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Abstract: We consider linear initial-boundary value problems that are a coupling like second-order ther-

moelasticity, or the thermoelastic plate equation or its generalization (the α-β-system introduced in

[1, 26]). Now, there is a delay term given in part of the coupled system, and we demonstrate that the

expected inherent damping will not prevent the system from not being stable; indeed, the systems will

shown to be ill-posed: a sequence of bounded initial data may lead to exploding solutions (at any fixed

time).

1 Introduction

It is well-known that delay equations like the simplest one of parabolic type,

θt(t, x) = ∆θ(t− τ), (1.1)

with a delay parameter τ > 0, or of hyperbolic type,

utt(t, x) = ∆u(t− τ), (1.2)

are not well-posed. Their instability is given in the sense that there is a sequence of initial
data remaining bounded, while the corresponding solutions, at a fixed time, go to infinity in an
exponential manner, see Jordan, Dai & Mickens [12] and Dreher, Quintanilla & Racke [9], or
Prüß [29], in particular for connections to Volterra equations. Indeed, it was shown in [9] that
the same phenomenon of instability is given for a general class of problems of the type

dn

dtn
u(t) = Au(t− τ), (1.3)

n ∈ N fixed, whenever (−A) is linear operator in a Banach space having a sequence of real
eigenvalues (λk)k such that 0 < λk →∞ as k →∞.

Delay equations are well motivated from the applications, cf. [29], Chandrasekharaiah [5],
Bátkai & Piazzera [4]. For example, to have an alternative to the classical heat equation, which
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corresponds to τ = 0 and shows the physically not justified phenomenon of infinite propagation
speed of signals, introducing a delay in the constitutive law can be done as follows: Heat
conduction is usually described by means of the energy equation

θt + γ div q = 0 (1.4)

for the temperature θ and the heat flux vector q. With the constitutive law

q(t+ τ, ·) = −κ∇θ(t, ·), (1.5)

where γ, κ > 0, which expresses that a change of the temperature gradient at time t is effective
in the heat flux only with a delay τ > 0, we obtain the delay equation

θt(t, ·) = κγ∆θ(t− τ, ·). (1.6)

Adding certain non-delay terms, e.g. ∆θ(t, x) om the right-hand side of (1.1), is already sufficient
to obtain a well-posed problem, cf. [29, 4]. We consider coupled systems where there is an
expected damping effect of a second differential equation in comparison to the first one, and we
ask if there is still instability (ill-posedness) or whether we can have well-posedness. We shall
answer this with several ill-posedness results.

For well-posedness results for wave equations equations with delay terms (in the interior),there
are a number of papers by Nicaise and co-authors Ammari, Fridman, Pignotti, and Valein
[27, 28, 10, 2], in [27] also with instability results. For works with delay terms in the boundary
conditions, see the references in the papers [14].

For the system of coupled wave equations of Timoshenko type with delay terms of the type

ρ1φtt(t, x)−K(φx + ψ)x(t, x) = 0, (1.7)

ρ2ψtt(t, x)− bψxx(t, x) +K(φx + ψ) + µ1ψt(t, x) + µ2ψt(t− τ, x) = 0 (1.8)

the well-posedness (under certain conditions on µ1, µ2) was investigated by Said-Houari & Laskri
[34] and extended to a time-varying delay term — replacing ψt(t− τ, x) by ψt(t− τ(t), x) — in
the work of Kirane, Said-Houari & Anwar [14].

Here we consider coupled systems of different types. A typical first example is the coupling
arising in thermoelasticity. In one dimension, we have the hyperbolic-parabolic system

utt(t, x)− auxx(t− τ, x) + bθx(t, x) = 0, (1.9)

θt(t, x)− dθxx(t, x) + butx(t, x) = 0, (1.10)

where u describes the displacement, and θ is the temperature difference, and where t ≥ 0 and
x ∈ (0;L) ⊂ R with L > 0. To complete the initial-boundary value problem, we consider the
boundary conditions

u(t, x) = θx(t, x) = 0, (1.11)

for t ≥ 0 and x ∈ {0, L}, and initial conditions for u(0, ·), ut(0, ·), u(s, ·), ut(s, ·) for −τ ≤ s ≤ 0,
and for θ(0, ·). The damping through heat conduction essentially given in (1.10) is for classical
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thermoelasticity — corresponding to τ = 0 — strong enough to compose an exponentially stable
system (modulo constant functions θ due to the boundary condition), thus strongly impacting
the oscillating part of the (pure) wave equation (utt − auxx = 0), see Racke [32] or Jiang &
Racke [11] for extensive surveys, or, more specific, Racke [30, 31].

Here, we shall prove that the system with delay (1.9), (1.10) is not well-posed and instable,
that is, the damping through heat conduction turns out to be not strong enough now; the
instable system part (utt(t, ·)− auxx(t− τ, ·) = 0) will predominate.

Then even more expected, the same will happen for the system, where one delay is given in
the equation for the temperature, i.e. for

utt(t, x)− auxx(t, x) + bθx(t, x) = 0, (1.12)

θt(t, x)− dθxx(t− τ, x) + butx(t, x) = 0. (1.13)

The classical thermoelastic plate equation, a coupling of the plate equation (with the Schrödinger
equation behind) with heat conduction will then be investigated in the same way. Here we have
the system

utt(t, x) + a∆2u(t− τ, x) + b∆θ(t, x) = 0, (1.14)

θt(t, x)− d∆θ(t, x)− b∆ut(t, x) = 0, (1.15)

where x ∈ G ⊂ Rn, n ∈ N now, G bounded, and the corresponding one with the delay term as
in (1.12), (1.13). Initial conditions are given as usual, and we consider the boundary conditions

u(t, x) = ∆u(t, x) = θ(t, x) = 0. (1.16)

These thermoelastic plate equations (1.14), (1.15) — in comparison to the thermoelastic system
above being, for τ = 0, exponentially stable also in space dimension n ≥ 2 — will also turn out
to be ill-posed now.

The thermoelastic plate system (1.14), (1.15) has been widely discussed in particular for
bounded reference configurations G 3 x, see the work of Kim [13], Muñoz Rivera & Racke [25],
Liu & Zheng [23], Avalos & Lasiecka [3], Lasiecka & Triggiani [16, 17, 18, 19] for the question of
exponential stability of the associated semigroup (for various boundary conditions), and Russell
[33], Liu & Renardy [20], Liu & Liu [21], Liu & Yong [22] for proving its analyticity, see also the
book of Liu & Zheng [24] for a survey. For results in exterior domains see, for example, Muñoz
Rivera & Racke [26], Denk, Racke & Shibata [7, 8].

