I2 ≤C‖ψ̂‖2(p−1)

C0([0,T ],H1(R))‖ψ̂ (t1,x)− ψ̂ (t2,x)‖2
2

and, as above, we get

I1 ≤ C
∫

R
|∂tψ̂ (t1,x)|2 (|ψ̂ (t1,x) |− |ψ̂ (t2,x) |)2 ‖ψ̂‖2(p−1)

C0([0,T ],H1(R))dx

≤ C‖ψ̂‖2
C1([0,T ],L2(R))‖ψ̂‖

2(p−1)
C0([0,T ],H1(R))‖ψ̂ (t1,x)− ψ̂ (t2,x)‖2

2,

which gives the desired result.
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