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Abstract

In this paper we consider a class of second-order hyperbolic system which describe viscoelastic
materials and we extend the results in the recent papers [4] and [1]. More precisely, if we take the initial
data (u0,u1) ∈

(
Hs+1

(
RN
)
∩L1,γ

(
RN
))
×
(
Hs
(
RN
)
∩L1,γ

(
RN
))

with γ ∈ [0,1], then we can derive
faster decay estimates than those given in [1] and in [4] for both dissipative structure or regularity-
loss type models. To this end, we will first transform our problem into Fourier space, then, by using
the pointwise estimate derived in [4] combined with a device to treat the Fourier transform in the low
frequency region, we succeed in proving the optimal decay results to the solutions of our problem.
Finally, we use these decay estimates of the linear problem combined with the weighted energy method
introduced by Todorova and Yordanov [27] to tackle a semilinear problem.

Keywords: Hyperbolic system, viscoelasticity, energy method, memory kernel, polynomial decay, de-
cay rate.

1 Introduction

In this paper, we are concerned with the following second order hyperbolic systems with dissipation:

utt −
N

∑
j,k=1

B jkux jxk +
N

∑
j,k=1

K jk ∗ux jxk +Lut = f (u) , x = (x1, ...,xN) ∈ RN , t ≥ 0 (1.1)

where ∗ denotes the convolution with respect to t, that is

(g∗u)(t) =
∫ t

0
g(t− τ)u(τ)dτ,

where g will be exponentially decaying, and f (u) =−|u|p−1 u (p≥ 1).
We consider the following initial data

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈ RN , (1.2)
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where u is an m−vector function of x, B jk are m×m real constant matrices satisfying
(
B jk
)T = Bk j for each

j and k and K jk (t) are m×m matrix functions of t ≥ 0 satisfying
(
K jk (t)

)T = Kk j (t) for each j, k and t ≥ 0,
and L is an m×m constant matrix.

For f = 0, i.e. the linear problem (1.1)-(1.2) has been considered recently in [4] and, by using the energy
method in the Fourier space, the authors have obtained a decay rate of the form∥∥∂

k
x ut (t)

∥∥
2 +
∥∥∂

k+1
x u(t)

∥∥
2 ≤C (1+ t)−N/4−k/2 ‖u1‖+C (1+ t)−N/4−k/2−1/2 ‖u0‖1,

provided that the initial data (u0,u1) ∈ Hs+1
(
RN
)
∩L1

(
RN
)
× Hs

(
RN
)
∩L1

(
RN
)

where 0 ≤ k ≤ s. They
also showed that, by introducing the operator (1−∆)−θ/2, θ > 0 in front one of the dissipative terms, the
decay structure of the system is of the regularity-loss type, see (5.1) in [4].

For m = 1, B jk = δ jk, and K jk (t) = δ jkg(t) problem (1.1) takes the form

utt −∆u+
∫ t

0
g(t− s)∆u(s)ds+ut + |u|p−1 u = 0 (1.3)

where δ jk is the Kronecker symbol.
Problems similar to (1.3) arise in viscoelasticity and in systems governing the longitudinal motion of a

viscoelastic configuration obeying a nonlinear Boltzmann’s model where the constitutive relation between
the stress σ(x, t) and the strain ε(x, t) is of the form

σ(x, t) = cε(x, t)−
∫

∞

0
m(s)ε(x, t− s)ds (1.4)

where c is a positive constant and m is positive, decreasing, integrable function satisfies

c−
∫

∞

0
m(s)ds > 0.

In the unbounded domain case, there is very little in the literature that discusses the global existence and
decay properties of solution even for the linear problem.

Hrusa and Nohel [10] considered a problem similar to (1.3) in R as a model for the motion of an un-
bounded, homogeneous, viscoelastic bar. More precisely, they investigated the problem

utt = φ (ux (x, t))x +
∫ t

0
a′ (t− s)ψ (ux (x,s))x ds+ f (x, t) (1.5)

which can be obtained by considering a nonlinear generalization of the constitutive equation (1.4) of the
form

σ(x, t) = φ (ε(x, t))−
∫

∞

0
m(s)ψ (ε(x, t− s))ds

where φ and ψ are smooth functions. Under reasonable conditions on φ and ψ and assuming the smallness
condition on the initial data, they proved the existence of a unique global classical solution of the Cauchy
problem (1.5). They also established an asymptotic decay result but no rate of decay was given. Dassios
and Zafiropoulus [3] investigated the model of the linear viscoelastic system in R3 and proved, by using the
Fourier transform in the space variable, that the decay is of order t−3/2 provided that the relaxation is an
exponential function like µ0e−µ1t , (µ0, µ1 > 0). The result in [3] has been extended by Muñoz Rivera [23]
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to RN by showing that the decay rate is of order t−N/2, provided the relaxation is any function which decays
exponentially to zero. Recently, Kafini and Messaoudi [15] have considered the Cauchy problem

utt −∆u+
∫ t

0
g(t− s)∆u(s)ds = 0, (1.6)

and showed a polynomial decay of the energy associated to problem (1.6), provided the kernel g decays
exponentially and the initial data are compactly supported. But no precise decay rate was given in [15].

Conti et al [1] looked at the linear problem (1.6) in the so-called history space framework, and showed
that if the kernel g decays exponentially, then the solution of (1.6) satisfies

‖ut (t)‖2 +‖∇u(t)‖2 ≤C (1+ t)−N/4 . (1.7)

While if g decays polynomially, i.e.

g(s)≤C (1+ s)−1−p , p > 0

then the solution of u of (1.6) satisfies

‖ut (t)‖2
2 +‖∇u(t)‖2

2 ≤

{
C (1+ t)−min{p,N p/(2p+2)} if 2p 6= N−2,

C (1+ t)−p log(2+ t) if 2p = N−2.
(1.8)

Both estimates (1.7) and (1.8) hold for initial data satisfying u0 ∈ H1
(
RN
)
∩L1

(
RN
)

and u1 ∈ L2
(
RN
)
∩

L1
(
RN
)
.

Observe that if g vanishes identically, then problem (1.2), (1.3) reduces to the damped wave equation:{
utt −∆u+ut + |u|p−1 u = 0, t > 0, x ∈ RN ,

u(0,x) = u0 (x) ,ut (0,x) = u1 (x) , x ∈ RN .
(1.9)

Problem (1.9) has been extensively studied and several results concerning existence and asymptotic behavior
have been established, see [6, 7, 8, 13, 17, 19, 20] and references therein. By using the energy method
combined with Lp−Lq estimates, Kawashima et al [17] showed that if

1+
4
N

< p <
N +2
N +3

, for N = 3 or 1+
4
N

< p < ∞, for N = 1,2

then the solution u(t,x) of (1.9) decays as

‖u‖2 ≤Ct−
N
2 ( 1

r−
1
2)

provided that the initial data

(u0,u1) ∈
(
H1 (RN)∩Lr (RN))× (L2 (RN)∩Lr (RN))

for 1 ≤ r ≤ 2. Based on the result of [17], Karch [16] showed that the solution of (1.9) behaves as that of
the corresponding diffusive equation

ut −∆u+ |u|p−1 u = 0. (1.10)

More precisely, he proved that
‖u(t)−θ 0G(t, .)‖2 = O(t−N/4)
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where
θ 0 =

∫
RN

(u0 +u1)(x)dx−
∫

∞

0

∫
RN
|u|p−1 u(t,x)dxdt

and
G(t,x) = (4π)−N/2 e

−|x|2
4t .

Recently, Nishihara and Zhao [20] have investigated the problem (1.9) and showed that for 1 < p < 1+2/N
the solution of (1.9) decays as(

‖u(t)‖p ,‖∇u(t)‖2

)
= O

(
t−

1
ρ−1 + N

2ρ , t−
1

ρ−1 + N
4 −

1
2

)
, 1≤ p≤ ρ +1. (1.11)

The decay result in [20] has been obtained without any smallness condition on the initial data. Instead, and in
order to apply the weighted L2-energy method, the initial data in [20] are assumed to satisfy eβ |x|2 (u0,∇u0,u1)
∈ L2

(
RN
)

for some β > 0. When the absorbing term |u|p−1 u in (1.9) is replaced by a forcing term of the
form −|u|p the situation is more delicate. More precisely, Todorova and Yordanov [27] considered the
Cauchy problem

utt −∆u+ut = |u|p (1.12)

and showed that the value p0 = 1+2/N is the critical exponent of (1.12). In other words, for p > 1+2/N,
they proved that any solution of (1.12) with sufficiently small initial data exists globally in time and decays
as

‖(ut ,∇u)‖2 = O
(

t−
N
4 −

1
2

)
. (1.13)

On the other hand if 1 < p≤ 1+2/N, then every solution of (1.12) with initial data having positive average
value blows up in finite time. In their result it is essentially used that the initial data associated to (1.12) have
a compact support, which leads to the finite propagation speed property of the wave. The result in [27] has
been improved by Ikehata and Tanizawa [14], in which the authors used a weight function, which modifies
that of Todorova and Yordanov [27] and helped them to remove the compactness assumptions on the support
of the initial data. The decay rates (1.13) given in [27] and [14] have been improved in [12] to be of the form

(‖u‖2 ,‖ut‖2 ,‖∇u‖2) = O
(

t−
N
4 −

γ

2 , t−
N
4 −

γ

2−
1
2 , t−

N
4 −

γ

2−
1
2

)
provided that the initial data (u0,u1) ∈

(
H1
(
RN
)
∩L1,γ

(
RN
))
×
(
L2
(
RN
)
∩L1,γ

(
RN
))

with γ ∈ [0,1] and∫
RN ui (x)dx = 0, i = 0,1.
The plan of this paper is as follows: In section 2, we fix notations and for the convenience of the reader,

we recall, without proofs, some useful lemmas. In section 3, we treat problem (1.1)-(1.2) and we show that
by restricting ourselves to initial data (u0,u1) ∈

(
Hs+1

(
RN
)
∩L1,γ

(
RN
))
×
(
Hs
(
RN
)
∩L1,γ

(
RN
))

with
γ ∈ [0,1], then we can derive faster decay estimates than those given in [4]. In fact, by transforming our
problem into Fourier space, using the pointwise estimates derived in [4] and adapting the devise introduced
by Ikehata in [12], to treat the Fourier transform in the low frequency region, we succeed to improve the
decay rate given in [4] by t−γ/2, γ ∈ [0,1]. In section 4, and as it was shown in [4], by introducing the
operator (1−∆)−θ/2, (θ > 0) to weaken the linear damping term or the viscoelastic damping in problem
(1.1), then the decay structure of the corresponding systems is of regularity-loss type [9, 11]. Once again,
our decay estimates in this case are better than those given in [4]. In section 5, we investigate problem (1.3)
and show that even in the absence of the frictional damping ut , the damping given by the viscoelastic term
still strong enough to stabilize the solution of (1.3) with the same decay rate as in the presence of ut . (See
Remark 7.1 and Remark 7.2 for more comments). Our result in this section extends the result of [1] in
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which the decay rates for both exponential and polynomial kernels have been improved by assuming further
restrictions on the initial data. Section 6 is devoted to analyze the asymptotic behavior of the semilinear
problem (1.3). More precisely, we use the decay estimates obtained in section 3 for the linear problem
combined with the weighted energy method introduced by Todorova and Yordanov [27] to obtain some
optimal decay estimates for (1.3), this is the contents of subsection 6.1. In subsection 6.2, and by using the
energy method, we obtain some decay estimates for (1.3) in the subcritical region 1 < p < 1 + 4/N. This
result extends the one given in [20] to the viscoelastic wave equation. Finally, in section 7, we give some
comments and compare the obtained results. We note here that the compactness assumption on the support
of the initial data is unnecessary in this paper, and our results hold without it.