The thermoelastic plate system (1.14), (1.15) is a special case of the so-called α-β-system,
now with delay,

utt(t) + aAu(t− τ)− bAβθ(t) = 0, (1.17)

θt(t) + dAαθ(t) + bAβut(t) = 0, (1.18)

for functions u, θ : [0,∞) → H, with A being a self-adjoint operator in the Hilbert space H,
having a countable complete orthonormal system of eigenfunctions (φj)j with corresponding
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eigenvalues 0 < λj →∞ as j →∞. The thermoelastic plate equations appear with α = β = 1
2

and A = (−∆D)2, where −∆D denotes the Laplace operator realized in L2(G) on some bounded
domain G in Rn with Dirichlet boundary conditions. This original α-β-system without delay
(τ = 0) was introduced by Muñoz Rivera & Racke [26] and, independently, by Ammar Khodja
& Benabdallah [1], and investigated with respect to exponential stability and analyticity of the
associated semigroup, the latter also for the Cauchy problem, where Ω = Rn, and, more general,
A = (−∆)η for η > 0 arbitrary, and in arbitrary Lp-spaces for 1 < p < ∞, see Denk & Racke
[6]. It was shown that we have a strong smoothing property for parameters (β, α) in the region
Asm (see Figure 1.1), where

Asm := {(β, α) | 1− 2β < α < 2β, α > 2β − 1}, (τ = 0), (1.19)

and that the analyticity (in Lp(Rn)) is given in the region Aan (see Figure 1.2), where
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Figure 1.1: Area of smoothing Asm (without delay)

Aan := {(β, α) | α ≥ β, α ≤ 2β − 1/2}, (τ = 0). (1.20)

Here, we shall show that the α-β-system with delay (1.17), (1.18) is not well-posed in the
region A1

in (see Figure 1.3), where

A1
in := {(β, α) | 0 ≤ β ≤ α ≤ 1, α ≥ 1

2
, (β, α) 6= (1, 1)}, (1.21)

A similar result will hold for the related system

utt(t) + aAu(t)− bAβθ(t) = 0, (1.22)

θt(t) + dAαθ(t− τ) + bAβut(t) = 0, (1.23)
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Figure 1.2: Area of analyticity Aan (without delay)

in the region A2
in (see Figure 1.4), where

A2
in := {(β, α) | 0 < β ≤ α ≤ 1, (β, α) 6= (1, 1)}. (1.24)

It is interesting to notice that there are differences comparing the regions A1
in and A1

in. For the
former, the damping through the main equation for θ has to be weak enough (“α ≥ 1

2”) to still
guarantee the ill-posedness suggested by the main equation with delay for u.

The behavior in the regions outside Ajin, j = 1, 2, is an open question.
We remark that the α-β-system (without delay) has been recognized to possibly describe

also viscoelastic systems, and, with respect to smoothing properties, even the second-order
thermoelastic system from above, although in the latter case it is (first) formally not of this
type; but after deriving a single differential equation of third order in time for u (or θ) only, the
α-β-formalism applies, see [26].

The methods to prove the results mentioned up to now will be to construct exponentially
growing solutions with the help of an ansatz trough eigenfunctions, and then modifying and
extending ideas from [9] to the situation of coupled systems given here.

We remark that it would be possible to study the delay term at different places, actually to
discuss systems like

utt(t) + aAu(t− g1τ) + bAβθ(t− g2τ) = 0, (1.25)

θt(t) + dAαθ(t− g3τ) + bAβut(t− g4τ) = 0, (1.26)

where gj ∈ {0, 1}, j = 1, 2, 3, 4. Here we studied the cases g1 − 1 = g2 = g3 = g4 = 0 and
g1 = g2 = g3 − 1 = g4 = 0 only, for simplicity of the presentation.
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Figure 1.3: Area of instability A1
in (with delay)

The paper is organized as follows: In Section 2 we shall discuss the second-order thermoe-
lastic systems and prove that the systems with delay are not well-posed, and in Section 3 the
thermoelastic plate equations are discussed in a similar manner. In Section 4 the α-β-system
with delay will be studied proving the ill-posedness in a certain parameter region. In the ap-
pendix, we recall some arguments from [9].

Lp denotes the usual Lp-space of Lebesgue-integrable functions, ‖ · ‖ and ‖ · ‖H denote the
norm in L2 and in a Hilbert space H, respectively, and d

dt or subscripts t or x denote (partial)
derivatives.

2 Second-order thermoelasticity with delay terms

We consider the thermoelastic system with delay given in (1.9), (1.10), i.e.

utt(t, x)− auxx(t− τ, x) + bθx(t, x) = 0, (2.1)

θt(t, x)− dθxx(t, x) + butx(t, x) = 0, (2.2)

and the related system (1.12), (1.13), i.e.

utt(t, x)− auxx(t, x) + bθx(t, x) = 0, (2.3)

θt(t, x)− dθxx(t− τ, x) + butx(t, x) = 0, (2.4)

Here u, θ : [0,∞]x(0, L) → R, L > 0, and a, b, d are positive constants, τ > 0 is the — in
applications often relatively small — relaxation parameter.
Both complex systems are completed with the boundary condition

u(t, x) = θx(t, x) = 0, (2.5)
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Figure 1.4: Area of instability A2
in (with delay)

for t ≥ 0 and x ∈ {0, L}, and with initial conditions

u(s, ·) = u0(s), ut(s, ·) = u1(s), (−τ ≤ s ≤ 0), θ(0, ·) = θ0, (2.6)

and
u(0, ·) = u0, ut(0, ·) = u1, θ(s, 0) = θ0(s), (−τ ≤ s ≤ 0), (2.7)

respectively.
These systems are shown to be not well-posed, i.e. we prove

Theorem 2.1 (i) The initial-boundary value problem with delay (2.1), (2.2), (2.5), (2.6) is
not well-posed. There exists a sequence

(
(uj , θj)

)
j

of solutions with L2 − norm‖uj(t, ·)‖
tending to infinity (as j → ∞) for any fixed t > 0, while for the initial data the norms
sup−τ≤s≤0 ‖(u0

j (s), u
1
j (s), θ

0
j )‖ remain bounded.

(ii) The corresponding statement on ill-posedness also holds for the initial-boundary value prob-
lem with delay (2.3), (2.4), (2.5), (2.7).

We already remark that we can also manage to keep the spatial gradient of u0 bounded, see the
detailed remarks following the proof.

Proof of (i): We make the ansatz

u = uj(t, x) =

√
2
L

sin︸ ︷︷ ︸
=:ϕj(x)

(
jπ

L
x)hj(t), (2.8)
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θ = θj(t, x) =

√
2
L

cos(
jπ

L
x)gj(t), (2.9)

and try to find hj (and gj) such that hj(t) → ∞ as j → ∞, while the initial data remain
bounded. Actually, hj will be of the form hj(t) = cje

ωjt with <ωj →∞ as j →∞, see below.
Let λj := jπ

L . Plugging the ansatz (2.8), (2.9) into the differential equations (2.1), (2.2) we
conclude that (hj , gj) should satisfy (as necessary and sufficient condition)

h′′j (t) + aλ2
jhj(t− τ)− bλjgj(t) = 0, (2.10)

g′j(t) + dλ2
jgj(t) + bλjh

′
j(t) = 0, (2.11)

where a prime ”′” denotes a one-dimensional derivative.
Additionally we have initial conditions for hj and for gj that will be specified below.
(2.10) implies

bλjgj(t) = h′′j (t) + aλ2
jhj(t− τ) (2.12)

and
bλjg

′
j(t) = h′′′j (t) + aλ2

jh
′
j(t− τ). (2.13)

(2.11) implies
bλjg

′
j(t) + dλ2

jbλjg
′
j(t) + b2λ2

jh
′
j(t) = 0. (2.14)

Combining (2.12) - (2.14) we obtain

h′′′j (t) + dλ2
jh
′′
j (t) + b2λ2

jh
′
j(t) + aλ2

jh
′
j(t− τ) + adλ4

jhj(t− τ) = 0. (2.15)

Conversely, if (hj , gj) satisfy (2.15) and

g′j(t) + dλ2
jgj(t) = −bλjh′j(t), (2.16)

with
gj(0) =

1
bλj

(h′′j (0) + aλ2
jhj(−τ)), (2.17)

then (hj , gj) solve (2.10), (2.11). This can be seen as follows: Let

wτ (t) := h′′j (t) + aλ2
jhj(t− τ)− bλjgj(t), (2.18)

then we have, using (2.15), (2.16),

d

dt
wτ (t) + dλ2

jwτ (t) = h′′′j (t) + aλ2
jh
′
j(t− τ)− bλjg′j(t) (2.19)

+aλ2
jh
′′
j (t) + adλ4

jhj(t− τ)− bλjd2
jgj(t)

= h′′′j (t) + dλ2
jh
′′
j (t) + aλ2

jh
′
j(t− τ)

+adλ4
jhj(t− τ)− bλj (g′j(t) + dλ2

jgj(t))︸ ︷︷ ︸
=−bλjh′j(t)

= 0.
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Moreover,
wτ (0) = h′′j (0) + aλ2

jhj(−τ)− bλjgj(0) = 0, (2.20)

by (2.17). Thus, by (2.19), (2.20), we conclude

wτ (t) = 0, t ≥ 0,

hence (2.10) is satisfied, while (2.11) is given by (2.16) (which was to be proved). Now we can
make the following ansatz for hj ;

hj(t) =
1
ω2
j

eωjt, (2.21)

where (ωj)j will be determined such that <ωj →∞ as j →∞.
The initial data for hj will remain bounded as j →∞,

hj(s) =
1
ω2
j

eωjs, h′j(s) =
1
ωj
eωjs,−τ ≤ s ≤ 0. (2.22)

Then gj will be determined as solution to (2.16) with initial value (2.17), i.e.

gj(0) :=
1
bλj

(
1 +

aλ2
j

ω2
j

e−ωjτ
)
, (2.23)

and (gj(0))j will also be shown to be a bounded sequence. In order to satisfy the equation (2.15)
with the ansatz (2.21) it is sufficient and necessary that ωj satisfies

ω3
j + dλ2

jω
2
j + (b2λ2

j + aλ2
je
ωjτ )ωj = −adλ4

je
−ωjτ . (2.24)

If we can find (ωj)j such that the following three conditions (2.25) - (2.27) are satisfied, then
part (i) of Theorem (2.1) will be proved.
For a subsequence (ωjk)k, jk →∞ as k →∞,

<ωjk →∞ as k →∞, (2.25)

sup
k
|
λ2
jk

ω2
jk

e−ωjkτ | <∞, (2.26)

(to assure the boundedness of (gj(0))j),

|e
ωjk t

ω2
jk

| → ∞ as k →∞. (2.27)

We shall now prove the solvability of (2.24) and the properties (2.25) - (2.27). For simplicity
we (first for a while) drop the index j, i.e. we write ω = ωj , λ = λj , and so on. Then (2.24) is
equivalent to

ω2
(
1 +

ω

dλ2
+
b2/d+ a/de−ωτ

ω

)
= −aλ2e−τω. (2.28)

To solve this we make the ansatz (as in [9])

ω = µ(1 + ζ) (2.29)
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where |ζ| < 1
2 , and where µ = µj solves

µ2 = −aλ2e−τµ. (2.30)

This problem (2.30) has solutions µ = µjk , for a subsequence jk → ∞, with <µjk → ∞ as
k → ∞, according to the proof of Theorem 2.1 in [9], which we repeat in the appendix for the
reader’s convenience. Then (2.28) is equivalent to solving

(1 + ζ)2(1 + q(ζ)) = e−τµζ , (2.31)

where

q(ζ) :=
µ(1 + ζ)
dλ2

+
b2/d+ a/de−τµ(1+ζ)

µ(1 + ζ)
. (2.32)

(2.31) is equivalent to

(1− e−τµζ)︸ ︷︷ ︸
=:f(ζ)

+ (g(ζ) + (2ζ + ζ2)(1 + q(ζ))︸ ︷︷ ︸
=:g(ζ)