2 Preliminaries

As in [4], and in order to make the appropriate assumptions, we define the following real symmetric matrices:

Bω =
N

∑
j,k=1

B jk
ω jωk, Kω (t) =

N

∑
j,k=1

K jk (t)ω jωk (2.1)

for ω = (ω1, ...,ωN) ∈ SN−1 and t ≥ 0. In order to state an prove our main result, and following [4], we
make the following assumptions

(A1) Bω is real symmetric and positive definite for each ω ∈ SN−1, Kω (t) is real symmetric and nonnegative
definite for each ω ∈ SN−1 and for all t ≥ 0, and L is real symmetric and nonnegative definite.

(A2) Bω −Kω (t) is real symmetric and positive definite for each ω ∈ SN−1 uniformly in t ≥ 0, where
Kω (t) =

∫ t
0 Kω (s)ds.

(A3) Kω (0)+L is real symmetric and positive definite for each ω ∈ SN−1.

(A4) There are positive constants C0 and c0 such that

−C0Kω (t)≤ K′ω (t)≤−c0Kω (t) ,

and
−C0Kω (t)≤ K′′ω (t)≤C0Kω (t)

for each ω ∈ SN−1 and t ≥ 0, where K′ω (t) = ∂tKω (t) and K′′ω (t) = ∂ 2
t Kω (t) .

Now, we introduce some notations to be used throughout this paper.
Throughout this paper, ‖.‖q and ‖.‖H l stand for the Lq(RN)-norm (2 ≤ q ≤ ∞) and the H l(RN)-norm.

Also, for γ ∈ [0,+∞), we define the weighted function space Lp,γ(RN), 1 ≤ p < ∞, N ≥ 1, as follows:
u ∈ Lp,γ(RN) iff

‖u‖p,γ =
∫

RN
(1+ |x|)γ |u(x)|pdx < +∞.

Concerning the function g introduced in (1.3), we assume the following:

(G1) g : R+→ R+ is a C1 function satisfying

g(0) > 0, 1−
∫

∞

0
g(s)ds = l > 0.
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(G2) There exists ζ > 0 such that
g′ (t)≤−ζ g(t) , ∀t ≥ 0. (2.2)

Let us also denote f̂ = F ( f ) be the Fourier transform of f :

f̂ (ξ ) = F ( f )(ξ ) =
∫

RN
f (x)e−iξ xdx,

and let F−1 ( f ) be the inverse Fourier transform of f .
Let us introduce the following notations:

(ϕ ∗ψ)(t) : =
∫ t

0
ϕ (t− τ)ψ (τ)dτ,

(ϕ �ψ)(t) : =
∫ t

0
ϕ (t− τ) |ψ (t)−ψ (τ)|2 dτ,

(ϕ ◦ψ)(t) : =
∫ t

0
ϕ (t− τ)

∫
RN
|ψ (t)−ψ (τ)|2 dxdτ.

The following lemma was introduced in [24, Lemma 3.2] and we will use it later in this paper.

Lemma 2.1 For any function ϕ ∈C1 (R) and any ψ ∈ H1 (0,T ), we have

(ϕ ∗ψ)(t)ψ t (t) = −1
2

ϕ (t) |ψ (t)|2 +
1
2
(
ϕ
′ �ψ

)
(t)

−1
2

d
dt

{
(ϕ �ψ)(t)−

(∫ t

0
ϕ (τ)dτ

)
|ψ (t)|2

}
.

The following lemma was introduced and proved in [1, Lemma 1.2] and [25, Lemma 3.5].

Lemma 2.2 Let k0 ≥ 1, m0 > 0 and t > 0, then we have

∫ 1

0

rk0−1

(1+ rt)m0
dr ≤

{
Ct−min{m0,k0}, if m0 6= k0

Ct−k0 log t, if m0 = k0

where C is a positive constant.

3 Decay estimates for f = 0

In this section, we consider problem (1.1)-(1.2) for f = 0 (i.e. the linear problem) and we prove some
optimal decay estimates. In fact, if we restrict the initial data u0 ∈

(
Hs+1

(
RN
)
∩L1,γ

(
RN
))

and u1 ∈(
Hs
(
RN
)
∩L1,γ

(
RN
))

, γ ∈ [0,1], then we can derive faster decay estimates than those in [4]. More precisely,
our first result reads as follows.

Theorem 3.1 Let γ ∈ [0,1] . Let s be a nonnegative integer and assume that u0 ∈Hs+1
(
RN
)
∩L1,γ

(
RN
)

and
u1 ∈ Hs

(
RN
)
∩L1,γ

(
RN
)
. Suppose that the conditions (A1)-(A4) hold. Then the corresponding solution of
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problem (1.1)-(1.2) ( f = 0) satisfying the decay estimates∥∥∂ k
x ut (t)

∥∥
2 +
∥∥∂ k+1

x u(t)
∥∥

2

≤C (1+ t)−N/4− k+γ

2 ‖u1‖1,γ +C (1+ t)−N/4−k/2
(∣∣∣∣∫RN

u1 (x)dx
∣∣∣∣)

+C (1+ t)−N/4− k+γ

2 −1/2 ‖u0‖1,γ +C (1+ t)−N/4−k/2−1/2
(∣∣∣∣∫RN

u0 (x)dx
∣∣∣∣)

+Ce−ct
(∥∥∂ k

x u1
∥∥

2 +
∥∥∂ k+1

x u0
∥∥

2

)
(3.1)

for k with 0≤ k ≤ s, where C and c are two positive constants.

Remark 3.2 The estimate (3.1) shows that by taking the initial data u0 ∈ Hs+1
(
RN
)
∩L1,γ

(
RN
)

and u1 ∈
Hs
(
RN
)
∩L1,γ

(
RN
)
, such that

∫
RN ui (x)dx = 0, i = 0,1, then the decay rates given in [4, Theorem 3.1] can

be improved by t−γ/2, γ ∈ [0,1] .

Applying the Fourier transform to our problem (1.1)-(1.2) yields{
ûtt + |ξ |2 Bω û−|ξ |2 (Kω ∗ û)+Lût = 0

û(ξ ,0) = û0 (ξ ) , ût (ξ ,0) = û1 (ξ )

where Bω and Kω are given in (2.1) with ω = ξ/|ξ |.
In order to proof Theorem 3.1, we recall the following result from [4, Proposition 3.2]. The proof of the

following Proposition is carried out by using the energy method in the Fourier space.

Proposition 3.3 Assume the same conditions as in Theorem 3.1. Then the solution of problem (1.1)-(1.2)
satisfies the pointwise estimate

|ût (ξ , t)|2 + |ξ |2 |û(ξ , t)|2 ≤Ce−cρ(ξ )t
(
|û1 (ξ )|2 + |ξ |2 |û0 (ξ )|2

)
(3.2)

where ρ (ξ ) = ξ
2/(1+ |ξ |2) and C and c are two positive constants.

Proof of Theorem 3.1.
The prove of Theorem 3.1 is reduced through the Fourier transform to the analysis of the behavior of the

spectral parameter ξ near the origin ξ = 0. That is to say, in order to get better decay estimates, we have
to improve the decay estimate of the low frequency part, since the high frequency part has an exponential
decay rate. Indeed, from the Plancherel theorem, we can write∥∥∂

k
x ut (t)

∥∥2
2 +
∥∥∂

k+1
x u(t)

∥∥2
2 =

∫
RN
|ξ |2k

(
|ût (ξ , t)|2 + |ξ |2 |û(ξ , t)|2

)
dξ

≤ C
∫

RN
|ξ |2k e−cρ(ξ )t

(
|û1 (ξ )|2 + |ξ |2 |û0 (ξ )|2

)
dξ (3.3)

where we have used (3.2).
Next, we divide the integral in the right-hand side of (3.3) into two parts: the low frequency part (|ξ | ≤ 1)

and the high frequency part (|ξ | ≥ 1). So, we have

I =
∫

RN
|ξ |2k e−cρ(ξ )t

(
|û1 (ξ )|2 + |ξ |2 |û0 (ξ )|2

)
dξ

=
∫
|ξ |≤1

+
∫
|ξ |≥1

= I1 + I2. (3.4)

For the low frequency part I1, we have the following estimate:
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Lemma 3.4 Let us suppose that γ ∈ [0,1]. Then the following estimate holds

I1 ≤C (1+ t)−N/2−(k+γ) ‖u1‖2
1,γ +C (1+ t)−N/2−k

(∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣)2

+C (1+ t)−N/2−(k+γ)−1 ‖u0‖2
1,γ +C (1+ t)−N/2−k−1

(∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣)2

.
(3.5)

Proof. From (3.4) we have

I1 =
∫
|ξ |≤1
|ξ |2k e−cρ(ξ )t

(
|û1 (ξ )|2 + |ξ |2 |û0 (ξ )|2

)
dξ

=
∫
|ξ |≤1
|ξ |2k e−cρ(ξ )t |û1 (ξ )|2 dξ +

∫
|ξ |≤1
|ξ |2k+2 e−cρ(ξ )t |û0 (ξ )|2 dξ

= J1 + J2. (3.6)

Our goal now is to estimate J1. To this end, we begin by analyzing the term |û1 (ξ )| in J1. Indeed, we have
(see [12, Lemma 3.1])

|û1 (ξ )| =
∣∣∣∣∫RN

e−ix.ξ u1 (x)dx
∣∣∣∣

≤
∫

RN
|cos(x.ξ )−1| |u1 (x)|dx+

∫
RN
|sin(x.ξ )| |u1 (x)|dx+

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣ .
Since  Kγ = supθ 6=0

|1−cosθ |
|θ |γ < +∞,

Mγ = supθ 6=0
sinθ

|θ |γ < +∞

for 0≤ γ ≤ 1. Then we deduce

|û1 (ξ )| ≤Cγ |ξ |γ ‖u1‖1,γ +
∣∣∣∣∫RN

u1 (x)dx
∣∣∣∣ (3.7)

with Cγ = Kγ +Mγ .
Consequently, using (3.7), we obtain

J1 ≤C‖u1‖2
1,γ

∫
|ξ |≤1
|ξ |2(k+γ) e−cρ(ξ )tdξ +

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 ∫|ξ |≤1
|ξ |2k e−cρ(ξ )tdξ . (3.8)

Since, in the low frequency part (|ξ | ≤ 1), we have ρ (ξ ) = ξ
2/
(

1+ |ξ |2
)
≥ |ξ |2 /2, then (3.8) becomes

J1 ≤ C‖u1‖2
1,γ

∫
|ξ |≤1
|ξ |2(k+γ) e−c1|ξ |2tdξ +

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 ∫|ξ |≤1
|ξ |2k e−c1|ξ |2tdξ

= C‖u1‖2
1,γ

∫ 1

0
|ξ |2(k+γ)+N−1 e−c1|ξ |2td |ξ |+

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 ∫ 1

0
|ξ |2k+N−1 e−c1|ξ |2td |ξ |
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where c1 = c/2. By exploiting the following inequality∫ 1

0
|ξ |σ e−ct|ξ |2d |ξ | ≤C(1+ t)−(σ+1)/2, (3.9)

we deduce

J1 ≤C(1+ t)−(k+γ)−N/2 ‖u1‖2
1,γ +(1+ t)−k−N/2

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 . (3.10)

With the same kind of arguments, we analyze J2 and deduce

J2 ≤C (1+ t)−N/2−(k+γ)−1 ‖u0‖1,γ
2 +C (1+ t)−N/2−k−1

(∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣)2

. (3.11)

Consequently, the result of Lemma 3.4 holds from (3.6), (3.10) and (3.11). �
Now, to complete the proof of Theorem 3.1, it is suffices to estimate I2. Indeed for the integral I2, we have

the same estimate as in [4], that is

I2 ≤Ce−ct
(∥∥∂

k
x u1
∥∥

2 +
∥∥∂

k+1
x u0

∥∥
2

)
. (3.12)

Thus, the result of Theorem 3.1 is verified.

4 Decay estimate for the regularity-loss type

In this section, and following [4], we introduce the operator (1−∆)−θ/2, (θ > 0) to weaken the damping

term Lut or the viscoelastic damping
N
∑

j,k=1
K jk ∗ ux jxk in problem (1.1). Namely, we consider the following

two problems
utt −

N
∑

j,k=1
B jkux jxk +(1−∆)−θ/2

N
∑

j,k=1
K jk ∗ux jxk +Lut = 0, x = (x1, ...,xN) ∈ RN , t ≥ 0

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈ RN

(4.1)

and
utt −

N
∑

j,k=1
B jkux jxk +

N
∑

j,k=1
K jk ∗ux jxk +(1−∆)−θ/2Lut = 0, x = (x1, ...,xN) ∈ RN , t ≥ 0

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈ RN

(4.2)

Once again, we improve the decay rate obtained in [4, Theorem 5.1]. As, we will prove later, introducing
the weak damping in (4.1) or (4.2) affects only the high frequency part. So, we will get only a polynomial
decay rate of the high frequency part instead of the exponential rate obtained in Theorem 3.1 for this part.

Our main result in this section reads as follows.
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Theorem 4.1 Let γ ∈ [0,1] . Let s be a nonnegative integer and let θ > 0. Assume that u0 ∈ Hs+1
(
RN
)
∩

L1,γ
(
RN
)

and u1 ∈Hs
(
RN
)
∩L1,γ

(
RN
)
. Suppose that the conditions (A1)-(A4) hold. Then the correspond-

ing solution of problem (4.1) or (4.2) satisfies the decay estimate∥∥∂ k
x ut (t)

∥∥
2 +
∥∥∂ k+1

x u(t)
∥∥

2

≤C (1+ t)−N/4− k+γ

2 ‖u1‖1,γ +C (1+ t)−N/4−k/2
(∣∣∣∣∫RN

u1 (x)dx
∣∣∣∣)

+C (1+ t)−N/4− k+γ

2 −1/2 ‖u0‖1,γ +C (1+ t)−N/4−k/2−1/2
(∣∣∣∣∫RN

u0 (x)dx
∣∣∣∣)

+C (1+ t)−l/θ
(∥∥∂ k+l

x u1
∥∥

2 +
∥∥∂ k+l+1

x u0
∥∥

2

)
(4.3)

for nonnegative integers k and l with k + l ≤ s, where C is a positive constant.

Remark 4.2 Once again, the result of Theorem 4.1 improves the one of [4, Theorem 5.1], especially if we
restrict ourselves to the case when u0 ∈ Hs+1

(
RN
)
∩L1,γ

(
RN
)

and u1 ∈ Hs
(
RN
)
∩L1,γ

(
RN
)

rather than
the situation considered in [4], that is u0 ∈ Hs+1

(
RN
)
∩L1

(
RN
)

and u1 ∈ Hs
(
RN
)
∩L1

(
RN
)
, we are able

to prove the better decay estimate∥∥∂
k
x ut (t)

∥∥
2 +
∥∥∂

k+1
x u(t)

∥∥
2 ≤ C (1+ t)−N/4− k+γ

2 ‖u1‖1,γ ++C (1+ t)−N/4− k+γ

2 −1/2 ‖u0‖1,γ

+C (1+ t)−l/θ
(∥∥∂

k+l
x u1

∥∥
2 +
∥∥∂

k+l+1
x u0

∥∥
2

)
provided that

∫
RN ui (x)dx = 0, i = 0,1.

To prove Theorem 4.1, we proceed as in the previous section, we write first our problems (4.1) and (4.2)
in the Fourier space, and we use the pointwise estimates obtained in [4] to get our desired result. As, we
have said before, the key ingredient in the proof is an idea used by Ikehata [12] for the simple wave equation
and developed by Said-Houari [26] for the p-system with damping.

Applying the Fourier transform to both problems (4.1) and (4.2), we get respectively ûtt + |ξ |2 Bω û−|ξ |2
(

1+ |ξ |2
)−θ/2

(Kω ∗ û)+Lût = 0

û(ξ ,0) = u0 (ξ ) , ût (ξ ,0) = u1 (ξ )
(4.4)

and  ûtt + |ξ |2 Bω û−|ξ |2 (Kω ∗ û)+
(

1+ |ξ |2
)−θ/2

Lût = 0

û(ξ ,0) = u0 (ξ ) , ût (ξ ,0) = u1 (ξ )
(4.5)

where Bω û and Kω are defined in (2.1) with ω = ξ/ |ξ |.
By using the energy method in the Fourier space, we have (see [4, Proposition 5.2])

Proposition 4.3 Assume the same conditions of Theorem 4.1. Then, the solutions of problem (4.4) or (4.5)
satisfies the pointwise estimate

|ût (ξ , t)|2 + |ξ |2 |û(ξ , t)|2 ≤Ce−cρθ (ξ )t
(
|û1 (ξ )|2 + |ξ |2 |û0 (ξ )|2

)
, (4.6)

where ρθ (ξ ) = ξ
2/
(

1+ |ξ |2
)1+θ/2

and C and c are two positive constants.
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Proof of Theorem 4.1 As in the proof of Theorem 3.1, Plancherel theorem and (4.6) give us the following
estimate: ∥∥∂

k
x ut (t)

∥∥2
2 +
∥∥∂

k+1
x u(t)

∥∥2
2 ≤ C

∫
RN
|ξ |2k e−cρθ (ξ )t

(
|û1 (ξ )|2 + |ξ |2 |û0 (ξ )|2

)
dξ

=
∫
|ξ |≤1

+
∫
|ξ |≥1

= Î1 + Î2. (4.7)

Since for the region (|ξ | ≤ 1) we have ρθ (ξ )≥ c |ξ |2, then

Î1 ≤C
∫
|ξ |≤1
|ξ |2k e−c|ξ |2

(
|û1 (ξ )|2 + |ξ |2 |û0 (ξ )|2

)
dξ ,

which can be estimated exactly as I1 in Lemma 3.4. Therefore, we have

Î1 ≤C (1+ t)−N/2−(k+γ) ‖u1‖2
1,γ +C (1+ t)−N/2−k

(∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣)2

+C (1+ t)−N/2−(k+γ)−1 ‖u0‖2
1,γ +C (1+ t)−N/2−k−1

(∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣)2

.
(4.8)

For, the term Î2, we obtain by the same method used in [4] the estimate

Î2 ≤C (1+ t)−2l/θ
(∥∥∂

k+l
x u1

∥∥2
2 +
∥∥∂

k+l+1
x u0

∥∥2
2

)
. (4.9)

Consequently, the estimate (4.3) follows from (4.7), (4.8) and (4.9). This complete the proof of Theorem
4.1. �

5 The viscoelastic wave equation without linear damping

In this section, we consider problem (1.3) without the linear damping ut . In this case the dissipativity of
the system is entirely contained in the convolution term. We show that this dissipation carried out by the
memory term is strong enough to produce a decay result of the solution with the same rate as in the case of
the presence of ut . Our result in this section extends that of [1]. Let us consider the problem utt −∆u+

∫ t

0
g(t− s)∆u(s)ds = 0, t > 0, x ∈ RN ,

u(0,x) = u0 (x) ,ut (0,x) = u1 (x) , x ∈ RN .

(5.1)

Under further restrictions on the initial data, we prove that the decay rate given in [1] can be also improved
by t−γ/2, γ ∈ [0,1], when the kernel decays exponentially or polynomially.