= 0. (2.33)

f and g are holomorphic in Ω := {ζ | |ζ| < 1
10τ |µ| ≡ B(0, 1

10τ |µ|). f has in Ω exactly one zero
(ζ = 0) since w.l.o.g. 1

10τ |µ| <
1
2 . f satisfies on ∂Ω:

|f(ζ)| ≥ inf
10τ |µ||ζ|=1

|e−τµζ − 1| = inf
10|z|=1

|e−z − 1| =: f̄ > 0, (2.34)

f̄ being of µ = µj . Moreover, we have on ∂Ω

|ζ| ≤ C

|µ|
, (2.35)

where C = 1
10τ here, but will denote constructs being independent of j. We notice that, w.l.o.g.,

10τ |µ| < 1/2, and that

|q(ζ)| ≤ C
(
| µ
λ2
|+ 1
|µ|
)
≤ C

|µ|
, (2.36)

where we used (2.30) and |e−τµζ | ≤ e1/10 as well as

| µ
λ2
| = 1
|µ|
ae−τ<µ ≤ C

|µ|
. (2.37)

We conclude from (2.36) and (2.35)

|g(ζ)| ≤ C

|µ|
. (2.38)

Combining (2.33), (2.34) and (2.38) we get with Rouche’s theorem that there is exactly one
solution ζ = ζjk in Ω = Ωj = B(0, 1

10τ |µjk |
), and ωjk = µjk(1 + ζjk) solves (2.24). To prove (2.25)

we observe that
arg(ωjk) = arg(µjk) + arg(1 + ζjk) ≤ π

8
+
π

4
<
π

2
, (2.39)
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where we used that |ζjk | < 1
2 and the fact that arg(µjk) ≤ π

8 which arises from the construction
of µjk in the proof of Theorem 1.1 in [9]. As a consequence we conclude the validity of (2.25).
Using (2.30) we get

|
λ2
jk

ω2
jk

e−τωjk | ≤ C|e−τµjk ζjk | ≤ C

which assures (2.26).
Finally, we prove (2.27) as follows. For 0 < ε < 1 we have

|e
ωjk t

ω2
jk

| ≥ C|e
µjk t

µ2
jk

||eµjk ζjk t| (2.40)

= C|e
εµjk t

µ2
jk

||eµjk (1−ε+ζj)t|.

Observing

|e
εµjk t

µ2
jk

| ≥ eε cos(π
8

)|µjk |t

|µjk |2
→∞ as k →∞, (2.41)

(cf. [9]), and
arg
(
µjk(1− ε+ ζjk)

)
≤ π

8
+ arg(1− ε+ ζjk) <

π

2
for ε small enough, implying

|eµjk (1−εζjk )t| ≥ 1, (2.42)

we get, combining (2.40) - (2.42) the desired relation (2.27), and the proof of part (i) is finished.
We remark that the behavior of gj , being determined through (2.16), (2.17), is open.
Proof of (ii): Making the same ansatz for (uj , θj) as in (2.8), (2.9) we derive the equations

h′′j (t) + aλ2
jhj(t) = bλjgj(t), (2.43)

g′j(t) + aλ2
jgj(t− τ) + bλjh

′
j(t) = 0, (2.44)

from which the differential equation

g′′′j (t) + dλ2
jg
′′
j (t− τ) + b2λ2

jg
′
j(t)aλ

2
jg
′
j(t) + adλ4

jgj(t− τ) = 0 (2.45)

follows (cp. with (2.15)).
If gj solves (2.45) (with given initial conditions) and if hj solves (2.43) with initial conditions
satisfying

hj(0) =
1

baλ3
j

(
bλjgj(0) + g′′j (0) + dλ2

jg
′
j(−τ)

)
, (2.46)

h′j(0) = − 1
bλj

(
g′j(0) + aλ2

jgj(−τ)
)
, (2.47)

then (hj , gj) solves (2.43), (2.44), which can be seen looking at

wτ (t) := g′j(t) + dλ2
jgj(t− τ) + bλjh

′
j(t) (2.48)
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and deriving the relation
d2

dt2
wτ (t) + aλ2

jwτ (t) = 0, (2.49)

wτ (0) = 0,
d

dt
wτ (0) = 0, (2.50)

the latter given by (2.46), (2.47). This implies wτ (t) = 0, t ≥ 0, which is equivalent to (2.44).
For gj we make the ansatz

gj(t) =
1
ω2
j

eωjt (2.51)

implying the boundedness of the initial data gj(s), g′(s), g′′j (s),−τ ≤ s ≤ 0, as j → ∞ since
<ωjk → ∞ will be shown (k → ∞, jk → ∞). hj will then be determined by (2.43), (2.46),
(2.47), and the data prescribed in (2.46), (2.47) will be shown to be bounded too.
In order to satisfy the equation (2.45) with the ansatz (2.51) it is sufficient (and necessary) that
ωj satisfies

ω3
j + dλ2

jω
2
j e
−τωj + b2λ2

jωj + aλ2
jωj = −adλ4

je
−τωj . (2.52)

If we can find (ωj)j such that the following three conditions (2.53) - (2.55) are satisfied, then
part (ii) will be proved.
For a subsequence (ωjk)k, jk →∞ as k →∞,

<ωjk →∞ as k →∞, (2.53)

sup
k
|λjke
ω2
jk

e−τωj | <∞, (2.54)

(to assure the boundedness of (hjk(0), hj′k(0))k),

|e
ωjnt

ω2
jk

| → ∞ as k →∞. (2.55)

Dropping the index j again, (2.52) is equivalent to

ω
(
1 +

ω2

(a+ b2)λ2
j

+
d

(a+ b2)
ωe−τω

)
= − ad

a+ b2
λ2
je
−τω. (2.56)

Remark: Wether we choose ω2 (as in part (i), cp.(2.28)) or ω (in (2.56)) as a factor depends
on the powers of λj and the position of e−τω on the left-hand side. The aim is to get the right
estimate (2.63) for q below (cp. (2.36)).
Let µ = µjk be the solution(s) to

µ = − ad

a+ b2
λ2
je
−τµ (2.57)

which exist according to Theorem 1.1 (proof) in [9], satisfying <µjk →∞ for a subsequence as
jk →∞ for k →∞. Then, with the ansatz

ω = µ(1 + ζ), |ζ| < 1/2, (2.58)
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(2.56) is equivalent to solving

(1− e−τµζ)︸ ︷︷ ︸
=:f(ζ)

+ (g(ζ) + ζ + ζg(ζ))︸ ︷︷ ︸
=:g(ζ)

= 0, (2.59)

where
q(ζ) :=

µ(1 + ζ)
(a+ b2)λ2

j

+
d

a+ b2
µ(1 + ζ)e−τµ(1+ζ). (2.60)

f and g are holomorphic in Ω := B(0, 1
10τ |µ|). f has exactly one zero (ζ = 0) in Ω since w.l.o.g.