5.1 The kernel g decays exponentially

In this subsection, we prove a result similar to Theorem 3.1 which extends Theorem 2.1 in [1]. Our result
reads as follows.
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Theorem 5.1 Let γ ∈ [0,1] . Assume that u0 ∈ H1
(
RN
)
∩L1,γ

(
RN
)

and u1 ∈ L2
(
RN
)
∩L1,γ

(
RN
)

and sup-
pose that

g(s)≤ λ̃e−δ̃ s, ∀s≥ 1

for some λ̃ > 0 and δ̃ > 0. Then

‖ut‖2 +‖∇u‖2 ≤ Ĉ (1+ t)−N/4− γ

2 ‖u1‖1,γ +Ĉ (1+ t)−N/4
(∣∣∣∣∫RN

u1 (x)dx
∣∣∣∣)

+Ĉ (1+ t)−N/4− γ

2−1/2 ‖u0‖1,γ +Ĉ (1+ t)−N/4−1/2
(∣∣∣∣∫RN

u0 (x)dx
∣∣∣∣)

+Ĉe−ĉt (‖u1‖2 +‖∇u0‖2)

(5.2)

where Ĉ and ĉ are two positive constants.

Proof. To prove Theorem 5.1, we follow the ideas in [1], and we apply the method in section 3 and 4 to
treat the low frequency part. By making a change of variables, problem (5.1) can be rewritten as

utt −∆u+
∫ t

0
g(s)∆u(t− s)ds = 0. (5.3)

Following the idea of Dafermos [2], setting u(x, t) = 0 when t < 0, and introducing the auxiliary variable

η
t (x,s) = u(x, t)−u(x, t− s) , s ∈ R+

which implies 
η t

t (x,s)+η t
s (x,s) = ut (x, t) ,

η t (x,0) = 0,

η0 (x,s) = u0.

(5.4)

Consequently equation (5.3) takes the form utt − l∆u+
∫

∞

0
g(s)∆η

t (x,s)ds = 0, t > 0, x ∈ RN ,

u(0,x) = u0 (x) , ut (0,x) = u1 (x) , x ∈ RN .

(5.5)

Taking the Fourier transform of (5.4)-(5.5), we obtain
ûtt (t)− l |ξ |2 û(t)+ |ξ |2

∫
∞

0
g(s) η̂

t (s)ds = 0, t > 0,

η̂
t
t (x,s)+ η̂

t
s (x,s) = ût (x, t) , t > 0,

û(0) = û0, ût (0) = û1, η̂
0 (s) = û0.

(5.6)

The energy function associated to (5.6) is given by (see [1])

Ê (ξ , t) = l |ξ |2 |û(ξ , t)|2 + |ût (ξ , t)|2 + |ξ |2
∫

∞

0
g(s)

∣∣η̂ t (ξ ,s)
∣∣2 ds (5.7)

with
Ê (ξ ,0) = |ξ |2 |û0 (ξ )|2 + |û1 (ξ )|2 .
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Following the same steps as in [1], we get for |ξ | ≥ 1∫
|ξ |≥1

Ê (ξ , t)dξ ≤ k̂2e−ε̂t
∫
|ξ |≥1

Ê (ξ ,0)dξ ≤ k̂2e−ε̂tE (0)e−ε̂t , (5.8)

for some k̂ ≥ 1 and for all ε̂ > 0 small enough, where

E (t) = ‖ut‖2
2 + l ‖∇u‖2

2 +
∫

RN

∫
∞

0
g(s)

∣∣∇η
t (x,s)

∣∣2 dsdx. (5.9)

The Plancherel theorem gives

E (t) =
∫

RN
Ê (ξ , t)dξ . (5.10)

As, we have said before, since the high frequency part decays exponentially, then to get better decay es-
timates, we manage to improve the decay rate of the low frequency part. Indeed, from [1], we have for
|ξ |< 1, ∫

|ξ |<1
Ê (ξ , t)dξ ≤ k̂2

∫
|ξ |<1

Ê (ξ ,0)e−ε̂|ξ |2tdξ

= k̂2
∫
|ξ |<1

e−ε̂|ξ |2t
(
|ξ |2 |û0 (ξ )|2 + |û1 (ξ )|2

)
dξ . (5.11)

By the same method, as in the proof of Lemma 3.4, we get for 0≤ γ ≤ 1,

|ûi (ξ )| ≤Cγ |ξ |γ ‖ui‖1,γ +
∣∣∣∣∫RN

ui (x)dx
∣∣∣∣ , i = 0,1. (5.12)

Inserting (5.12) into (5.11), we get∫
|ξ |<1

Ê (ξ , t)dξ ≤ Cγ k̂2
∫
|ξ |<1

e−ε̂|ξ |2t
(
|ξ |2γ+2 ‖u0‖2

1,γ + |ξ |2γ ‖u1‖2
1,γ

)
dξ

+k̂2
∣∣∣∣∫RN

u0 (x)dx
∣∣∣∣2 ∫|ξ |<1

e−ε̂|ξ |2t |ξ |2 dξ

+k̂2
∣∣∣∣∫RN

u1 (x)dx
∣∣∣∣∫|ξ |<1

e−ε̂|ξ |2tdξ .

Passing to polar coordinates, using (3.9), (5.8) and (5.10) then (5.2) holds. This completes the proof of
Theorem 5.1. �

5.2 The kernel g decays polynomially

In this subsection, we assume that our kernel g decays polynomially and we extend the result due to Conti
et al [1, Thoerem 3.2] by showing that for initial data in some weighted spaces, we get better decay rates.
Our result is summarized in the next theorem.

Theorem 5.2 Let γ ∈ [0,1] . Assume that u0 ∈H1
(
RN
)
∩L1,γ

(
RN
)

and u1 ∈ L2
(
RN
)
∩L1,γ

(
RN
)

satisfying∫
RN ui (x)dx = 0, i = 0,1, and suppose that

g(s)≤ ζ̂ (1+ s)−1−p , ∀s≥ 1

for some ζ̂ > 0 and p > 0. Then E (t) decays polynomially depending on p, γ and N as given in (5.25),
(5.26), (5.27), (5.28) and (5.29).
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The proof of Theorem 5.2 is based on the following Lemma. This Lemma itself extends [1, Lemma 7.1].
As in [1], let us first define

Ψp (ξ , t) =
∫ t

0
ϒp(t− s) |û(ξ ,s)|2 ds

where
ϒp =

1
(1+ t)p , p < ∞.

Then, we have:

Lemma 5.3 For any fixed ξ ∈ RN , we have

d
dt

[
|ξ |2 g̃(ξ )Ψp (ξ , t)

]
+

c[
Ê (ξ ,0)

]q−1

[
|ξ |2 g̃(ξ )Ψp (ξ , t)

]q
≤ g̃

l
Ê (ξ , t) , (5.13)

where

g̃(ξ ) =
|ξ |2

1+ |ξ |2
,

and c is generic positive constant.

Proof. Let L be the function defined in [1, Lemma 5.2], then the following properties hold, (see [1,
Lemma 5.3]) 

d
dt

L (ξ , t)+2ε0Ê (ξ , t)≤ 0,

1+ |ξ |2

k̂ |ξ |2
Ê (ξ , t)≤L (ξ , t)≤

k̂
(

1+ |ξ |2
)

|ξ |2
Ê (ξ , t)+ k̂ |ξ |2 Ψp (ξ , t) ,

L (ξ ,0)≤
k̂
(

1+ |ξ |2
)

|ξ |2
Ê (ξ ,0) ,

(5.14)

for some ε0 > 0 and k̂ > 1. Differentiating Ψp with respect to t, we obtain

d
dt

Ψp (ξ , t) =
∫ t

0
ϒ
′
p(t− s) |û(ξ ,s)|2 ds+ |û(ξ , t)|2

≤ −p
∫ t

0
[ϒp(t− s)]q |û(ξ ,s)|2 ds+

1

l |ξ |2
Ê (ξ , t) . (5.15)

Now, integrating the first inequality in (5.14) over [0,∞) and using the third inequality in the same formula
(5.14), we obtain

∫
∞

0
|û(ξ ,s)|2 ds ≤

k̂
(

1+ |ξ |2
)

2lε0 |ξ |4
Ê (ξ ,0)

=
c

|ξ |2 g̃(ξ )
Ê (ξ ,0) . (5.16)
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Next, using Hölder’s inequality and (5.16), we write∫ t

0
[ϒp(t− s)]q |û(ξ ,s)|2 ds ≥

[Ψp (ξ , t)]q(∫ t

0
|û(ξ ,s)|2 ds

)q−1

≥
c
(
|ξ |2 g̃(ξ )

)q−1
[Ψp (ξ , t)]q[

Ê (ξ ,0)
]q−1 . (5.17)

Inserting (5.17) into (5.15), then the inequality (5.13) holds. This completes the proof of Lemma 5.3. �
Proof of Theorem 5.2. The core of the proof relies on the following three steps.

Step 1. Here let us assume that |ξ | ≥ 1, then following the same proof as in [1], we obtained∫
|ξ |≥1

Ê (ξ , t)dξ ≤ Q
(1+ t)p , (5.18)

where Q is the same positive constant defined in [1] and depending on E (0) ,‖u0‖2 and ‖u0‖1.

Step 2. In this step, we assume that |ξ |< 1, and we define the new functional L̃0 as

L̃0 (ξ , t) = g̃(ξ )L (ξ , t)+ ε |ξ |2 g̃(ξ )Ψp (ξ , t) , (5.19)

where ε is a small positive constant.

Taking the time derivative of (5.19), making use of the first inequality in (5.14) an (5.13) it holds that

d
dt

L̃0 (ξ , t)≤−2ε0g̃(ξ ) Ê (ξ , t)+
ε g̃
l

Ê (ξ , t)− εc[
Ê (ξ ,0)

]q−1

[
|ξ |2 g̃(ξ )Ψp (ξ , t)

]q
.