1
10τ |µ| <

1
2 . On ∂Ω we have again (cp. (2.34))

|f(ζ)| ≥ f̄ > 0, (2.61)

moreover, using (2.57),

|ζ| ≤ C

|µ|
, (2.62)

|q(ζ)| ≤ C

|µ|
|µe−τµ| ≤ C

|µ|
(2.63)

since |µ|e−τ<µ = |µ|e−τ |µ| cos(arg(µ))→0.
Hence

|g(ζ)| ≤ C

|µ|
(2.64)

and (2.61), (2.64) combined with Rouché’s theorem gives exactly one solution ζ = ζjk in Ω to
(2.59), and ωjk = µjk(1 + ζjk) solves (2.52). The relation (2.53) is proved as in (2.39) (replacing
π/8 by π/4).
Using (2.58) we get

|λjk
ω2
jk

e−τωjk | = 1
|λjkωjk |

1
|1 + ζjk |

| e−τµjk ζjk | ≤ C,

proving (2.54).
Finally, (2.55) follows as in the proof of part (i), see (2.40) - (2.42) (replacing π/8 by π/4).
Thus, Theorem 2.1 is proved.
Q.e.d.
Remark: We have proved the exploding of the solution in L2 for bounded data in L2. Coming
from semigroup theory in the case τ = 0 (without delay), one might argue that usually V :=
(ux, ut, θ) in L2 or V := (u, ut, θ) with gradient norm for u is considered, and, hence, one should
prove the exploding of ux in L2 for data with bounded norm u0

x. But this can also be achieved
replacing in part (i) — for example — the ansatz (2.21) by

hj(t) =
1

λjω2
j

eωjt. (2.65)

Then everything (but one thing) carries over literally; only the arguments to prove now

| e
ωjk t

λjkω
2
jk

| → 0, k →∞
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given before in (2.40) - (2.42) have to be slightly modified in (2.41) to

| e
εµjk t

λjkω
2
jk

|2 = |e
2εµjk t

λ2
jω

4
jk

| = d
e(2εt−τ)|µjk | cos(arg(µjk ))

|ωjk |6
(2.66)

where we used (2.57) again, hence

| e
εµjk t

λjkω
2
jk

| → ∞ as k →∞ (2.67)

if
t >

τ

2ε
. (2.68)

That is, we obtain the instability for t > 0 satisfying (2.68).

3 Thermoelastic plates with delay terms

With the same methods as for the second-order thermoelastic systems in Section 2, we can deal
with the following systems for thermoelastic plates with delay,

utt(t, x) + a∆2u(t− τ, x) + b∆θ(t, x) = 0, (3.1)

θt(t, x)− d∆θ(t, x)− b∆ut(t, x) = 0, (3.2)

and the related system
utt(t, x) + a∆2u(t, x) + b∆θ(t, x) = 0, (3.3)

θt(t, x)− d∆θ(t− τ, x)− b∆ut(t, x) = 0, (3.4)

where u, θ : [o,∞) × G → R, and a, b, d, τ > 0 as before, and G is a bounded domain in Rn,
n ∈ N.
Additionally, one has boundary conditions,

u(t, x) = ∆u(t, x) = θ(t, x) = 0, (3.5)

for t ≥ 0 and x ∈ ∂G, and initial conditions,

u(s, ·) = u0(s), ut(s, ·) = u1(s), (−τ ≤ s ≤ 0), θ(0, ·) = 00, (3.6)

and
u(0, ·) = u0, ut(0, ·) = u1, θ(s, ·) = θ0(s), (−τ ≤ s ≤ 0), (3.7)

respectively.
Replacing λj = jπ

L and ϕj from (2.8) by the eigenvalues (λj)j of the Laplace operator (−∆) in
L2(G) with Dirichlet boundary conditions, we can make the ansatz (cp. (2.8), (2.9)).

u = uj(t, x) = ϕj(x)hj(t), (3.8)

θ = θj(t, x) = ϕj(x)gj(t), (3.9)

Then the methods of the proof of Theorem (2.1) carry over, and we have
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Theorem 3.1 (i) The initial-boundary value problem with delay (3.1), (3.2), (3.5), (3.6) is
not well-posed. There exists a sequence (uj , θj)j of solutions with L2-norm ‖ uj(t, ·) ‖
tending to infinity (as j →∞) for any fixed t > 0, while for the initial data the norms

sup
−τ≤j≤0

‖ (u0
j (s), u

1
j (s), θ

0) ‖

remain bounded.

(ii) The corresponding statement on ill-posedness also holds for the initial-boundary value prob-
lem with delay (3.3), (3.4), (3.5), (3.7).

The remarks at the end of Section 2 including (here) the L2-norm of ∆uj carry over mutatis
mutandis.
We do not give details of the proof since the thermoelastic plate systems with delay (3.1), (3.2),
resp. (3.3), (3.4) are a special case of the general α-β-system with delay following in the next
section.

4 The α-β-system with delay terms

As a generalization of the thermoelastic plate system — well discussed for τ = 0 — we study
the following α-β-system with delay,

utt(t) + aAu(t− τ)− bAβθ(t) = 0, (4.1)

θt(t) + dAαθ(t) + bAβut(t) = 0, (4.2)

and the related system
utt(t) + aAu(t)− bAβθ(t) = 0, (4.3)

θt(t) + dAαθ(t− τ) + bAβut(t) = 0, (4.4)

where u, θ : [0,∞) → H, H a separable Hilbert space, A being a linear self-adjoint operator
A : D(A) ⊂ H → H, having a complete orthonormal system of eigenfunctions (ϕj)j with
corresponding eigenvalues 0 < λj →∞ as j →∞.
a, b, d, τ > 0 are as before, and

0 ≤ β ≤ α ≤ 1 (4.5)

are parameters. The thermoelastic plate system from Section 3 is given by α = β = 1
2 and

A = (−∆∆)2, where −∆∆ denotes the Laplace operator realized in L2(G) for a bounded domain
G ⊂ Rn. As usual, we have the conditions

u(t) ∈ D(A), θ(t) ∈ D(Aα), t ≥ 0, (4.6)

and initial conditions,

u(s) = u0(s), ut(s) = u1(s), (−τ ≤ s ≤ 0), θ(0) = 00, (4.7)
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and
u(0) = u0, ut(0) = u1, θ(s) = θ0(s), (−τ ≤ s ≤ 0), (4.8)

respectively.
For (β, α) in the region

Ain = {(β, α) | 0 ≤ β ≤ α ≤ 1, α ≥ 1
2
, (β, α) 6= (1, 1)} (4.9)

see Figure 1.3, we get the following ill-posedness result for the delay problem (4.1), (4.2):

Theorem 4.1 Let (β, α) ∈ A1
in. Then the delay problem (4.1), (4.2), (4.6), (4.7) is not well-

posed. There exists a sequence (uj , θj)j of solutions with norm ||uj(t)||H tending to infinity (as
j → ∞) for any fixed t, while for the initial data the norms sup−τ≤s≤0 ‖ (u0

j (s), u
1
j (s), θ

0) ‖H
remain bounded.

For (β, α) in the region

A2
in := {(β, α) | 0 < β ≤ α ≤ 1, (β, α) 6= (1, 1)}, (4.10)

see Figure 1.4, we get the following ill-posedness result for the delay problem (4.3), (4.4):

Theorem 4.2 Let (β, α) ∈ A2
in. Then the delay problem (4.3), (4.4), (4.6), (4.8) is not well-

posed. There exists a sequence (uj , θj)j of solutions with norm ‖ θj(t) ‖H tending to infinity (as
j →∞) for any fixed t, while for the initial data the norms

sup
−τ≤s≤0

‖ (u0
j (s), u

1
j (s), θ

0
j (s)) ‖H

remain bounded.

Proof of Theorem 4.1: We make the ansatz

u = uj(t) = hj(t)ϕj , (4.11)

θ = θj(t) = gj(t)ϕj . (4.12)

As in the specific examples in Sections 2 and 3, we look for a solution hj to the third-order
equation

h′′′j (t) + dλαj h
′′
j (t) + b2λ2β

j h
′
j(t) + aλjh

′
j(t− τ) + adλ1+α

j hj(t− τ) = 0, (4.13)

derived from the ansatz (4.11), (4.12), and, then, for gj satisfying

g′j(t) + dλαj gj(t) = −bλβj h
′
j(t), (4.14)

with
gj(0) :=

1

bλβj
(h′′j (0) + aλ2

jhj(−τ)). (4.15)
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Then (uj , θj) satisfy (4.1), (4.2), cp. the arguments in (2.18) - (2.20).
Making the ansatz

hj(t) =
1
ω2
j

eωjt, (4.16)

we shall obtain (ωj)j such that <ωj → ∞ as j → ∞, at least for a subsequence (ωjk)k. In
order to satisfy the equations (4.13) with the ansatz (4.16) it is sufficient (and necessary) that
ωj satisfies

ω3
j + dλαj ω

2
j + (b2λ2β

j + aλj e
−τωj )ωj = −adλ1+α

j e−τωj . (4.17)

If we find (ωj)j resp. a subsequence (ωjk)k such that the following three conditions (4.18) -
(4.20) are satisfied, then Theorem 4.1 will be proved.

<ωjk →∞ as k →∞, (4.18)

sup
k
|
λ2−β
jk

e−τωjk

ω2
jk

| <∞ (4.19)

(to assure the boundedness of the data),

For t > 0 : |e
ωjk t

ω2
jk

| → ∞ as k →∞. (4.20)

To get (4.17) - (4.20) we have to distinguish two cases (in order to guarantee the boundedness
of the corresponding functions q below).

Case 1:
α < 2β. (4.21)

Now, (4.17) is equivalent to

ωj
(
1 +

ω2
j

b2λ2β
j

+
dωj

b2λ2β−α
j

+
a

b2
λ1−2β
j e−τωj

)
=
−ad
b2

λ1+α−2β
j e−τωj . (4.22)

We make the ansatz (dropping the index j again)

ω = µ(1 + ζ), |ζ| < 1/2, (4.23)

where µ is the solution to

µ =
−ad
b2

λ1+2α−β e−τµ (4.24)

which exists according to Theorem 1.1 in [9] since 1 + α− 2β > 0 due to (β, α) 6= (1, 1).
Then, solving (4.22) is equivalent to solving

(1− e−τµζ)︸ ︷︷ ︸
=:f(ζ)

+ (q(ζ) + ζ + ζq(ζ))︸ ︷︷ ︸
=:g(ζ)

= 0, (4.25)

where

q(ζ) :=
µ2(1 + ζ)2

b2λ2β
+
dµ(1 + ζ)
b2λ2β−α +

a

b2
λ1−2β e−τµ(1+ζ). (4.26)
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f and g are holomorphic in Ω := B(0, 1
10τ |µ|), where 10τ |µ| > 2 w.l.o.g. f has exactly one zero

(ζ = 0) in Ω and satisfies on ∂Ω (cp. (2.34)).

f(ζ) ≥ f̄ > 0. (4.27)

On ∂Ω we also have
|ζ| ≤ C

|µ|
, (4.28)

and

|q(ζ)| ≤ C

|µ|

(
| µ

3

λ2β
|+ | µ2

λ2β−α |+ |
µ2

λ2α+β
|︸ ︷︷ ︸

=:p1(µ)

)
(4.29)

where we used (4.24) which also yields, for % ∈ {2β, 2β−α, 2α+β}, and for δ% := %/(1+2α−β),

1
λ%

=
(ad
b2
)δ% e−τδ%<µ

|µ|δ%
(4.30)

which implies

|p1(µ)| ≤ C
3∑

m=1

|µ|3−δ%m e−τδ%m<µ (4.31)

where
%1 := 2β, %2 := 2β − α, %3 := 2α+ β

such that δ%m > 0, m = 1, 2, 3, by our assumption (4.21).
Remark: 2− δ%m > 0, m = 1, 2, 3.
We conclude for m = 1, 2, 3

|µjk |
3−δ%m e−τδ%m<µjk → 0 as k →∞ (4.32)