Choosing ε sufficiently small, we arrive at

d
dt

L̃0 (ξ , t)≤−

(
ε0g̃(ξ ) Ê (ξ , t)+

c[
Ê (ξ ,0)

]q−1

[
|ξ |2 g̃(ξ )Ψp (ξ , t)

]q
)

. (5.20)

The second formula in (5.14) together with (5.19), ensure

1
k̂

Ê (ξ , t)≤ L̃0 (ξ , t)≤ k̂Ê (ξ , t)+ c |ξ |2 g̃(ξ )Ψp (ξ , t) . (5.21)

Also, the last formula in (5.14) and (5.19) imply

L̃0 (ξ ,0)≤ k̂Ê (ξ ,0) . (5.22)

Now, going back to (5.21), we also have that

[
L̃0 (ξ , t)

]q ≤ c
[
Ê (ξ , t)

]q + c
(

Ê (ξ ,0)
Ê (ξ ,0)

)q [
|ξ |2 g̃(ξ )Ψp (ξ , t)

]q

≤ c

[
Ê (ξ ,0)

]q−1

ε0g̃(ξ )

{
ε0g̃(ξ ) Ê (ξ , t)+

c[
Ê (ξ ,0)

]q−1

[
|ξ |2 g̃(ξ )Ψp (ξ , t)

]}q

.
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Using (5.20), we deduce

d
dt

L̃0 (ξ , t)+ c
ε0g̃(ξ )[

Ê (ξ ,0)
]q−1

[
L̃0 (ξ , t)

]q ≤ 0. (5.23)

Applying Gronwall type inequality, we get

L̃0 (ξ , t) ≤

{
t
p

cε0g̃(ξ )[
Ê (ξ ,0)

]q−1 +
[
L̃0 (ξ , t)

]−(q−1)

}−p

=

ct
p

|ξ |2 /
(

1+ |ξ |2
)

[
Ê (ξ ,0)

]1/p +
1[

L̃0 (ξ , t)
]1/p


−p

.

Then, inequality (5.22) yields

L̃0 (ξ , t) ≤

{
1[

Ê (ξ ,0)
]1/p

{
t |ξ |2

1+ |ξ |2

}
+ c

}−p

≤ cÊ (ξ ,0)(
1+

t |ξ |2

1+ |ξ |2

)p .

Since |ξ |< 1, the last inequality implies

L̃0 (ξ , t)≤ cÊ (ξ ,0)(
1+

t
2
|ξ |2

)p .

Thus exploiting (5.21), we get∫
|ξ |<1

Ê (ξ , t)dξ ≤ c
∫
|ξ |<1

Ê (ξ ,0)(
1+

t
2
|ξ |2

)p dξ . (5.24)

Step 3. Now, by using (5.12), we obtain from (5.24)∫
|ξ |<1

Ê (ξ ,0)(
1+

t
2
|ξ |2

)p ≤ Cγ

∫
|ξ |<1

1(
1+

t
2
|ξ |2

)p

(
|ξ |2γ+2 ‖u0‖2

1,γ + |ξ |2γ ‖u1‖2
1,γ

)
dξ

+Cγ

∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣2 ∫|ξ |<1

|ξ |2(
1+

t
2
|ξ |2

)p dξ

+Cγ

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣∫|ξ |<1

1(
1+

t
2
|ξ |2

)p dξ .

Using the fact that
1(

1+
t
2
|ξ |2

)p ≤
C(

1+ t1/2 |ξ |
)2p , for |ξ |< 1
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and passing to the polar coordinates, we get∫
|ξ |<1

Ê (ξ ,0)(
1+

t
2
|ξ | t2

)p ≤ Cγ ‖u0‖2
1,γ

∫ 1

0

rN−1+2γ+2(
1+ rt1/2

)2p dr +Cγ ‖u1‖2
1,γ

∫ 1

0

rN−1+2γ(
1+ rt1/2

)2p dr

+Cγ

∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣2 ∫ 1

0

rN−1+2(
1+ rt1/2

)2p dr

+Cγ

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 ∫ 1

0

rN−1(
1+ rt1/2

)2p dr.

Consequently, applying Lemma 2.2, we deduce that:

• If 2p 6= {N +2γ +2,N +2γ,N +2,N}, then we have∫
|ξ |<1

Ê (ξ , t)dξ ≤ Cγ ‖u0‖2
1,γ t−min(p,(N+2γ+2)/2) +Cγ ‖u1‖2

1,γ t−min(p,(N+2γ)/2) (5.25)

+Cγ

∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣2 t−min(p,(N+2)/2) +Cγ

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 t−min(p,N/2).

• If 2p = N +2γ +2, we get∫
|ξ |<1

Ê (ξ , t)dξ ≤ Cγ ‖u0‖2
1,γ t−2p log(2+ t)+Cγ ‖u1‖2

1,γ t−(N+2γ)/2

+Cγ

∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣2 t−(N+2)/2 +Cγ

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 t−N/2. (5.26)

• If 2p = N +2γ , we have∫
|ξ |<1

Ê (ξ , t)dξ ≤ Cγ

(
‖u0‖2

1,γ +
∣∣∣∣∫RN

u0 (x)dx
∣∣∣∣2
)

t−p +Cγ ‖u1‖2
1,γ t−p log(2+ t)

+Cγ

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 t−N/2. (5.27)

• If 2p = N +2, we find∫
|ξ |<1

Ê (ξ , t)dξ ≤ Cγ ‖u0‖2
1,γ t−p +Cγ ‖u1‖2

1,γ t−(N+2γ)/2 +Cγ

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 t−N/2

+Cγ

∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣2 t−(N+2)/2 log(2+ t) . (5.28)

• If 2p = N, we obtain∫
|ξ |<1

Ê (ξ , t)dξ ≤ Cγ

(
‖u0‖2

1,γ +‖u1‖2
1,γ +

∣∣∣∣∫RN
u0 (x)dx

∣∣∣∣2
)

t−2p

+Cγ

∣∣∣∣∫RN
u1 (x)dx

∣∣∣∣2 t−p log(2+ t) . (5.29)
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Now, by assuming that
∫
RN ui (x)dx = 0, i = 0,1, then the result of Theorem 5.2 follows from (5.18),

(5.25), (5.26), (5.27), (5.28) and (5.29).

Remark 5.4 In Theorem 5.1, and Theorem 5.2 we could consider more general kernels as well, allowing g
to be flat, such that the set where g′ = 0 is not too large (in a suitable sense) as in [21]. However, in this
work, we will restrict to the decay rate of solutions, in order not to introduce further technical difficulties.

6 Decay estimates for f 6= 0

In this section, we consider problem (1.1)-(1.2) in the particular case m = 1, B jk = δ jk, and K jk (t) = δ jkg(t)
with f 6= 0, where δ jk is the Kronecker symbol. Namely, we are interested in the study of the following
Cauchy problem  utt −∆u+

∫ t

0
g(t− s)∆u(s)ds+ut + |u|p−1 u = 0, t > 0, x ∈ RN

u(0,x) = u0 (x) ,ut (0,x) = u1 (x) , x ∈ RN
(6.1)

and we will discuss the global existence and the asymptotic behavior of the solution with the absorption
|u|p−1u in both cases supercritical and subcritical. It is worthy to be mentioned that we do not require any
compactness assumptions on the support of the initial data.

6.1 The supercritical case p > 1+ 3
N

In the supercritical case, we will show that the solution will behave as that of the corresponding linear
equation. We will use Duhamel’s principle to express the solution to the nonhomogeneous problem ( f 6= 0)
with the help of solution to the homogeneous problem ( f = 0). We will show that the precise decay estimates
to the linear equation (1.1) given in Theorem 3.1 play and essential role in the analysis of the nonlinear
problem. Let us first define

p0 (N) = 1+
3
N

,

then we have:

Theorem 6.1 Let p0 (N) < p < +∞ if N = 2 or p0 (N) < p ≤ N/(N−2) if N ≥ 3. Assume that (u0,u1) ∈
H1
(
RN
)
∩ L1,1

(
RN
)
× L2

(
RN
)
∩ L1,1

(
RN
)

1 such that
∫
RN ui = 0, i = 0,1. Then there exists a positive

number ε > 0 such that if

I2
0 =

∫
RN

ea|x|2/4
(
|u1 (x)|2 + |∇u0 (x)|2 + |u0 (x)|2 + |u0 (x)|p

)
dx < ε (6.2)

then problem (6.1) has a unique global solution u satisfying

‖ut (t)‖2 +‖∇u(t)‖2 ≤C (1+ t)−N/4−1/2
(
‖u1‖1,1 +‖u0‖1,1 +‖u1‖2 +‖∇u0‖2

)
. (6.3)

Remark 6.2 The existence of a global solution of problem (6.1) can be shown with the same method as in
[14, Proposition 2.1] (see also [20, Proposition 2.1]). We omit it for its length.

1In fact these estimates hold for any γ ∈ [0,1], so we take γ = 1 because in this case we have fastes decay rate.
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Remark 6.3 If (u0,u1) ∈ H1
(
RN
)
∩L1

(
RN
)
×L2

(
RN
)
∩L1

(
RN
)
, then we can prove the following decay

estimate
‖ut (t)‖2 +‖∇u(t)‖2 ≤C (1+ t)−N/4 (‖u1‖1 +‖u0‖1 +‖u1‖2 +‖∇u0‖2)

provided that (6.2) holds and p0(N) = 1 + 3/(N− 1). Theorem 6.1 shows that by taking the initial data
(u0,u1) ∈ H1

(
RN
)
∩L1,1

(
RN
)
×L2

(
RN
)
∩L1,1

(
RN
)

satisfying
∫
RN ui = 0, i = 0,1, then we can shift the

critical power p0 to be p0 (N) = 1+ 3
N , and the decay rate can be improved by t−1/2.

Remark 6.4 Theorem 6.1 has been proved without assuming any compactness assumptions of the support
on the initial data. Recently, Ikehata and Tanizawa [14] also removed the compactness assumption for the
damped wave equation by using a weight function similar to the one defined in (6.4).

The basic idea in our proof of Theorem 6.1 is based on the result of Theorem 3.1 and the weighted energy
estimate used in [27] and [14].

As in [14] (see also [27]), we define the function

φ (t,x) =
a |x|2

4(t +1)
, a > 0, (6.4)

as a weight function satisfying the following properties
φ t (t,x) < 0,

aφ t (t,x)+ |∇φ (t,x)|2 = 0,

|∇φ (t,x)|= ax
2(t+1) , |∇φ (t,x)|2 = a2|x|2

4(t+1)2 .

(6.5)

For ν > 0 and t ≥ 0, we define a family of weighted function spaces H1
νφ(t,.)

(
RN
)

as:

f ∈ H1
νφ(t,.)

(
RN)⇔ f ∈ H1 (RN) , ‖eνφ(t,.) f‖2

2 +‖eνφ(t,.)
∇ f‖2

2 < +∞, ∀t ≥ 0.

We recall the Gagliardo-Nirenberg type inequality introduced in [14].

Lemma 6.5 Let θ (q) = N (1/2−1/q) and 0≤ θ (q)≤ 1 and 0≤ ν ≤ 1. If v ∈ H1
νφ(t,.)

(
RN
)

then

‖eνφ(t,.)v‖q ≤Cν (1+ t)(1−θ(q))/2 ‖∇v‖1−ν

2 ‖eφ(t,.)
∇v‖ν

2 ,

with some constant Cν > 0.

Then, the following result holds: (see [14, Lemma 2.5])

Lemma 6.6 For each δ > 0, there exists a constant C = Cδ ,p such that∫
RN

e−2pδφ(t,x)dx≤C (1+ t)N/2 . (6.6)

The following lemma is crucial in our argument.

Lemma 6.7 There exists a constant C = Cδ such that for all t ≥ 0 we have∫
RN

e−2pδφ(t,x) (1+ |x|)2 dx≤C (1+ t)(N+2)/2 . (6.7)
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Proof. It follows from (6.4) that∫
RN

e−2pδφ(t,x) (1+ |x|)2 dx =
∫

RN
e−

paδ |x|2
(t+1) (1+ |x|)2 dx

≤ 4
∫
|x|≤1

e−
paδ |x|2
(t+1) +4

∫
|x|≥1

e−
paδ |x|2
(t+1) |x|2 dx

≤ 4c1 +4K̃1.

Concerning the integral K̃1, we make the change of variable y = x/
√

t +1, then we get
dy = dx/

(√
t +1

)N , which gives

K̃1 =
∫
|y|≥ 1√

t+1

e−paδ |y|2 |y|2 (1+ t)
N+2

2 dy

≤ (1+ t)
N+2

2

∫
RN

e−paδ |y|2 |y|2 dy

≤ c2 (1+ t)
N+2

2 .

This concludes the proof of Lemma 6.7. �
Now, let us define

E (t) = e2φ

{
1
2

u2
t +

1
2

(
1−

∫ t

0
g(s)ds

)
|∇u|2 +

1
2

(g�∇u)(t)+
1

p+1
|u|p+1

}
, (6.8)

then we have:

Lemma 6.8 Let u be a solution of (6.1), then we have, for any η > 0,

d
dt

E (t) ≤ 2
φ t

p+1
e2φ |u|p+1 +div

(
e2φ ut

(
∇u−

∫ t

0
g(t− s)∇u(s)ds

))
+

e2φ

lφ t
(lφ t∇u−ut∇φ)2− e2φ

{(
1−a

(
1− l

l

)
−a
)

+φ t

(
a

2µ1
−1
)}

u2
t

−e2φ

2
g(t) |∇u|2−

(
ζ − 1

2

(
1+

1
η

)
(1− l)µ1

)
e2φ (g�∇u)(t) (6.9)

+φ te
2φ (g�∇u)(t)+

µ1

2
e2φ (1+η)(1− l)2 |∇u(t)|2 dx.

Proof. Multiplying equation (6.1) by e2φ ut , and using (6.5), we obtain

0 =
d
dt

(
e2φ

2

(
u2

t + |∇u|2
)

+
e2φ

p+1
|u|p+1

)
−div

(
e2φ ut∇u

)
+ e2φ

((
1+
|∇φ |2

φ t

)
−φ t

)
u2

t

−e2φ

φ t
(φ t∇u−ut∇φ)2−2

φ t

p+1
e2φ |u|p+1 (6.10)

+e2φ ut

∫ t

0
g(t− s)∆u(s)ds.
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Lemma 2.1 implies

e2φ ut

∫ t

0
g(t− s)∆u(s)ds =

e2φ

2
g(t) |∇u|2− e2φ

2

(
g
′ �∇u

)
(t)

+div
(

e2φ ut

∫ t

0
g(t− s)∇u(s)ds

)
+

d
dt

[
e2φ

2

(
(g�∇u)(t)−

(∫ t

0
g(s)ds

)
|∇u(t)|2

)]
(6.11)

−φ te
2φ

[
(g�∇u)(t)−

(∫ t

0
g(s)ds

)
|∇u(t)|2

]
−2∇φe2φ

[
ut

∫ t

0
g(t− s)∇u(s)ds

]
.

Then, from (6.10) and (6.11), we obtain

2
φ t

p+1
e2φ |u|p+1 =

d
dt

E (t)−div
(

e2φ ut

(
∇u−

∫ t

0
g(t− s)∇u(s)ds

))
−e2φ

φ t
(φ t∇u−ut∇φ)2 + e2φ

((
1+
|∇φ |2

φ t

)
−φ t

)
u2

t

+
e2φ

2
g(t) |∇u|2− e2φ

2

(
g
′ �∇u

)
(t) (6.12)

−φ te
2φ

[
(g�∇u)(t)−

(∫ t

0
g(s)ds

)
|∇u(t)|2

]
−2∇φe2φ

[
ut

∫ t

0
g(t− s)∇u(s)ds

]
.

Now, the last term in (6.12) can be estimated as follows: ∀µ1 > 0,∣∣∣∣−2∇φe2φ

(
ut

∫ t

0
g(t− s)∇u(s)ds

)∣∣∣∣
≤ 1

2µ1
e2φ |∇φ |2 u2

t +
µ1

2
e2φ

(∫ t

0
g(t− s)∇u(s)ds

)2

. (6.13)

We have, for any η > 0,

(∫ t

0
g(t− s)∇u(s)ds

)2

≤
(∫ t

0
g(t− s) |∇u(s)−∇u(t)|+ |∇u(t)|ds

)2

≤ (1+η)
(∫ t

0
g(t− s) |∇u(t)|ds

)2

+
(

1+
1
η

)(∫ t

0
g(t− s) |∇u(s)−∇u(t)|ds

)2

(6.14)

≤
(

1+
1
η

)
(1− l)(g�∇u)(t)+(1+η)(1− l)2 |∇u(t)|2 .
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Consequently, inequality (6.13) takes the form∣∣∣∣−2∇φe2φ

(
ut

∫ t

0
g(t− s)∇u(s)ds

)∣∣∣∣
≤ 1

2µ1
e2φ |∇φ |2 u2

t +
µ1

2
e2φ

(
1+

1
η

)
(1− l)(g�∇u)(t) (6.15)

+
µ1

2
e2φ (1+η)(1− l)2 |∇u(t)|2 dx.

Since our kernel g satisfying (2.2) and by using the fact that |∇φ |2 =−aφ t , we find from (6.12) and (6.15)

d
dt

E (t) ≤ 2
φ t

p+1
e2φ |u|p+1 +div

(
e2φ ut

(
∇u−

∫ t

0
g(t− s)∇u(s)ds

))
+

e2φ

φ t
(φ t∇u−ut∇φ)2− e2φ

((
1+
|∇φ |2

φ t

)
+φ t

(
a

2µ1
−1
))

u2
t

−e2φ

2
g(t) |∇u|2−

(
ζ − 1

2

(
1+

1
η

)
(1− l)µ1

)
e2φ (g�∇u)(t) (6.16)

+φ te
2φ

[
(g�∇u)(t)− (1− l) |∇u(t)|2

]
+

µ1

2
e2φ (1+η)(1− l)2 |∇u(t)|2 dx,

where we have used also the inequality

−φ t

(∫ t

0
g(s)ds

)
≤−φ t

(∫
∞

0
g(s)ds

)
=−φ t (1− l) .

Observing,

e2φ

φ t
(φ t∇u−ut∇φ)2−φ te

2φ (1− l) |∇u|2

=
e2φ

lφ t
(lφ t∇u−ut∇φ)2−

(
1− l

l

)
e2φ u2

t |∇φ |2

φ t
(6.17)

=
e2φ

lφ t
(lφ t∇u−ut∇φ)2 +a

(
1− l

l

)
e2φ u2

t .

Since |∇φ |2
φ t

=−a, (6.9) holds. �
Next, let us define

H (t) = e2φ

(
utu+

1
2

u2
)

. (6.18)

Then we have the following estimate.
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Lemma 6.9 Let u be a solution of (6.1), then we have

d
dt

H (t)+ e2φ

((
l
2
−2a− µ2(1− l)

2

)
|∇u|2 +

(
1
4a
− 1

2µ2

)
|∇φ |2 u2

)
−e2φ

(
1+

4
a
|∇φ |2

)
u2

t + e2φ |u|p+1

≤ e2φ

(
1− l

2l
(1+ µ2)

)
(g�∇u)(t) (6.19)

+div
[

e2φ

(
u(t)

∫ t

0
g(t− s)∇u(s)ds

)
−∇uu

]
.

Proof. Multiplying equation (6.1) by e2φ u we obtain

d
dt

e2φ

(
utu+

1
2

u2
)

+ e2φ

(
|∇u|2 +

1
a
|∇φ |2 u2

)
− e2φ u2

t

≤ e2φ

[
2
a
|∇φ |2 |utu|+2 |∇φ | |∇u| |u|

]
+ e2φ

∣∣∣∣∇u(t)
∫ t

0
g(t− s)∇u(s)ds

∣∣∣∣
+e2φ

(
2 |∇φ |

∣∣∣∣u(t)
∫ t

0
g(t− s)∇u(s)ds

∣∣∣∣) (6.20)

+
d
dx

[
e2φ

(
u(t)

∫ t

0
g(t− s)∇u(s)ds

)
−∇u.u

]
+ e2φ |u|p+1 .

Now, we have, for any η > 0,∣∣∣∣∇u(t)
∫ t

0
g(t− s)∇u(s)ds

∣∣∣∣ ≤ 1
2

(
1+(1+η)(1− l)2

)
|∇u(t)|2

+
1
2

(
1+

1
η

)
(1− l)(g�∇u)(t) . (6.21)

Using (6.14), and Young’s inequality, we have, for any µ2 > 0,(
2 |∇φ |

∣∣∣∣u(t)
∫ t

0
g(t− s)∇u(s)ds

∣∣∣∣)
≤ 1

2µ2
|∇φ |2 u2 +

µ2

2

(
1+

1
η

)
(1− l)(g�∇u)(t)

+
µ2

2
(1+η)(1− l)2 |∇u(t)|2 dx. (6.22)

By choosing η = l/(1− l) in (6.21) and (6.22), we arrive at∣∣∣∣∇u(t)
∫ t

0
g(t− s)∇u(s)ds

∣∣∣∣≤ (1− l
2

)
|∇u(t)|2 +

1
2

(1− l)
l

(g�∇u)(t) (6.23)

and (
2 |∇φ |

∣∣∣∣u(t)
∫ t

0
g(t− s)∇u(s)ds

∣∣∣∣) ≤ 1
2µ2
|∇φ |2 u2 +

µ2

2
(1− l)

l
(g�∇u)(t) (6.24)

+
µ2

2
(1− l) |∇u(t)|2 .
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Also, the first term in the right hand side of (6.20) can be estimated as follows:

2
a
|∇φ |2 |utu|+2 |∇φ | |∇u| |u| ≤ 4

a
|∇φ |2 u2

t +2a |∇u|2 +
3
4a
|∇φ |2 u2. (6.25)

Inserting the above estimates into (6.20), we obtain (6.19). �
Now, for ε small enough to be fixed later, we define the function L (t) as

L (t) := E (t)+ εH (t) . (6.26)

Then, we have the following estimate.