(since cos arg(µjk) ≥ c0 > 0 as before). Combining (4.29) - (4.32) we conclude

|g(ζ)| ≤ C

|µ|
(4.33)

and, hence, using again Rouché’s theorem, that there is exactly one solution ζjk in Ω to (4.25),
and ωjk = µjk(1 + ζjk) solves (4.17). The relation (4.18) is proved as in (2.39). Regarding (4.19)
we estimate, using (4.24),

|
λ2−β
jk

e−τωjk

ω2
jk

| ≤ C

λ2α−1
jk

≤ C

since α ≥ 1/2.
Finally, (4.20) follows as in the proof of part (i) of Theorem (2.1), see (2.40) - (2.42).
(Q.e.d. (case 1))

Case 2:
α ≥ 2β. (4.34)
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Proceeding in the same spirit as before, we recognize (4.17) to be equivalent to

ω2
(
1 +

ω

dλα
+

b2

λα−2βω
+
aλ1−α

dω
e−τω

)
= −aλe−τω (4.35)

for which we make the ansatz
ω = µ(1 + ζ), |ζ| < 1

2
, (4.36)

µ solving
µ2 = −aλe−τµ (4.37)

according to the proof of Theorem 1.1 from [9], see the appendix. Then (4.35) is equivalent to

(1− e−τµζ)︸ ︷︷ ︸
=:f(ζ)

+ (q(ζ) + 2ζ + ζ2 + (2ζ + ζ2)q(ζ))︸ ︷︷ ︸
=:g(ζ)

= 0, (4.38)

where

q(ζ) :=
µ(1 + ζ)
dλα

+
b2

λα−2βµ(1 + ζ)
+

aλ1−α

dµ(1 + ζ)
e−τµ(1+ζ). (4.39)

f is the same as in case 1. We estimate

|q(ζ)| ≤ C

|µ|

(
|µ

2

λα
|+ 1 + |λ1−α e−τµ e−τµζ |

)
≤ C

|µ|
(4.40)

as before, since α ≥ 2β and α > 0.
This implies

|g(ζ)| ≤ C

|µ|
(4.41)

and, with Rouché’s theorem, we get a unique solution ζjk in Ω to (4.38), and ωjk = µjk(1 + ζjk)
solves (4.22). The remaining relations (4.18) -(4.20) follows as in case 1.
Q.e.d.
Proof of Theorem 4.2: Making the same ansatz (4.11), (4.12) as in the proof of Theorem 4.1
we look for a solution gj to

g′′′j (t) + dλαj g
′′
j (t− τ) + aλjg

′
j(t) + b2λ2

jg
′
j(t) + adλ1+α

j gj(t− τ) = 0, (4.42)

and, then, for hj satisfying
h′′j (t) + aλjhj(t) = bλβj gj(t), (4.43)

with
hj(0) =

1
aλ1+b

j

(
b2λ2β

j gj(0) + g′′j (0) + dλαj g
′
j(−τ)

)
, (4.44)

h′j(0) = − 1

bλβj

(
g′j(0) + aλαj g(−τ)

)
, (4.45)

Then (uj , θj) satisfy (4.3), (4.4), cp. the arguments in (2.48) - (2.50).
For gj we make the ansatz

gj(t) =
1
ω2
j

eωjt. (4.46)
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We shall obtain (ωjk)k such that <ωjk → ∞ as jk → ∞ as k → ∞. To satisfy (4.42) by (4.46)
it is sufficient (and necessary) that ωj satifies

ω3
j + dλαj e

−τωjω2
j + (aλj + b2λ2β

j )ωj = −adλ1+α
j e−τωj . (4.47)

We have to find (ωj)j resp. a subsequence (ωjk)k such that the following conditions (4.48) -(4.50)
are satisfied; then the theorem will be proved.

<ωjk →∞ as k →∞, (4.48)

sup
k
|λα−βjk

e−τωjk | <∞, (4.49)

(to assure the boundedness of the data),

For t > 0 : |e
ωjk t

ω2
jk

| → ∞ as k →∞. (4.50)

Case 1:
0 < β ≤ 1/2. (4.51)

Then (4.47) is equivalent to

ωj
(
1 +

b2

aλ1−2β
j

+
ω2
j

aλj
+
d

a
λα−2β
j e−τωjωj

)
= −dλαj e−τωj (4.52)

The ansatz — dropping the index j again —

ω = µ(1 + ζ), |ζ| < 1/2, (4.53)

where µ is the solution to
µ = −dλαj e−τµ, (4.54)

according to Theorem 1.1 in [9], observe α > 0, yields that solving (4.52) is equivalent to solving

(1− e−τµζ)︸ ︷︷ ︸
=:f(ζ)

(q(ζ) + ζ + ζq(ζ))︸ ︷︷ ︸
=:g(ζ)

= 0, (4.55)

where

q(ζ) :=
b2

aλ1−2β
+
µ2(1 + ζ)2

aλ
+
d

a
λα−2βµ(1 + ζ) e−τµ(1+ζ). (4.56)

With (4.27), (4.28) analogously, we additionally get on ∂Ω (with Ω = B(0, 1
10τ |µ|) again)

|q(ζ)| ≤ C

|µ|

(
| µ

λ1−2β
|+ |µ

3

λ
|+ |λα−2βµ2 e−τµ|︸ ︷︷ ︸

=:p2(µ)

)
(4.57)

W.l.o.g. we assume b < 1/2 since for b = 1/2 we may replace (4.24) by

µ =
−ad
a+ b2

λα e−τµ (4.58)
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and (4.56) by

q(ζ) =
µ2(1 + ζ)2

(a+ b2)λ
+

d

a+ b2
λα−1 e−τµ(1+ζ)µ(1 + ζ), (4.59)

and then (4.57) by

|q(ζ)| ≤ C

|µ|

(
|µ

3

λ
|+ |λα−2βµ2 e−τµ|

)
(4.60)

and finally continue as follows, now for b < 1/2.
By (4.54) we have for % > 0

1
λ%

= dδ%
e−τδ%<µ

|µ|δ%
(4.61)

with
δ% :=

%

α
, (4.62)

as well as
e−τµ = −1

d

µ

λα
. (4.63)

Hence, using (4.54) again,

|p2(µ)| ≤ C
(
| µ

λ1−2β
|+ |µ

3

λ
|+ | µ

3

λ2β
|
)
≤ C

3∑
m=1

|µ|3−%m e−τδ%m<µ, (4.64)

where
%1 := 1− 2β, %2 := 1, %3 := 2β (4.65)

assuring %m > 0, m = 1, 2, 3, by our assumptions.
As in the proofs before, we successively conclude

|p2(µ)| ≤ C, |q|(ζ)| ≤ C

|µ|
,

hence
|g|(ζ)| ≤ C

|µ|
(4.66)

This implies again the existence of exactly one solution ζjk in Ω to (4.55), and ωjk = µjk(1+ζjk)
solves (4.47).
The relation (4.48) is proved as in (2.39). Regarding (4.49) we estimate, using β > 0 and (4.54),

|λα−βjk
e−τωjk | ≤ C|µjk

λβjk

| ≤ C|µjk |
1− β

α e−
τβ
α
<µjk ≤ C. (4.67)

Finally, (4.50) follows as in the proof of part (i) of Theorem 2.1, see (2.40) – (2.42).
(Q.e.d.(case 1)).