Lemma 6.10 Let u be a solution of (6.1), then we have∫
RN

L (t)dx≤
∫

RN
L (0)dx+2

∫ t

0

∫
RN

φ t

p+1
e2φ |u|p+1 dx, ∀t > 0. (6.27)

Proof. By using (6.9), (6.19) and (6.26), we obtain

d
dt

L (t) ≤ 2
φ t

p+1
e2φ |u|p+1 +div

(
e2φ ut

(
∇u−

∫ t

0
g(t− s)∇u(s)ds

))
+

e2φ

lφ t
(lφ t∇u−ut∇φ)2− ε

(
1
4a
− 1

2µ2

)
|∇φ |2 u2 (6.28)

−e2φ

{(
1−a

(
1− l

l

)
−a
)

+φ t

(
a

2µ1
−1
)
− ε

(
1+

4
a
|∇φ |2

)}
u2

t

−e2φ

2
g(t) |∇u|2−

(
ζ − ε

(
1− l

2l

)
(1+ µ2)−

1
2

(
1+

1
η

)
(1− l)µ1

)
e2φ (g�∇u)(t)

+φ te
2φ (g�∇u)(t)+ e2φ

(
µ1

2
(1+η)(1− l)2− ε

(
l
2
−2a− µ2

2

))
|∇u(t)|2 dx

+εdiv
[

e2φ

(
u(t)

∫ t

0
g(t− s)∇u(s)ds

)
−∇u.u

]
− εe2φ |u|p+1

Our goal now is to choose the constants a, ε, µ1, µ2 in (6.28). First, let us take η = l/(1− l) , µ2 = 2a and
µ1 = a and after that we write φ t =−1

a |∇φ |2, and fix ε small such that

ε < min
(

1/8,
ζ l

1− l

)
.

Then, we take a small enough such that

a < min
(

l/12,
εl

2(1− l)
,

ζ l
(1− l)(2ε +1)

)
.

Therefore, (6.28) takes the form

d
dt

L (t) ≤ 2
φ t

p+1
e2φ |u|p+1 +div

(
e2φ ut

(
∇u−

∫ t

0
g(t− s)∇u(s)ds

))
εdiv

[
e2φ

(
u(t)

∫ t

0
g(t− s)∇u(s)ds

)
−∇u.u

]
. (6.29)

Integrating the above inequality over (0, t)×RN , then (6.27) holds. �
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Lemma 6.11 Let u be a solution of (6.1), then we have∫
RN

e2φ

(
|ut |2 + |∇u|2 + |u|2 +(g�∇u)(t)+ |u|p+1

)
dx (6.30)

≤ CI2
0 +C

(
sup
[0,t]

(1+ s)δ ‖eγφ(s,.)u(s, .)‖p+1

)p+1

where 1≥ γ > 2/(p+1) , δ > 0 and C = Cδ ,γ > 0 is a constant, which depends on δ and γ .

Proof. By using Young’s inequality, it is easy to see that from (6.8), (6.18) and (6.26) there exist two
positive constants β 1 and β 2 depending on ε such that

β 1e2φ

(
|ut |2 + |∇u|2 + |u|2 +(g�∇u)(t)+ |u|p+1

)
≤ L (t)≤ β 2e2φ

(
|ut |2 + |∇u|2 + |u|2 +(g�∇u)(t)+ |u|p+1

)
. (6.31)

From (6.27) and (6.31), we arrive at∫
RN

e2φ

(
|ut |2 + |∇u|2 + |u|2 +(g�∇u)(t)+ |u|p+1

)
dx

≤ C
∫

RN
e2φ(0,x)

(
|u1|2 + |∇u0|2 + |u0|2 + |u0|p+1

)
dx (6.32)

+2
∫ t

0

∫
RN

φ s

p+1
e2φ |u|p+1 dxds

≤ CI2
0 +C

∫ t

0

∫
RN

|φ s|
p+1

e2φ |u|p+1 dxds

≤ CI2
0 +C

∫ t

0

(
max
x∈RN

φ̄ (s,x)
)∥∥∥eγφ(s,.)u(s, .)

∥∥∥p+1

p+1
ds

where
φ̄ (s,x) = |φ s (s,x)|e(2−γ(p+1))φ(s,x),

with γ such that

γ >
2

p+1
. (6.33)

Following the same method as in [14], we can show that

max
x∈RN

φ̄ (s,x)≤
Cγ

1+ s
(6.34)

with some constant Cγ > 0 for any γ satisfying (6.33). Now, the proof of Lemma 6.11 can be finished along
the same line as in [14]. Indeed, (6.32) implies∫

RN
e2φ

(
|ut |2 + |∇u|2 + |u|2 +(g�∇u)(t)+ |u|p+1

)
dx

≤ CI2
0 +Cγ

∫ t

0

1
1+ s

∥∥∥eγφ(s,.)u(s, .)
∥∥∥p+1

p+1
ds (6.35)

≤ CI2
0 +Cγ

∫ t

0

1

(1+ s)1+δ (p+1)

{
sup
[0,t]

(1+ s)δ

∥∥∥eγφ(s,.)u(s, .)
∥∥∥

p+1

}p+1

ds,
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and since ∫
∞

0

1

(1+ s)1+δ (p+1) ds = Cδ < +∞,

then (6.35) implies (6.30). This completes the proof of Lemma 6.11. �
Proof of Theorem 6.1
Let S(t)g denotes the unique solution of the Cauchy problem (1.2), (1.3) with f = 0, u0 = 0 and g = u1.

Then the solution u of the nonlinear problem (1.2), (1.3) (with f 6= 0) can be represented as follows

u(t) = S (t)(u0 +u1)+∂t (S (t)u0)−
∫ t

0
S (t− s) |u(s)|p−1 u(s)ds. (6.36)

We denote by uL(t) = S (t)(u0 +u1)+ ∂t (S (t)u0) the solution of the linear equation (i.e. f = 0) with the
initial data uL |t=0= u0 and ∂tuL |t=0= u1 and

uN(t) =−
∫ t

0
S (t− s) |u(s)|p−1 u(s)ds. (6.37)

Let D = (∂t ,∂x), then from Theorem 3.1, we deduce, for k = 0, the following estimate

‖DuL(t)‖2 ≤C (1+ t)−N/4−1/2
(
‖u1‖1,1 +‖u0‖1,1 +‖u1‖2 +‖∇u0‖2

)
, (6.38)

where from now on we will denote by C various positive constants which may be different at different
occurrences. Our goal now is to estimate the nonlinear term uN(t) defined in (6.37). Indeed, applying the
result of Theorem 3.1 with γ = 1, we have for the first integral in (6.37)∥∥∥DS (t− s) |u(s)|p−1 u(s)

∥∥∥
2
≤C (1+ t− s)−N/4−1/2

(
‖u(s)‖p

2p +‖u(s)‖p
p,1

)
. (6.39)

To estimate the term ‖u(s)‖p
p,1, we have from the Schwarz inequality and (6.7)

‖u(s)‖p
p,1 =

∫
RN

e−pδφ(s,x) |u(s,x)|p (1+ |x|)epδφ(s,x)dx

≤
(∫

RN
e2pδφ(s,x) |u(s,x)|2p

)1/2(∫
RN

e−2pδφ(s,x) (1+ |x|)2
)1/2

≤ C (1+ t)(N+2)/4 ‖eδφ(s,x)u(s)‖p
2p. (6.40)

On the other hand, by using [14, Lemma 2.6], we may estimate the norm ‖u(s)‖p
2p as

‖u(s)‖p
2p ≤Cδ (1+ s)N/4 ‖eδφ(s,x)u(s)‖p

2p. (6.41)

By combining (6.39), (6.40) and (6.41), we find∥∥∥DS (t− s) |u(s)|p−1 u(s)
∥∥∥

2
≤C (1+ t− s)−N/4−1/2 (1+ t)(N+2)/4 ‖eδφ(s,x)u(s)‖p

2p. (6.42)

Now, to estimate the term uN(t), we follow the same method as in [27] and [14]. Indeed, we have for any
ε > 0

‖DuN(t)‖2 ds≤C (1+ t)−N/4−1/2

(
sup
[0,t]

(1+ s)β ‖eδφ(s,x)u(s)‖2p

)p

(6.43)
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where
β =

N +6
4p

+
ε

p
. (6.44)

From (6.38), and (6.43), we obtain

(1+ t)N/4+1/2 ‖Du(t)‖2 ≤C

{
I0 +

(
sup
[0,t]

(1+ s)β ‖eδφ(s,x)u(s)‖2p

)p}
(6.45)

Let us now define the functional

W (t) =
∥∥∥eφ(t,x)Du(t)

∥∥∥
2
+(1+ t)N/4+1/2 ‖Du(t)‖2 . (6.46)

From Lemma 6.11, we deduce

∥∥∥eφ(t,x)Du(t)
∥∥∥

2
≤CI0 +C

(
sup
[0,t]

(1+ s)δ ‖eγφ(s,.)u(s, .)‖p+1

)(p+1)/2

. (6.47)

It follows from (6.45) and (6.47) that

W (t) ≤ CI0 +C

(
sup
[0,t]

(1+ s)β ‖eδφ(t,x)u(s)‖2p

)p

+C

(
sup
[0,t]

(1+ s)δ ‖eγφ(s,.)u(s, .)‖p+1

)(p+1)/2

(6.48)

for any γ satisfying (6.33) and any δ > 0.
Applying Lemma 6.5 for q = 2p and q = p+1, we get (see [14]) ‖e

δφ(t,x)u(s)‖2p ≤C (1+ s)(1−θ(2p))/2−(N+2)(1−δ )/4W (s) ,

‖eγφ(s,.)u(s, .)‖p+1 ≤C (1+ s)(1−θ(p+1))/2−(N+2)(1−γ)/4W (s) .
(6.49)

From (6.33), we can choose γ as γ = 2/(p + 1) + ε1. Now, by the definition of θ (2p) and θ (p+1) in
Lemma 6.5 and , if we pick ε,δ and ε1 are small enough we get

β +(1−θ (2p))/2− (N +2)(1−δ )/4 < 0

for p > 1+3/N and
δ +(1−θ (p+1))/2− (N +2)(1− γ)/4 < 0

for p > 1+2/N.
Consequently, the remaining part of the proof can be finished, following the same steps as in [27] or [14].