Case 2:
1/2 < β < 1. (4.68)
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Now, (4.47) is equivalent to

ωj

(
1 +

a

b2λ2β−1
j

+
ω2
j

b2λ2β
j

+
dωj

b2λ2β−α
j

e−τωj
)

= −ad
b2
λ1+α−2β e−τωj (4.69)

We observe that for β < 1 we have 1 + α− 2β > 0. The ansatz

ω = µ(1 + ζ), (ζ) < 1/2, (4.70)

where µ solves

µ = −ad
b2
λ1+α−2β e−τµ, (4.71)

plugged into (4.69) yields to solve

(1− e−τµζ)︸ ︷︷ ︸
=:f(ζ)

(q(ζ) + ζ + ζq(ζ))︸ ︷︷ ︸
=:g(ζ)

= 0. (4.72)

Estimating

|q(ζ)| ≤ C

|µ|

(
| µ

λ2β−1
+ | µ

3

λ2β
|+ |λα−2βµ2 e−τµ|︸ ︷︷ ︸

=:p3(µ)

)
(4.73)

using — by (4.71) — for % > 0,
1
λ%

=
(ad
b2
)δ% e−τδ%<µ

|µ|δ%
(4.74)

where
δ% :=

%

1 + α− 2β
, (4.75)

and

e−τµ = − b
2

ad

µ

λ1+a−2b
, (4.76)

we obtain

|p3(µ)| ≤ C
(
| µ

λ2β−1
|+ | µ

3

λ2β
|+ |µ

3

λ
|
)
≤ C

3∑
m=1

|µ|3−%m e−τδ%m<µ, (4.77)

where
%1 := 2β − 1, %2 := 2β, %3 := 1 (4.78)

satisfy %m > 0, m = 1, 2, 3.
As before we conclude

|p3(µ)| ≤ C, |q(ζ)| ≤ C

|µ|
implying the existence of exactly one solution ζjk in Ω to (4.55), and ωjk = µjk(1 + ζjk) solves
(4.47). The relation (4.48) is proved as in (2.39). Regarding (4.49) we estimate, using (4.54),

|λα−βjk
e−τωjk | ≤ C| µjk

λ1+α−β
jk

| ≤ C|µjk |
− b

1+α−2β e
−τ 1+α−β

1+α−2β ≤ C. (4.79)

Finally, (4.50) follows as in case 1. This finishes the proof of Theorem 4.2.
Q.e.d.
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We notice the interesting difference A1
m 6= A2

in. For (4.1), (4.2) the damping through θ has to
be weak enough (”α ≥ 1/2”) to still guarantee the ill-posedness suggested by the equation (4.1)
for u.
One should also notice that the conditions (β, α) ∈ Ajin, j = 1, 2, are sufficient for the instability,
the behavior in the region outside Ajin is an open question.
It would be possible to study with the methods above even more general systems like

utt(t) +Au(t− g1τ) + bAβθ(t− g2τ) = 0, (4.80)

θt(t) + dAαθ(t− g3τ) + bAβut(t− g4τ) = 0, (4.81)

where gj ∈ {0, 1}, j = 1, 2, 3, 4. Here the cases g1− 1 = g2 = g3 = g4 = 0 and g1 = g2 = g3− 1 =
g4 = 0 where treated, for simplicity.

5 Appendix

For the reader’s convenience, we recall the essential parts of the proof of Theorem 1.1 in [9]
which we used in the previous sections. We look for solutions ωl to the equation

ωnl = e−ωlτξl, (5.1)

where ξl → −∞ as l→∞, and n ∈ N. Dropping the index l for simplicity and writing ω = reiϕ

with 0 ≤ r <∞ and 0 ≤ ϕ < 2π, we get from (5.1)

ξ = rneinϕeωτ = rnerτ cosϕei(nϕ+rτ sinϕ). (5.2)

Since ξ < 0, we wish to solve

rnerτ cosϕ = |ξ|, nϕ+ rτ sinϕ = π, (5.3)

which implies
r =

π − nϕ
τ sinϕ

. (5.4)

It is advantageous to place an additional restriction on ϕ:

0 < ϕ ≤ π

4n
. (5.5)

Substituting (5.4) into (5.2) we obtain

ψ(ϕ) := (π − nϕ)n e(π−nϕ) cotϕ − |ξ|τn sinn ϕ = 0. (5.6)

Our aim is to show that (5.6) always has a zero in (0, π/(4n)) whenever |ξ| is large enough.
We have limϕ↓0 ψ(ϕ) =∞ and

ψ
( π

4n

)
=
(3π

4

)n
e

3π
4

cot
(
π
4n

)
− |ξ|τn sinn

( π
4n

)
→ −∞ as |ξ| → ∞. (5.7)

which gives us a number ϕ ∈ (0, π4n) solving (5.6). Hence, using cosϕl ≥ cos π
4n > 0 due to (5.5),

there is an m ∈ N such that for all l ≥ m there is a solution ωl = rle
iϕl to (5.1) such that

<ωl = rl cosϕl →∞ as l→∞, rl →∞ as l→∞,

where we used ∞← |ξl| = rnl e
rlτ cosϕl .

23



References

[1] Ammar Khodja, F., Benabdallah, A.: Sufficient conditions for uniform stabilization of second order
equations by dynamical controllers. Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 207–222.

[2] Ammari, K, Nicaise, S., Pignotti, C.: Feedback boundary stabilization of wave equations with
interior delay. arXiv:1005.2547v1 (2010).

[3] Avalos, G., Lasiecka, I.: Exponential stability of a thermoelastic system without mechanical dissi-
pation. Rend. Instit. Mat. Univ. Trieste Suppl. 28 (1997), 1–28.
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