We give the details for the reader’s convenience. Let the parameters as above be fixed, then we have from
(6.48) and (6.49)

sup
[0,t]

W (s)≤CI0 +C

(
sup
[0,t]

W (s)

)p

+C

(
sup
[0,t]

W (s)

)(p+1)/2

. (6.50)

Define
M(t) = sup

[0,t]
W (s) . (6.51)
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Consequently, inequality (6.50) can be rewritten as

M (t)≤C
(

I0 +M (t)p +M (t)p+1
)

(6.52)

and we conclude by standard arguments (cf. [22]) that for sufficiently small I0, we have

M (t)≤CI0, ∀t ≥ 0. (6.53)

This yields ∥∥∥eφ(t,x)Du(t)
∥∥∥

2
+(1+ t)N/4+1/2 ‖Du(t)‖2 ≤CI0.

This proves Theorem 6.1. �

6.2 The subcritical case 1 < p < 1+ 4
N

In this subsection, we consider problem (6.1) in the subcritical case 1 < p < 1 + 4
N and inspired by the

method introduced in [20], we prove the global existence and the decay properties of the solutions. Unlike
the supercritical case, here we prove our result without assuming any smallness assumption on the initial
data. Let us assume first that

I2
0 :=

∫
RN

eβ |x|2
(
|u1 (x)|2 + |∇u0 (x)|2 + |u0 (x)|2 + |u0 (x)|p

)
dx < +∞ (6.54)

for some β > 0. Then, we have:

Theorem 6.12 Assume that 1 < p≤ 1+4/N. Let (u0,u1)∈H1
(
RN
)
∩L2

(
RN
)

such that (6.54) holds. Then
any solution of (6.1) satisfies for all t ≥ 0

(i) ‖u(t, .)‖2 ≤CI0 (1+ t)−
1

p−1 + N
4 ,

(ii) ‖u(t, .)‖p+1 ≤CI2/(p+1)
0 (1+ t)−

2
(p−1)(p+1) +

N
2(p+1) ,

(iii) ‖∇u(t, .)‖2 +‖ut (t, .)‖2 ≤CI0 (1+ t)−
1

p−1 + N
4 ,

(iv) ‖u(t, .)‖1 ≤CI0 (1+ t)−
1

p−1 + N
2 ,

(6.55)

where C is a positive constant.

Proof. In this case, the weight function φ can be taken similarly as before

φ (t,x) =
a |x|2

4(t + t0)
, a > 0, and t0 ≥ 1.

Now, it is clear that from (6.28) we can choose suitable constants a, µ1, µ2 and ε such that there exists
λ 1 > 0 satisfying

d
dt

∫
RN

L (t)dx+F (t)≤ 0, ∀t > 0, (6.56)

where
F (t) = λ 1

∫
RN

e2φ

(
|ut |2 + |∇u|2 + |∇φ |2 u2 +(g�∇u)(t)+ |u|p+1

)
dx. (6.57)
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Let us for example choose a, µ1, µ2 and ε in (6.28) as follows:
As in the previous section, we take η = l/(1− l) ,µ2 = 4a and µ1 = a in (6.28) and after that we write

φ t =−1
a |∇φ |2, and fix ε small such that

ε < min
(

1/8,
ζ l

1− l

)
.

Then, we take a small enough such that

a < min
(

l/16,
εl

2(1− l)
,

ζ l
(1− l)(4ε +1)

)
.

Now, define
L̄ (t) =

∫
RN

L (t)dx

and
Ē (t) =

∫
RN

e2φ

(
|ut |2 + |∇u|2 +u2 +(g�∇u)(t)+ |u|p+1

)
dx. (6.58)

Then from (6.31), we obtain
β 1Ē (t)≤ L̄ (t)≤ β 2Ē (t) , ∀t ≥ 0. (6.59)

For ρ > 0, we multiply (6.56) by (t0 + t)ρ to obtain

d
dt

{
(t0 + t)ρL̄ (t)

}
+(t0 + t)ρ

(
F (t)− ρ

t0 + t
L̄ (t)

)
≤ 0. (6.60)

By using (6.59), the last term in the left hand side of (6.60) can be estimated as follows:

F (t)− ρ

t0 + t
L̄ (t) ≥ F (t)− ρβ 2

t0 + t
Ē (t)

≥
(

λ 1

2
− ρβ 2

t0

)∫
RN

e2φ

(
|ut |2 + |∇u|2 +(g�∇u)(t)+ |u|p+1

)
dx

− ρβ 2

t0 + t

∫
RN

e2φ u2dx (6.61)

= I1 + I2.

By choosing t0 large enough such that t0 >
4ρβ 2

λ 1
, then we obtain

I1 ≥ λ 1

4

∫
RN

e2φ

(
|ut |2 + |∇u|2 +(g�∇u)(t)+ |u|p+1

)
dx

: =
λ 1

4
Ê (t) . (6.62)

To estimate I2, let us denote

Ωκ :
{

x ∈ RN : κ |x| ≥
√

t + t0
}

, and Ω
c
κ := RN\Ωκ ,

where κ = a
√

λ 1
8ρβ 2

.
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By denoting
ρβ 2

t0 + t

∫
RN

e2φ u2dx =
∫

Ωκ

+
∫

Ωc
κ

= I21 + I22,

then we have

I21 ≤ ρβ 2

t0 + t

∫
Ωκ

κ2 |x|2

t0 + t
e2φ u2dx

≤ 4ρκ2β 2

a2

∫
RN

a2 |x|2

4(t0 + t)2 e2φ u2dx =
λ 1

2

∫
RN

e2φ |∇φ |2 u2dx. (6.63)

Concerning I22, we have

I22 =
ρβ 2

t0 + t

∫
Ωc

κ

e2φ . p−1
p+1 .e2φ . 2

p+1 u2dx

and using Young’s inequality with 1
p+1
p−1

+ 1
p+1

2
= 1, we get

I22 ≤ λ 1

2

∫
RN

e2φ |u|p+1 dx+C
∫

Ωc
κ

(t0 + t)−
p+1
p−1 e

a|x|2
2(t0+t) dx

≤ λ 1

2

∫
RN

e2φ |u|p+1 dx+C (t0 + t)−
p+1
p−1

∫
Ωc

κ

dx (6.64)

≤ λ 1

2

∫
RN

e2φ |u|p+1 dx+C (t0 + t)−
p+1
p−1 + N

2 .

Consequently, combining (6.61) with (6.62)-(6.64), we find

F (t)− ρ

t0 + t
L̄ (t)≥ λ 1

4
Ê (t)−C (t0 + t)−

p+1
p−1 + N

2 . (6.65)

Inequality (6.60) together with (6.65) yield

d
dt

{
(t0 + t)ρL̄ (t)

}
+

λ 1

4
(t0 + t)ρ Ê (t)≤C(t0 + t)ρ .(t0 + t)−

p+1
p−1 + N

2 . (6.66)

Next, for 0 < ε < 1, we choose ρ such that

ρ− p+1
p−1

+
N
2

=−1+ ε,

that is for

ρ =
(

p+1
p−1

− N
2

)
−1+ ε. (6.67)

In order to get ρ > 0 in (6.67), for any ε > 0, we have to assume that p≤ 1+4/N.
Thus, integrating (6.66), over [0, t] and using (6.59), we obtain

β 1(t0 + t)ρ Ē (t)+
λ 1

4

∫ t

0
(t0 + τ)ρ Ê (τ)dτ ≤ (t0)ρL̄ (0)+C

∫ t

0
(τ + t0)−1+εdτ

≤ β 2(t0)
ρ Ē (0)+Cε(t + t0)ε . (6.68)
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Dividing both sides in (6.68) by (t + t0)ε , we obtain

Ē (t)≤C (t +1)−
2

p−1 + N
2 , (6.69)

which implies the first three estimates in (6.55). To prove the last last estimate in (6.55), we have from (6.69)
and Lemma 6.6

‖u(t)‖1 ≤
(∫

RN
e−2φ(t,x)dx

)1/2(∫
RN

e2φ(t,x)u2 (t,x)dx
)1/2

≤ C (1+ t)−
1

p+1 + N
2 .

This completes the proof of Theorem 6.12. �

7 Concluding remarks

In this section we conclude with few remarks, pointing out some open problems and future directions worth
pursuing.

Remark 7.1 It is well known that for the linear version of problem (1.3) in bounded domains Ω⊂ RN , the
exponential (resp. polynomial) decay of g is a sufficient condition for the exponential (resp. polynomial)
decay of the solution u. It was shown in [5] that the exponential decay of g is also a necessary condition
for the exponential decay of u. This is somehow surprising, since the memory introduces dissipation and for
g = 0, the solution u decays exponentially. It seems that the presence of the dissipation term ut is hidden by
the presence of the memory term. The same situation seems to appear in RN . In fact the decay rate given in
[4] for (1.3) is of order (1+ t)−N/4 which is the same decay obtained in [1] for (1.3) without ut .

Remark 7.2 The decay rate of the Cauchy problem

utt −∆u+ut = 0 (7.1)

with initial data
(u0,u1) ∈

(
H1 (RN)∩L1 (RN))× (L2 (RN)∩L1 (RN)) (7.2)

is
‖ut‖2 +‖∇u‖2 ≤C (1+ t)−N/4−1/2 .

See [18]. According to Remark 7.1 and since the dissipative term induced by the memory term is weaker
than the frictional damping term ut , it is natural to see that the solution of the linear problem of (1.3) with
the same initial data (7.2) decays as

‖ut‖2 +‖∇u‖2 ≤C (1+ t)−N/4 .

Remark 7.3 As, we have said before, the exponential (resp. polynomial) decay of the kernel is necessary
condition to obtain an exponential (resp. polynomial) decay of the solution of (1.3). recently Pata [21] has
obtained some decay results by allowing the kernel g to be flat provided that the set

Fg =
{

s ∈ R+ : g(s) > 0 and g′(s) = 0
}

where the kernel g is flat is sufficiently small.
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